Analyzing the Structure and Evolution of Massive
Telecom Graphs

Amit A. Nanavati, Rahul Singh, Dipanjan Chakraborty, Koustuv Dasgupten{ber, IEEE, Sougata Mukherjea,
Gautam Das, Siva Gurumurthy, Anupam JosBertior Member, IEEE

Abstract—With ever growing competition in telecommunica- In this paper we present an analysis of the CDRs of one of
tions markets, operators have to increasingly rely on business the largest Telecom operators in the world. Previously, a few
intelligence to offer the right incentives to their customers. eyperiments on call graphs of stationary telephone networks had
Existing approaches for telecom business intelligence have aImOStbeen undertaken to determine parameters like cliques [1] and

solely focused on the individual behavior of customers. In this L
paper, we use the Call Detail Records of a mobile operator to degree distributions [2]. However, to the best of our knowledge,

construct Call graphs, that is, graphs induced by people calling this is the first study that attempts to discover and characterize
each other. We determine the structural properties of these a broad set of structural properties of mobile call graphs. In
graphs and also introduce the Treasure-Hunmodel to describe particular, we report findings on various topological properties of
the shape of mobile call graphs. We also determine how the these massive call graphs, including degree distributions, strongly
structure of these call graphs evolve over time. Finally, since ~onnected components, and cliques. The presence of power law

Short Messaging Service (SMS) is becoming a preferred mode . .. .. - L .
of communication among many sections of the society we alsodlstrlbutlons is ubiquitous in many parameters of the call graph,

study the properties of the SMS graph. Our analysis indicates & typical signature of its scale-free structure. Further, we observe

several interesting similarities as well as differences between the interesting similarities and differences with respect to commonly

SMS graph and the corresponding call graph. We believe that studied networks like the WWW graph [21].

our analysis techniques can allow telecom operators to better  One of our primary motivations has been to characterize the

understand the social behavior of their customers, and potentially shape of call graphs imposed by cellular phone users. For this,

provide major insights for designing effective incentives. we utilize the technique that has been used to arrive at the Bow-
Index Terms— Telecom Call Data Records, Graph Algorithms, Tie model for WWW graphs [6] and then conduct additional

Social Network Analysis experiments using novel techniques in order to reveal the finer
structure of the graphs. An interesting revelation is that, whereas
I. INTRODUCTION most existing graphs (hence their models) are based on the node

As Mobile Telecom penetration is increasing, and even agistributions in the components of the graph, our call graphs are
proaching saturation in many geographies, the focus is shiftibgtter characterised by tresigedistributions among the various
from customer acquisition to customer retention. It has been estdmponents. We introduce th@reasure-Huntmodel, an edge
mated that it is much cheaper to retain an existing customer thdiatribution based model, to characterise our mobile call graphs.
to acquire a new one [3], [13]. To maintain profitability, teleconThe techniques proposed herein are general enough to be applied
service providers must controhurn, the loss of subscribers whoto the analysis of any network, and may be particularly relevant
switch from one carrier to another. However, as the telecommuifidr social networks.
cations markets grow more and more competitive, it is very easyAlthough several studies on the structure and properties of
for a consumer to churn because of low barriers to switchirtifferent types of networks have been reported in the literature
providers. In order to retain customers, the operators have nwst of them are restricted to the analysis of a static snapshot
offer the right incentives, adopt the right marketing strategiesf the network. A temporal analysis of a network to determine
and place their network assets appropriately. To succeed in thv it evolves over time can be very insightful. Such a study
goal, optimizing marketing expenditure and improved targetirig difficult for most real-world networks since it is difficult to
are critical requirements. obtain information about the arrival of each node and edge into

Retrieving information from call graphs (where people are thtbe network. However since the CDRs record the time for all
nodes and calls are the edges) obtained from the Call Detzdlls, temporal analysis of the Telecom Call graphs is feasible.
Records (CDRs) can provide major business insights to Mobile this paper we take snapshots of the call graphs at different
Telecom operators for designing effective strategies. A CDigne segments and analyze how the various parameters of the
contains various details pertaining to each call: who called whowgll graphs change over time.
when was it made, how long it lasted, etc. Graph theoretic In several geographies and among many segments of customers,
information from call graphs can allow service providers t&hort Messaging Services (SMS) has become very popular and is
better understand the underlying behavior of users, in a local apreferred medium of communication. The Call Detail Records
well as global context, in order to design incentives to increaseaintain the details of all the SMSes and it is possible to create
subscriber loyalty and prevent/reduce churn. For example, if tttee SMS graph from the CDRs. In this paper we also analyze this
call graph is disconnected into many small components thgraph and try to determine its correlation with the Call graph. Our
blanket advertising may be more appropriatevasd-of-mouth analysis seems to indicate that the SMS graph is reocél than
spreading is impossible. Similarly, the presence of cliques tive Call graph. As far as we know this is the first study that tries
bipartite cores, which implies the presence of communities, ctm determine the characteristics of the SMS graph. We believe
be utilized to improve group targeting and retention. that insights from the analysis can enable the Telecom operators



understand an important segment of its customers who utiliféeb pages which pertain to a certain topauthority and hub
SMS as a communication medium. scores. We also try to identify communities and important mobile
In summary, the contributions of this paper are as follows: numbers from the Telecom graphs.
o We study a broad set of parameters that reveal variousYet another body of work has been undertaken to determine

structural properties of mobile call graphs. topological model of the WWW graph. [6] showed that the Web
« We describe novel technigues to determine the shape of laftgs aBow-Tiestructure. This work outlines a general model but
graphs does not expose further details of the component structures. The

« We introduce theTreasure-Huniodel, an edge distribution Daisy model [11] is an attempt to further refine the WWW bow-
based model, possibly the first topological model for mobilte model. Researchers have also tried to determine models for the
call graphs. Internet topology. The Jellyfish model [24] was one of the first

« We present a temporal analysis of mobile call graphs to this direction. The Medusa model [8] is yet another model for
understand how the various parameters of the graph evotx Internet topology which was derived using a technique called

over time. k-core decomposition. In this paper we introduce a model for
« We extend our analysis to SMS graphs and try to correlatelecom graphs.
the properties between SMS and Call graphs. Although real-world graphs are evolving over time most of

« We make a conscious effort to emphasize the practicle analysis reported in the literature have been done on static
implications of our findings in a way that can providegraphs. Recently, structural properties of different snapshots of the
business insights and design strategies for mobile TelecdfWWW graph has been reported in [22]. [19] showed that Citation
operators. graphs exhibit densification and shrinking diameters over time and

The rest of the paper is organized as follows. The next sectipresented a generative model called freest Fire modelfor

cites related work. In Section Ill, we describe our data sets af@pturing this phenomenon. On the other hand, the emergence of
the techniques for sampling data sources and creation of #'sty communities in the blogspace was identified in [16]. The
call graphs. Various characteristics providing critical insights iBtructure and evolution of two Online Social Network maintained
the call graphs are presented in Section IV. We then introdub¥ Yahoo has been reported in [17].

a framework to get the finer level details of the topology in One of the first studies on call graph was performed on a graph
Section V. In Section VI we present a temporal analysis of th landline phones made dnday consisting of approximately 53
call graphs and Section VII extends the analysis to SMS graphgillion nodes and 170 million edges [1]. The graph was found

Finally, we conclude the paper with Section VIII. to be disconnected with 3.7 million separate components, most
of them being pairs of telephones that called only each other. A
II. BACKGROUND AND RELATED WORK giant component consisting 80% of the total nodes was found.

