Adding Forward Chaining and Truth Maintenance to Prolog

Tim Finin
Rich Fritzson
Dave Matuszek
Paoli Research Center
Unisys Corporation
Paoli, Pennsylvania

Contact: Paoli Research Center, Unisys, PO Box 517, Paoli, PA 19301.
finin@prc.unisys.com (215-648-7446); fritzson@prc.unisys.com (215-648-7606);
dave@prc.unisys.com (215-648-7489).

Topic: Principles, knowledge representation and reasoning tools.

Abstract: This paper describes Pfc, a simple package which supplies a forward chaining facility in Prolog. Pfc is intended to be used in conjunction with ordinary Prolog programs, allowing the programmer to decide whether to encode a rule as a forward-chaining Pfc rule or a backward chaining Prolog one. Like other logic programming languages, Pfc programs have a declarative interpretation as well as clear and predictable procedural one. A truth maintenance system is built into Pfc system which maintains consistency as well as makes derivations available for applications. Finally, Pfc is designed to be practical, being relatively efficient and fairly unobtrusive.

Status: Research tool.

Domain: This paper describes a domain-independent tool.

Language: Prolog.

Effort: approximately 1/2 person year.
1 Introduction

Prolog, like most logic programming languages, offers backward chaining as the only reasoning scheme. It is well known that sound and complete reasoning systems can be built using either exclusive backward chaining or exclusive forward chaining [19]. Thus, this is not a theoretical problem. It is also well understood how to "implement" forward reasoning using a backward chaining system and vice versa. Thus, this need not be a practical problem.

Thus, this is not a theoretical problem. It is also well understood that there are good reasons why one might wish to rely on one control strategy is preferred over a backward chaining one. We will briefly mention the major ones. We will assume that we have in mind a rule of the form:

\[P_1 P_2 \ldots P_n \rightarrow Q_1 Q_2 \ldots Q_n \]

Informally, the \(P \), on the left hand side (lhs) of the rule form a set of conditions which, if satisfied, enable the rule for firing. When fired, the \(Q \) on the rule's right hand side (rhs) specify a set of actions which are to be carried out. Typically, the conditions correspond to the presence of assertions in a database of facts. A condition is satisfied if it matches some particular fact in this database. There is more variability on the meaning and character of an action in the rhs of a rule. In some systems, such as OPS5 [10, 17], these can be arbitrary evaluable expressions. In others, such as MRS [7], the \(Q \) are propositions which are to be added to the fact database. Even in this latter case, systems differ as to whether the newly derived facts are persistent and are recorded into the global database [7, 14] or are held in a temporary extension to the permanent database (as in a list) [18].

Some of the ways in which the meaning of a forward chaining rule can vary are:

- Are the constituents of the rule's rhs actions to be performed or propositions to be added to the database?
- When the addition of a new fact to the database triggers some rules, should all of the rules be run or just one? If more than one is run, should the order be important?
- Should retracting database assertions be allowed?
- If retractions are allowed, how should they effect partially triggered rules?
- If retractions are allowed, should we perform "truth maintenance"?

Given that we are trying to provide a forward chaining facility for Prolog, some of these choices are fairly clear cut. The particulars of the package that we have designed are described in the sections to follow.

2 Forward Chaining

It is well known that one can define sound and complete inferencing systems which rely solely on either forward or backward reasoning. This is discussed in introductory AI texts [10]. It is equally well understood that these rules are discussed a forward chaining system in which the rhs's of rules specify necessarily true facts which are to be asserted into the global database and remain there until explicitly retracted.

