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Abstract—This paper describes a data driven approach to 

studying the science of cyber security (SoS). It argues that 

science is driven by data. It then describes issues and 

approaches towards the following three aspects: (i) Data 

Driven Science for Attack Detection and Mitigation, (ii) 

Foundations for Data Trustworthiness and Policy-based 

Sharing, and (iii) A Risk-based Approach to Security 

Metrics. We believe that the three aspects addressed in this 

paper will form the basis for studying the Science of Cyber 

Security.    

I.  INTRODUCTION 

Data is at the heart of science. Scientific disciplines such 
as Physics, Chemistry and Biology have used data collected 
from experimentations to validate various theories over the 
past several centuries. More recently, scientific 
breakthroughs in multiple disciplines have been facilitated 
by tools that help researchers analyze massive datasets. For 
example, a recent editorial by Science argues that “science 
is driven by data.”  There is an increasing consensus that 
many of the future scientific advances will depend on how 
well researchers can share data to tackle important 
problems. While the Science of Security (SoS) is evolving 
and there are different visions about what “science of cyber-
security” means, if what has happened in other scientific 
disciplines is any indication, we believe that the SoS will be 
increasingly data driven. We already see evidence of the 
applicability and effectiveness of a data driven approach. 
For example, recent advances in cyber-security include 
gathering data about potential attackers such as their 
techniques, incentives, and internal communication 
structures. Solid theoretical foundations for a SoS can be 
built by using such data to verify or refute theories about 
cyber-security. 

One such application of a data-driven approach to 
security is the development of situation-aware intrusion 
detection systems that can handle advanced persistent 
threats. At present such attacks are generally detected post 
facto by forensic analysis. That analysis typically involves 
experts who piece together evidence from a variety of 
system sensors and logs that, interpreted in context, suggest 
an attack. What is needed is an analysis that can be 
automated and built on a formal grounding that includes 
semantically rich descriptions in ontologies, rule-based 
reasoning grounded on formal logic, generative graph 

grammars, and reasoning under uncertainty across 
distributed components.  

While data is crucial for inducing, validating or refuting 
SoS formal theories, the data itself has to be accurate and 
trustworthy.  Furthermore, organizations may not be willing 
to share their data due to potential liability and privacy 
concerns. For example, disclosing that an organization has 
been hacked may result in lawsuits. In addition, 
organizations that have more advanced cyber-security 
capabilities and tools may want to keep their data highly 
confidential. Therefore we need techniques to determine the 
accuracy of the data as well as enforce policy-based data 
sharing. While there has been considerable research in 
developing these techniques in recent years, foundational 
aspects of data trustworthiness and policy-based information 
sharing have yet to be fully investigated. Another challenge 
in establishing a science for cyber security lies in our ability 
to conduct repeatable experiments. While the repeatability 
of experiments is crucial for natural sciences and is gaining 
attention in many computing disciplines, it has yet to be 
examined for cyber security.  

Finally, it is important to note that even if our secure 
systems are based on scientific principles, it is unlikely that 
these systems will be completely secure in the foreseeable 
future. Therefore the techniques for developing secure 
systems must take into consideration the risks that are 
involved. This not only involves cataloging the different 
risks that may occur and then analyzing each according to 
its potential impact and the likelihood of its occurrence, but 
also requires considering how risks may change over time. 
Such a risk-based approach can then be used to come up 
with the security metrics necessary to establishing a science 
for security. We need to create a comprehensive game 
theoretical risk assessment framework that models the 
interaction between the different factors such as the 
adversary and the system defender.   

II. PROBLEM 

A. Challenges 
Cyberspace is increasing in complexity with 

heterogeneous components, such as different types of 
networks, diverse computing systems and multiple layers of 
software. Conflicts among adversaries are rapidly moving 
into cyberspace, and targeting our cyber-infrastructure. 
Providing cyber security solutions for such conflicts and 
defending against cyber-attacks in a complex landscape is 



thus a major challenge. While considerable progress has 
been made over the past decade to secure the cyber space, 
many of the tools, technologies, and techniques are designed 
and developed on an ad-hoc basis without an investigation 
of their foundational principles. To address this significant 
limitation in the design and development of secure systems, 
we need to carry out cyber security experimentation to 
develop theories. We believe that data produced as a result 
of experimentation is a critical resource for SoS.  

