Querying RDF Data with Text Annotated Graphs

Lushan Han1, Tim Finin1, Anupam Joshi1, Doreen Cheng1
1University of Maryland, Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250, USA
{lusan1, finin, joshi}@umbc.edu

1Samsung Research America
665 Clyde Avenue
Mountain View, CA 94043, USA
{c.dorren}@samsung.com

ABSTRACT

Scientists and casual users need better ways to query RDF databases or Linked Open Data. Using the SPARQL query language requires not only mastering its syntax and semantics but also understanding the RDF data model, the ontology used, and URIs for entities of interest. Natural language query systems are a powerful approach, but current techniques are brittle in addressing the ambiguity and complexity of natural language and require expensive labor to supply the extensive domain knowledge they need. We introduce a compromise in which users give a graphical “skeleton” for a query and annotates it with freely chosen words, phrases and entity names. We describe a framework for interpreting these “schema-agnostic queries” over open domain RDF data that automatically translates them to SPARQL queries. The framework uses semantic textual similarity to find mapping candidates and uses statistical approaches to learn domain knowledge for disambiguation, thus avoiding expensive human efforts required by natural language interface systems. We demonstrate the feasibility of the approach with an implementation that performs well in an evaluation on DBpedia data.

1. INTRODUCTION

Increasing amounts of scientific data in relational databases have been published on the Web as Linked Open Data (LOD) in RDF to facilitate data reusability and interoperability [5]. The most common query language for RDF data is SPARQL, an SQL-like query and update language specified by the W3C. However, there are still significant barriers between scientists and RDF data because scientists often need to pose ad hoc queries against scientific RDF data but they have difficulties in creating SPARQL queries, especially when they need work on other people’s RDF data.

In fact, developing interfaces to enable casual, non-expert users to query complex structured data has been the subject of much research over the past forty years. A long-standing goal has been to allow people to query a database or knowledge-base in natural language, an approach that has seen much work since the 1970s [18, 20, 3, 14, 1]. More recently there have been interests in developing natural language interfaces (NLI) for XML data [28] and collections of general semantic data encoded in RDF [42, 5, 43, 11]. However, there are two major obstacles for NLI systems to be widely adopted. First, current NLP techniques are still brittle in addressing the ambiguity and complexity of natural language in general [1, 23]. Second, it requires extensive domain knowledge for interpreting natural language questions. Domain knowledge typically consists of a lexicon, which maps a user’s vocabulary to an ontology vocabulary or logical expressions in NLI systems, and a world model, which specifies the relationships between the vocabulary terms (e.g., subclass relationships) and the constraints on the types of arguments of properties. Both can be expensive in terms of human labor, especially when dealing with data in broad domains or with heterogeneous schema, such as LOD data [5].

Querying structured data with keywords and phrases is an alternative approach that has gained popularity recently [21, 19, 13, 12]. Keyword query systems are more robust than NLI systems because they typically employ a much simpler mapping strategy: map the keywords to the set of elements in the knowledge base that are structurally or associationally close, such as the most specific tree for XML databases [19] and the smallest sub-graph for RDF databases [13]. However, keyword queries have limited expressiveness and inherit ambiguity from the natural language terms used as keywords. For example, the keyword query “president children spouse” can be interpreted either as “give me children and spouses of presidents” or “who are the spouses of the children of presidents”.

To precisely query structured data, we must be able to specify the relational structure between the query’s key elements. While this can be done in natural language, processing complex, unconstrained sentences is difficult and their potential ambiguity makes choosing the intended interpretation challenging. We introduce a compromise that we call a Schema-Agnostic Query (SAQ) interface, in which users specify a graphical “skeleton” for a query and annotate it with freely chosen words, phrases and entity names. An example is shown in Figure 1. By asking users to specify the semantic relations between entities in a query, we avoid the difficult problem of relation extraction from natural language sentences. While the full expressive power of human language is not supported, people are able to use familiar vocabulary terms in composing a query.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

SSDBM ’15 San Diego, California USA
Copyright 20XX ACM X-XXXX-XX-X/XX/XX ...$15.00.
We describe a framework for interpreting SAQs over broad or open domain RDF semantic data and automatically translating them to SPARQL. Instead of using a manually maintained lexicon, we employ a computational semantic similarity measure to locate candidate ontology terms for user input terms. Semantic similarity metrics enable our system to have a broader linguistic coverage than that offered by synonym expansion by recognizing non-synonymous terms with very similar meaning. For example, the property author of is a good candidate for the user term “wrote” and college is a good candidate for “graduated from”. Semantic similarity measures can be automatically learned from a large domain-specific corpus.

We introduce an approach that automatically learns statistical domain knowledge from RDF data that is necessary for disambiguation. This includes knowledge pertaining to association strength between concepts and properties and between concepts themselves. Such knowledge is essential for human language understanding. For example, the term ‘Titanic’ in the query “Who are the actors of Titanic” could refer to a ship or a film, but the latter is more likely because films commonly have actors but other potential types (e.g., ship, book, game, place, album, etc.) do not. We refer to this as Concept Association Knowledge (CAK). Domain and range definitions for properties in ontologies, argument constraint definitions of predicates in logic systems and database schemata all belong to this knowledge. However, manually defining this knowledge for broad or open domains is tedious and expensive.

With the automatically learned CAK and semantic similarity measures, we present a straightforward but novel algorithm that disambiguates a SAQ and constructs a corresponding SPARQL query to produce an answer. Our algorithm resolves mappings using only concept-level information, i.e., at the schema level. This makes the approach much more scalable than those that directly search into instance data for possible matches since concept space is much smaller than instance space. Our preliminary work has been published in [17].

Our initial experiments were carried on DBpedia [2], which represents Wikipedia data as RDF. DBPedia is the key component of the Linked Open Data (LOD) and serves as a microcosm for larger, evolving LOD collections. It provides a broad-based, open domain ontology containing hundreds of classes and thousands of properties. Heterogeneity is a problem of the DBpedia ontology because it supplants the categories and attribute names of Wikipedia infoboxes, which were independently designed by different communities. Terms having similar linguistic meanings are used for different contexts. For example, the property locatedInArea is for mountains and the property location is for companies.