Figure 1: Examples of \(P_j \) Rules which represent common kinship relations

- spouse(\(X, Y \)) \(\leftrightarrow \) spouse(\(Y, X \)).
- spouse(\(X, Y \)), gender(\(X, G \)), (otherGender(\(G, 0 \))), \(\rightarrow \) gender(\(Y, G \)).
- gender(\(P, male \)) \(\leftrightarrow \) male(\(P \)).
- parent(\(X, Y \)), female(\(X \)) \(\rightarrow \) mother(\(X, Y \)).
- parent(\(X, Y \)), parent(\(Y, Z \)) \(\rightarrow \) grandparent(\(X, Z \)).
- grandparent(\(X, Y \)), male(\(X \)) \(\rightarrow \) grandfather(\(X, Y \)).
- grandparent(\(X, Y \)), female(\(X \)) \(\rightarrow \) grandmother(\(X, Y \)).
- mother(\(Ma, Kid \)), parent(\(Kid, GKid \)) \(\rightarrow \) grandmother(\(Ma, GKid \)).
- grandparent(\(X, Y \)), female(\(X \)) \(\rightarrow \) grandmother(\(X, Y \)).
- parent(\(X, Y \)), male(\(X \)) \(\rightarrow \) father(\(X, Y \)).
- parent(\(X, Y \), female(\(X \)) \(\rightarrow \) mother(\(X, Y \)).
- mother(\(Ma, X \)), mother(\(Ma, Y \)), \(X \neq Y \) \(\rightarrow \) sibling(\(X, Y \)).
The usual reasons for choosing a forward reasoning strategy stem from the particular nature of the problem being solved. These include:

- space/time tradeoffs. If a problem involves solving the same goal frequently, it may be more efficient to express the rules for deducing that goal as forward chaining rules. This reduces the computation while increasing the need for static memory.
- the shape of the inferential space. Forward chaining tends to involve less search than backward chaining when the ratio of premises to conclusions is high.
- avoiding long deductive chains. Forward chaining is useful for avoiding long (or even infinite) deductive chains.
- drawing all possible inferences. Many problems require one to draw all possible inferences from a set of axioms. Forward chaining is an efficient way to do this.
- alerting. A related situation is one in which we want to ensure that certain deductions are made as soon as possible, e.g. for purposes of alerting or monitoring.

There are other reasons to consider using a forward chaining control structure, one of which we will briefly mention. It is sometimes very convenient to construct a logic program in which first make database assertions which represent the properties of a subset of the database acts designing a system in which one subsystem maintains a model and "concurrent" subsystems. As an example, consider reasoning strategy, most of the work in TMS systems is associated with forward reasoning [6, 2].

2.3 Truth Maintenance

A forward chaining facility in a logic-oriented, rule-based system (as opposed to a production-rule oriented system like OPS5) has a special need for a truth maintenance system (TMS). Although a TMS can be used with a deductive language using any sort of reasoning strategy, most of the work in TMS systems is associated with forward reasoning [6, 5, 3, 16, 13].

There are really two closely related reasons for this need: one "external" and the other "internal". The first (the "external") is that we want, in general, to keep the database consistent. Consider a situation in which a forward chaining rule has made an inference based on the state of the database at some time and thereby adds a new fact to the database. If the database changes at some later time such that the earlier inference is no longer valid, then the conclusion may have to be withdrawn and the assertion removed from the database. This is not a problem in a pure backward-chaining system since conclusions are always drawn (and re-drawn, if necessary) with respect to the current state of the database.

The second ("internal") need for a TMS has to do with the particular implementational strategy we have employed. A rule with a conjunction on its lhs (i) can be rewritten as shown below (ii):

\[(i) \quad P, Q, R \Rightarrow S \quad (ii) \quad P \Rightarrow (Q \Rightarrow (R \Rightarrow S))\]

That is, as a rule with a atomic lhs (P) which, when triggered, adds a new rule which monitors for the remaining conjuncts from the original rule. In such a scheme, it is important to keep track of these derived rules which represent partially instantiated or triggered rules. If a database assertion supporting a partially triggered rule is erased, then the rule need to be killed. This ensures that a rule will fire only if all of its required conditions are simultaneously true.

A truth maintenance system is useful for reasons besides keeping the knowledge base consistent. A TMS typically records the proof derivations of all of the facts in the database. This is useful in a variety of ways, such as generating explanations, abductive reasoning and debugging.

3 The \(P_{fc}\) Language

This section describes \(P_{fc}\). We will start by introducing the language informally through a series of examples drawn from the domain of kinship relations. This will be followed by an example and a description of some of the details of its current implementation.