There are three major aspects that must be investigated. 
One is to represent and reason about the data used for cyber 
security experimentation to detect and mitigate attacks. The 
second is ensuring that the data collected is accurate and 
secure. Third is to develop an approach for gathering risk-
based security metrics, including risks that may change over 
time as the situation in cyberspace evolves. Actions and 
decisions that the defenders may take to decrease certain 
risks may increase other risks. The defenders need to 
evaluate the short-term and longer-term consequences of 
their actions and decisions based on dynamic assessment of 
risks. We believe that such a risk management approach will 
enable us to come up with security metrics necessary for a 
scientific discipline. What is needed is a data driven SoS 
framework which emphasizes the effective, representation, 
management, sharing of accurate data securely to support 
cyber security experimentation that would result in 
foundational theories. The challenges that need to be 
addressed include the following: 

 Data driven science for attack detection and mitigation: 
Foundations for representing, integrating, reasoning over 
and analyzing data for detecting and mitigating threats. 

 Data trustworthiness and policy-based sharing: 
Foundations for data trustworthiness based on data 
provenance; carry out formal policy analysis for assured 
information sharing; and explore repeatable experiments  

 A risk-based approach to security metrics: 
Comprehensive game theoretical risk assessment framework 
for gatherings security metrics.  

B. Principles 

The following principles have to be explored in 
designing a data driven SoS framework. 

 The first principle, which we refer to as Increase Trust by 
Limiting and Isolating Functionality (abbreviated as 
Isolation Principle), emphasizes that “less is more” and 
calls for smaller components with well-defined interfaces. 
This principle is based on well-established security 
principles such as the Principle of Least Privilege.  

 The second principle, which we refer to as Adaptive 
Multiple Layers of Security (abbreviated as Independence 
Principle) applies the Isolation Principle both statically and 
dynamically by dividing systems into several layers.  

 The third principle, which we refer to as Artificial and 
Natural Diversity (abbreviated as Diversity Principle), 
emphasizes the need for diversity defenses that present 
attackers with unpredictable targets.  

 The fourth principle, which we refer to as Learning 
Systems (abbreviated as Learning Principle), emphasizes the 

need for systems to dynamically learn from past activities, 
data and even from users.  

III. TOWARDS DEVELOPING A DATA DRIVEN 

FRAMEWORK 

A. Data Driven Science for Detecting and Mitigating 

Attacks 

State-of-the-art intrusion detection and prevention 
systems (IDPSs) perform signature-based monitoring to 
identify malicious activities and generate alerts. Present 
systems share two key limitations: they are unable to 
identify attacks whose signatures are not known and they 
are point-based solutions geared to defend a single target. 
While such systems are good at defending against known 
attacks and identifying attacks seeking to bring down a 
system, they are useless against advanced persistent threats 
(APTs) and low and slow attack vectors. The latter are 
increasingly the preferred methods for nation state, criminal, 
and non-state actors. 

We need to define and address a new science of security 
hard problem: how can we build intrusion detection systems 
that are situation-aware and so that it can be used for APTs 
and Low/Slow vectors. Today such attacks are generally 
detected post facto by forensic analysis by experts who 
piece together evidence from sensors and logs that, 
interpreted in context, suggest an attack. This is essentially 
an art. We need to automate the analysis by putting it on a 
formal grounding that includes semantically rich 
descriptions in ontologies, rule-based reasoning grounded in 
formal logic, generative graph grammars and reasoning 
under uncertainty across distributed components. While our 
focus will be on the formalisms and fundamental science, 
we need to include the elements needed to translate this 
science into practice by creating a prototype system. We 
need to explore how this makes cyber defense more 
adaptive by reasoning over attack vectors, attack targets and 
knowledge of the elements of the system.  

