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Abstract— With ever growing competition in telecommunica-
tions markets, operators have to increasingly rely on business
intelligence to offer the right incentives to their customers.
Existing approaches for telecom business intelligence have almost
solely focused on the individual behavior of customers. In this
paper, we use the Call Detail Records of a mobile operator to
construct Call graphs, that is, graphs induced by people calling
each other. We determine the structural properties of these
graphs and also introduce theTreasure-Huntmodel to describe
the shape of mobile call graphs. We also determine how the
structure of these call graphs evolve over time. Finally, since
Short Messaging Service (SMS) is becoming a preferred mode
of communication among many sections of the society we also
study the properties of the SMS graph. Our analysis indicates
several interesting similarities as well as differences between the
SMS graph and the corresponding call graph. We believe that
our analysis techniques can allow telecom operators to better
understand the social behavior of their customers, and potentially
provide major insights for designing effective incentives.

Index Terms— Telecom Call Data Records, Graph Algorithms,
Social Network Analysis

I. INTRODUCTION

As Mobile Telecom penetration is increasing, and even ap-
proaching saturation in many geographies, the focus is shifting
from customer acquisition to customer retention. It has been esti-
mated that it is much cheaper to retain an existing customer than
to acquire a new one [3], [13]. To maintain profitability, telecom
service providers must controlchurn, the loss of subscribers who
switch from one carrier to another. However, as the telecommuni-
cations markets grow more and more competitive, it is very easy
for a consumer to churn because of low barriers to switching
providers. In order to retain customers, the operators have to
offer the right incentives, adopt the right marketing strategies,
and place their network assets appropriately. To succeed in this
goal, optimizing marketing expenditure and improved targeting
are critical requirements.

Retrieving information from call graphs (where people are the
nodes and calls are the edges) obtained from the Call Detail
Records (CDRs) can provide major business insights to Mobile
Telecom operators for designing effective strategies. A CDR
contains various details pertaining to each call: who called whom,
when was it made, how long it lasted, etc. Graph theoretic
information from call graphs can allow service providers to
better understand the underlying behavior of users, in a local as
well as global context, in order to design incentives to increase
subscriber loyalty and prevent/reduce churn. For example, if the
call graph is disconnected into many small components then
blanket advertising may be more appropriate asword-of-mouth
spreading is impossible. Similarly, the presence of cliques or
bipartite cores, which implies the presence of communities, can
be utilized to improve group targeting and retention.

In this paper we present an analysis of the CDRs of one of
the largest Telecom operators in the world. Previously, a few
experiments on call graphs of stationary telephone networks had
been undertaken to determine parameters like cliques [1] and
degree distributions [2]. However, to the best of our knowledge,
this is the first study that attempts to discover and characterize
a broad set of structural properties of mobile call graphs. In
particular, we report findings on various topological properties of
these massive call graphs, including degree distributions, strongly
connected components, and cliques. The presence of power law
distributions is ubiquitous in many parameters of the call graph,
a typical signature of its scale-free structure. Further, we observe
interesting similarities and differences with respect to commonly
studied networks like the WWW graph [21].

One of our primary motivations has been to characterize the
shape of call graphs imposed by cellular phone users. For this,
we utilize the technique that has been used to arrive at the Bow-
Tie model for WWW graphs [6] and then conduct additional
experiments using novel techniques in order to reveal the finer
structure of the graphs. An interesting revelation is that, whereas
most existing graphs (hence their models) are based on the node
distributions in the components of the graph, our call graphs are
better characterised by theedgedistributions among the various
components. We introduce theTreasure-Huntmodel, an edge
distribution based model, to characterise our mobile call graphs.
The techniques proposed herein are general enough to be applied
to the analysis of any network, and may be particularly relevant
for social networks.

Although several studies on the structure and properties of
different types of networks have been reported in the literature
most of them are restricted to the analysis of a static snapshot
of the network. A temporal analysis of a network to determine
how it evolves over time can be very insightful. Such a study
is difficult for most real-world networks since it is difficult to
obtain information about the arrival of each node and edge into
the network. However since the CDRs record the time for all
calls, temporal analysis of the Telecom Call graphs is feasible.
In this paper we take snapshots of the call graphs at different
time segments and analyze how the various parameters of the
call graphs change over time.

In several geographies and among many segments of customers,
Short Messaging Services (SMS) has become very popular and is
a preferred medium of communication. The Call Detail Records
maintain the details of all the SMSes and it is possible to create
the SMS graph from the CDRs. In this paper we also analyze this
graph and try to determine its correlation with the Call graph. Our
analysis seems to indicate that the SMS graph is moresocial than
the Call graph. As far as we know this is the first study that tries
to determine the characteristics of the SMS graph. We believe
that insights from the analysis can enable the Telecom operators
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understand an important segment of its customers who utilize
SMS as a communication medium.

In summary, the contributions of this paper are as follows:
• We study a broad set of parameters that reveal various

structural properties of mobile call graphs.
• We describe novel techniques to determine the shape of large

graphs
• We introduce theTreasure-Huntmodel, an edge distribution

based model, possibly the first topological model for mobile
call graphs.

• We present a temporal analysis of mobile call graphs to
understand how the various parameters of the graph evolve
over time.

• We extend our analysis to SMS graphs and try to correlate
the properties between SMS and Call graphs.

• We make a conscious effort to emphasize the practical
implications of our findings in a way that can provide
business insights and design strategies for mobile Telecom
operators.

The rest of the paper is organized as follows. The next section
cites related work. In Section III, we describe our data sets and
the techniques for sampling data sources and creation of the
call graphs. Various characteristics providing critical insights in
the call graphs are presented in Section IV. We then introduce
a framework to get the finer level details of the topology in
Section V. In Section VI we present a temporal analysis of the
call graphs and Section VII extends the analysis to SMS graphs.
Finally, we conclude the paper with Section VIII.

II. BACKGROUND AND RELATED WORK

Massive graphs originating from different sources like WWW,
Internet topology, Email graphs and Biological networks have
drawn the attention of a plethora of researchers [21], [12], [7].
These graphs pose interesting challenges in terms of scalability,
choice of parameters used to characterize them, and finally the
techniques used for interpreting the graph structure. Even though
many theoretical studies are available which characterize the
graphs based on various parameters like size, density, degree
distribution, clustering coefficient and connected components,
practical interpretation and utilization of those parameters (and
results) are still lacking.

In the recent times, there is a lot of interest in studying World-
wide Web and Internet graphs. [14] showed that the degree
distribution of the internet follow a Power law. Both [4] and [18]
suggest that thein andout degrees of vertices on the Web graph
also exhibit power laws. Moreover, [4] has shown that most pairs
of pages on the Web are separated by a handful of links, almost
always under 20. This is viewed by some as a “small world”
phenomenon. On-line friendship networks also exhibit the small-
world phenomenon [20]. Our analysis reveals evidence of small
world phenomenon in mobile graphs also.