Overview

The \(P_{fc}\) package allows one to define forward chaining rules and to add ordinary Prolog assertions into the database in such a way as to trigger any of the \(P_{fc}\) rules that are satisfied. An example of a simple \(P_{fc}\) rule is:

\[\text{gender}(P, \text{male}) \Rightarrow \text{male}(P)\]

This rule states that when a fact unifying with \text{gender}(P, \text{male}) \ is added to the database, then the fact \text{male}(P) \ is true. If this fact is not already in the database, it will be added. In any case, a record will be made that the validity of the fact \text{male}(P) \ depends, in part, on the validity of this forward chaining rule and the fact which triggered it. To make the example concrete, if we add \text{gender}(\text{john}, \text{male}) \, then the fact \text{male}(\text{john}) \ will be added to the database unless it was already there.

In order to make this work, it is necessary to use the predicate \text{add/1} \ rather than \text{assert/1} \ in order to assert \(P_{fc}\) rules and any facts which might unify with a goal in the lhs of a \(P_{fc}\) rule.

Compound Rules. A slightly more complex rule is one in which the rule's left hand side is a conjunction or disjunction of conditions:

\[\text{parent}(X,Y), \text{female}(X) \Rightarrow \text{mother}(X,Y)\]
\[\text{mother}(X,Y); \text{father}(X,Y) \Rightarrow \text{parent}(X,Y)\]
The first rule has the effect of adding the assertion $mother(X,Y)$
to the database whenever $parent(X,Y)$ and $female(X)$ are
simultaneously true for some X and Y. Again, a record will be
stored in the database whenever $mother(X,Y)$ is added. The
first rule has the effect of adding the assertion
$mother(X,Y)$ to the database whenever $parent(X,Y)$ and $female(X)$ are
simultaneously true for some X and Y. Again, a record will be
stored in the database whenever $mother(X,Y)$ is added.

In fact, the lhs of a P_C rule can be an arbitrary conjunction
or disjunction of facts. P_C handles a rule like (i) by putting it
into conjunctive normal form, resulting in the two rules given in
(ii) below:

\[
\begin{align*}
(1) & \quad P, (Q;R), S \Rightarrow T \\
(1i) & \quad P, Q, S \Rightarrow T \\
(1ii) & \quad P, R, S \Rightarrow T
\end{align*}
\]

Bi-conditionals. P_C has a limited ability to express bi-conditional
rules, such as:

\[
\begin{align*}
mother(P_1,P_2) & \leftrightarrow parent(P_1,P_2), female(P_1).
\end{align*}
\]

In particular, adding a rule of the form $P \leftrightarrow Q$ is the equivalent
to adding the two rules $P \Rightarrow Q$ and $Q \Rightarrow P$. The limitations on the
use of bi-conditional rules stem from the restrictions that the two
derived rules be valid horn clauses. This is discussed in a later
section.

Conditioned Rules. It is sometimes necessary to add some
further condition on a rule. Consider the following definition of
sibling: “Two people are siblings if they have the same mother
and the same father. No one can be his own sibling.” This
definition could be realized by the following P_C rule

\[
\begin{align*}
mother(M_1,P_1), mother(M_2,P_2), (P_1 \neq P_2), \\
father(P_1,P_1), father(P_2,P_2) \\
\Rightarrow & \ sibling(P_1,P_2).
\end{align*}
\]

Here we must add a condition to the lhs of the rule which states
the the variables P_1 and P_2 must not unify. This is effected by
enclosing an arbitrary Prolog goal in braces. When the goals to
the left of such a bracketed condition have been fulfilled, then it
will be executed. If it can be satisfied, then the rule will remain
active, otherwise it will be terminated.

Negation. We sometimes want to draw an inference from the
absence of some knowledge. For example, we might wish to en-
code the default rule that a person is assumed to be male unless
we have evidence to the contrary:

\[
\begin{align*}
\text{person}(P), \sim \text{female}(P) \Rightarrow \text{male}(P).
\end{align*}
\]

A lhs term preceded by a \sim is satisfied only if no fact in the
database unifies with it. Again, the P_C system records a jus-
tification for the conclusion which, in this case, states that it
depends on the absence of the contradictory evidence.