Massive graphs originating from different sources like wwwihe diameter of this giant component was [2] experimented
Internet topology, Email graphs and Biological networks hayith the call graph of long-distance telephone traffic. The actual
drawn the attention of a plethora of researchers [21], [12], [7§@!/l 9raph showed that the degree sequence was not quite a
These graphs pose interesting challenges in terms of scalabi§rfect power law, and the authors introduced a unique class of
choice of parameters used to characterize them, and finally fR@dom graphs with a power law degree sequence, caligd
techniques used for interpreting the graph structure. Even thoudfRPhS to capture the distribution. In this paper we present deeper
many theoretical studies are available which characterize t#h§ights on the characteristics of Telecom call and SMS graphs
graphs based on various parameters like size, density, dedfe&ompliment the earlier studies.
distribution, clustering coefficient and connected components,!n terms of business strategy design for telecommunication
practical interpretation and utilization of those parameters (aff#flustry, many existing techniques exist based on mining of user
results) are still lacking. profiles [13] as well as application of machine learning methods

In the recent times, there is a lot of interest in studying World3]. Most of these rely on the individual calling patterns of
wide Web and Internet graphs. [14] showed that the degrBghaviors. We believe that structural findings from call graphs can
distribution of the internet follow a Power law. Both [4] and [18Ugment and strengthen business intelligence directed towards the
suggest that then and out degrees of vertices on the Web grapl§titical problems of customer targeting, campaign management
also exhibit power laws. Moreover, [4] has shown that most paid churn prevention.
of pages on the Web are separated by a handful of links, almost
always under 20. This is viewed by some as a “small world” m
phenomenon. On-line friendship networks also exhibit the small-
world phenomenon [20]. Our analysis reveals evidence of smallA Call Detail Record (CDR) contains all the details pertaining
world phenomenon in mobile graphs also. to a call such as the time, duration, origin, destination, etc. of

Determining groups of related pages in such networks tise call. The CDRs are collected at Base stations and generally
another interesting problem. For example, [18] showed thsiiored in a Data Warehouse. In this paper we analyze the CDRs of
bipartite coresin the Web graph represent implicitly definedone of the largest mobile operator in India. Not surprisingly, for
communities. A related area of research is the determinationafarge country like India with a significant mobile penetration,
the importance of pages (nodes) in the Web graph. The maosore than a billion calls are made every month, and the data
well-known technique i®age RanK5] which has been used very storage runs into terabytes.
effectively to rank the results in Google search engine. AnotherA call graphG is a pair(V(G), E(G))), whereV (G) is a non-
technique of finding the important pages in a WWW collectioempty finite set of vertices (mobile users), afi¢f7) is a finite set
has been developed by [15] who defined two types of scores fifrvertex-pairs fromV' (G) (mobile calls). Ifu andv are vertices

. DATA SOURCES ANDPREPROCESSING
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TABLE |
DETAILS OF DATA SET USED

IV. STRUCTURAL PROPERTIES OF CALL GRAPHS

In this section we analyse the structural properties of call
graphs. Our analysis is based on a set of graph metrics that have

[ Region | Nodes [ Edges | Period [ Avg.Deg. [ Type | e >
ZA-Region | 224418 | 1816285 1 month | 16.19 Directed been traditionally used to characterise large networks. In many
B-Region | 1250656 | 4514528 | 1 week | 7.22 Directed cases, we use existing tools [10], [9], [23] for computing these
C-Region | 989573 4313797 | 1 week 8.72 Directed
D-Region | 407332 1456645 | 1 month | 7.15 Directed parameters.

of G, then an edgéu, v) is said to exist ifu callsv. Such a graph

can be easily constructed from the CDRs.

To get the actual graph, we had to query the Data warehOL(sqg(d) — n(d)/n). The degree distributiorP(d) for directed

and extract the best sample that would reflect the global callingnyorks splits in two separate functions, the in-degree distri-
pattern. The data set has the following characteristics:

A. Degree Distributions

Distributions of degree gives information which average degree
cannot, i.e. the number of nodesd) of each degreel in the
graph. We define this property asode degree distribution

bution P(d;,,) and the out-degree distributid?(d,.+), which are

This study was done for a single mobile operator in Indiameasured separately as the probabilities of hadifgincoming
The mobile operator has broken the country into severditks andd,.: outgoing links, respectively.

region-wise circles. For our study, we analyzed the calling In Figure 1 and Figure 2, we report the behavior of the in-
patterns of four circles; two of these circles were largéegree and out-degree distributions in log-log scale. We provided
metropolitan cities and two were states with a mixture alegree distribution results for regions and C only because
rural and urban population. These regions are in differetiiey are the largest ones and other two regignand D were
areas of India and are also culturally diverse with differerghowing similar results. Observing both in-degree and out-degree
local languages. distributions, the call graph topology is found to be characterized
o The study was done for intra-region calls, and does nby presence of a highly heterogeneous topology, with degree
include long distance or international calls. distributions characterized by wide variability and heavy tails.
« For two of the regions, we collected all the calls made i@bserving log-log plots, we can see that degree distributions fit
a week, and for the other two, we collected all the caliwell to power law distributions.
made in a month. Interestingly, despite the durational and The in-degree distribution exhibits a heavy-tailed form approxi-
geographical differences, many parameters for these fdnated by a power-law behaviét(d;,) ~ d;, """, and the value of
regions are consistent with each other. the exponent ofy is between 2 and 3, very much like the WWW
« Further, very short duration calls (less than 10 seconds) hagi@ph [6]. However, in the case of the out-degree distribution, the
been ignored as missed calls and wrong calls since they nexponent is less than 2, very much unlike both the WWW as well
yield incorrect results. (However in many countries some @s the Email graphThe parameters of the four regions are rather
these missed calls may be used to convey pre-determir@@se despite their geographic, cultural, and duration (1 week for
messages and are therefore socially relevant). two regions vs. 1 month for the other two) differences. The degree
« Multiple calls between any two user or nodes is treated géstributions imply that there are very few nodes that have very
a single edge. The resulting graphdisected simple graph high in-degree or out-degree and therefore may be suitable for
with no self-loops or multiple edges. individual targeting by a telecom service provider.

