
Agent Development with Jackal

R. Scott Cost, Tim Finin, Yannis Labrou, Xiaocheng Luan, Yun Peng, Ian Soboroff
University of Maryland Baltimore County

Baltimore, Maryland 21250
cost@acm.org, {finin, jklabrou, xluanl, ypeng, ian}@cs.umbc.edu

James Mayfield
Johns Hopkins University Applied Physics Laboratory

Laurel, Maryland 20723
james.mayfield@jhuapl.edu

Abstract

Jackal is a Java-based tool for communicating with the KQML
agent communication language. Some features that make it
extremely valuable to agent development are its conversa-
tion management facilities, flexible, blackboard style inter-
face and ease of integration. Jackal has been developed in
support of an investigation of the use of agents in enterprise-
wide integration of planning and execution for manufactur-
ing.

1 Introduction

Jackal is a Java package that allows applications written in
Java to communicate via the KQML [l] agent communica-
tion language. It is designed to be used as an add-on com-
ponent, rather than a framework or shell. This facilitates its
integration into existing systems. Jackal has been developed
as part of an effort to apply agent technology to problems
of manufacturing integration. The Consortium for Intelli-
gent Integrated Manufacturing Planning-Execution (CIIM-
PLEX) was formed in 1995 with the primary goal of develop-
ing technologies for intelligent enterprise-wide integration of
planning and execution for manufacturing [3]. CIIMPLEX
has adopted as one of its key technologies the approach of in-
telligent software agents, and has experimented with multi-
agent systems (MAS) for various difficult tasks involved in
enterprise integration.

2 Jackal and Agent Development

Agents that will interact with one another require some

method of communication in order to coordinate their ac-
tivities and distribute and collect information. To this end,
a number of agent communication languages, and various
software tools for them, have been developed. Jackal is a
tool for the use of KQML by agents written in the Java pro-
gramming language. Because it is a stand-alone component,
rather than an extendible shell, it can easily be integrated
into existing systems. Jackal provides more than just the
ability to send and receive messages, however. Its design is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for prolit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and:or a fee.

Autonomous Agents ‘99 Seattle WA USA

Copyright ACM 1999 I-581 13-066~x/99/05...$5.00

Akram Boughannam
IBM Corporation

Boca Raton, Florida 33431
akram@us.ibm.com

based in large part on the KQML Naming Scheme (KNS),
an evolving standard for resolving agent names in a hierar-
chically structured, dynamic environment. This means that
the agent application need only deal with symbolic agent
names, and may leave issues such as physical address reso-
lution and alias identification to the Jackal infrastructure.

Two components in Jackal that work together to pro-
vide the greatest benefit to the agent are the conversation
management routines and the Distributor, a blackboard for
message distribution. The conversation system supports the
use of easily interchangeable protocols for interaction that
guide the behavior of the system. The Distributor presents
a flexible, active interface for internal message retrieval by
agent components. While the Distributor optimizes access
to the message flow, it is the conversation system that gives
Jackal its real value; the next section will discuss the rational
behind the conversation-based approach.

3 Conversation-Based Protocols

A notion gaining in popularity is that the unit of commu-
nication between agents should be the conversation. A con-
versation is a pattern of message exchange that two or more
agents agree to follow in communicating with one another;
in effect, a conversation is a communications protocol. A
conversation lends context to the sending and receipt of mes-
sages, facilitating meaningful interpretation. The adoption
of conversation-based communication carries with it numer-
ous advantages to the developer. For one thing, there is a
better fit with intuitive models of how agents will interact
than is found in message-based communication, and a closer
match to the way that network research approaches proto-
cols. Also, conversation structure can be separated from the
actions to be taken by an agent engaged in the conversation,
allowing the same conversation structure to be used by more
than one agent, and in more than one context.

To date, little work has been devoted to the problem of
conversation specification and implementation for mediated
architectures. Strides must be taken to develop standards
and methods for conversation specification, sharing, manip-
ulation and reuse.

4 An Overview of Jackal’s Design

Jackal was designed to provide comprehensive functionality
while presenting a simple interface to the user. Thus, al-
though Jackal consists of roughly seventy distinct classes,
all user interactions are channeled through one CUSS, hiding

358

Jackal Svc Extensions Agent/User Services
Jackal Services

Intercom/Jackal API
Utility

Message Bus
BUfflZS

Synch
Java Class Libraries
Java VM

Figure 1: Jackal Architecture

most details of the implementation. Typical usage is as an
accessory to an individual agent, although shared use by a
collection of agents is not precluded.