As a slightly more complicated example, consider a rule which
states that we should assume that the parents of a person are
married unless we know otherwise. Knowing otherwise might
consist of either knowing that one of them is married to a yet
another person or knowing that they are divorced. We might try
to encode this as follows:

\[
\begin{align*}
\text{parent}(P_1,X), \text{parent}(P_2,X), (P_1 \neq P_2), \\
\sim \text{divorced}(P_1,P_2), \\
\sim \text{spouse}(P_1,P_3), (P_3 \neq P_2), \\
\text{spouse}(P_2,P_4), (P_4 \neq P_1) \\
\Rightarrow & \text{spouse}(P_1,P_2).
\end{align*}
\]

Unfortunately, this won’t work. The problem is that the con-
joined condition \(\sim \text{spouse}(P_1,P_3), (P_3 \neq P_2)\) does not mean
what we intended it to — that there is no P_3 distinct from P_2
that is the spouse of P_1. Instead, it means that P_1 is not mar-
tied to any P_3. We need a way to move the qualification $P_3 \neq P_2$
inside the scope of the negation. To achieve this, we introduce
the notion of a qualified goal. A lhs term P/C, where P is a
positive atomic condition, is true only if there is a database fact
unifying with P and condition C is satisfiable. Similarly, a lhs
term $\sim P/C$, where P is a positive atomic condition, is true only
if there is no database fact unifying with P for which condition
C is satisfiable. Our rule can now be expressed as follows:

\[
\begin{align*}
\text{parent}(P_1,X), \text{parent}(P_2,X)/(P_1 \neq P_2), \\
\sim \text{divorced}(P_1,P_2), \\
\sim \text{spouse}(P_1,P_3)/(P_3 \neq P_2), \\
\text{spouse}(P_2,P_4)/(P_4 \neq P_1) \\
\Rightarrow & \text{spouse}(P_1,P_2).
\end{align*}
\]

Procedural Interpretation. Note that the procedural inter-
pretation of a P_C rule is that the conditions in the lhs are checked
down to right. One advantage to this is that the programmer
can chose an order to the conditions in a rule to minimize the
number of partial instantiations. Another advantage is that it
allows us to write rules like the following:

\[
\begin{align*}
\text{at}(Obj, Loc_1), \text{at}(Obj, Loc_2)/(Loc_1 \neq Loc_2) \\
\Rightarrow & \text{remove(at(Obj, Loc_1))).}
\end{align*}
\]

Although the declarative reading of this rule can be questioned,
its procedural interpretation is clear and useful — “If an object
is known to be at location Loc_1 and an assertion is added that it
is at some location Loc_2, distinct from Loc_1, then the assertion
that it is at Loc_1 should be removed.”

The Right Hand Side of a Rule. The examples seen so far
have shown a rules rhs as a single proposition to be “added”
to the database. The rhs of a P_C rule has some richness as
well. The rhs of a rule is a conjunction of facts to be “added”
to the database and terms enclosed in brackets which represent
conditions/actions which are executed. As a simple example,
consider the conclusions we might draw upon learning that one
person is the mother of another:

\[
\begin{align*}
mother(X,Y) \Rightarrow female(X), parent(X,Y), adult(X).
\end{align*}
\]

As another example, consider a rule which detects bigamists
and sends an appropriate warning to the proper authorities:
Each element in the rhs of a rule is processed from left to right — assertions being added to the database with appropriate justification and actions being executed. If an action can not be satisfied, the rest of the rhs is not processed.

We would like to allow rules to be expressed as bi-conditional in so far as possible. Thus, an element in the lhs of a rule should have an appropriate meaning on the rhs as well. What meaning should be assigned to the conditional fact construction (e.g. \(P/Q \)) which can occur in a rule’s lhs? Such a term in the rhs of a rule is interpreted as a conditioned assertion. Thus the assertion \(P/Q \) will match a condition \(P \) in the lhs of a rule only if \(P \) and \(P/Q \) unify and the condition \(Q \) is satisfiable. For example, consider the rules that says that an object being placed at one place is reason to believe that it is not at any other place:

\[
\text{at}(X,L1) \rightarrow \neg \text{at}(X,L2) \quad \text{L2} \neq \text{L1}
\]

Note that a conditioned assertion is essentially a Horn clause. We would express this fact in Prolog as the backward chaining rule:

\[
\neg \text{at}(X,L2) :- \text{at}(X,L1), \text{L1} \neq \text{L2}.
\]

The difference is, of course, that the addition of such a conditioned assertion will trigger forward chaining whereas the assertion of a new backward chaining rule will not.