We need to create the foundations of systems that 
dynamically analyze heterogeneous streams of information 
to extract facts that populate and maintain a semantically 
rich knowledge base (KB) with information about the 
resources being protected, the attacks they are experiencing 
and new vulnerabilities they might have. These facts will be 
used to deduce the context of the system, the possibility of 
attacks, and potential mitigations. The data and knowledge 
sources from which such facts can be extracted include 
textual sources (e.g., NVD, blog posts, chat rooms), 
hardware level sensors such as power draw, IDS systems 
such as Snort, host-based sensors, as well as information 
from peer systems. The KB will be built on Semantic Web 
languages (e.g., OWL) supporting both rule-based reasoning 
and graph-based analysis. A modern enterprise has a host of 
point systems that act independently from one another – an 
IDPS that scans network traffic at the gateway, firewalls 
regulating connections, application specific gateways doing 
application specific deep packet inspection, host-based 
monitors like tripwire, malware scanners, identity 



management and authentication systems (sometimes with 
bio-metrics), etc. 

In more sophisticated systems (SIEMs), alerts and 
warnings from individual components are aggregated and 
dashboarded in an operations center. Network security 
analysts monitor these, a process described as 
watchstanding, permitting highly-trained analysts to look at 
the disparate pieces of information and see if they “click 
together” into a pattern suggesting an attack. The analyst is 
aided by her background knowledge regarding the context 
of the system (e.g., the applications installed, the system’s 
normal behavior pattern) and the external world (e.g., 
“intelligence” about what new attacks that exist in the wild, 
or the adversary’s tradecraft). A similar forensic analysis 
process is done post facto when an attack is suspected. 

As a representative of the best of the state-of-the-art in 
such approaches, consider the Cyber Kill Chain idea 
(Modeled on the DoD Find, Fix, Target, Track, Engage, 
Assess (F2T2EA) kill chain for targeting hostile forces.that tries 
to capture the offensive actions that an adversary is likely to 
take in attacking a system. It tasks the analyst to look at (log) 
data from various elements of the system, potentially across 
organizational boundaries, for events that fit this chain. The 
approach, however, is far from adequate as it is essentially 
looking for the “superman” in every analyst, and cannot be 
scaled given the level of human expertise and involvement 
needed.  Our research will move from this state–of–the–
practice to a context/situation aware system that largely 
automates this sophisticated (forensic) analysis done by the 
analyst on the sensed/observed data. 

a) Context Representation and Sharing 

Our context model requires information on components 
of the system, network and host data, attacks, their means 
and consequences, attackers and their campaigns, time and 
temporal relations, geo-spatial entities and relations, user 
identities and profiles, and mitigation actions taken. In the 
distributed and dynamic environments that we want to 
protect, no single component will have complete knowledge 
about its context. Knowledge sharing is an effective 
mechanism to help agents to build contextual knowledge, 
but requires that independently developed components and 
agents must share a common ontology and communication 
language. 

In most prior work, contextual information has been 
represented as data structures or objects in the 
implementation language.  Such representations lack 
expressiveness and extensibility, are difficult to share across 
implementations, and lack native mechanisms to define 
equivalences and mappings. Encoding the information in a 
meta-language like XML can help, but such interchange 
languages operate at a syntactic level and provide 
inadequate support for semantic representation and 
interoperability, both essential to knowledge sharing and 
context reasoning [Che04]. This means that XML 
representations of security-related information such as Stix, 
SCAP, IODEF and OVAL are inadequate for our purpose, 
though they provide strong, community- and standards-
based points of departure. 

One could use the semantic web language OWL, a W3C 
standard, to represent the security-related context data as an 
ontology. It provides richer sharing models than database 
schemas or XML to enable sharing of context data. 
Moreover, using semantic web languages makes available 
extensive existing ontologies and data for relevant domains 
for integration. There is considerable potential to develop 
OWL ontologies that can interoperate with and eventually 
form the semantic underpinnings for cyber security data, as 
shown in our prior work [Und03, Jos13]. 