Table | shows the details of the data set used in this paper. o
While two call graphs have been generated for the spam ofB- Neighbourhood Distribution
month (4 and D), the two are generated from call details records The neighbourhood functiody (k) for a graph also called hop-
of 1 week B8 andC). Some basic graph properties such as thgot [14], is the number of pairs of nodes within a specified dis-
number of nodes (also referred to agraph siz¢ and thenumber tance, for all distancek. The individual neighbourhood function
of links m are reported. TheAverage node degrees defined for « ath is the number of nodes at distanker less fromu. It
ask = 2m/n. can be computed as
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of nodes (phone numbers) are separated by a handful of edges
(calls). We believe that this phenomenon can be further exploited
to identify (social) communities.

Fig. 3. Neighbourhood function distributions for all regions
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follows:
IN(u,h) = [{v:v € V,dist(u,v) < h}|.

The neighbourhood functioN (k) is the number of pairs of nodesC. Cliques

within distanceh, and is definedN(h) = 3-, ¢y IN(u,h). The For mobile telecom providers, an (undirected) clique is useful

peighbourhood function proyides us ways to.compare call grap,i@;;‘. defining closed user groupgas they are commonly called),

in terms of hop-exponentdistance distribution, and effective\yhere discounts are given for all calls made within the closed

diameter. user group. The number and sizes of such groups also gives us
We calculated the neighbourhood function for call graphs usirg idea of what are the right incentives to offer.

the ANF tool [23]. The plot of the neighbourhood function for all The distribution of the clique sizes for the 4 regions under

hop for all the regions are shown in the Figure 3. Al8d/:) <  observation are shown in Figure 4. Cliques of size as higfs

h™, whereH is the hop exponent. observed. Relatively, large number of cliques of smaller sizes like
There are three interesting observations about the hop exporeand4 are also observed.

that make it an appealing metric. First, if the power-law holds, 0.001

the neighbourhood function will have a linear section with slope BRegon &
‘H when viewed in log-log scale. Second, the hop exponent is,
informally, the intrinsic dimensionality of the graph. For example, 1e-04 ¢

a cycle has a hop exponent dfwvhile a grid has a hop exponent
of 2. Third, if two graphs have different hop exponents, there is
no way that they could be structurally similar [23].

Pagerank

(]

o

(&)

T,
/ |
E

+ R
We computed thénop-exponentising linear fit on the neigh- 16-06 | + ‘ﬁ’*“’rrut
bourhood function distribution shown in Figure 3. The hop 3
exponents of the 4 regions are reported in the Table Il. We 107 o
consistently found hop exponent closedtands5 in the Telecom 16-07 1e-06 1e-05 fe-04 0001 0.01 0.1 1

graphs. The only other real-world graphs whose hop exponents we

know are Int-11-97, Int-04-98, Int-12-98 and Rout-95 with hopig. 5. Power law in the distribution of PageRank
exponents 4.62, 4.71, 4.86, 2.83 respectively [T4is suggests
that our mobile telecom graphs are structurally d@enseas
those of the Internet graphs. Interestingly, even though the grth PageRank
of regions.A and B differ considerably in parameters such as™’

average degree, number of nodes and ed@esle 1), their hop  In the context of WWW, the PageRanki) [5] of a page:
exponents are similar ( 3). is a measure of citation importance and is defined through the

Effective diameter gives us another parameter for effectivd®!lOWing expression:

measurement of the compactness of the network. For a call grap,l;‘(i) S (1-4q) Z p(5)/dout (5) i=1,2,...,N (1)
of N nodes withE edges, we can compute effective diameter N
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further details of our call graphs. Based on our analysis we present
whereN is the total number of nodes,— i indicates a hyperlink & model calledTreasure-Hunfor mobile call graphs. A crucial
from j to i, dowt () is the out-degree of pageandg is the so- insight obtained as a result of this study is that the distribution
called damping factor. The PageRank of a page grows with tAEedgesrather than the vertices across the various components
in-degree of the page as well as the in-degree of the pages f§agls to a more accurate characterization of the structure of the
point to it. call graphs.

Figure 5 shows the PageRank distribution for regiBnand We also present ideas on how the knowledge of this structure
C respectively. For our analysis, we ignore very short calls &Rn be used by Telecom business analysts. While the applicability
remove noise introduced due to wrong numbers and commerd#ithe Treasure-Hunt model beyond our call graphs is hitherto
spam. We observe that PageRank values follow the power I&#known, all the techniques used in this section are general
distribution in the network. enough for analyzing any massive graph.

The PageRank value of an individual in a telecom network
mlght indicate thesocial |mportanca)f the individual. The somall A Structure based on Node Distribution
importance of a customer grows with number of people calling
that customer as well as the social importance of the caliéinse ~ Our first goal is to spot all the connected components and
there are only a few of nodes with high PageRank, the telecgiace them spatially along with their interconnections to identify
operators can target these influential people to retain them  the shape. The distribution of strongly connected components is
reported in Table IlI for regiorB. The results show the existence
of one giant strongly connected component.

To discover different components that linarge connected

Scale free graphs usually exhibit the presence of a gig§mponents, we analyzed our call graph using Random Start
Strongly Connected Component (SCC). With this in mind, Wgeadth-First-Search (BFS) [11]. While ‘reachability’ of a nade
next investigate the distribution of SCCs in the mobile call graphg,eans whethers is reachable from another nodewe use ‘reach’

Figure 6 shows the distribution of SCC for different regions (igf , {0 mean the set of nodes (or its cardinality) reachable from
log-log scale). We found that a giant SCC exists in all the call gome important definitions are given below.

graphs. For example, regiof has an SCC of siz€.7 million Reach (R of q is th ber of all iol d
nodes. Further, Figure 6 shows that sizes of SCCs closely follow® each ( orano eu) is € number of all possible nodes
reached in BFS, when starting from a given node.

a power law distribution. However, the largest SCC is significantly .

larger than any of the remaining ones. Consequently, the second Percentage Reacl(P = I/N) is th? percentage of nodes
largest SCC is very small compared to the largest one. Our reached (to tOt.‘?I number of nodes in the graph). o
results conforms with those obtained for WWW graph [6]. In ° Reach Probablhty (pr) denotes the percentage probability
the next section, we analyze SCC and its association with other that a given node hagach R.

components to infer the shape of mobile call graphs.

E. Strongly Connected Components

TABLE IV

RANDOM START BFS EXPERIMENT FOR REGIONB
V. THE SHAPE OF CALL GRAPHS

In this section, we analyze call graphs in order to examine Reach Percentage Reach| Reach Probabilty
its macroscopic shape. The shape is crucial for two reasons. It <6 < 0.0005 285
i bt - ; 1022575 8L.7 63
provides an intuitive description of the network that is easy to S T039576 T 817 55

understand and work with, and even more importantly, provides
the basis for the development of a generative model. A generative
model, when found, will provide a valuable simulation tool foThe experiment collected a set of random sample nodes and
Telecom operators to study and predict usage growth in a neamputed thereach of all these nodes. The various values of
region. To our knowledge, this is the first attempt for revealintpe reach R is plotted against the number of nodes hawegch
the call-graph topology. R. The reach probabilityfor a given value ofreach R can be

We first begin by doingreach experiments, very similar in obtained from this distribution. The experiment conducted on one
spirit to those done for the WWW [6], and supplement thosef the regions(53), produced the results as shown in Table IV.
techniques with a few novel ones of our own, in order to expo&milar percentages were obtained for the other regions also.