Our current approach can be readily applied to any RDF dataset as long as it holds the following properties: (i) class, property and entity names are human-readable words or short phrases; (ii) all relations are binary, (iii) there are no blank nodes or auxiliary nodes; and (iv) only simple value types like xsd:integer or xsd:date are used. Property (i) can be satisfied by properly naming the ontology terms. Property (ii) has already been met by considerable existing RDF data, such as DBPedia. For higher arity relations, one can model them into binary relations by introducing auxiliary nodes. For example, consider a 4-ary relation “a person works at an organization with a title and salary”. We can create an auxiliary node with the type JobPosition and then link the person, organization, title and salary instances or attributes to the central job position instance. However, dealing with higher arity relations requires the ability of querying through auxiliary nodes, or more generally, mapping user relations to RDF graph paths rather than single properties. The approach in this paper does not provide solution to this problem, but we are addressing it in our ongoing research [16]. Supporting complex attribute types also needs the ability to map single query relations to RDF paths that contains the structure of the complex data types.

In the next four sections we present related work, query interface, describe the automatic learning of concept association knowledge, detail the algorithm for interpreting an SAQ and translating it into SPARQL and present our implementation of semantic similarity measures. An evaluation of our prototype system on test questions from the 2011 QALD workshop is given in Section 7. We conclude our paper by summarizing our contributions and ongoing work in Section 8.

2. RELATED WORK

Natural Language Interface to Database (NLIDB) systems have been extensively studied since the 1970s [1] and typically take NL sentences as queries and used syntactic, semantic and pragmatic knowledge to produce corresponding SQL queries. Early systems like LUNAR [48] and LADDER [20] were heavily customized to a particular application and difficult to port to other application domains. Later systems, including TEAM [14] and MASQUE [3], were designed to be portable, allowing knowledge engineers to reconfigure the system when moving to a new domain or letting end users add unknown words through user interaction. A common problem of the NLIDB systems in 70s and 80s is that they had a restricted linguistic coverage since they depended on manually-coded semantics. The domain-specific parsers and the semantic rules can fail to tolerate even a slight change in the wording of a question.

Starting this century, a number of portable NLI systems have been developed for databases [35], XML databases [28] and ontologies [32, 8, 10]. PRECISE [35] reduced question interpretation to a maximum bipartite matching problem between the tokens in an NL query and database elements. NaLiX [23] translates NL questions to XML queries by mapping the adjacent NL tokens in the parse tree to the neighboring XML elements in the database. ORAKEL [5] constructs a logical lambda-calculus query from a NL question using a recursive computation guided by the question’s syntactic structure. ORAKEL provides a graphical frontend to help domain experts to generate domain-specific lexicon. FReYA [19] generates a parse tree, maps linguistic terms in the tree to ontology concepts, and formulates a SPARQL query from them by exploiting their associated domain and range restrictions. FReYA uses dialogs to interact with the user, where the user can specify the mappings from linguistic terms to ontology concepts. Aqualog [32] translates the
NL query to linguistic or query triples and then lexically match these to RDF triples. These systems either assume there is no vocabulary mismatch problem or use manually crafted domain knowledge to address the problem.

More recently, there is a growing interest in open domain NLI systems, such as True Knowledge [47] and PowerAqua [33]. Both systems choose pragmatic approaches to turn NL questions into relations. True Knowledge creates 1,200 translation templates to match NL questions. PowerAqua first performs shallow parsing to obtain tokens, POS tags and chunks from NL questions and then use a set of manually-made pattern rules to generate question types and relations. True Knowledge supports user interaction and exploits a repository storing user rephrasing of the questions it cannot understand. PowerAqua extended Aqualog by adding components for merging facts from different ontologies and ranking the results using confidence measures. PowerAqua runs a potentially expensive graph matching algorithm comparing the query graph to the RDF graph at both data and metadata levels.

Substantial research has been done on applying keyword search on structured data, including relational database [21], XML [19] [22] and RDF [15]. Such keyword-based approaches cannot express complex queries and often mix textual content from meta-data and data. A few approaches [19] [26] extend keyword queries with limited structure information, allowing users to specify entity types and attribute-value pairs. However, they are still unable to support querying complex semantics.

Schema-Free XQuery [29] and Schema-Free SQL [27] are systems that enable users to query databases using relaxed or under-specified formal queries. Although they are called “Schema-Free”, users are still required to remember, if not exactly, table and column names or XML element names as the systems only use surface similarity or string similarity to match terms. Furthermore, users are still not released from the burden of knowing the syntax of a (relaxed) formal query language in order to query databases.

Our work is related to Query By Example (QBE) [31], which also provides a graphical interface for users to enter queries but in visual tables. It allows users to select tables and columns rather than type their names. However, the manually selecting cost increases rapidly as the number of tables and/or columns grows, especially when users are not familiar with the tables. Moreover, users need to understand the concept of joining tables using key fields over multiple tables, which are not intuitive to non-experts. In the context of querying LOD RDF data, manually selecting classes or properties become even more difficult due to their big numbers.

There are some works on graphical query languages or tools that allow users to visually compose SPARQL queries by navigating, selecting and linking ontology terms represented as graphical elements [15] [11] [22]. While their systems and our system all use a graphical interface, our system is conceptually different from theirs. The input to our system is schema-agnostic queries, which are automatically disambiguated and translated into SPARQL queries. Their systems are essentially graphical interfaces to structured text SPARQL query, which are more like QBE in database area. Users still need to understand what graphical ontology elements represent and how to use the tools, which involves significant learning curve.

QODI [43] is an automatic ontology-based data integration system, which describes an approach to map a query graph into a source ontology. However, since their matching candidates are generated from all possible paths of the graphs, their approach is limited to only narrow domain ontologies due to computation complexity. Another key difference is that QODI relies on path label/string similarity and ontology structures to perform mapping while our system uses semantic similarity measures and statistical properties of the datasets.