Determining groups of related pages in such networks is
another interesting problem. For example, [18] showed that
bipartite cores in the Web graph represent implicitly defined
communities. A related area of research is the determination of
the importance of pages (nodes) in the Web graph. The most
well-known technique isPage Rank[5] which has been used very
effectively to rank the results in Google search engine. Another
technique of finding the important pages in a WWW collection
has been developed by [15] who defined two types of scores for

Web pages which pertain to a certain topic:authority and hub
scores. We also try to identify communities and important mobile
numbers from the Telecom graphs.

Yet another body of work has been undertaken to determine
topological model of the WWW graph. [6] showed that the Web
has aBow-Tiestructure. This work outlines a general model but
does not expose further details of the component structures. The
Daisy model [11] is an attempt to further refine the WWW bow-
tie model. Researchers have also tried to determine models for the
Internet topology. The Jellyfish model [24] was one of the first
in this direction. The Medusa model [8] is yet another model for
the Internet topology which was derived using a technique called
k-core decomposition. In this paper we introduce a model for
Telecom graphs.

Although real-world graphs are evolving over time most of
the analysis reported in the literature have been done on static
graphs. Recently, structural properties of different snapshots of the
WWW graph has been reported in [22]. [19] showed that Citation
graphs exhibit densification and shrinking diameters over time and
presented a generative model called theForest Fire modelfor
capturing this phenomenon. On the other hand, the emergence of
bursty communities in the blogspace was identified in [16]. The
structure and evolution of two Online Social Network maintained
by Yahoo has been reported in [17].

One of the first studies on call graph was performed on a graph
of landline phones made on1-day consisting of approximately 53
million nodes and 170 million edges [1]. The graph was found
to be disconnected with 3.7 million separate components, most
of them being pairs of telephones that called only each other. A
giant component consisting of80% of the total nodes was found.
The diameter of this giant component was20. [2] experimented
with the call graph of long-distance telephone traffic. The actual
call graph showed that the degree sequence was not quite a
perfect power law, and the authors introduced a unique class of
random graphs with a power law degree sequence, calledα-β
graphs to capture the distribution. In this paper we present deeper
insights on the characteristics of Telecom call and SMS graphs
to compliment the earlier studies.

In terms of business strategy design for telecommunication
industry, many existing techniques exist based on mining of user
profiles [13] as well as application of machine learning methods
[3]. Most of these rely on the individual calling patterns of
behaviors. We believe that structural findings from call graphs can
augment and strengthen business intelligence directed towards the
critical problems of customer targeting, campaign management
and churn prevention.

III. D ATA SOURCES ANDPREPROCESSING

A Call Detail Record (CDR) contains all the details pertaining
to a call such as the time, duration, origin, destination, etc. of
the call. The CDRs are collected at Base stations and generally
stored in a Data Warehouse. In this paper we analyze the CDRs of
one of the largest mobile operator in India. Not surprisingly, for
a large country like India with a significant mobile penetration,
more than a billion calls are made every month, and the data
storage runs into terabytes.

A call graphG is a pair〈V (G), E(G))〉, whereV (G) is a non-
empty finite set of vertices (mobile users), andE(G) is a finite set
of vertex-pairs fromV (G) (mobile calls). Ifu andv are vertices
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Fig. 1. In-degree distribution for regionsB and
C (γin is 2.85924 and2.89961)
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Fig. 2. Out-degree distribution for regionsB and
C (γout is 1.71374 and1.70808)

TABLE I

DETAILS OF DATA SET USED

Region Nodes Edges Period Avg. Deg. Type

A-Region 224418 1816285 1 month 16.19 Directed
B-Region 1250656 4514528 1 week 7.22 Directed
C-Region 989573 4313797 1 week 8.72 Directed
D-Region 407332 1456645 1 month 7.15 Directed

of G, then an edge〈u, v〉 is said to exist ifu callsv. Such a graph
can be easily constructed from the CDRs.

To get the actual graph, we had to query the Data warehouse
and extract the best sample that would reflect the global calling
pattern. The data set has the following characteristics:

• This study was done for a single mobile operator in India.
• The mobile operator has broken the country into several

region-wise circles. For our study, we analyzed the calling
patterns of four circles; two of these circles were large
metropolitan cities and two were states with a mixture of
rural and urban population. These regions are in different
areas of India and are also culturally diverse with different
local languages.

• The study was done for intra-region calls, and does not
include long distance or international calls.

• For two of the regions, we collected all the calls made in
a week, and for the other two, we collected all the calls
made in a month. Interestingly, despite the durational and
geographical differences, many parameters for these four
regions are consistent with each other.

• Further, very short duration calls (less than 10 seconds) have
been ignored as missed calls and wrong calls since they may
yield incorrect results. (However in many countries some of
these missed calls may be used to convey pre-determined
messages and are therefore socially relevant).

• Multiple calls between any two user or nodes is treated as
a single edge. The resulting graph isdirected simple graph
with no self-loops or multiple edges.

Table I shows the details of the data set used in this paper.
While two call graphs have been generated for the span of1

month (A andD), the two are generated from call details records
of 1 week (B and C). Some basic graph properties such as the
number of nodesn (also referred to asgraph size) and thenumber
of links m are reported. TheAverage node degreeis defined
as k̄ = 2m/n.

IV. STRUCTURAL PROPERTIES OF CALL GRAPHS

In this section we analyse the structural properties of call
graphs. Our analysis is based on a set of graph metrics that have
been traditionally used to characterise large networks. In many
cases, we use existing tools [10], [9], [23] for computing these
parameters.

A. Degree Distributions

Distributions of degree gives information which average degree
cannot, i.e. the number of nodesn(d) of each degreed in the
graph. We define this property asnode degree distribution
( P (d) = n(d)/n). The degree distributionP (d) for directed
networks splits in two separate functions, the in-degree distri-
butionP (din) and the out-degree distributionP (dout), which are
measured separately as the probabilities of havingdin incoming
links anddout outgoing links, respectively.

In Figure 1 and Figure 2, we report the behavior of the in-
degree and out-degree distributions in log-log scale. We provided
degree distribution results for regionsB and C only because
they are the largest ones and other two regionsA andD were
showing similar results. Observing both in-degree and out-degree
distributions, the call graph topology is found to be characterized
by presence of a highly heterogeneous topology, with degree
distributions characterized by wide variability and heavy tails.
Observing log-log plots, we can see that degree distributions fit
well to power law distributions.

The in-degree distribution exhibits a heavy-tailed form approxi-
mated by a power-law behaviorP (din) ∼ d−γin

in , and the value of
the exponent ofγ is between 2 and 3, very much like the WWW
graph [6]. However, in the case of the out-degree distribution, the
exponent is less than 2, very much unlike both the WWW as well
as the Email graph.The parameters of the four regions are rather
close despite their geographic, cultural, and duration (1 week for
two regions vs. 1 month for the other two) differences. The degree
distributions imply that there are very few nodes that have very
high in-degree or out-degree and therefore may be suitable for
individual targeting by a telecom service provider.