The Truth Maintenance System

As discussed in the previous section, a forward reasoning system has special needs for some kind of truth maintenance system. The \(PFC \) system has a rather straightforward TMS system which records justifications for each fact deduced by a \(PFC \) rule. Whenever a fact is removed from the database, any justifications in which it plays a part are also removed. The facts that were justified by a removed justification are checked to see if they are still supported by some other justifications. If they are not, then those facts are also removed.

Such a TMS system can be relatively expensive to use and is not needed for many applications. Consequently, its use and nature are optional in \(PFC \) and are controlled by the predicate \texttt{pfcTmsMode/1}. There are three possible cases:

- \texttt{pfcTmsMode(full)} - The fact is removed unless it has well founded support (WFS). A fact has WFS if it is a given or is supported by the user or by a justification all of whose justicifies have WFS. This is the most expensive mode, since determining if a fact has WFS requires detecting local cycles (see [15] for an introduction).
- \texttt{pfcTmsMode(local)} - The fact is removed only if it has no supporting justifications.
- \texttt{pfcTmsMode(none)} - The fact is never removed.

A fact is considered to be a given if it is found in the database with no visible means of support. That is, if \(PFC \) discovers an assertion in the database that can take part in a forward reasoning step, and that assertion is not supported by either the user or a forward deduction, then a note is added that the assertion is assumed to be a given. This adds additional flexibility in interfacing systems employing \(PFC \) to other Prolog applications. A fact is supported by the user if it was directly asserted into the database via an explicit call to the add/1 predicate.

For some applications, it is useful to be able to justify actions performed in the rhs of a rule. To allow this, \(PFC \) supports the idea of declaring certain actions to be undoable and provides the user with a way of specifying methods to undo those actions. Whenever an action is executed in the rhs of a rule and that action is undoable, then a record is made of the justification for that action. If that justification is later invalidated (e.g. through the retraction of one of its justicifies) then the support is checked for the action in the same way as it would be for an assertion.

If the action does not have independent support, then \(PFC \) tries each of the methods it knows to undo the action until one of them succeeds.

In fact, in \(PFC \), one declares an action as undoable just by defining a method to accomplish the undoing. This is done via the predicate \texttt{pfcUndo/2}. The predicate \texttt{pfcUndo(A1, A2)} is true if executing \(A2 \) is a possible way to undo the execution of \(A1 \). For example, we might want to couple an assertional representation of a set of graph nodes with a display of them through the use of \(PFC \) rules:

\[
\text{at}(X,Y) \rightarrow \text{displayNode}(X,Y)\}
\]

\[
\text{arc}(X,Y) \rightarrow \text{displayArc}(X,Y)\}
\]

\[
\text{pfcUndo(displayNode}(X,Y)\), \text{eraseNode}(X,Y)\})
\]

\[
\text{pfcUndo(displayArc}(X,Y)\), \text{eraseArc}(X,Y)\})
\]

Limitations

The \(PFC \) system has several limitations, most of which it inherits from its Prolog roots. One of the more obvious of these is that \(PFC \) rules must be expressible as a set of horn clauses. The practical effect is that the rhs of a rule must be a conjunction of terms which are either assertions to be added to the database or actions to be executed. Negated assertions and disjunctions are not permitted, making the following rules ill-formed:

- parent(X,Y) \leftrightarrow mother(X,Y); father(X,Y)
- male(X) \leftrightarrow "female(X)"

Another restrictions is that all variables in a \(PFC \) rule have implicit universal quantification. As a result, any variables in the rhs of a rule which remain uninstantiated when the lhs has been fully satisfied retain their universal quantification. This prevents us from using a rule like

\[
\text{father}(X,Y), \text{parent}(Y,2) \leftrightarrow \text{grandfather}(X,2).
\]

with the desired results. If we do add this rule and assert \texttt{grandfather(john,mary)}, then \(PFC \) will add the two independent assertions \texttt{father(john..)} (i.e. "John is the father of everyone") and \texttt{parent(.,mary)} (i.e. "Everyone is Mary’s parent").