4.1 Architecture

Figure 4 depicts Jackal’s layered architecture. Its native ex-
ecution environment is standard Java. Enhanced synchro-
nization primitives and buffers tie together Jackal’s very
loosely coupled components. Consisting principally of the
conversation interpreters and a message redistribution sys-
tem, the Message Bus is the common path for all message
traffic. This Bus, wrapped with some additional utilities by
the Jackal API, is referred to as the Jackal Core. Both Jackal
and agent services interact with the Core and each other
through the API, provided by the Intercom class, an entity
which plays a supervisory role to the rest of Jackal’s com-
ponents. The Jackal Package as it is typically distributed
consists of the Core and a set of standard services.

4.1.1 Message Bus

Based largely on the work of Labrou and Finin [2] regard-
ing a semantics for KQML, we have created protocols which
describe the correct interactions for various performatives
and subsequent messages. Currently active conversation
are managed in protocol interpreters by individual threads.
Messages are associated with current (logical) threads and
assigned to new or ongoing conversations as appropriate.
This allows for easy context management, while providing
constraints on language use and a framework for low-level
conversation management. Declarative conversation specifi-
cations are downloaded as needed at runtime from an online
repository. In conjunction with an ontology of well-known
actions, these conversations can be made to implement a
wide range of agent behaviors. The conversation manage-
ment component offers a number of significant benefits to
the agent:

. Running conversations in individual threads provides max-
imum concurrency.

. Conversations, in conjunction with the Distributor, route
messages automatically to the threads that need them.

l Each conversation maintains a local store, or ‘context’, which
can be accessed by the agent.

l Since conversations are declaratively specified, they can be
loaded on demand. Our current agents download only the
conversations they will need.

. The conversation mechanisms and the specification are in-
dependent of the content or message language used.

l Actions can be associated with conversation structures, en-
hancing their utility.

The Distributor is a Linda-like blackboard, which serves
to match messages with requests for messages. This is the
sole interface between the agent and the message traffic. Its
concise API allows for comprehensive specification of mes-
sage requests, which persist for a given number of matches.
Requesters are returned message queues, and receive all re-
turn traffic through these queues.

4.1.2 Services

A service here refers to either components of the controlling
agent, or a subthread of Jackal itself. Two services packaged
with Jackal are the Message Transport Service (MTS) and
the Naming and Addressing Service (NAS).

The MTS is responsible for conveying messages into and
out of a Jackal instance. The MTS runs a Transport Module
for each protocol it uses; users can create and add additional
modules. A Transport Module is responsible for receiving
messages at some known address, and transmitting messages
out via a given protocol. Utilizing an intelligent address
cache, the MTS formulates a delivery plan for each outgoing
message, and pursues it concurrently with other executing
transmissions.

The NAS provides a powerful address resolution service,
as an implementation of KNS. Jackal supports KNS trans-
parently through an intelligent address cache. Standard ser-
vices exist to allow any agent to register with any other
agent, facilitating the formation of relationships or teams.
Agents can hold multiple identities, and choose which to use
in different situations. Protocols implemented by the NAS
allow agents to easily discover other agents, regardless of the
their current location or chosen identity.

5 Summary

Jackal provides developers with an easy to use facility for
KQML, supporting the use of conversation based protocols.
In addition, it provides basic services such as hidden ad-
dress resolution. These features make it a valuable asset
in developing MASS. More information is available from
http://jackal.cs.umbc.edu/Jackal.

Acknowledgements This work is supported in part by the
Advanced Technology Program, administered by the Na-
tional Institute of Standards and Technology, under agree-
ment number: 70NANB6H2000.

References

[l] Tim Finin, Yannis Labrou, and James Mayfield. Soft-
ware Agents, chapter KQML as an agent communication
language. MIT Press, 1997.

[2] Yannis Labrou and Tim Finin. Semantics and conver-
sations for an agent communication language. In Pro-
ceedings of the Fifteenth International Joint Conference
on Artificial Intelligence (IJCAI ‘97). Morgan Kaufman,
August 1997.

[3] Y. Peng, T. Finin, Y. Labrou, R. S. Cost, B. Chu,
J. Long, W. J. Tolone, and A. Boughannam. An agent-
based approach for manufacturing integration - the CI-
IMPLEX experience. International Journal of Applied
Artificial Intelligence, 13(1-2):39-64, 1999.

359