TABLE V
SIZES INFERRED FOR THEBOW-TIE MODEL FOR REGIONB

Bow-tie Component % of total nodes
IN 85

SCC 63

ouT 18.7

TENDRIL, TUBE and DISC | 9.8

N=———

© rtd
Disconnectd Componcnts and SCC region that we obtained. The relative sizes of these
regions indicate a structural difference from the sizes of those in
Fig. 7. Shape of Bow-Tie Network the WWW graph. The sizes ofN,SCC,0UT for the WWW

are nearly of same order (44 million, 56 million, and 44 million
. . r ivel . For our graph i n an order
We found that the unique values ofach were limited. For espect © y) [6]. For our graphs, thec.c s often an o gle
. . - of magnitude larger thad N, and OUT is often nearly twice
instance, for regioms, the reach was either between 1 to 6 or .
. that of IN (124801, 755592, 266984 respectively). Hence, and
between 1022575 to 1022586. (For the other regions the reac - . .
- o . . erhaps not surprisingly, the bow-tie model does not characterise
was similarly split into two ranges). This suggests the existenge . o
. . ur graphs. However, this does not rule out the possibility of
of a massively connected componefiC (nodes havingeach

exactly equal to 1022575), amiry component (nodes having another model which is based on the node distribution.

reachmore than 1022575), arxit component (nodes haveach TABLE VI
less than 6) and some disconnected components. DEFINITION AND TYPES FORSUBGRAPHS
Reach analysis allows the identification of a strongly connected
componentSCC if it exists, and of the regions connected to it. Subgraph | Definition Graph Type
To borrow the terminology of [6]J N refers to the region from IN-IN Subgraph containing edges only Directed
. between nodes of IN region
which there are paths that leads to € C, andOUT refers to IN-SCC Subgraph consisting edges Bi-partitie & Directed
the region that is reachable from tls%&'C. The Bow-tie model from IN region to SCC

. . IN-OUT Subgraph consisting edges Bi-partitie & Directed
for the web graph was obtained as a result of reach analysis, and from IN region to OUT

is named so, because the relative number of vertices in each off SCC-SCC | Subgraph containing edges only Directed

the regionsIN, T an are nearly of the same order between nodes of SCC region
. .g ou . dscc € y orde SCC-OUT Subgraph consisting edges Bi-partitie & Directed
reminiscent of a bow-tie. from SCC region to OUT

The bow-tie model (Figure 7), introduced for the WWW, OUT-OUT | Subgraph containing edges only Directed
contains a strongly connected componést’C) region which between nodes of OUT region
contains nodes that are mutually reachable, iheregion con-
tains the nodes from which th&é CC can be reached. The
OUT region contains the nodes that are reachable from the .
SCC. The TENDRILS gather nodes reachable from tiiey  B- Structure based on Edge Density
component and reaching neith8€'C nor OUT. TENDRILS To find the shape (hence a model) of our graphs, we examined
also include those nodes that reach into €& region but do the the number of vertices in the various regioh®& (OUT ,etc.).
not belong to any of the other defined regions. TREBES Though there was some pattern (roughly the same order of mag-
connect thefl N and OUT regions directly, and some nodes araitude) in the vertex distribution, we found that the corresponding
totally disconnected DISC). edge distributions among the regions was more striking. We detail

To find the sizes ofSCC, IN and OUT in our call graphs, this finding now.
these components were analyzed for reach. Starting from anyrom the BFS experiment, we know that starting from a
vertex in theI N region, the BFS algorithm reaches all 8£C  particular node, the reach is either hugel(022575) or very low
and OUT region. Hence, all the nodes of IN region have higli< 6). We collected the nodes whose reach is very high. These
reach. From Table 1V, we know 8.5 % of nodes react022575 are the nodes ofCC andIN region. Starting from nodes with
nodes, hence size of IN is 8.5 % of total nodes. high reach, we collected the nodes that are reachable. These nodes

If a starting vertex lies in the&sCC region, the BFS cannot belong to theSCC and OUT regions. We intersected these two
reachIN, but can reach th& CC and OUT regions. Moreover, sets to isolate th6CC, IN andOUT components. With the help
since all the nodes of CC are mutually reachable, all verticesof these nodes, we extracted the several edge-induced subgraphs
in SCC have the same reach. From Table 1V, we infer that 63 %ghich are defined in Table VI. Th&raph typecolumn gives the
of nodes have the same reach of exactly 1022575 (81.7%) nodésd of subgraph induced from the global graph. For example,
So, the size 065CC is 63% of nodes and since the sizesf'C  edge induced subgraph IN-SCC is a bipartite directed graph as
and OUT combined should be 81.7 % of nodes, it implies thatne end is chosen from IN region and another is fré@C
size of OUT as 18.7 % of nodes. region.

If the starting vertex happens to fall i@UT, DISC, To understand the structure of call graph, we extracted the edge-
TENDRIL or TUBE, then itsreach should be negligible. induced subgraphs of the four regions and studied their properties.
Evidently, our experiment showed that around 28.5 % of nod@able VII gives us the results of various parameters that help
reach1 to 6 nodes. We summarize our results in Table V. in detailing the shape of the subgraphs and their boundaries.

We validated our experiments using the Pajek [9] tool for thislost of the columns are self-explanatokgft partitionandRight
data set. The results matched with the percentagesNotOUT  partition capture the number of nodes from the two sets of