B. Neighbourhood Distribution

The neighbourhood function,N(h) for a graph also called hop-
plot [14], is the number of pairs of nodes within a specified dis-
tance, for all distancesh. The individual neighbourhood function
for u at h is the number of nodes at distanceh or less fromu. It
can be computed as
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Fig. 3. Neighbourhood function distributions for all regions

TABLE II

HOP EXPONENT AND EFFECTIVE DIAMETER VALUES(C IS THE CONSTANT

FOR THE LINEAR EQUATION FIT IN LOG-LOG SCALE FOR THE EQUATION

N(h) ∝ hH)

Region H C δeff
A 4.53 14 8.10177
B 4.53 14 13.9314
C 5.52 14 8.07642
D 4.94 13 8.93613

follows:

IN(u, h) = |{v : v ∈ V, dist(u, v) 6 h}|.

The neighbourhood functionN(h) is the number of pairs of nodes
within distanceh, and is defined:N(h) =

P
u∈V IN(u, h). The

neighbourhood function provides us ways to compare call graphs
in terms of hop-exponent, distance distribution, and effective
diameter.

We calculated the neighbourhood function for call graphs using
the ANF tool [23]. The plot of the neighbourhood function for all
hop for all the regions are shown in the Figure 3. Also,N(h) ∝
hH, whereH is thehop exponent.

There are three interesting observations about the hop exponent
that make it an appealing metric. First, if the power-law holds,
the neighbourhood function will have a linear section with slope
H when viewed in log-log scale. Second, the hop exponent is,
informally, the intrinsic dimensionality of the graph. For example,
a cycle has a hop exponent of1 while a grid has a hop exponent
of 2. Third, if two graphs have different hop exponents, there is
no way that they could be structurally similar [23].

We computed thehop-exponentusing linear fit on the neigh-
bourhood function distribution shown in Figure 3. The hop
exponents of the 4 regions are reported in the Table II. We
consistently found hop exponent close to4 and5 in the Telecom
graphs. The only other real-world graphs whose hop exponents we
know are Int-11-97, Int-04-98, Int-12-98 and Rout-95 with hop
exponents 4.62, 4.71, 4.86, 2.83 respectively [14].This suggests
that our mobile telecom graphs are structurally asdenseas
those of the Internet graphs. Interestingly, even though the graph
of regionsA and B differ considerably in parameters such as
average degree, number of nodes and edges(Table I), their hop
exponents are similar ( 3).

Effective diameter gives us another parameter for effective
measurement of the compactness of the network. For a call graph
of N nodes withE edges, we can compute effective diameter

based upon the equation [14]:

δeff =

�
N2

N + 2E

�1/H

The effective diameter of a network isδeff if any two nodes
are within δeff hops from each otherwith a high probability.
The effective diameter for all the four regions are given in the
Table II; the maximum value is13. This provides evidence of
small-world phenomenon in mobile call graphs since most pairs
of nodes (phone numbers) are separated by a handful of edges
(calls). We believe that this phenomenon can be further exploited
to identify (social) communities.
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C. Cliques

For mobile telecom providers, an (undirected) clique is useful
for defining closed user groups(as they are commonly called),
where discounts are given for all calls made within the closed
user group. The number and sizes of such groups also gives us
an idea of what are the right incentives to offer.

The distribution of the clique sizes for the 4 regions under
observation are shown in Figure 4. Cliques of size as high17 is
observed. Relatively, large number of cliques of smaller sizes like
3 and4 are also observed.
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D. PageRank

In the context of WWW, the PageRankp(i) [5] of a pagei

is a measure of citation importance and is defined through the
following expression:

p(i) =
q

N
+ (1− q)

X
j:j→i

p(j)/dout(j) i = 1, 2, . . . , N (1)
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Fig. 6. Distribution of SCCs in log-log scale for all regions

whereN is the total number of nodes,j → i indicates a hyperlink
from j to i, dout(j) is the out-degree of pagej and q is the so-
called damping factor. The PageRank of a page grows with the
in-degree of the page as well as the in-degree of the pages that
point to it.

Figure 5 shows the PageRank distribution for regionB and
C respectively. For our analysis, we ignore very short calls to
remove noise introduced due to wrong numbers and commercial
spam. We observe that PageRank values follow the power law
distribution in the network.

The PageRank value of an individual in a telecom network
might indicate thesocial importanceof the individual. The social
importance of a customer grows with number of people calling
that customer as well as the social importance of the callers.Since
there are only a few of nodes with high PageRank, the telecom
operators can target these influential people to retain them.

E. Strongly Connected Components

Scale free graphs usually exhibit the presence of a giant
Strongly Connected Component (SCC). With this in mind, we
next investigate the distribution of SCCs in the mobile call graphs.
Figure 6 shows the distribution of SCC for different regions (in
log-log scale). We found that a giant SCC exists in all the call
graphs. For example, regionB has an SCC of size0.7 million
nodes. Further, Figure 6 shows that sizes of SCCs closely follow
a power law distribution. However, the largest SCC is significantly
larger than any of the remaining ones. Consequently, the second
largest SCC is very small compared to the largest one. Our
results conforms with those obtained for WWW graph [6]. In
the next section, we analyze SCC and its association with other
components to infer the shape of mobile call graphs.

V. THE SHAPE OF CALL GRAPHS

In this section, we analyze call graphs in order to examine
its macroscopic shape. The shape is crucial for two reasons. It
provides an intuitive description of the network that is easy to
understand and work with, and even more importantly, provides
the basis for the development of a generative model. A generative
model, when found, will provide a valuable simulation tool for
Telecom operators to study and predict usage growth in a new
region. To our knowledge, this is the first attempt for revealing
the call-graph topology.

We first begin by doingreach experiments, very similar in
spirit to those done for the WWW [6], and supplement those
techniques with a few novel ones of our own, in order to expose

TABLE III

Distribution of SCCs for region B

SCC Size Count
755592 1
9 1
8 3
7 2
6 31
5 124
4 454
3 2629
2 20617
1 443274

further details of our call graphs. Based on our analysis we present
a model calledTreasure-Huntfor mobile call graphs. A crucial
insight obtained as a result of this study is that the distribution
of edgesrather than the vertices across the various components
leads to a more accurate characterization of the structure of the
call graphs.

We also present ideas on how the knowledge of this structure
can be used by Telecom business analysts. While the applicability
of the Treasure-Hunt model beyond our call graphs is hitherto
unknown, all the techniques used in this section are general
enough for analyzing any massive graph.

A. Structure based on Node Distribution

Our first goal is to spot all the connected components and
place them spatially along with their interconnections to identify
the shape. The distribution of strongly connected components is
reported in Table III for regionB. The results show the existence
of one giant strongly connected component.