A final problem is associated with the use of the Prolog database. Assertions containing variables actually contain "copies" of the variables. Thus, when the conjunction
father(X,Y), parent(Y,Z) => grandfather(X,Z).
predicate abbreviations:
father(X,Y), male(X) => male(tom).
father(X,Y) => child(clare,tom).
father(tim,peter).
3. Devices behave as they should unless they are faulty.

\[\text{isa}(X, \text{Class}), \quad \text{"Faulty"}(X) \Rightarrow \text{behave}(X, \text{Class}). \]

% A wire equates the values at its two ends.

\[\text{wire}(T_1, T_2) \Rightarrow (\text{val}(T_1, V) \iff \text{val}(T_2, V)). \]

% It is a conflict if a terminal has two different values.

\[\text{val}(T, V_1), \text{val}(T, V_2) \land \{V_1 \neq V_2\} \Rightarrow \text{conflict}(T). \]

% Assume an observation is true.

\[\text{observed}(P), \quad \neg \text{false-observation}(P) \Rightarrow P. \]

% An adder's behaviour.

\[\text{behave}(X, \text{adder}) \Rightarrow \]
\[(\text{val}(\text{ini}(X), I_1), \text{val}(\text{ini}(X), I_2) \Rightarrow (\text{val}(\text{out}(X), O)
\quad \text{val}(\text{out}(X), O) \Rightarrow (I_2 \text{ is } O-I_1), \text{val}(\text{ini}(X), I_1)). \]

% A multiplier's behaviour.

\[\text{behave}(X, \text{multiplier}) \Rightarrow \]
\[(\text{val}(\text{ini}(X), I_1), \text{val}(\text{ini}(X), I_2) \Rightarrow (O \text{ is } I_1\cdot I_2), \text{val}(\text{out}(X), O), \text{val}(\text{out}(X), O) \Rightarrow (I_1 \text{ is } O-I_2), \text{val}(\text{ini}(X), I_1)). \]

% A gizmo is the standard example circuit.

\[\text{isa}(X, \text{gizmo}) \Rightarrow \]
\[\text{isa}(\text{ml}(X), \text{multiplier}), \text{isa}(\text{mZ}(X), \text{multiplier}), \text{isa}(\text{a1}(X), \text{adder}), \text{isa}(\text{a2}(X), \text{adder}), \]
\[\text{wire}(\text{out}(\text{ml}(X)), \text{ini}(\text{a1}(X))), \text{wire}(\text{out}(\text{ml}(X)), \text{ini}(\text{a2}(X))), \text{wire}(\text{out}(\text{mZ}(X)), \text{ini}(\text{a1}(X))), \text{wire}(\text{out}(\text{mZ}(X)), \text{ini}(\text{a2}(X))). \]

Figure 4: A simple circuit to be diagnosed

Figure 5: \(P_{fc} \) rules which simulate the behavior of simple circuits composed of adders and multipliers

Whenever a fact is added to the database (for the first time) all positive triggers with unifying heads are collected and fired. Fixing a trigger means ensuring that its condition is satisfied and processing the body. The body can be another trigger, a conditional body, a "cut point", or the rule's rhs.

When the body of a trigger is another trigger, it is asserted into the database with a note that it's support comes from the initial trigger and the unifying fact. Thus, in the above example, when \(\text{father}(\text{tom}, \text{tim}) \) is asserted, the trigger

\[\text{pt}(\text{father}(\text{tim}, \text{C}), \quad \text{true}, \text{rhs}((\text{grandfather}(\text{tom}, \text{C})))) \]

is added to the database with support coming from the original trigger and fact.

An item in the lhs of a rule can be an arbitrary condition wrapped in braces, as in:

\[\text{age}(P_1, A_1), \text{age}(P_2, A_2), \quad (A_1=A_2) \Rightarrow \text{older}(P_1, P_2). \]

This provides additional flexibility in mixing forward and backward reasoning and also makes the semantics of bi-conditional rules sensible.