We have developed a preliminary ontology to represent 
cybersecurity information which is available at [Cyb12]. Its 
key concepts are the attributes of the attack itself as well as 
the system attacked. We take a “victim-centered” view, and 
describe attacks on systems, their means, consequences, and 
targeted products. We further classify an attack as a security 
attack or a privacy attack. An attack has two primary 
properties: the way in which the attack was executed and its 
effects. In our ontology, we define an overall 
AttackAttribute class with subclasses Means that 
encapsulates the ways and methods used to perform an 
attack and Consequences that encapsulates the outcomes. 
The Product class encapsulates the information of the 
hardware, software and vendor of the system under attack. 
We need to leverage this work and enhance it to describe 
attack campaigns, potential mitigations, possible 
reconnaissance steps, and data exfiltration. We need to 
leverage existing efforts such as STIX, OVAL etc. and 
model them in our OWL ontologies.  Very few of these 
systems model the hardware elements and power 
measurements of the system, so that will be a key focus of 
our extension efforts. We need to also extend and 
incorporate ontologies that let us describe actions, 
constraints and consequences. 

b) Dectecting Attacks by Reasoning 

One approach to detect attacks is for the analyst to 
define rules based on the system context and the incoming 
data. For example, we might predict an ongoing attack if the 
system has software installed that has been recently 
discussed in hacker forums as a potential attack vehicle and 
if the process corresponding to that software is running and 
behaving anomalously. As another example, an attack may 
be likely if a new device is added to a system, its device 
driver runs, consumes a lot of CPU, stats the password file, 
and the system sends data to machines with which it has not 
connected in the past. In most existing approaches, 
implementations program the logic of context reasoning 
directly into the behavior of the system, leading to rigid, 
difficult to maintain systems. Our approach allows the logic 
of context reasoning to be implemented separately from the 
behavior of the system. A combination of description logic 
and rule-based logical inference is a feasible and scalable 
approach to allow this decoupling [Che03].  

There are several advantages to this approach. It helps 
separate the high-level reasoning logic from the low-level 
functional implementation, allowing developers to modify 
or replace context reasoning components. It allows many 
well-defined logic models of general concepts such as time 



and space [Che04] to be directly used. Most importantly, it 
allows analysts to specify rules over the sensed knowledge 
and data describing potential attacks and mitigations. This 
permits forensic detection of attacks such as APTs in real-
time that today depend on post facto analysis. When context 
interpretation and attack detection rules are explicitly 
represented, meta-reasoning techniques can be developed to 
detect and resolve inconsistencies. Note that a reasoner can 
also suggest possible mitigations. If the attack was on a 
particular service, it could try to move that service to a 
different host (assuming that the clients internally would 
know how to rediscover it and retain state). Our approach 
permits us to deploy such “moving target” approaches 
based on the context instead of blind randomization. 

However, a key challenge arises: how can rule-based 
reasoning be done when the underlying facts that feed the 
rules that in turn determine context are streaming? 
Moreover, streaming data and facts are not available for 
post facto processing. Latency in detecting significant 
events related to security state that affect context is a key 
problem. For example, editing a firewall rule could create 
the opening for an attack vector that needs to be recognized 
and plugged before it can be exploited. Does this need for 
fast reasoning mean that we will need to be limited to RDFS 
models that will be using subsumption-based reasoning 
only? Or is it the case that we can go further, perhaps to 
description logic or OWL-QL? There is evidence that even 
first order reasoning can be done in near real-time for 
service management issues in pervasive systems. An 
additional approach to handle scale is to use rule context 
guards, where groups of rules are only enabled in and 
applicable to particular contexts. 

Another issue is that the fact as inferred by the sensed 
data may not be the fact in terms of which a context rule is 
defined, but the two may be related. Consider a rule stating 
that if the system sees a very long string as a payload for an 
application, it should check if the application opens 
outbound connections to blacklisted hosts. While this 
involves a relatively simple subsumption-based deduction, 
in general there could be more complex relationships 
between terms in the rules and the streaming facts. Such 
streaming reasoning is, to the best of our knowledge, 
virtually unexplored in literature.  The best analogy here is 
with streaming databases. Our facts are streaming and the 
context and attacks are defined by a set of “standing rules” 
which need to be triggered in response to the streaming 
facts. Just as traditional database engines can deal with 
streaming data but are neither efficient nor scalable in this 
context, a standard rule-based engine will be the same. One 
approach is to pre-compute an expanded set of rules. In 
cases where the ontologies are known and relatively static, 
this can be an efficient approach [Las02, Wal08].  