To discover different components that linklarge connected
components, we analyzed our call graph using Random Start
Breadth-First-Search (BFS) [11]. While ‘reachability’ of a nodev

means whetherv is reachable from another nodeu, we use ‘reach’
of v to mean the set of nodes (or its cardinality) reachable from
v. Some important definitions are given below.

• Reach (R of a nodeu) is the number of all possible nodes
reached in BFS, when starting from a given node.

• Percentage Reach(P = R/N ) is the percentage of nodes
reached (to total number of nodes in the graph).

• Reach Probability (pR) denotes the percentage probability
that a given node hasreachR.

TABLE IV

RANDOM START BFS EXPERIMENT FOR REGIONB

Reach Percentage Reach Reach Probability
< 6 < 0.0005 28.5
1022575 81.7 63
> 1022576 > 81.7 8.5

The experiment collected a set of random sample nodes and
computed thereach of all these nodes. The various values of
the reachR is plotted against the number of nodes havingreach
R. The reach probability for a given value ofreach R can be
obtained from this distribution. The experiment conducted on one
of the regions(B), produced the results as shown in Table IV.
Similar percentages were obtained for the other regions also.
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We found that the unique values ofreach were limited. For
instance, for regionB, the reach was either between 1 to 6 or
between 1022575 to 1022586. (For the other regions the reach
was similarly split into two ranges). This suggests the existence
of a massively connected componentCC (nodes havingreach
exactly equal to 1022575), anentry component (nodes having
reachmore than 1022575), anexit component (nodes havereach
less than 6) and some disconnected components.

Reach analysis allows the identification of a strongly connected
componentSCC if it exists, and of the regions connected to it.
To borrow the terminology of [6],IN refers to the region from
which there are paths that leads to theSCC, andOUT refers to
the region that is reachable from theSCC. The Bow-tie model
for the web graph was obtained as a result of reach analysis, and
is named so, because the relative number of vertices in each of
the regionsIN , OUT and SCC are nearly of the same order
reminiscent of a bow-tie.

The bow-tie model (Figure 7), introduced for the WWW,
contains a strongly connected component(SCC) region which
contains nodes that are mutually reachable, theIN region con-
tains the nodes from which theSCC can be reached. The
OUT region contains the nodes that are reachable from the
SCC. The TENDRILS gather nodes reachable from theIN

component and reaching neitherSCC nor OUT . TENDRILS

also include those nodes that reach into theOUT region but do
not belong to any of the other defined regions. TheTUBES

connect theIN and OUT regions directly, and some nodes are
totally disconnected(DISC).

To find the sizes ofSCC, IN and OUT in our call graphs,
these components were analyzed for reach. Starting from any
vertex in theIN region, the BFS algorithm reaches all ofSCC

and OUT region. Hence, all the nodes of IN region have high
reach. From Table IV, we know 8.5 % of nodes reach>1022575
nodes, hence size of IN is 8.5 % of total nodes.

If a starting vertex lies in theSCC region, the BFS cannot
reachIN , but can reach theSCC andOUT regions. Moreover,
since all the nodes ofSCC are mutually reachable, all vertices
in SCC have the same reach. From Table IV, we infer that 63 %
of nodes have the same reach of exactly 1022575 (81.7%) nodes.
So, the size ofSCC is 63% of nodes and since the size ofSCC

and OUT combined should be 81.7 % of nodes, it implies that
size ofOUT as 18.7 % of nodes.

If the starting vertex happens to fall inOUT , DISC,
TENDRIL or TUBE, then its reach should be negligible.
Evidently, our experiment showed that around 28.5 % of nodes
reach1 to 6 nodes. We summarize our results in Table V.

We validated our experiments using the Pajek [9] tool for this
data set. The results matched with the percentages forIN , OUT

TABLE V

SIZES INFERRED FOR THEBOW-TIE MODEL FOR REGIONB
Bow-tie Component % of total nodes
IN 8.5
SCC 63
OUT 18.7
TENDRIL, TUBE and DISC 9.8

and SCC region that we obtained. The relative sizes of these
regions indicate a structural difference from the sizes of those in
the WWW graph. The sizes ofIN ,SCC,OUT for the WWW
are nearly of same order (44 million, 56 million, and 44 million
respectively) [6]. For our graphs, theSCC is often an order
of magnitude larger thanIN , and OUT is often nearly twice
that of IN (124801, 755592, 266984 respectively). Hence, and
perhaps not surprisingly, the bow-tie model does not characterise
our graphs. However, this does not rule out the possibility of
another model which is based on the node distribution.

TABLE VI

DEFINITION AND TYPES FORSUBGRAPHS

Subgraph Definition Graph Type
IN-IN Subgraph containing edges only Directed

between nodes of IN region
IN-SCC Subgraph consisting edges Bi-partitie & Directed

from IN region to SCC
IN-OUT Subgraph consisting edges Bi-partitie & Directed

from IN region to OUT
SCC-SCC Subgraph containing edges only Directed

between nodes of SCC region
SCC-OUT Subgraph consisting edges Bi-partitie & Directed

from SCC region to OUT
OUT-OUT Subgraph containing edges only Directed

between nodes of OUT region

B. Structure based on Edge Density

To find the shape (hence a model) of our graphs, we examined
the the number of vertices in the various regions (IN, OUT ,etc.).
Though there was some pattern (roughly the same order of mag-
nitude) in the vertex distribution, we found that the corresponding
edge distributions among the regions was more striking. We detail
this finding now.

From the BFS experiment, we know that starting from a
particular node, the reach is either huge (>1022575) or very low
(< 6). We collected the nodes whose reach is very high. These
are the nodes ofSCC and IN region. Starting from nodes with
high reach, we collected the nodes that are reachable. These nodes
belong to theSCC andOUT regions. We intersected these two
sets to isolate theSCC, IN andOUT components. With the help
of these nodes, we extracted the several edge-induced subgraphs
which are defined in Table VI. TheGraph typecolumn gives the
kind of subgraph induced from the global graph. For example,
edge induced subgraph IN-SCC is a bipartite directed graph as
one end is chosen from IN region and another is fromSCC

region.
To understand the structure of call graph, we extracted the edge-

induced subgraphs of the four regions and studied their properties.
Table VII gives us the results of various parameters that help
in detailing the shape of the subgraphs and their boundaries.
Most of the columns are self-explanatory.Left partitionandRight
partition capture the number of nodes from the two sets of
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TABLE VII

PROPERTIES OFSUBGRAPHS OF VARIOUS REGIONS

Reg. Subgraph Left part Right part Edges Avg dout Avg din Diameter Edge Ratio
IN-IN 4048 - 4525 1.11 1.11 3 0.04X
IN-SCC 11043 (IN) 98726 (SCC) 124991 11.31 1.26 1 X