TABLE VI
PROPERTIES OFSUBGRAPHS OF VARIOUS REGIONS

Reg. | Subgraph Left part Right part Edges AVg dout Avg d;n, Diameter | Edge Ratio
IN-IN 4048 - 4525 1.11 1.11 3 0.04X
IN-SCC 11043 (IN) 98726 (SCC) | 124991 | 11.31 1.26 1 X
A IN-OUT 1016 (IN) 9943 (OUT) 12154 11.96 1.22 1 0.1X
SCC-SCC | 189327 - 1617431 | 8.5 8.5 10 12.9X
SCC-OUT | 33855 (SCC) 18873 (OUT) 49649 1.46 2.63 1 0.4X
OUT-OUT | 3396 - 2401 0.71 0.71 2 0.02X
IN-IN 53544 - 55128 1.03 1.03 4 0.17X
IN-SCC 110340(IN) 242147(SCC) 311595 2.82 1.28 1 X
B IN-OUT 25948 (IN) 69328 (OUT) | 82182 3.17 1.18 1 0.26X
SCC-SCC | 757933 - 3417025 | 4.5 4.5 14 10.9X
SCC-OUT | 291980 (SCC)| 239147(0UT) 459724 1.57 1.92 1 1.47X
OUT-OUT | 94287 - 73702 0.78 0.78 4 0.23X
IN-IN 33814 - 36894 1.09 1.09 3 0.11X
IN-SCC 77068 (IN) 251170 (SCC) | 329651 4.27 1.31 1 X
C IN-OUT 17136 (IN) 52858 (OUT) 64165 3.74 1.21 1 0.19X
SCC-SCC | 658170 - 3351621 | 5.1 5.1 12 10.1X
SCC-OUT | 255050 (SCC)| 183309 (OUT) | 424299 1.66 2.31 1 1.28X
OUT-OUT | 59013 - 44723 0.76 0.76 4 0.14X
IN-IN 19805 - 18656 0.94 0.94 4 0.17X
IN-SCC 52919 (IN) 75441 (SCC) 109711 2.07 1.45 1 X
D IN-OUT 8796 (IN) 15662 (OUT) 19104 2.17 1.22 1 0.17X
SCC-SCC | 226375 - 1123814 | 4.5 4.5 13 10.2X
SCC-OUT | 72858 (SCC) | 60763 (OUT) 111626 1.53 1.83 1 1.0X
OUT-OUT | 24355 - 20860 0.85 0.85 4 0.19X
Shortcuts (0.2 X) %]
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bipartite graph. Thé&dge ratiocolumn reports the ratio of edges

in a particular component to the edges of IN-SCC region. Thég. 9. Distribution of edge fractions in different components
results for the subgraphs involving disconnected components like

IN-DISC, OUT-DISC, DISC-DISC are ignored as the magnitudes

of the parameters were negligible. The ratio of edges in the o yreasure. Once, we set on a voyage for treasure starting
subgraphs shown in Table VI display the (cross-region) genege ., onsry, there are lot of obvious paths via-tunnelto the

pattern in which these subgraphs connect with each other. The o the mazedefines a huge number of convoluted paths,
similarity of the edge ratios (see colurgiige ratioof Table V) making it harder to reach the treasure. But the chances are fair,

mqtivated us to present a generic structure capturing the eqﬂgre are almost equal number aft-tunnelas in-tunnelpaths to
ratio of caII.-graph. ] ] reach the treasure. Interestingly, lucky people may &hdrtcuts
We now introduce and define theasure-Hunmodel which  ihat connects thentry directly to thetreasure (The number of

is based on the edge distribution among the various componegts icuisare as likely as arentry). But getting intoentry and
of a graph and fits our mobile call graphs well. Figure 8 shows thgan 10 mazeis more than 90% likely.

model. Note thatX denotes the number of edges in the IN-SCC
region.

We chose the treasure-hunt metaphor for describing the mofel
because it captures the shape of the directed graph, and en¥he Treasure-Hunodel is based on the classification of edges
phasizes the importance of the edges (paths) rather than itte 6 components. There are some intra-connections (within
nodes. Theentry, in-tunnel, maze, out-tunnel, treasure, shortcudscomponent) and interconnections (across components¥it\We
are the six regions that are prime components of Bwasure- the Treasure-Huntmodel on the call graphs of the four regions
Huntstructure (Figure 8). The region names are also metaphorieald found the ratio of edges distributed in all the components
and do not imply that the vertices in tiv@asuraelenote important (Figure 9). Determining the number of hops within IN-IN and
customers, for example. The smallest of our regionseateyand OUT-OUT subgraph shows that there are not many neighbours
treasure Understandably, not many entries exist, nor there isadter 1 hop. So, the IN subgraph can be split into two layers with

Call graph as a Treasure-Hunt structure



TABLE VIl

one of them connectingCC, and another which connects to
TEMPORAL VARIATION OF CLIQUES OF VARIOUS SIZES FOR REGIONB

itself. Thus, the nodes of IN region split into two layerseagry
andin-tunnelregion in Treasure-Huninodel. Similarly, the OUT

region is separated into thaut-tunneland thetreasure Sze [Dayi| Day? | Day3 | Day4 | Day5 | Day6 | Day?

To fit region B to the Treasure-Hunmodel, the edge induced| 3 | 53966 | 123798 | 192187 | 261006 | 329891 | 396233 | 451350

4 5499 18487 33098 48281 64020 77758 86651

subgraphs IN-IN, IN-SCC, SCC-SCC,. SCC-OUT, OUT-OUT ¢ 659 2823 8357 | 14392 | 20869 | 26480 | 28844

and IN-OUT can be mapped tentry, in-tunne| maze out- 6 54 660 2174 4341 7094 | 10074 | 11037
; H 7 6 121 493 1172 2179 3350 3803
tunneltreasure_andshortcutsr_espectlvgly. Thedge ratiocolumn 8 o 7 28 Py Py 953 1236
of Table VII gives the relative magnitude of the edges of each o 0 0 17 54 197 382 427
component with respect to thie-tunnel The shape is conclusive 1(1) 8 8 8 101 347 11%4 14519
asentryis 0.16 timesin-tunneland mazeis almost 10 times the | 1> 0 0 0 0 2 4 4

in-tunnel The out-tunnelis similar in size asn-tunne| whereas
treasureis relatively the smallest and almost in the same order

as entry. The shortcutsare paths that directly conneentry to . ) .
¥ P y 4 Qr this, we first found out the in-degrees and out-degrees of the

treasurethey are also smaller in magnitude and of the same ordfa .
as theeitryy g nodes on the first day and for the same set of nodes, found the

. , . f their in-degrees and out-degrees on the seventh day.
We tried to fit the other regionsA(C,D) (see other edge average o . -
ratios in Table VII) and found that they fit th@&reasure-Hunt Figures 12(a) and 12(b) plot the m-_degree statistics for regions
model quite closely. Th@reasure-Hunmodel brings to light the andc nodes on the log-log scale. Figures 13(a) and 13(b) plot the

fact that often the edges rather than the nodes of graphs migﬁ{-degrge statistics for the same regi.ons. Remarkably the plots
follow a pattern, as our call graphs indicat&here are several ow a linear trend on the log-log plot indicating that nodes with

implications of the results we obtain through path based modéigher degrees on _the first day a_llso have higher dggrees on the
eventh day. This gives a clear evidence of preferential attachment

of the call graph. It provides telecom operators with insights OE . o
how a certain new serviceoll-out might be propagated in the eing exhibited.
network. For example, the propagation chances would be higher

if they target nodes with greater reach (belonging to fEetry B. Neighborhood distribution

and In-Tunnelregions). Similarly, customers can be segmented Next, we analyzed the neighborhood function of the call graphs

based on their placement in the structure. over time. Since the neighborhood function is an indication of the
effective diameter of a graph, this plot gives insights on how the
VI. TEMPORAL ANALYSIS diameter of the call graphs is changing with time.