We are experimenting with a technique for pruning the tree of triggers which grows from a rule and a stream of facts which is being added to the database. This is analogous to the use of the cut operation in Prolog and other logic programming languages. For example, consider a rule which encodes the knowledge that a person is a parent if they have offspring. We could write this in \(P_{fc} \) as:

\[\text{person}(P), \text{parent}(P,-) \Rightarrow \text{isParent}(P). \]

However, this rule is somewhat redundant in that it records multiple justifications for the \text{isParent} conclusion. That is if a person has six children, then there will be six justifications for the conclusion. In many applications, it is desirable to "prune" away the other justifications, an operation similar to the "cut" in logic programming languages. In \(P_{fc} \) the "!" symbol represents such a pruning operation. We can write our rule as:

\[\text{person}(P), \text{parent}(P,-), ! \Rightarrow \text{isParent}(P). \]

Whenever the "!" is encountered in a rule instance, all ancestor triggers "frozen". This effectively blocks any justifications beyond the first. If the first justification is removed by the tms system, the effective triggers will be "thawed".

Finally, the trigger which represents the last condition in a rule will have the rule's rhs as its body. Similarly, whenever a positive trigger is added to the database, it is "fired" for each extant fact in the database with which it unifies. Consider the following rule which contains a negated fact in the lhs:

\[\text{parent}(P_1, X), \text{spouse}(P_1, P_2), \neg \text{parent}(P_2, X) \Rightarrow \text{stepParent}(P_2, X). \]

This rule would generate the following trigger:

\[\text{pt}(\text{parent}, \quad \text{true}, \text{pt}(\text{spouse}(P_1, P_2)), \text{stepParent}(P_2, X)). \]
The nt/3 term represents a negative trigger which is immediately satisfied if there is no unifying fact in the database. Whenever a fact is removed from the database, all negative triggers with unifying heads are gathered and, if their conditions are satisfiable, fired. Conversely, whenever a fact is added to the database, a search is made for justifications which include a negative trigger whose head unifies with the newly added fact. Any such justifications are then removed.

The support for conclusions is recorded by the fcSupport/2 predicate. It has one of the following forms:

\[\text{fcSupport}((\text{Rule}, \text{user}), X) \]

where X is a user asserted rule or fact.

\[\text{fcSupport}((\text{Rule}, \text{user}), \text{Trigger}) \]

where Rule is user-asserted rule and Trigger is one of the resulting initial triggers.

\[\text{fcSupport}((\text{Fact}, \text{Trigger}), X) \]

where Fact is an atomic fact, Trigger is a positive or negative trigger and X is a resulting fact or another trigger.

These assertions are hidden from the user in a shadow database. Other predicates exist for finding the immediate facts and rules which support a given clause and for finding the set of "user asserted" facts and rules which support a clause. These can be used to construct the possible \(P_{fc} \) derivations of a clause.

6 Conclusions

This paper has described \(P_{fc} \), a forward chaining facility for Prolog. \(P_{fc} \) is intended to be used in conjunction with ordinary Prolog programs, allowing the programmer to decide whether to encode a rule as a forward-chaining \(P_{fc} \) rule or a backward chaining Prolog one. Like other logic programming languages, \(P_{fc} \) programs have a declarative interpretation as well as clear and predictable procedural one. A truth maintenance system is built into \(P_{fc} \) system which maintains consistency as well as makes derivations available for applications. Finally, \(P_{fc} \) is designed to be practical, being relatively efficient and fairly unobtrusive.

We have begun to experiment with \(P_{fc} \), are expecting to use it in several Prolog-based applications requiring a forward reasoning facility. There are a number of issues which we intend to examine in the near future. These include exploring additional ways to control forward reasoning; developing techniques for the optimization and compilation of \(P_{fc} \) programs; and exploring the opportunities for the parallel execution of a "pure" subset of \(P_{fc} \).

In summary, we have found that the \(P_{fc} \) system effectively extends Prolog to enable the use of a mixed backward and forward reasoning strategy. This is done in a way that maintains the advantages of using Prolog (as opposed to a more general logic-based AI language) — simplicity, speed and portability.

References

130