A IN-OUT 1016 (IN) 9943 (OUT) 12154 11.96 1.22 1 0.1X
SCC-SCC 189327 - 1617431 8.5 8.5 10 12.9X
SCC-OUT 33855 (SCC) 18873 (OUT) 49649 1.46 2.63 1 0.4X
OUT-OUT 3396 - 2401 0.71 0.71 2 0.02X

IN-IN 53544 - 55128 1.03 1.03 4 0.17X
IN-SCC 110340(IN) 242147(SCC) 311595 2.82 1.28 1 X

B IN-OUT 25948 (IN) 69328 (OUT) 82182 3.17 1.18 1 0.26X
SCC-SCC 757933 - 3417025 4.5 4.5 14 10.9X
SCC-OUT 291980 (SCC) 239147(OUT) 459724 1.57 1.92 1 1.47X
OUT-OUT 94287 - 73702 0.78 0.78 4 0.23X
IN-IN 33814 - 36894 1.09 1.09 3 0.11X
IN-SCC 77068 (IN) 251170 (SCC) 329651 4.27 1.31 1 X

C IN-OUT 17136 (IN) 52858 (OUT) 64165 3.74 1.21 1 0.19X
SCC-SCC 658170 - 3351621 5.1 5.1 12 10.1X
SCC-OUT 255050 (SCC) 183309 (OUT) 424299 1.66 2.31 1 1.28X
OUT-OUT 59013 - 44723 0.76 0.76 4 0.14X
IN-IN 19805 - 18656 0.94 0.94 4 0.17X
IN-SCC 52919 (IN) 75441 (SCC) 109711 2.07 1.45 1 X

D IN-OUT 8796 (IN) 15662 (OUT) 19104 2.17 1.22 1 0.17X
SCC-SCC 226375 - 1123814 4.5 4.5 13 10.2X
SCC-OUT 72858 (SCC) 60763 (OUT) 111626 1.53 1.83 1 1.0X
OUT-OUT 24355 - 20860 0.85 0.85 4 0.19X

Shortcuts

Out-Tunnel
In-Tunnel

Maze

Entry Treasure(10 X) X0.17 X 0.2 XX

(0.2 X)

Fig. 8. Treasure-Hunt Model

bipartite graph. TheEdge ratiocolumn reports the ratio of edges
in a particular component to the edges of IN-SCC region. The
results for the subgraphs involving disconnected components like
IN-DISC, OUT-DISC, DISC-DISC are ignored as the magnitudes
of the parameters were negligible. The ratio of edges in the
subgraphs shown in Table VI display the (cross-region) generic
pattern in which these subgraphs connect with each other. The
similarity of the edge ratios (see columnEdge ratioof Table VII)
motivated us to present a generic structure capturing the edge
ratio of call-graph.

We now introduce and define theTreasure-Huntmodel which
is based on the edge distribution among the various components
of a graph and fits our mobile call graphs well. Figure 8 shows the
model. Note thatX denotes the number of edges in the IN-SCC
region.

We chose the treasure-hunt metaphor for describing the model
because it captures the shape of the directed graph, and em-
phasizes the importance of the edges (paths) rather than the
nodes. Theentry, in-tunnel, maze, out-tunnel, treasure, shortcuts
are the six regions that are prime components of ourTreasure-
Hunt structure (Figure 8). The region names are also metaphorical
and do not imply that the vertices in thetreasuredenote important
customers, for example. The smallest of our regions areentryand
treasure. Understandably, not many entries exist, nor there is a
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Fig. 9. Distribution of edge fractions in different components

lot of treasure. Once, we set on a voyage for treasure starting
from entry, there are lot of obvious paths viain-tunnel to the
maze. The maze defines a huge number of convoluted paths,
making it harder to reach the treasure. But the chances are fair,
there are almost equal number ofout-tunnelasin-tunnelpaths to
reach the treasure. Interestingly, lucky people may findshortcuts
that connects theentry directly to thetreasure. (The number of
shortcutsare as likely as anentry). But getting intoentry and
then tomazeis more than 90% likely.

C. Call graph as a Treasure-Hunt structure

TheTreasure-Huntmodel is based on the classification of edges
into 6 components. There are some intra-connections (within
a component) and interconnections (across components). Wefit
the Treasure-Huntmodel on the call graphs of the four regions
and found the ratio of edges distributed in all the components
(Figure 9). Determining the number of hops within IN-IN and
OUT-OUT subgraph shows that there are not many neighbours
after 1 hop. So, the IN subgraph can be split into two layers with
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one of them connectingSCC, and another which connects to
itself. Thus, the nodes of IN region split into two layers asentry
andin-tunnelregion inTreasure-Huntmodel. Similarly, the OUT
region is separated into theout-tunneland thetreasure.

To fit regionB to the Treasure-Huntmodel, the edge induced
subgraphs IN-IN, IN-SCC, SCC-SCC, SCC-OUT, OUT-OUT
and IN-OUT can be mapped toentry, in-tunnel, maze, out-
tunnel,treasure, andshortcutsrespectively. Theedge ratiocolumn
of Table VII gives the relative magnitude of the edges of each
component with respect to thein-tunnel. The shape is conclusive
asentry is 0.16 timesin-tunnelandmazeis almost 10 times the
in-tunnel. The out-tunnelis similar in size asin-tunnel, whereas
treasureis relatively the smallest and almost in the same order
as entry. The shortcutsare paths that directly connectentry to
treasure; they are also smaller in magnitude and of the same order
as theentry.

We tried to fit the other regions (A, C,D) (see other edge
ratios in Table VII) and found that they fit theTreasure-Hunt
model quite closely. TheTreasure-Huntmodel brings to light the
fact that often the edges rather than the nodes of graphs might
follow a pattern, as our call graphs indicate.There are several
implications of the results we obtain through path based model
of the call graph. It provides telecom operators with insights on
how a certain new serviceroll-out might be propagated in the
network. For example, the propagation chances would be higher
if they target nodes with greater reach (belonging to theEntry
and In-Tunnel regions). Similarly, customers can be segmented
based on their placement in the structure.

VI. TEMPORAL ANALYSIS

In this section we discuss temporal analysis of the call graphs.
We studied how some of the structural properties of these call
graphs vary with time. For regionsB and C for which we had
one week’s data we looked at the cumulative call data records at
each of the seven days. For regionsA andD for which we had
one month’s data we looked at seven time points at intervals of
four days each. Note that the analysis was done using the CDRs
from a period in which there was no celebrations or special events
to ensure that the snapshot reflected the normal calling patterns
of the customers.

A. Degree Distributions

The changes in the degree distribution of the graphs over time
may yield some insights into the evolution of call graphs. For
instance, it might be interesting to find out how the number of
nodes with high in-degree and high out-degree changes with time.