In this section we discuss temporal analysis of the call graphs.Figure 14(a) and Figure 14(b) show the neighborhood func-

We studied how some of the structural properties of these c fins att_ S(Tvel?_dlf:ereT p0|trr11ts n tllrtnet;o: tthhe regl_dﬁsan((ji_ct
graphs vary with time. For region8 and C for which we had respectively. it is clear from the resufts that the maximum distance

one week’'s data we looked at the cumulative call data recordsbﬁttWeen any two pairs n the graph is decreasing with tlme_. This
each of the seven days. For regiasand D for which we had phenomenon of decreasing diameters has been observed in other

one month’s data we looked at seven time points at intervals %r]aphs as well [19].

four days each. Note that the analysis was done using the CDRs

from a period in which there was no celebrations or special evefiis Cliques

to ensure that the snapshot reflected the normal calling patterngaple Vil shows the cliques of various sizes that are present in
of the customers. the call graph in each of the seven days for regiomy the first

day itself the largest sized clique Ts By the fifth day a clique

of size12 is formed. However no cliques of size greater than

are formed in the last two days. The table also shows that there

The_changes n th_e deg_ree d|str|but|on_ of the graphs over tlrEean almost linear increase in the number of cliques of smaller
may yield some insights into the evolution of call graphs. Fosr.ZeS each day

instance, it might be interesting to find out how the number o#
nodes with high in-degree and high out-degree changes with time.
The plots for the temporal variation in-degree distributions fdp- Strongly Connected Components
regionsB and C on a log-log scale are shown in Figure 10(a) We have also looked at the evolution of the number and sizes
and Figure 10(b) respectively. Regioos and D showed the of the strongly connected components present in these graphs.
same trends. From the results it is evident that the indegrdegure 15(a) and Figure 15(b) show the plots for the fraction of
of all nodes increase with time. The plots for the out-degreedes present in strongly connected components of size 1,2,3,4,5
distributions for region3 and C are shown in Figure 11(a) andand the strongly connected component of the largest size, for the
Figure 11(b) respectively. Regiond and D showed the same regionsB andC respectively.
trends. The temporal variation of the out-degree distribution islt was observed that the fraction of nodes present in the
similar to the in-degree distribution. largest strongly connected component increases rapidly with time.
A network is said to exhibit théreferential attachmenf4], Moreover, the fraction of nodes present in strongly connected
[21] property if in the network nodes with higher degree haveomponents of the smallest sizes is decreasing with time.
stronger ability to grab new links. We were interested in finding In [17] similar studies were conducted on the fraction of nodes
out if preferential attachment is coming into play in call graph@resent in connected components of various sizes in the graph

A. Degree Distributions
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TABLE IX
DISTRIBUTION OF NEW NODES TO VARIOUS COMPONENTS OF THE
BOW-TIE MODEL FOR REGIONB

structure of social networking sites Flickr and Yahoo! 360. An
analysis of these graphs revealed that the fraction of nodes in all
components was continuously increasing. However, call graphs
seem to show a tendency of greater accumulation into a single -
strongly connected component over time by taking in nodes from ’ Num{,e,

Fraction of new Fraction of new Fraction of new

nodes in IN nodes in SCC nodes in OUT
the smaller components. 2 0.300206 0.0777751 0.150014
3 0.324856 0.07414 0.173376
1 0.334607 0.0742626 0.184446
E. TheTreasure-Hunmodel 5 0.361123 0.0812633 0.213224
. . . 6 0.36397 0.0869003 0.22547
It would be interesting to determine how thieeasure-Hunt 7 0346742 0.0855269 0533377

model that we proposed earlier for call graphs evolves over time.
Therefore we fitted thdreasure-Huntodel on the graph as it
stood at various points of time. Figure 16(a) and Figure 16(b) ) o
show the edges present in the various components dfrtrgsure-  * The number of shortcuts remains almost constant with time.
Hunt model at seven points of time for the regioﬁsand C While Studying theTreasure-Huntmodel we had noticed that
respectively. It is interesting to note the striking similarity in théhe ratio of edges in various components with respect to the

two plots in spite of them belonging to different regions. Som@dges in the in-tunnel component were surprisingly similar for
of the trends that are evident from these plots are: different regions. We wanted to determine how this ratio changes

« The number of edges in the maze increase very rapidly. THIEN time. Figure 17(a) and Figure 17(b) show the values of

observation should be expected since we had earlier obser\t}%‘a ratio of edges in various gompon_ents to the edges in the in-
that the percentage of nodes in the strongly connectgﬂmel component at seven points in time. As expected these plots

component was increasing. indicate that:
« The sizes of the in-tunnel and out-tunnel are also increasing.e The fraction of edges in the maze is increasing.
However the increase is not as rapid as in the case of thee The fraction of edges in entry and treasure are decreasing
maze. o The fraction of edges in shortcuts and out-tunnel remain
« The sizes of the treasure and entry components are decreas- &most constant.
ing. Hence the increase in maze is coming at the expense ofl) Densification in the Treasure-Hunt modétigures 16 and
the treasure and entry becoming smaller. The maze is gettitg show that the maze, entry and treasure component sizes
bulkier by sucking in edges from the side components i.are flattening. We also observed that the size of the maze is
the entry on the one end and the treasure on the other endntinuously increasing while the size of the entry and treasure
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. . . . . TABLE X
is continuously decreasing. A natural question to ask is wheth%r
. . ETAILS OF DATA SET USED FORCALL AND SMS GRAPH COMPARISON
the graphs shall continue to preserve the ratios of fremsure-
Hunt model or will the continued densification lead the various

components to collapse into a single large maze [ Region [ Nodes | Edges | Period [ Avg. Deg. | Type ]
P P 9 9 ’ [ B-Region Call Graph [ 2324556 [ 6875678 | 1 week [ 2.96 [ Dir. ]
Each day of the analysis new nodes are added to the Call grapB:-Region SMS Graph| 1162457 | 2237482 | 1 week | 1.92 [ Dir|

Table IX shows the fraction of the new nodes that went into the

three bow-tie regions IN, SCC and OUT for regiBnlt is clear

from the table that a large portion of these new nodes are QOiH\Q)deI, how can we explain the findings of Section V-B which
into the IN and OUT regions. This indicates that the tremendogﬁowed that the various regions which were analysed over
increase in the maze is primarily because of older nodes frOffterent periods of time have the same ratios? One plausible
the other regions being pulled into the maze and not due 10 &, - h4tion is the following: One common feature in these graphs
addition of new nodes. The pattern of new nodes coming into t‘lethe order of the number of edges. Since ffreasure-Hunt

IN and SCC regions also validates the observed calling behavigp e ig an edge based model, it is an indication of the fact that

in the society. The new people who join the network initially,q ratios are a function of the number of edges in the graph.
make or receive a few calls and hence are part of the IN or the

OUT region. Over time they make and receive more calls thus
pulling them into the SCC. The constantly high influx of new .V”' SM'S GRAPH ANALYSIS )
nodes into the IN and the OUT regions suggests against the totaln the previous sections we have concentrated on analyzing
vanishing of the treasure and entry regions. the graph induced by voice calls made between mobiles within a
Another important point that should be noted is that in thgarticulgr region. Short Messaging Service (SMS) is very popular
current study, due to the shorter interval of analysis, we 4g certain geographies and among some customer segments. The
not consider the deletion of old edges. Over a period of ve Il Detail Records contain information of all the SMSes that
long intervals, the call graph accumulates a number of ed 5 sent'and the SMS graph can be extracted from the CDRs. In
which have become stale (no call has been made between section we analyze SMS graph and compare and contrast the

corresponding nodes for a long time). Filtering the call grap%trUCturaI properties of SMS and Call graphs.
to select only edges which correspond to sufficiently frequent
and recent calls before analyzing the call graph may give betfer Data Sources

insights. We studied the structural properties of the Call and the SMS
If the densification disturbs the ratios in thEeasure-Hunt graph for the same region over the same period of time. We
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selected regiorB for this set of experiments. Table X shows thalso to identify an important segment of customer communities
details for the data set used for the experiments which will beho may not be discovered by Call graph analysis.
reported hereafter.