3. SCHEMA-AGNOSTIC QUERY INTERFACE

In our approach, a schema-agnostic query (SAQ) is represented as a graph with nodes denoting entities and links representing semantic relations between them. Each entity is described by two unrestricted terms: its name or value and its concept (i.e., class or type). Figure [1] shows an example of a SAQ with three entities (a place, person and book) linked by two relations (born in and author). Users flag entities they want to see in the results with a “?” and flag those they do not with a “*”. Terms for concepts can be nouns (book) or simple noun phrases (soccer club) and relations can be verbs (wrote), prepositions (in), nouns (author), or simple phrases (born in). Users are free to reference concepts and relations in their own words as in composing a NL question.

We currently require concept names from users, enabling our system to resolve mappings in concept space rather than instance space. The requirement stems from the observation that people find it easy to explicitly tag the types but it is much harder for machines to infer them since it adds an additional layer of entity recognition and disambiguation. However, we are developing techniques to relax this, as described in the Section 8.

Relation names can be omitted when there is a single “parent” relation between two concepts that corresponds to the user’s intended one. The “parent” relation, which we call the default relation, is typically a has-relation or in-relation, as shown in the examples in Figure 2. In the first example, a has- or in-relation exists between City and Country and in the second, a has-relation also exists between Author and Book. Our system uses a stop word list for filtering relation names with words like in, has, from, belong, of and locate. In this way, a has- or in-relation is automatically turned into a default relation. The second example in Figure 2 differs from the first in that it can be represented without using a default relation. An author is a person who writes. Since the relation information is implicit in one of the two connected concepts, it need not be explicitly mentioned.

Like a typical database query language, SAQ can express factual queries but not why or how questions. We currently support neither numerical restrictions on entity value nor aggregation functions working on the entity in question. We plan to implement these features using form-based fields and pull-down menus just beside the graphical area for drawing SAQ and the detail designs can borrow many existing ideas.
4. AUTOMATIC CAK LEARNING

We learn Concept-level Association Knowledge statistically from instance data (the “ABOX” of RDF triples) and thus avoid expensive human labor in building the knowledge manually. Instead, we count terms and co-occurrences in an RDF to represent the associations between terms and classes. We generate the degree of association, which is defined as the ratio of the co-occurrence count to the product of the individual term counts.

PMI

The **Pointwise Mutual Information (PMI)** is a statistical measure to compute two types of associations:

(i) directed association between classes and properties and

(ii) undirected association between two classes.

Figure 3 shows how we count term occurrences and co-occurrences in an RDF.

Figure 3: This example shows how we count term occurrences and co-occurrences in an RDF.

We use the direction-sensitive PMI to denote the association between a class and a property. PMI(p, c) measures the association degree between a class and a property as follows:

\[\text{PMI}(p, c) = \frac{\text{oc}(p, c)}{\text{oc}(p) \cdot \text{oc}(c)} \]

where \(\text{oc}(p, c) \) is the co-occurrence count between class \(p \) and property \(c \), and \(\text{oc}(p) \) and \(\text{oc}(c) \) are the individual term counts.

Our CAK for the DBpedia ontology is stored as two sparse matrices of PMI values between classes and properties and between classes themselves. Figure 4 shows examples of top-25 lists of most associated properties/classes for five terms along with their PMI values. Example 5 shows the classes that could be in domain or range of the property author. Terms ending and starting with a character are potential domain and range classes, respectively.

In the first four examples, the top properties are the most informative, such as @pseudonym and notableWork for written and isbn and numberOfPages for Book. Lower ranked properties tend to be less related to the classes. Example two shows that both author and writer can be incoming properties of Writer, and author is more related. On the other hand, the third example shows that only author, not writer, can describe Book. In the DBpedia ontology, author and writer are used for different contexts with author used for books. The class Writer has both author and writer as incoming properties because writers can write things other than books (e.g., films, songs). Example five illustrates the heterogeneity of DBpedia’s ontology via the property author, which carries multiple senses (e.g., book author, website creator). Noisy data in DBpedia can result in some ab-
5.1 Mapping Algorithm

We then discuss how to generate their association strength is typically low. For a translation). A minimum similarity threshold, currently experimentally determined value of 20.

Figure 4 shows the candidate lists generated for the five user terms in the query, with candidates ranked by their similarity score. We use the Stanford part of speech (POS) tagger and morphology package [44] to get word lemmas with their POS and then compute their semantic similarity. While our similarity measure is effective and works well, it is not perfect. For example, “born in” is mistaken as highly similar to “@cylinderBore” and relatively dissimilar to “birthPlace”.

Classes starting with # are virtual classes that are automatically derived from the object properties in the target ontology, DBpedia in this case. Many property names are nouns, which can be used to infer the type of the object instance. For example, the object of the director property should be a director. Many of these generated types are not included in the native classes but they could nevertheless be entered by users as concepts in a SAQ. Some other examples include #Chairman, #Religion, and #Address. Adding them as auxiliary classes facilitates the mapping. However, unlike the specifically defined native classes, the virtual classes can be ambiguous. Therefore, we assign them three fourths similarity to make them subordinate to native classes.

5.1.2 Step Two: Disambiguation

Each combination of ontology terms, with one term coming from each candidate list, is a potential query interpretation, but some are reasonable and others not. Disambiguation here means choosing the most reasonable interpretations from a set of candidates.

An intuitive measure of reasonableness for a given interpretation is the degree to which its ontology terms associate in the way that their corresponding user terms connect in the SAQ. For example, since “Place” is connected by “born in” in Figure 5 their corresponding ontology terms can be expected to have good association. Therefore, the combination of Place and birthPlace makes much more sense than that of Place and @cylinderBore or that of Place and @birthDate because the CAK tells us that a strong association holds between Place and birthPlace but not @cylinderBore or @birthDate. Thus the degree of association from CAK is used as a measure of reasonableness. For another example, CAK data shows that both the combinations of Writer and write and of Writer and author are reasonable interpretations to the SAQ connection “Author → wrote”. However, since only author not writer has a strong association with the class Book, the combination of Writer, author and Book
produces a much better interpretation than that of *Writer, writer* and *Book* for the joint connection “Author → wrote → Book” in the SAQ.

We use two types of connections in a SAQ when computing the overall association of an interpretation: connections between concepts and their relations (e.g., “Author” and “wrote”) and between direct connected concepts (e.g., “Author” and “Book”). We exclude indirect connections (e.g., between “Book” and “born in” or between “Book” and “Place”) because they do not necessarily entail good associations. This distinguishes from the coarse-grained disambiguation methods [50] where context is a simple bag of words without compositional structure.