The plots for the temporal variation in-degree distributions for
regionsB and C on a log-log scale are shown in Figure 10(a)
and Figure 10(b) respectively. RegionsA and D showed the
same trends. From the results it is evident that the indegrees
of all nodes increase with time. The plots for the out-degree
distributions for regionB and C are shown in Figure 11(a) and
Figure 11(b) respectively. RegionsA and D showed the same
trends. The temporal variation of the out-degree distribution is
similar to the in-degree distribution.

A network is said to exhibit thePreferential attachment[4],
[21] property if in the network nodes with higher degree have
stronger ability to grab new links. We were interested in finding
out if preferential attachment is coming into play in call graphs.

TABLE VIII

TEMPORAL VARIATION OF CLIQUES OF VARIOUS SIZES FOR REGIONB

Size Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
3 53966 123798 192187 261006 329891 396233 451350
4 5499 18487 33098 48281 64020 77758 86651
5 659 3823 8357 14392 20869 26469 28844
6 54 660 2174 4341 7094 10074 11037
7 6 121 493 1172 2179 3350 3803
8 0 17 88 285 645 953 1236
9 0 0 17 54 197 382 427
10 0 0 0 11 37 104 159
11 0 0 0 0 4 16 41
12 0 0 0 0 2 4 4

For this, we first found out the in-degrees and out-degrees of the
nodes on the first day and for the same set of nodes, found the
average of their in-degrees and out-degrees on the seventh day.
Figures 12(a) and 12(b) plot the in-degree statistics for regionsB
andC nodes on the log-log scale. Figures 13(a) and 13(b) plot the
out-degree statistics for the same regions. Remarkably the plots
show a linear trend on the log-log plot indicating that nodes with
higher degrees on the first day also have higher degrees on the
seventh day. This gives a clear evidence of preferential attachment
being exhibited.

B. Neighborhood distribution

Next, we analyzed the neighborhood function of the call graphs
over time. Since the neighborhood function is an indication of the
effective diameter of a graph, this plot gives insights on how the
diameter of the call graphs is changing with time.

Figure 14(a) and Figure 14(b) show the neighborhood func-
tions at seven different points in time for the regionsB and C
respectively. It is clear from the results that the maximum distance
between any two pairs in the graph is decreasing with time. This
phenomenon of decreasing diameters has been observed in other
graphs as well [19].

C. Cliques

Table VIII shows the cliques of various sizes that are present in
the call graph in each of the seven days for regionB. By the first
day itself the largest sized clique is7. By the fifth day a clique
of size12 is formed. However no cliques of size greater than12

are formed in the last two days. The table also shows that there
is an almost linear increase in the number of cliques of smaller
sizes each day.

D. Strongly Connected Components

We have also looked at the evolution of the number and sizes
of the strongly connected components present in these graphs.
Figure 15(a) and Figure 15(b) show the plots for the fraction of
nodes present in strongly connected components of size 1,2,3,4,5
and the strongly connected component of the largest size, for the
regionsB andC respectively.

It was observed that the fraction of nodes present in the
largest strongly connected component increases rapidly with time.
Moreover, the fraction of nodes present in strongly connected
components of the smallest sizes is decreasing with time.

In [17] similar studies were conducted on the fraction of nodes
present in connected components of various sizes in the graph
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Fig. 10. Temporal variation of in-degree distributions for regionsB andC respectively
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Fig. 11. Temporal variation of out-degree distributions for regionsB andC respectively
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Fig. 12. Evidence of preferential attachment of indegree for regionsB andC respectively
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Fig. 14. Temporal variation of neighborhood function distributions for regionsB andC respectively
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Fig. 15. Temporal variation of the fraction of nodes in strongly connected components of various sizes for regionsB andC respectively

structure of social networking sites Flickr and Yahoo! 360. An
analysis of these graphs revealed that the fraction of nodes in all
components was continuously increasing. However, call graphs
seem to show a tendency of greater accumulation into a single
strongly connected component over time by taking in nodes from
the smaller components.

E. TheTreasure-Huntmodel

It would be interesting to determine how theTreasure-Hunt
model that we proposed earlier for call graphs evolves over time.
Therefore we fitted theTreasure-Huntmodel on the graph as it
stood at various points of time. Figure 16(a) and Figure 16(b)
show the edges present in the various components of theTreasure-
Hunt model at seven points of time for the regionsB and C
respectively. It is interesting to note the striking similarity in the
two plots in spite of them belonging to different regions. Some
of the trends that are evident from these plots are:

• The number of edges in the maze increase very rapidly. This
observation should be expected since we had earlier observed
that the percentage of nodes in the strongly connected
component was increasing.

• The sizes of the in-tunnel and out-tunnel are also increasing.
However the increase is not as rapid as in the case of the
maze.

• The sizes of the treasure and entry components are decreas-
ing. Hence the increase in maze is coming at the expense of
the treasure and entry becoming smaller. The maze is getting
bulkier by sucking in edges from the side components i.e.
the entry on the one end and the treasure on the other end.

TABLE IX

DISTRIBUTION OF NEW NODES TO VARIOUS COMPONENTS OF THE

BOW-TIE MODEL FOR REGIONB

Day Fraction of new Fraction of new Fraction of new
Number nodes in IN nodes in SCC nodes in OUT

2 0.300206 0.0777751 0.150014
3 0.324856 0.07414 0.173376
4 0.334607 0.0742626 0.184446
5 0.361123 0.0812633 0.213224
6 0.36397 0.0869003 0.22547
7 0.346742 0.0855269 0.233377

• The number of shortcuts remains almost constant with time.

While studying theTreasure-Huntmodel we had noticed that
the ratio of edges in various components with respect to the
edges in the in-tunnel component were surprisingly similar for
different regions. We wanted to determine how this ratio changes
with time. Figure 17(a) and Figure 17(b) show the values of
the ratio of edges in various components to the edges in the in-
tunnel component at seven points in time. As expected these plots
indicate that:

• The fraction of edges in the maze is increasing.
• The fraction of edges in entry and treasure are decreasing
• The fraction of edges in shortcuts and out-tunnel remain

almost constant.

1) Densification in the Treasure-Hunt model:Figures 16 and
17 show that the maze, entry and treasure component sizes
are flattening. We also observed that the size of the maze is
continuously increasing while the size of the entry and treasure
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Fig. 16. Temporal variation of the edges in the variousTreasure-Huntcomponents for regionsB andC respectively
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Fig. 17. Temporal variation of the edge ratios of the different components of theTreasure-Huntw.r.t. the In-tunnel for regionsB andC respectively

is continuously decreasing. A natural question to ask is whether
the graphs shall continue to preserve the ratios of theTreasure-
Hunt model or will the continued densification lead the various
components to collapse into a single large maze.