It is interesting to note that for the same period of time the
number of edges in the SMS graph are only one-third of the
number of edges present in the call graph. Similarly the number
of nodes is only half of those in the call graph. This indicates

TABLE XVI
RATIO OF EDGES OFCALL AND SMS GRAPH FOR THE DIFFERENT
TREASUREHUNT SUBGRAPHS

that a large number of mobile phone users only make voice calls.>UP9raPh | Graph type Egge?aph E(’;"gseseraph Ratio

IN-IN Directed 113541 35832 317

IN-SCC Bi-partitie & Directed | 877417 110280 7.96

B. Structural Properties IN-OUT Bi-partitie & Directed | 203335 12879 15.79

. . . SCC-SCC | Directed 4444481 1466544 3.03

In this section we will analyze the SMS graph for some SCC-OUT | Bi-partitie & Directed | 861238 157932 5.45

i ; OUT-OUT | Directed 138177 73619 1.88
IS

|nS|ghtfgI st(ucturgl properties. In order to compare how thel BISC Birecied 557786 550396 5

properties differ with respect to the call graphs we will also study ToTar Directed 6875678 5537482 3.07

the same properties for the call graph.

1) Reciprocity: The reciprocity of a directed graph is defined
as the fraction of the total edges such tha{dfb) is an edge 5) Strongly Connected Component&able XIiI and Table XIV

in the graph ther(b, a) is also an edge in the graph. From thdive the number of strongly connected components present in the

perspective of Telecom graphs, pairs of nodes which have edgeS|S 9raph and the call graph respectively. The tables show the
both directions may be an indication of greater social ties betwe@jMPer of strongly connected components present of each size
those nodes as compared to pairs which have only an one- also the fraction of the total nodes that are present in the
edge. We found out the reciprocity of the call graph to be 03fongly connected components of that size.

while that of the SMS graph was almost double with a value of For .the call graph the largest strongly connected cgmponent
0.6. This is an important observation and indicates that there {0MPrS€s more than of half the nodes. Apart from this largest

a greater fraction of social edges in SMS graph as compared $#J°ndly connected component, the call graph has strongly con-
call graphs. It is interesting to note that the reciprocity of twol'eCtéd components of only 10 other sizes and the size of the

Social Networking Web sites were found to be around 0.7 arsgcond largest strongly connected component is only 11. On the

0.84 [17]. other hand, Table XIII reveals that the there are a large number

2) Degree Distributions:Figure 18(a) and Figure 18(b) ShOWof nodes Which are present in the smaller .strongly connected
the in-degree distribution for the call and SMS graphs while®MPOnents in the case of the SMS graph. This graph also has one

Figure 19(a) and Figure 19(b) show the out-degree distributid’y 'arge strongly connected component which contains about
for the graphs 37% of the nodes.

The power-law behavior is apparent for the Call graphs. How- This analysis gives an indication of the fact that the SMS graph

ever for the SMS graph the in-degree and out-degree distributidﬁscomposed of a number of small islands which are strongly

do not show a marked power-law behavior. The SMS in-degrggnneCted' This may be due to the fact that during SMSing the

and out-degree distributions consist of two different regions 8]eople are often part of a community which has lesser links

linear growth. A sudden kink where the two linear regions mengS'de'

is evident in both the plots. Thus the degree distributions of SMS

graphs are different from many networks that has been studiedGn TheTreasure-HunModel

the literature. We tried to fit the Treasure-Huntmodel on the SMS graph.

3) Neighborhood Distribution:Figure 20(a) and Figure 20(b) Table XV gives the details of the various components of the model
show the neighbourhood function distributions for the call an@und in the call graph and the SMS graph. On the other hand
SMS graphs The neighborhood function plots for both the grapiisble XVI gives the ratio of edges in the call graph compared to
appear similar. This indicates that the diameters of both the cale SMS graph for the various subgraphs of the Treasure Hunt.
graph and the SMS graph are almost the same. The call graph has three times the number of edges than the

4) Cliques: Table XI and Table XII give the number of cliquesSMS graph. The ratio of edges for tH&-IN and SCC-SCC
present in the call graph and SMS graph respectively. The numisebgraphs of the call graph to the SMS graph is also three
of smaller size cliques is higher in the Call graph. This is to bémes. On the other hand the ratios of the edges in the subgraphs
expected since the Call graph has a higher number of nodes #8e5CC IN-OUT and SCC-OUTof the call graph to the SMS
edges. However it is very interesting to note the number of highgraph are higher. Note that these subgraphs are bipartitite and
sized cliques (of size 6,7,8) are higher in the SMS graph in-spiteus have edges in one direction only. Since the SMS graph
of that graph having only one-third the number of edges in thes higher reciprocity, the proportion of such edges are lower.
call graph. On the other hand the SMS graph has more edgeBIBC,

This observation leads to the inference that there are sorttee disconnected components. This is also to be expected since
cligues where the participating members only send SMSeswe have observed that the SMS graph has many disconnected
one another and do not make calls. Such kind of a behavioiialands. In fact, despite having fewer edges, it has a higher number
pattern may be indicative of a group of people with commaof cliques, SCCs, disconnected components, and smaller sized
interests where the members send bulk SMSes (jokes, etc.bipartite components, which indicate more reciprocityerefore,
all the other members of the clique for instance. This statistitke SMS graph follows the Treasure-Hunt Model but with a
indicates that Telecom Operators need to analyze the SMS grapigher reciprocity.
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Distribution of cliques for Call graph
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Distribution of cliqgues for SMS graph
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[ Size [ Count [ Node Fraction |
439444 1 0.37803

22 2 3.78509e-05
21 1 1.80652e-05
20 1 1.72049e-05 [ Size [ Count [ Nodes Fraction |
18 1 1.54844e-05 1235077 1 0.531317
17 3 4.38726e-05