If candidate ontology terms ideally contained all the substitutable terms, we could rely solely on their associations for disambiguation. However, in practice many other related terms are also included and therefore the similarity of the candidate ontology terms to the user’s terms is important in identifying the best interpretations. We experimentally found that *weighting their associations by their similarities* produces a better disambiguation algorithm.

To formalize our approach, suppose the query graph G_q has m edges and n nodes. Each concept or relation x_i in G_q has a corresponding set of candidate ontology terms Y_i. Our interpretation space H is the Cartesian product over the sets $Y_1, ..., Y_{m+n}$.

$$H = Y_1 \times \cdots \times Y_{m+n} = \{(y_1, ..., y_{m+n}) : y_i \in Y_i\}$$

Each interpretation $h \in H$ also describes a function $h(x)$ that maps x_i to y_i for $i \in \{1, ..., m+n\}$.

Let us define a fitness function $\Phi(h, G_q)$ that returns the fitness score of an interpretation h on a query graph or subgraph G. We seek the interpretation $h^* \in H$ that maximizes the fitness on the query graph G_q, which is computed as the summation of the fitness on each link L_i in G_q, i from 1 to m. More specifically,

$$h^* = \operatorname{argmax}_{h \in H} \Phi(h, G_q)$$

$$= \operatorname{argmax}_{h \in H} \sum_{i=1}^{m} \Phi(h, L_i)$$

where link L_i is a tuple with three elements: subject concept s_i, relation r_i and object concept o_i. Formula [4] achieves joint disambiguation because the joint concepts of different links should be mapped to the same ontology class.

Before computing the fitness of link L_i, we first resolve the direction of the ontology property $h(r_i)$ because $h(r_i)$ is semantically similar to r_i but they may have opposite directions. For example, the relation “wrote” in Figure 5 is semantically similar to the property author which, however, connects from *Book* to *Author*. Whether the direction of $h(r_i)$ should be inverse to the one of r_i is decided in Formula [5]

$$A = \text{PMI}(h(s_i), h(r_i)) + \text{PMI}(h(r_i), h(o_i))$$

$$A' = \text{PMI}(h(o_i), h(r_i)) + \text{PMI}(h(r_i), h(s_i))$$

$$\Phi(h, L_i) = \text{PMI}(h(s_i), h(r_i)) \cdot \text{sim}(s_i, h(s_i)) \cdot \text{sim}(r_i, h(r_i))$$

$$+ \text{PMI}(h(r_i), h(o_i)) \cdot \text{sim}(o_i, h(o_i)) \cdot \text{sim}(r_i, h(r_i))$$

$$+ 2 \cdot \text{PMI}(h(s_i), h(o_i)) \cdot \text{sim}(s_i, h(s_i)) \cdot \text{sim}(o_i, h(o_i))$$

(6)

We use a weight of two for the undirected association term since there are two directed association terms. Moreover, the higher weight for undirected association terms helps in the situations where the corresponding property fails to be in the candidate list of length k. The higher weight gives us a better chance to map the concepts to the corresponding classes via the undirected association term. To facilitate this, we also impose a lower bound of zero on the two directed association terms to deal with cases where the property $h(r_i)$ fits too poorly with its two classes (their values can be $-\infty$). In these situations the fitness is solely determined by the undirected association term.

Our algorithm can successfully find the correct mappings (marked as bold) for the SAQ in Figures [5]. It can also handle more complicated cases such as the one in Figure [6] Some of the mappings are ranked at only 10th and 14th places. The example in Figure 6 is a demonstration of joint disambiguation, which requires taking the context as a whole. The reason #Chairman is selected, instead of President, is that President only means the president of a country in the DBpedia ontology and SoccerClub has much higher association with #Chairman than with President. However, if we take the single link “President → born in → Place” out of the context, President will then be preferred over #Chairman because almost all presidents are described with their birth places in Wikipedia but not true for “chairmen”.

If each candidate list contains k semantically similar terms, the complexity of a straightforward disambiguation algorithm is $O(k^{n+m})$ simply because the total number of interpretations is k^{n+m}. We can significantly reduce this complexity by exploiting locality. The optimal mapping choice of a property can be determined locally when the two classes it links are fixed. So, we only iterate on all k^n combinations of classes. Moreover, we can iterate in a way such that the next combination differs from current combination only on one class with others remaining unchanged. This means we
need only re-compute the links involving the changed class. The average number of links in which a class participates is \(\frac{2n}{m} \). On the other hand, finding the property that maximizes the fitness of a link requires going through all \(k \) choices in the candidate list, resulting in \(O(k) \) running time. Put them together, the total computational complexity is reduced to \(O(k^{0.86}) \).

Although the running time is still exponential in the number of concepts in \(G_{CS} \), it is not a serious issue in practical applications for three reasons. First, we expect that short queries with a small number of entities will dominate. Second, we can do a much better job in concept mapping than in relation mapping so a small \(k \) can be used for producing candidates of concepts and a large \(k \) for relations. Finally, we can achieve further improvement by decomposing the graph into subgraphs and/or exploiting parallel computing.

5.1.3 Step Three: Refinement
The best interpretation typically gives us the most appropriate classes and properties for the user terms. For properties, however, two cases that require additional work. The first occurs when two connected concepts in \(G_{CS} \) are mapped to the correct classes but we are unable to find a reasonable mapping for the relation connecting them. The second occurs when the property being mapped to is an appropriate one but it is not a major property used in the context. Because the two connected concepts are already disambiguated, we use these as the context and consider all of the properties that can connect instances of their corresponding classes.