Each day of the analysis new nodes are added to the Call graph.
Table IX shows the fraction of the new nodes that went into the
three bow-tie regions IN, SCC and OUT for regionB. It is clear
from the table that a large portion of these new nodes are going
into the IN and OUT regions. This indicates that the tremendous
increase in the maze is primarily because of older nodes from
the other regions being pulled into the maze and not due to the
addition of new nodes. The pattern of new nodes coming into the
IN and SCC regions also validates the observed calling behavior
in the society. The new people who join the network initially
make or receive a few calls and hence are part of the IN or the
OUT region. Over time they make and receive more calls thus
pulling them into the SCC. The constantly high influx of new
nodes into the IN and the OUT regions suggests against the total
vanishing of the treasure and entry regions.

Another important point that should be noted is that in the
current study, due to the shorter interval of analysis, we do
not consider the deletion of old edges. Over a period of very
long intervals, the call graph accumulates a number of edges
which have become stale (no call has been made between the
corresponding nodes for a long time). Filtering the call graph
to select only edges which correspond to sufficiently frequent
and recent calls before analyzing the call graph may give better
insights.

If the densification disturbs the ratios in theTreasure-Hunt

TABLE X

DETAILS OF DATA SET USED FORCALL AND SMS GRAPH COMPARISON.

Region Nodes Edges Period Avg. Deg. Type

B-Region Call Graph 2324556 6875678 1 week 2.96 Dir.
B-Region SMS Graph 1162457 2237482 1 week 1.92 Dir.

model, how can we explain the findings of Section V-B which
showed that the various regions which were analysed over
different periods of time have the same ratios? One plausible
explanation is the following: One common feature in these graphs
is the order of the number of edges. Since theTreasure-Hunt
model is an edge based model, it is an indication of the fact that
the ratios are a function of the number of edges in the graph.

VII. SMS GRAPH ANALYSIS

In the previous sections we have concentrated on analyzing
the graph induced by voice calls made between mobiles within a
particular region. Short Messaging Service (SMS) is very popular
in certain geographies and among some customer segments. The
Call Detail Records contain information of all the SMSes that
are sent and the SMS graph can be extracted from the CDRs. In
this section we analyze SMS graph and compare and contrast the
structural properties of SMS and Call graphs.

A. Data Sources

We studied the structural properties of the Call and the SMS
graph for the same region over the same period of time. We
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selected regionB for this set of experiments. Table X shows the
details for the data set used for the experiments which will be
reported hereafter.

It is interesting to note that for the same period of time the
number of edges in the SMS graph are only one-third of the
number of edges present in the call graph. Similarly the number
of nodes is only half of those in the call graph. This indicates
that a large number of mobile phone users only make voice calls.

B. Structural Properties

In this section we will analyze the SMS graph for some
insightful structural properties. In order to compare how these
properties differ with respect to the call graphs we will also study
the same properties for the call graph.

1) Reciprocity: The reciprocity of a directed graph is defined
as the fraction of the total edges such that if(a, b) is an edge
in the graph then(b, a) is also an edge in the graph. From the
perspective of Telecom graphs, pairs of nodes which have edges in
both directions may be an indication of greater social ties between
those nodes as compared to pairs which have only an one-way
edge. We found out the reciprocity of the call graph to be 0.3
while that of the SMS graph was almost double with a value of
0.6. This is an important observation and indicates that there is
a greater fraction of social edges in SMS graph as compared to
call graphs. It is interesting to note that the reciprocity of two
Social Networking Web sites were found to be around 0.7 and
0.84 [17].

2) Degree Distributions:Figure 18(a) and Figure 18(b) show
the in-degree distribution for the call and SMS graphs while
Figure 19(a) and Figure 19(b) show the out-degree distribution
for the graphs

The power-law behavior is apparent for the Call graphs. How-
ever for the SMS graph the in-degree and out-degree distributions
do not show a marked power-law behavior. The SMS in-degree
and out-degree distributions consist of two different regions of
linear growth. A sudden kink where the two linear regions meet
is evident in both the plots. Thus the degree distributions of SMS
graphs are different from many networks that has been studied in
the literature.

3) Neighborhood Distribution:Figure 20(a) and Figure 20(b)
show the neighbourhood function distributions for the call and
SMS graphs The neighborhood function plots for both the graphs
appear similar. This indicates that the diameters of both the call
graph and the SMS graph are almost the same.

4) Cliques: Table XI and Table XII give the number of cliques
present in the call graph and SMS graph respectively. The number
of smaller size cliques is higher in the Call graph. This is to be
expected since the Call graph has a higher number of nodes and
edges. However it is very interesting to note the number of higher
sized cliques (of size 6,7,8) are higher in the SMS graph in-spite
of that graph having only one-third the number of edges in the
call graph.

This observation leads to the inference that there are some
cliques where the participating members only send SMSes to
one another and do not make calls. Such kind of a behavioral
pattern may be indicative of a group of people with common
interests where the members send bulk SMSes (jokes, etc.) to
all the other members of the clique for instance. This statistics
indicates that Telecom Operators need to analyze the SMS graphs

also to identify an important segment of customer communities
who may not be discovered by Call graph analysis.

TABLE XVI

RATIO OF EDGES OFCALL AND SMS GRAPH FOR THE DIFFERENT

TREASUREHUNT SUBGRAPHS

Subgraph Graph type Call Graph SMS Graph Ratio
Edges Edges

IN-IN Directed 113541 35832 3.17
IN-SCC Bi-partitie & Directed 877417 110280 7.96
IN-OUT Bi-partitie & Directed 203335 12879 15.79
SCC-SCC Directed 4444481 1466544 3.03
SCC-OUT Bi-partitie & Directed 861238 157932 5.45
OUT-OUT Directed 138177 73619 1.88
DISC Directed 237489 380396 0.62
TOTAL Directed 6875678 2237482 3.07

5) Strongly Connected Components:Table XIII and Table XIV
give the number of strongly connected components present in the
SMS graph and the call graph respectively. The tables show the
number of strongly connected components present of each size
and also the fraction of the total nodes that are present in the
strongly connected components of that size.

For the call graph the largest strongly connected component
comprises more than of half the nodes. Apart from this largest
strongly connected component, the call graph has strongly con-
nected components of only 10 other sizes and the size of the
second largest strongly connected component is only 11. On the
other hand, Table XIII reveals that the there are a large number
of nodes which are present in the smaller strongly connected
components in the case of the SMS graph. This graph also has one
very large strongly connected component which contains about
37% of the nodes.

This analysis gives an indication of the fact that the SMS graph
is composed of a number of small islands which are strongly
connected. This may be due to the fact that during SMSing the
people are often part of a community which has lesser links
outside.

C. TheTreasure-HuntModel

We tried to fit theTreasure-Huntmodel on the SMS graph.
Table XV gives the details of the various components of the model
found in the call graph and the SMS graph. On the other hand
Table XVI gives the ratio of edges in the call graph compared to
the SMS graph for the various subgraphs of the Treasure Hunt.