We need to also explore the possibility of building a 
scalable reasoner on streaming database systems such as 
TelegraphCQ by enhancing them to match streaming facts 
with possible inferences over them. This can be used to add 
new facts to the stream that arise from other constraints. In 
prior work [Wal08], we created a reasoner over streaming 
data for a subclass of OWL. Our results indicate that the 

stream processor-RDF reasoner combined is about three 
orders of magnitude faster than the traditional RDF 
reasoner. Moreover, while the time and memory needed by 
traditional reasoners increases as new facts stream in, our 
processing time stays constant and significantly improves 
memory performance.  However, this approach is restricted 
for now to subsumptions. We need to create a scalable 
stream reasoner to speed up the rule evaluation process, 
especially exploring the expressivity and speed tradeoffs as 
we move from RDF to various OWL profiles. 

c) Detecting Attacks using Graph Grammars 

Another natural way to represent activity involving 
cyber infrastructure is with a dynamic graph entailed  by  its  
OWL  representation,  with nodes representing entities 
(programs, ports, routers, hosts and users) and edges 
modeling events and interactions (running a program, 
opening a port, an attacker initiating a campaign). As new 
interactions involving known or new resources occur, or 
new information becomes available about entities and 
interactions, the graph is updated in real-time. We need to 
leverage our prior work on graph grammars to develop 
powerful new methods for representing, reasoning about, 
and detecting attacks. In contrast to the more familiar string 
grammars that define sets of strings or probability 
distributions over strings, graph grammars define sets of 
graphs or probability distributions over graphs. Graph 
grammar production rules have sub-graphs on their right-
hand sides that are used to rewrite non-terminal nodes or 
edges during the derivation of a graph. Note that this 
rewriting process naturally captures two key aspects of the 
domain - context and dynamics. Production rules encode 
contextual information in their right-hand sides by 
embedding non-terminals in a sub-graph of appropriate 
scope; and the application of production rules elaborates the 
structure of the graph over time. 

We have developed efficient methods for learning graph 
grammars (both structure and parameters) from data. Given 
a collection of graphs corresponding to network flows in an 
attack, it is possible to learn a grammar that represents the 
distribution over graphs from which the training data were 
sampled. The grammar can then be used to (1) parse new 
graphs and determine the probability that they were drawn 
from the same distribution (i.e., recognize new attacks), (2) 
identify structure that dramatically increase the probability 
of the graph if it were present (partial parsing), thus 
providing an “early warning” and focusing information 
collection efforts, and (3) expose compositional structure in 
the domain for human consumption as production rules 
extracted from data. Expert domain knowledge is also easily 
encoded as hand-written production rules that can be refined 
by the learning algorithms. This is in contrast to the analysis 
of attack graphs to infer patterns defined in literature, which 
is limited to edit distances between instances. 

Existing algorithms will need to be extended in a 
number of ways to be effective in the target domain. One of 
the central operations of the learning algorithm is finding 
common subgraphs. The current implementation performs 
an exact match, but ontologies defined over entities and 



relations can allow for more effective and efficient use of 
the data by matching on common generalizations. For 
example, rather than treating ports 22 and 23 as different for 
matching purposes, the ontology may unify them as ports 
used for remote login and allow subgraphs containing them 
that are otherwise the same to be matched. Existing work on 
graph grammars focuses on context-free productions, in 
which a non-terminal can be rewritten using any rule with a 
matching left-hand side. Our prior work on learning mildly-
context sensitive string languages suggests that in some 
cases there are a few important but computationally 
tractable context-sensitivities. We need to identify the 
central contexts in cyber infrastructure attacks and seek 
ways of making them tractable for graph grammars as well. 
Finally, existing learning algorithms allow for static labels 
on nodes and edges, but not for probability distributions 
over labels. It would be useful, for example, to learn and 
represent a normal distribution for the hourly number of 
packets that flow along a communication link, or a 
multinomial over the ports that are used by an application. 

d) Detecting Attacks Using Stream-based 

Classification 

We treat attack detection as a data stream classification 
problem. Data streams have a dynamic nature, which brings 
about the problems of concept-drift and concept-evolution 
[Mas13]. Concept-drift occurs as a result of a change in the 
underlying concept of the data (e.g., evolution of attacker 
methods, or evolution of benign software usage patterns). It 
makes previously trained models outdated, and therefore 
necessitates the continuous refinement of the classification 
model in response to new incoming data. Concept-
evolution, on the other hand, refers to the emergence of 
novel classes over time. For example, a new APT with new 
attack methodology and objectives would typically fall into 
this category.  