For a missing property, we map the relation to its most semantically similar property among all connecting properties. In the case of a minor property, our goal is to find the major properties in the context, which may be less similar to the user relation than the minor property but have much higher conditional probabilities. Thus, we use the formula in Equation 7 to identify major properties from all connecting properties. This formula simply trades similarity for popularity. The logarithmic scale is used so that a large difference on popularity can count for only a small difference on similarity. \(\beta \) (currently 0.8) is a coefficient that balances precision and recall.

\[
\log\left(\frac{\text{Prob}_{\text{major}}}{\text{Prob}_{\text{minor}}}\right) \cdot \beta > \frac{\text{Sim}_{\text{minor}}}{\text{Sim}_{\text{major}}}
\]

(7)

5.2 SPARQL Generation
After user terms are disambiguated and mapped to appropriate ontology terms, translating a SAQ to SPARQL is straightforward. Figure 6 shows the SPARQL query produced from the SAQ in Figure 5. Classes are used to type assertions. For example, \(\text{Bill Clinton} \) is not asserted to be of type \(\text{President} \). To address this, we compute the semantic similarity between properties and classes qualifying the same instance. If they are very similar, we drop the class conditions. For example, in the SPARQL query in Figure 7, \(?x \) has an incoming property \(\text{author} \) which is semantically similar to its class \(\text{Writer} \). In this case, we remove the statement \(?x \text{ a} \text{dbo:Writer} \) because it could be inferred from the property \(\text{author} \).

6. SEMANTIC SIMILARITY
We need to compute semantic similarity between concepts in the form of noun phrases (e.g., \(\text{City and Soccer Club} \)) and between relations in the form of short phrases (e.g., \(\text{crosses and birth date} \)). One way is distributional similarity [19], a statistical approach using a term’s collective context information drawn from a large text corpus to represent the meaning of the term. Distributional similarity is usually applied to words but it can be generalized to phrases [31]. However, the large number of potential input phrases precludes precomputing and storing distributional similarity data and computing it dynamically as needed would take too long.

Thus, we assume the semantics of a phrase is compositional on its component words and apply an algorithm to compute similarity between two phrases using word similarity. For two given phrases \(P_1 \) and \(P_2 \), we pair the words in \(P_1 \) to the words in \(P_2 \) in a way that it maximizes the sum of word similarities of the resulting word-pairs. The maximized sum of word similarities is further normalized by the number of word-pairs. The same process is repeated for the other direction, i.e., from \(P_2 \) to \(P_1 \). The scores from both...

Figure 6: A joint disambiguation example

Figure 7: This SPARQL query was automatically generated from the SAQ in Figure 5. “Who wrote the book Tom Sawyer and where was he born?”

PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?x, ?y WHERE {
?0 a dbo:Book .
?0 rdfs:label ?label0 .
?label0 bif:contains "Tom Sawyer" .
?x a dbo:Writer .
?y a dbo:Place .
\{?0 dbo:author ?x\} .
\{?x dbo:birthPlace ?y\} .
}

Figure 5: A joint disambiguation example
directions are then combined using average. The specific metric is shown in Formula \[8\]. Our metric follows the one proposed by Mihalcea [34], but with some variations (e.g., we do not use tf-idf weighting and we allow pairing words with different parts-of-speech).

\[
sim(P_1, P_2) = \frac{\sum_{w_1 \in \{P_1\}} \max_{w_2 \in \{P_2\}} \sim(w_1, w_2)}{2 \cdot |P_1|} + \frac{\sum_{w_2 \in \{P_2\}} \max_{w_1 \in \{P_1\}} \sim(w_2, w_1)}{2 \cdot |P_2|}
\]

(8)

Computing semantic similarity between noun phrases requires additional work. Before running algorithm on two noun phrases, we compute the semantic similarity of their head nouns. If it exceeds an experimentally determined threshold we apply the above metric but with their head nouns being prior-paired and if not, the phrases have similarity of zero. Thus we know that dog house is not similar to house dog.

Our word similarity measure is based on distributional similarity and latent semantic analysis, which is further enhanced using information from WordNet. Our distributional similarity approach is based on [39], which yielded the best performance on the TOEFL synonym test [25] when we developed our system. By using a simple context of bag of words, the similarity between words even with different parts of speech can also be computed.

Although distributional similarity has an advantage that it can compute similarity between words that are not strictly synonyms, the human judgments of synonymy found in WordNet are more reliable. Therefore, we give higher similarity to word pairs which are in the same WordNet synset or one of which is the immediate hyponym of the other by adding 0.5 and 0.2 to their distributional similarities, respectively. We also boost similarity between a word and its derivationally related forms by increasing their distributional similarity by 0.3. We do so because a word can often represent the same relation as its derivationally related forms in our context. As examples, “writer” work as the almost same relation to “write” and so does “produce” to “product”, because “writer” means the subject that writes and “product” means the thing being produced.

In our case, the lexical categories of words are not important; only their semantics matters. However, the value of distributional similarity of words is lowered if they are not in the same lexical category. To counteract this drawback, we put words into the same lexical category using their derivational forms and compute distributional similarity between their aligned forms. Then we compare this value with their original similarity and use the larger one as their similarity.

7. EVALUATION

Dataset. We evaluated our system using a dataset developed for the 2011 Workshop on Question Answering over Linked Data (QALD) [38]. This dataset was designed to evaluate ontology-based question answering (QA) systems and includes 100 natural language (NL) questions (50 training and 50 test) over DBpedia (version 3.6) along with their ground truth answers.

We selected 33 of the 50 test questions (see Table [4]) that could be answered using only the DBpedia ontology, i.e., without the additional assertions in the YAGO ontology. Eight of these were slightly modified and their IDs are tagged with a *. Q10, 14, 24, 30, 35, 44 and 45 required modification because they needed operations currently unsupported by our prototype system: aggregation functions (Which locations have more than two caves?) and Boolean answers (Was U.S. President Jackson involved in a war?).

Our changes included removing the unsupported operations or changing the answer type but preserving the relations. For example, the above two questions were changed to Give me the location of Ape Cave and What wars were U.S. President Jackson involved in?. Although we introduce an auxiliary entity Ape Cave for the first question, the entity name does not affect the mapping process since it is done at the schema level and the entity names are not used. In Q37, we substituted “Richard Nixon” for “Bill Clinton” because the original question cannot be answered using the DBpedia ontology only but an entity name change makes it answerable.