The call graph has three times the number of edges than the
SMS graph. The ratio of edges for theIN-IN and SCC-SCC
subgraphs of the call graph to the SMS graph is also three
times. On the other hand the ratios of the edges in the subgraphs
IN-SCC, IN-OUT and SCC-OUTof the call graph to the SMS
graph are higher. Note that these subgraphs are bipartitite and
thus have edges in one direction only. Since the SMS graph
has higher reciprocity, the proportion of such edges are lower.
On the other hand the SMS graph has more edges inDISC,
the disconnected components. This is also to be expected since
we have observed that the SMS graph has many disconnected
islands. In fact, despite having fewer edges, it has a higher number
of cliques, SCCs, disconnected components, and smaller sized
bipartite components, which indicate more reciprocity.Therefore,
the SMS graph follows the Treasure-Hunt Model but with a
higher reciprocity.
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Fig. 18. In-degree distributions for Call and SMS graphs respectively
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Fig. 19. Out-degree distributions for Call and SMS graphs respectively
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Fig. 20. Neighborhood function distributions for Call and SMS graphs respectively

Clique Size Count

3 541771
4 32248
5 2543
6 291
7 23
8 17
9 17
10 6
11 2

TABLE XI

Distribution of cliques for Call graph

Clique Size Count

3 99910
4 13250
5 2307
6 502
7 129
8 30
9 13
10 5

TABLE XII

Distribution of cliques for SMS graph
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Size Count Node Fraction

439444 1 0.37803
22 2 3.78509e-05
21 1 1.80652e-05
20 1 1.72049e-05
18 1 1.54844e-05
17 3 4.38726e-05
16 2 2.75279e-05
15 5 0.000178931
12 17 0.00017549
11 40 0.000378509
10 45 0.000387111
9 92 0.000712284
8 146 0.00100477
7 259 0.00155963
6 520 0.00268397
5 1077 0.00463243
4 2719 0.00935604
3 8580 0.0221428
2 40828 0.0702443
1 590696 0.508144

TABLE XIII

Distribution of SCCs for SMS graph

Size Count Nodes Fraction

1235077 1 0.531317
11 1 4.73209e-06
10 1 4.3019e-06
8 6 2.06491e-05
7 11 3.31246e-05
6 79 0.00020391
5 217 0.000466756
4 919 0.00158138
3 4737 0.00611343
2 33224 0.0285852
1 1003439 0.431669

TABLE XIV

Distribution of SCCs for Call graph

TABLE XV

PROPERTIES OFTREASURE-HUNT SUBGRAPHS OF THE CALL AND THESMS GRAPHS

Type Subgraph Left Part Right part Edges Avg dout Avg din Diameter Edge Ratio
CALL IN-IN 101367 - 113541 1.1201 1.1201 4 0.13X

IN-SCC 331109 (IN) 502152 (SCC) 877417 2.64993 1.74731 1 X
IN-OUT 70083 (IN) 145850 (OUT) 203335 2.90135 1.39414 1 0.23X

SCC-SCC 1235221 - 4444481 3.59813 3.59813 15 5.06X
SCC-OUT 500900 (SCC) 478196 (OUT) 861238 1.71938 1.80101 1 0.98X
OUT-OUT 173089 - 138177 0.7983 0.7983 4 0.16X

SMS IN-IN 35649 - 35832 1.00513 1.00513 6 0.32X
IN-SCC 94707 (IN) 75475 (SCC) 110280 1.16443 1.46115 1 X
IN-OUT 10304 (IN) 11436 (OUT) 12879 1.2499 1.12618 1 0.12X

SCC-SCC 440085 - 1466544 3.33241 3.33241 16 13.3X
SCC-OUT 79844 (SCC) 135698 (OUT) 157932 1.97801 1.16385 1 1.43X
OUT-OUT 73190 - 73610 1.00574 1.00574 5 0.67X

TABLE XVII

L INEAR CORRELATION COEFFICIENTS BETWEENCALL AND SMSGRAPHS

SMS Graph Variable Call Graph Variable Coefficient

Outdegree Indegree 0.0179568
Outdegree Outdegree 0.974498
Indegree Indegree 0.206114
Indegree Outdegree 0.154815
Pagerank Pagerank 0.131639

D. Correlation between SMS and Call Graphs

We studied if there was some correlation between the in-degree,
out-degree and pagerank of nodes in the call graph, and these
values for the same nodes in the SMS graph. Table XVII shows
the linear correlation coefficient values observed for various
pairs of variables studied. For conducting these experiments we
segregated the nodes which were common in both the graphs. The
number of such nodes was 1035025, which is almost the same
as the number of nodes in the SMS graph (1162457). However
this number is less than half of the total nodes in the call graph
(2324556); as we have already seen, there exist a large number
of nodes which are only present in the call graph and not in the
SMS graph.

Table XVII shows that the out-degrees of the two graphs are
remarkably correlated. This indicates that people who make a lot

of calls also sends many SMSes. However indegree and pagerank
do not seem to be correlated. There may be a lot of nodes in the
SMS graph which have incoming edges in the call graph, from
nodes which are not present in the SMS graph, making them
have a high in-degree in the call graph but not the SMS graph.
On the other hand some nodes have a high in-degree in the SMS
graph but not in the call graph.This statistics again emphasizes
the point made earlier that Telecom Operators need to analyze
the SMS graphs also to identify important segments of customers
who may not be discovered by call graph analysis.

VIII. C ONCLUSIONS

Over the years, a number of important graph metrics have been
proposed to analyze and compare the structure of arbitrary graphs.
This paper uses a series of graph structural properties that can
be employed in a more systematic approach to analyze network
topologies. We used a carefully chosen set of parameter which
reveal mostly connectivity directed characteristics and used them
on Call and SMS graphs of a mobile operator. Such metrics can
be employed by business strategy planner involved in the telecom
domain. We hope that our methods will enable a more rigorous
and consistent method of analyzing the telecom graphs and
also enable researchers and business community to gain insight
into the graphs. These results can significantly affect business
strategies. Therefore, at present we are currently collaborating
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with the marketing department of the Telecom Service provider
to derive deeper business insights from the results.

The shapes of the call graph of four disparate regions are in
good agreement with theTreasure-Huntmodel. Although this is
promising, only further studies with more call graphs from other
countries can serve to verify or refute this model. In fact it will
be interesting to determine whether the properties of the Call and
SMS graphs determined in our study hold in other geographies
and cultures as well.

Our analysis indicates that there are some similarities as well
differences between the call and SMS graphs. The SMS graph
seems to be moresocial with a higher value of reciprocity. We
believe that the Telecom operators need to analyze both these
graphs to gain complete understanding of its customer base.

Our temporal analysis highlights interesting insights on how
the graphs evolve over time. In the future we plan to study the
evolution of the graphs for a longer period of time. A problem
worthy of consideration is to find a generative model for these
telecom graphs, if one exists. If found, it is likely to offer deep
insights into how a mobile operator’s customer base evolves with
time.
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