11 1 4.73209e-06
16 2 2.75279e-05

10 1 4.3019e-06
15 5 0.000178931

8 6 2.06491e-05
12 17 0.00017549

7 11 3.31246e-05
11 40 0.000378509

6 79 0.00020391
10 45 0.000387111

5 217 0.000466756
9 92 0.000712284

4 919 0.00158138
8 146 0.00100477

3 4737 0.00611343
7 259 0.00155963

2 33224 0.0285852
6 520 0.00268397 1 1003439 0.431669
5 1077 0.00463243 :
4 2719 0.00935604 TABLE XIV
3 8580 0.0221428 L
5 70898 5.0702443 Distribution of SCCs for Call graph
1 590696 0.508144

TABLE XIlI

Distribution of SCCs for SMS graph

TABLE XV
PROPERTIES OFTREASUREHUNT SUBGRAPHS OF THE CALL AND THESMS GRAPHS

Type Subgraph Left Part Right part Edges AVg dout Avg d;n, Diameter | Edge Ratio
CALL IN-IN 101367 - 113541 1.1201 1.1201 4 0.13X
IN-SCC 331109 (IN) 502152 (SCC) | 877417 2.64993 1.74731 1 X
IN-OUT 70083 (IN) 145850 (OUT) | 203335 2.90135 1.39414 1 0.23X
SCC-sCC 1235221 - 4444481 3.59813 3.59813 15 5.06X
SCC-OUT | 500900 (SCC)| 478196 (OUT) | 861238 1.71938 1.80101 1 0.98X
OUT-OUT 173089 - 138177 0.7983 0.7983 4 0.16X
SMS IN-IN 35649 - 35832 1.00513 1.00513 6 0.32X
IN-SCC 94707 (IN) 75475 (SCC) | 110280 1.16443 1.46115 1 X
IN-OUT 10304 (IN) 11436 (OUT) 12879 1.2499 1.12618 1 0.12X
SCC-scCC 440085 - 1466544 3.33241 3.33241 16 13.3X
SCC-OUT | 79844 (SCC) | 135698 (OUT) | 157932 1.97801 1.16385 1 1.43X
OUT-OUT 73190 - 73610 1.00574 1.00574 5 0.67X
TABLE XVII

LINEAR CORRELATION COEFFICIENTS BETWEENCALL AND SMSGRAPHS

[ SMS Graph Variable | Call Graph Variable | Coefficient |

of calls also sends many SMSes. However indegree and pagerank
do not seem to be correlated. There may be a lot of nodes in the
SMS graph which have incoming edges in the call graph, from
nodes which are not present in the SMS graph, making them

83;3:8:2: OITJ(tj(?g;ge 00'%1774%%8 have a high in-degree in the call graph but not the SMS graph.
Indegree Indegree 0206114 On the other h_and some nodes have a hi_gh in-dggree in th_e SMS
Indegree Outdegree 0.154815 graph but not in the call grapfThis statistics again emphasizes
Pagerank Pagerank 0.131639 the point made earlier that Telecom Operators need to analyze

the SMS graphs also to identify important segments of customers
who may not be discovered by call graph analysis.

D. Correlation between SMS and Call Graphs

Lo . . VIIl. CONCLUSIONS
We studied if there was some correlation between the in-degree,

out-degree and pagerank of nodes in the call graph, and thes@ver the years, a number of important graph metrics have been
values for the same nodes in the SMS graph. Table XVII showsoposed to analyze and compare the structure of arbitrary graphs.
the linear correlation coefficient values observed for varioUghis paper uses a series of graph structural properties that can
pairs of variables studied. For conducting these experiments e employed in a more systematic approach to analyze network
segregated the nodes which were common in both the graphs. Tdjsologies. We used a carefully chosen set of parameter which
number of such nodes was 1035025, which is almost the sarageal mostly connectivity directed characteristics and used them
as the number of nodes in the SMS graph (1162457). Howewst Call and SMS graphs of a mobile operator. Such metrics can
this number is less than half of the total nodes in the call graple employed by business strategy planner involved in the telecom
(2324556); as we have already seen, there exist a large numdi@main. We hope that our methods will enable a more rigorous
of nodes which are only present in the call graph and not in th@d consistent method of analyzing the telecom graphs and
SMS graph. also enable researchers and business community to gain insight
Table XVII shows that the out-degrees of the two graphs aieto the graphs. These results can significantly affect business
remarkably correlated. This indicates that people who make a &itategies. Therefore, at present we are currently collaborating
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with the marketing department of the Telecom Service providgr7] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and
to derive deeper business insights from the results. Evolution of Online Social Networks. Iﬁroceeding of the Twelfth ACM

International Conference on Knowledge Discovery and Data Mining

The shapes of the call graph of four disparate regions are in (g ,Gkpp) August 2006
good agreement with th@&reasure-Huntmodel. Although this is [18] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew
promising, only further studies with more call graphs from other ~ Tomkins. Trawling the Web for emerging Cyber-communities. In

countries can serve to verify or refute this model. In fact it will

Proceedings of the Eighth International Conference on World Wide Web
pages 1481-1493, 1999.

be interesting to dete_‘rmin? whether the properties of the Call aﬁg] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time:
SMS graphs determined in our study hold in other geographies Densification laws, Shrinking diameters and possible explanations. In
and cultures as well. Proceeding of the Eleventh ACM International Conference on Knowl-

edge Discovery and Data Mining (SIGKDD)ages 177-187, 2005.

Our analysis indicates that there are some similarities as Wgll, 5 ipen-Nowell J. Novak. R. Kumar. P. Raghavan, and A. Tomkins.
differences between the call and SMS graphs. The SMS graph Geographic Routing in Social NetworkBNAS 102(33):11623-11628,
seems to be moreocial with a higher value of reciprocity. We 2005.

believe that the Telecom operators need to analyze both th

M. E. J. Newman. The Structure and Function of Complex Networks.
SIAM Review45:167, 2003.

graphs to gain complete understanding of its customer base. 25 A Ntoulas, J. Cho, and C. Olston. Whats new on the Web? The
Our temporal analysis highlights interesting insights on how evolution of Web from a Search Engine perspective. Phoceedings

the graphs evolve over time. In the future we plan to study the

of the Thirteenth International Conference on World Wide Wedges
1-12, 2004.

evolution of the. graPhS for a Ipnger period Pf time. A proble 3] Christopher R. Palmer, Phillip B. Gibbons, and Christos Faloutsos. ANF:
worthy of consideration is to find a generative model for these * a Fast and Scalable Tool for Data Mining in Massive Graphs. In
telecom graphs, if one exists. If found, it is likely to offer deep  Proceeding of the Eighth ACM International Conference on Knowledge

insights into how a mobile operator’s customer base evolves wi

; Discovery and Data Mining (SIGKDD)pages 81-90, 2002.
H]l] G. Siganos, S. Tauro, and M. Faloutsos. Jellyfish: A Conceptual Model

time. for the AS Internet TopologyJournal of Communications and Networks

(1]
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[3

[4

[5
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[7]
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[10]
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