Among the 33 questions, six contain two relations (Q2, 3, 29, 35, 37 and 42, marked as italic in Table [1] and the rest only one. In fact, all of the QALD questions have the following patterns that are customized for ontology-based NLI systems: (i) most contain one relation and no more than two; (ii) single answer type or variable; and (iii) no anaphora used. They pose less challenge to NLP parsers but do not fully explore the advantages of graph query.

Our system took as input two datasets from DBpedia 3.6: Ontology Infobox Properties and Ontology Infobox Types. These contain all of the “ABOX” data in the DBpedia ontology. As described in Section [4] we statistically learned Concept-level Association Knowledge from the two datasets and did not use the DBpedia Ontology dataset that specifies human-crafted class hierarchy and domain and range definitions for properties.

Methods and Results. Our system ran on a computer with a 2.33GHz Intel Core2 CPU and 8GB memory. We translated some of the 50 training questions to SAQs and used them to tune our system, including setting various thresholds and coefficients.

Three computer science graduate students who were unfamiliar with the DBpedia and its ontology independently translated the 33 test questions into SAQs. We first familiarized the subjects with the SAQ concept and its rules as specified in Section [3] and then trained them with ten questions from the training dataset. We asked them to first identify the entities in a natural language query and their types and then link the entities with the relations given by the query. We also gave them a few simple constraints, e.g., if the entity value is a number, use “Number” as the type of the entity. However, the major force of learning to create the structural queries is by examples. The subjects quickly learned from the ten examples and found the concepts intuitive and easy to understand. The entire learning process took less than half an hour. Finally, we asked each subject to create SAQs for the 33 test questions. Because our graphical web interface was under development, the users drew the queries on paper. None of the subjects had difficulty in constructing the SAQs and all finished within half an hour.

Three versions of the 33 SAQs were given to our system which automatically translated them into four SPARQL queries which are the regular and concise queries obtained from the best interpretation with and without step three in the translation process. Table [4] shows the average time to
translate a SAQ to the four SPARQL queries, measured in seconds. The queries were then run on public SPARQL endpoints loaded with DBpedia 3.6 to produce answers, which took a few seconds per query. The answers were evaluated for precision and recall, averaging on three versions, as shown in Table 1. The concise queries performed better than regular ones and step three improved performance significantly.

We also evaluated the strategy of issuing multiple queries sequentially until non-empty results are returned. If the concise query generated from the best interpretation with step three gives empty result, we remove the link which has the lowest fitness value and send the modified query again. This process is repeated until no link remains in the query. If no result was obtained, we accepted for the second best interpretation and so on. The performance of this non-empty strategy is also shown in Table 1.

Table 1: Average precision, recall and translation time for SPARQL queries generated from 33 questions.

<table>
<thead>
<tr>
<th>ID</th>
<th>query</th>
<th>reg., w/o step 3</th>
<th>con., w/o step 3</th>
<th>reg., w/ step 3</th>
<th>con., w/ step 3</th>
<th>time</th>
<th>non-empty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Which companies are in the computer software industry?</td>
<td>0.998</td>
<td>0.998</td>
<td>0.998</td>
<td>1</td>
<td>0.999</td>
<td>2.667</td>
</tr>
<tr>
<td>2</td>
<td>Which telecommunications organizations are located in Belgium?</td>
<td>0.681</td>
<td>0.852</td>
<td>0.681</td>
<td>0.852</td>
<td>1</td>
<td>3.845</td>
</tr>
<tr>
<td>3</td>
<td>Give me the official websites of actors of the television show Charmed.</td>
<td>0.667</td>
<td>0.667</td>
<td>0.667</td>
<td>1</td>
<td>3.928</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>What are the official languages of the Philippines?</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Who is the mayor of New York City?</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.370</td>
<td>0.125</td>
</tr>
<tr>
<td>6</td>
<td>Where did Abraham Lincoln die?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.667</td>
<td>0.556</td>
<td>2.101</td>
</tr>
<tr>
<td>7</td>
<td>When was the Battle of Gettysburg?</td>
<td>0.667</td>
<td>0.667</td>
<td>0.667</td>
<td>0.667</td>
<td>1.846</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>In which country does the Nile start?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.311</td>
<td>0.667</td>
</tr>
<tr>
<td>9</td>
<td>Where did Abraham Lincoln die?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.101</td>
</tr>
<tr>
<td>10</td>
<td>What is the currency of the Czech Republic?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.729</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>In which country does the Nile start?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.311</td>
<td>0.667</td>
</tr>
<tr>
<td>12</td>
<td>What is the population of the United States?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.729</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Where did Abraham Lincoln die?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.311</td>
<td>0.667</td>
</tr>
<tr>
<td>14</td>
<td>What wars was U.S. President Jackson involved in?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.729</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>In which country does the Nile start?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.311</td>
<td>0.667</td>
</tr>
<tr>
<td>16</td>
<td>Who is the owner of Universal Studios?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.729</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>What mountains are in Germany?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.729</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>In which films directed by Garry Marshall was Julia Roberts starring?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.729</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Which television shows were created by Walt Disney?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.729</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>What is the area code of Berlin?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.729</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Who is the mayor of New York City?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.729</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Who is the owner of Universal Studios?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.729</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>In which country does the Nile start?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.729</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Which television shows were created by Walt Disney?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.729</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Give me the homepage of Forbes.</td>
<td>0.667</td>
<td>0.333</td>
<td>0.667</td>
<td>0.333</td>
<td>1.735</td>
<td>0.333</td>
</tr>
<tr>
<td>26</td>
<td>Give me all soccer clubs in Spain.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.016</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Give me all soccer clubs in Spain.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.016</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>What is the revenue of IBM?</td>
<td>0.250</td>
<td>0.250</td>
<td>0.250</td>
<td>0.250</td>
<td>2.069</td>
<td>0.250</td>
</tr>
<tr>
<td>29</td>
<td>What mountain is in Germany?</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.247</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Give me all proteins.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.762</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Which television shows were created by Walt Disney?</td>
<td>1</td>
<td>0.667</td>
<td>0.667</td>
<td>0.667</td>
<td>1.716</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>Which television shows were created by Walt Disney?</td>
<td>1</td>
<td>0.667</td>
<td>0.667</td>
<td>0.667</td>
<td>1.716</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>Which television shows were created by Walt Disney?</td>
<td>1</td>
<td>0.667</td>
<td>0.667</td>
<td>0.667</td>
<td>1.716</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>Through which countries does the Sava river flow?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.022</td>
<td>0.506</td>
</tr>
<tr>
<td>35</td>
<td>What city is Egypt's largest city and also its capital?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.022</td>
<td>0.506</td>
</tr>
<tr>
<td>36</td>
<td>Which mountain is in Germany?</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.846</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>Who is the son of Richard Nixon married to?</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.494</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>Who is the author of WikiLeaks?</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.598</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>Who designed the Brooklyn Bridge?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.734</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>What bridge are the same type as the Manhattan Bridge?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.734</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>What bridge are the same type as the Manhattan Bridge?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.734</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>Which bridge are the same type as the Manhattan Bridge?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.734</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>Which river does the Brooklyn Bridge cross?</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.644</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>Give me the location of Ape Cave.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.717</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>What is the height of the mountain Annapurna?</td>
<td>0.506</td>
<td>1</td>
<td>0.506</td>
<td>0.506</td>
<td>1.564</td>
<td>0.506</td>
</tr>
<tr>
<td>46</td>
<td>What is the highest place of Karakoram?</td>
<td>0.672</td>
<td>1</td>
<td>0.672</td>
<td>0.672</td>
<td>1.456</td>
<td>0.672</td>
</tr>
<tr>
<td>47</td>
<td>What did Bruce Jenner die from?</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.101</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>How tall is Claudia Schiffer?</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.693</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>How tall is Claudia Schiffer?</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.693</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>In which country does the Nile start?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.693</td>
<td>1</td>
</tr>
</tbody>
</table>

Average on 33 queries | 0.546 | 0.604 | 0.573 | 0.634 | 0.671 | 0.736 | 0.683 | 0.766 | 2.047 | 0.754 | 0.832

Discussion. Relation mapping is more challenging than concept mapping in translating the SAQs to SPARQL because equivalent relations can go beyond synonyms, they can be context-dependent, and many of them involve default relations. Examples include mapping “actor” to starring, “marry” to spouse, “die from” to deathCause, “mayor” to leaderName, “tall” to height, “start” to sourceCountry and “involved” to commander. Thanks to the semantic similarity measure, we are still able to recognize them. Some of them are not similar enough to enter the candidate lists so that they cannot be found at step two. At step three, with context information provided by the disambiguated concepts we then could locate them. For example, in Q50 when we narrow down to the properties occurring between the two classes River and Country, sourceCountry then becomes the most similar to “start”. This explains why the performance of Q6, 14, 26, 34 and 50 was improved by step three.

Structural mismatches between the SAQ and the DBpedia ontology resulted in problems that our current approach has not addressed. We identified two structure mismatch categories: indirect properties and nominal compounds [3].

Wikipedia infoboxes and DBpedia describe the most relevant attributes or relations of concepts, which we call direct property. Examples include population, area and the capital of a country, the actors of a film and the maker of a product. Indirect properties are the composition of direct properties. For example, acted under between an actor and a director is the composition of two direct properties (starring and director) joined by a film. As long as the user intentionally uses direct properties to compose a SAQ, we expect this kind of structure mismatch would occur infrequently. As for the 33 NL questions, only Q42 contains one indirect property.

We observed that our users differed in whether a nominal compound should be entered as a phase or decomposed, leading to another category of structure mismatch. For example, two subjects kept the noun phrase “U.S. President” as a single unit while the other decomposed it into two units President and Country which are linked by the relation in. In the DBpedia ontology, however, there are no links between U.S. Presidents and the country United States. Therefore, the SPARQL query translated from the
decomposed noun phrase yields an empty result. Q2 and 14 fall in this category. We will present future work dealing with structure mismatch in the last section.

The missing DBpedia class type\(^4\) caused empty results in two queries. In Q10 the entity Obama lacks the type President and in Q41 the true answer lacks either Architect or Person type in the DBpedia Ontology. In their second best interpretations “President” is mapped to the virtual class #President and the answer type in Q41 is mapped to Thing. Their corresponding SPARQL queries can then produce answers. The missing City type for Egypt also resulted in worse performance of regular queries than concise queries in Q35.

The low precision of several queries (Q6, 7, 11, 27 and 45) is caused by entity ambiguity. Q7, for example, might reasonably be interpreted to be about the death of the 16th US president. However, DBpedia includes information on three people with this name, the 16th US president, his grandfather and grandson. Instead of choosing the most notable one, our system generated all. From user’s perspective, it may be best to show a table of all answers along with their URIs and let the user to discriminate herself.

User interpretation of a question can influence its result. In Q7, one subject used the concept President for Abraham Lincoln, enabling our system to produces the correct answer only. In Q16 all of three subjects interpret “Who” as a Person type. However, the type that leads to the correct answer is Organization. In Q42 all the subjects decomposed the relation “the same type as” to two relations linking to the same “Type” entity. However, their queries still cannot be translated because the target property, architecturalBureau, was not semantically similar to “Type”.

Our disambiguation algorithm sometimes fails due to the flexibility of human expressions. For example, one subject translated Q8 into a “Battle” entity and a “Year” entity which are connected by the relation “took place”. Our system was misled by “took place” because it is much more similar to the property place than to date. Hence, it mapped “Battle”, “Year” and “took place” to #Commander and Event and inversed place respectively, as the best interpretation.

Comparison. The QALD 2011 report\(^5\) showed results of two systems, FREyA and PowerAqua, on the 50 test questions. Both systems modified or reformulated some of the questions that their NLP parsers have difficulties in understanding. We compared our system with them using 30 questions in Table\(^6\). Q24, 44 and 45 were excluded because they had been simplified by removing aggregation operations. Among the 30 questions, FREyA modified four questions (Q1, 2, 37 and 50) and PowerAqua eight (Q1, 8, 10, 14, 34, 41, 46 and 50). Average precision and recall of the three systems over the 30 questions is shown in Table\(^6\). We also present their performance on the six two-relation questions while FREyA and our system remained the same.

<table>
<thead>
<tr>
<th></th>
<th>30 questions</th>
<th>6 two-relations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prec.</td>
<td>Recall</td>
</tr>
<tr>
<td>FREyA</td>
<td>0.829</td>
<td>0.849</td>
</tr>
<tr>
<td>PowerAqua</td>
<td>0.696</td>
<td>0.757</td>
</tr>
<tr>
<td>Our system con., w/ step 3 non-empty</td>
<td>0.688</td>
<td>0.742</td>
</tr>
<tr>
<td></td>
<td>0.746</td>
<td>0.816</td>
</tr>
</tbody>
</table>

Table 2: Comparison on 30 test questions

There are several reasons why our system yields the same performance on six two-relation queries as on other single relation queries. First, we relied on humans to create the relational structure of the queries but PowerAqua uses NLP techniques. Second, two-relation queries give more information and therefore have less ambiguity than single relation queries. The good performance also has something to do with the nature of six two-relation queries. They are fact questions with almost all direct properties. However, the more relations a query has, the more likely structural mismatches will occur in the mapping. So in general, we would expect performance degrade of our system when working with queries composed of multiple relations but it would still be much better than systems using NLP techniques to understand them.

We also evaluated all 33 test questions on two online systems, PowerAqua\(^6\) and True Knowledge\(^6\) (now called Evi). Both include DBpedia as part of their knowledge bases. The true answers of most of the test questions are complete but some are not, which means that PowerAqua and True Knowledge can return correct answers that are not in the true answers of some questions. For these cases, we manually checked the results to identify all correct answers in computing precision. PowerAqua shows the dataset used to derive answers, allowing us to use answers only from DBpedia and ignored others. The results are presented in Table\(^7\).

<table>
<thead>
<tr>
<th></th>
<th>33 questions</th>
<th>6 two-relations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prec.</td>
<td>Recall</td>
</tr>
<tr>
<td>True Knowledge</td>
<td>0.469</td>
<td>0.535</td>
</tr>
<tr>
<td>PowerAqua</td>
<td>0.372</td>
<td>0.483</td>
</tr>
<tr>
<td>Our system con., w/ step 3 non-empty</td>
<td>0.683</td>
<td>0.766</td>
</tr>
<tr>
<td></td>
<td>0.714</td>
<td>0.832</td>
</tr>
</tbody>
</table>

Table 4: Comparison to two online systems.

Ontology-based open domain QA is a new research area and the QALD workshop is the first known to us to provide an evaluation dataset. A direct comparison of our system against others is difficult due to different settings. Systems in the comparisons used slightly different query sets and ran on datasets not completely the same. The two online systems have not been tuned using QALD training questions. Moreover, our user interface differs from these systems. Some people may think either NLI or SAQ interface is just a means to allowing users to describe their information needs and we can directly compare their results. Others may

of a string property of U.S. Presidents, however DBpedia currently does not extract relations from strings

\(^4\)Some of them have been resolved in DBpedia 3.7.

\(^5\)Many #Commander instances are countries, resulting in good association between \rightarrow #Commander and place

\(^6\)Many #Commander instances are countries, resulting in good association between \rightarrow #Commander and place.
believe the comparison is biased because our system benefits from user interpretation of NL questions.

Nevertheless, the comparisons with top systems show our approach works well. Our system also has three desirable features that others lack. First, our approach saves expensive human effort in crafting schema of data and the mapping lexicon. True Knowledge, FReYA and PowerAqua all depend on such knowledge in performing disambiguation and addressing vocabulary mismatch problem that cannot be solved by synonym expansion [17, 10, 33]. Second, our system has the advantage over automatic NLI systems in answering questions containing two or more relations. It can even handle more complicated queries, such as the ones in Figures 5 and 6 while their corresponding NL questions would inevitably involve multiple answer types and anaphora. Third, our system is fast. FReYA reported 36 seconds on average in answering a question [10]. PowerAqua did not report execution time on QALD questions but our experiment of testing 33 questions on its website showed an average of 143.7 seconds. In comparison, our system only took a few seconds on average.

8. CONCLUSION AND FUTURE WORK

Large collections of structured semantic data like DBpedia provide essential knowledge for many applications and potentially for scientists and other users, but are difficult for non-experts to query and explore. The schema-agnostic query approach allows people to query RDF datasets without mastering SPARQL or acquiring detailed knowledge of the classes, properties and individuals in the underlying ontologies and the URIs that denote them. Our system uses statistical data about lexical semantics and the target RDF datasets to generate plausible SPARQL queries from a user’s intuitive query. We obtained a promising results in an evaluation on DBpedia with users who sought answers for 33 QALD test questions: precision of 0.754 and recall of 0.832.

Currently, we are working on three extensions. The first extension makes entering terms for concepts optional. Consider the SAQ in Figure 3 where the user might omit the concept name for the named entity “Tom Sawyer”. Our solution is to find all possible types of entities lexically matching “Tom Sawyer”, put the classes into the candidate list of Tom Sawyer and run the same algorithm to identify the right class.

The second extension handles some mismatches between a user’s conceptualization of the domain and the target ontology’s structure, e.g., a user imagines a acted under relation from actors to directors which is absent in the ontology. To support indirect properties, we can define the probability of observing a schema path on the schema network and compute indirect association degree between two classes. Once the correct classes for the concepts are located, we narrow to their context and find the path matching the indirect property. For nominal compounds, we decompose the nouns into two entities linked by a default relation and compute the normalized fitness score (divided by the number of links) for the decomposed query, comparing it with the old score to decide if the noun-noun phrase should be broken.

The last extension incorporates user interaction to give more credibility to answers and improve their accuracy. Instead of directly returning answers we can turn the schema-agnostic query into several “schema-based” queries by replacing terms using the mappings in the top interpretations. Since the user can handle the schema-agnostic query she should be able to understand the “schema-based” queries and choose the most reasonable one or further edit the query. Moreover, information in CAK can be used for creating suggestions that help users explore the concepts in the domain. Users can also help improve or refine the underlying heterogeneous ontology by identifying semantically same classes and properties and giving feedbacks of merging them.

9. ACKNOWLEDGEMENT

This research was supported by grants from AFOSR (FA9550-08-1-0265) and NSF (IIS-1250627).

10. REFERENCES