In our approach, we assume that the data stream (e.g., 
sensor information) is divided into equal-sized chunks. The 
heart of the system will be an ensemble of classifiers. When 
a new unlabeled test instance arrives (part of a chunk), the 
ensemble will be used to classify the instance. If the test 
instance is identified as an outlier, it will be temporarily 
stored in a buffer for further inspection. Otherwise, if it is 
not an outlier, then it will be classified with a known label. 
The buffer will be periodically checked to see whether a 
novel class has appeared. If a novel class is detected, the 
instances belonging to the novel class will be identified and 
tagged accordingly. We need to also apply collective 
classification over multiple data sources based on Markov 
network to facilitate inference. The outputs will be another 
type of input to the stream based reasoning tools. 

e) Text Analysis to Detect Emerging Cyber Threats 

The Web is often our first source of information about 
new software vulnerabilities exploits and cyber-attacks. In 
addition to curated sources such as NVD, there are informal 
sources such as hacker blogs and forums, chat rooms and 
social media. Even though these are noisy and redundant 
and contain misinformation, they can be mined and 
aggregated to provide early warnings of new vulnerabilities 

and attacks, track the evolution of existing ones, produce 
evidence for attribution and estimate the prevalence and 
geographical distribution of known problems. We have 
developed preliminary systems [Mul11, Jos13] 
demonstrating the feasibility of automatically generating 
RDF-linked data from vulnerability descriptions in text 
sources. The current prototype uses a CRF-based system to 
extract information on cybersecurity-related entities, 
concepts and relations that is then represented using custom 
ontologies for the cybersecurity domain and mapped to 
objects in the DBpedia knowledge base using DBpedia 
Spotlight and the Wikitology knowledge base [Fin10]. Our 
evaluation shows the approach to be promising [Jos13]. 

We need to broaden applicability, improve accuracy and 
create a sustainable system that can deal with evolving and 
emerging threats. For example, we need to create a corpus 
of relevant text that can be used to develop and train 
language models for the cyber security domain. We also 
need to also create a framework to dynamically collect text 
from news streams (e.g., blogs) that we can analyze to 
detect potential new vulnerabilities and threats. Our 
annotation framework and crowd-sourcing approach 
[Fin10a] has to be leveraged to work with this corpus and 
use it to improve the accuracy of our entity and relation 
extraction system for cybersecurity text using probabilistic 
approaches [Sle13]. A system that can process new text 
from our ingest system on a continuous basis and produce a 
stream of linked data assertions to update our knowledge 
base has to be developed. 

f) Handling Inconsistency 

When different security components are built to share 
knowledge and acquire context from sensed data, we face 
the problem of receiving noisy and often inconsistent 
information. We need to address the many problems 
involving representing and using both data and knowledge 
that that is uncertain. Uncertainty will be introduced at 
almost every turn in our system.  The underlying sensors are 
themselves imprecise and depend on empirically determined 
thresholds and so may provide inconsistent information. 
Distributed host and network sensors can reach 
incompatible interpretations of a situation due to contextual 
differences. For example, a host that has seen a flood of 
spurious DNS responses might be sharing information with 
a peer that is (yet) unattacked. Information extracted from 
text may be wrong due to errors in the linguistic analysis or 
because the text itself has errors in it due to being out of 
date or from an unreliable source. Inference rules may 
themselves be heuristics that are accurate most, but not all, 
of the time. Many of our graph-based analytics and 
machine-learning components will produce results with 
associated certainty measures or probabilities. We need to 
draw on a range of general approaches to managing such 
inconsistent data,, including assumption-based abductive 
reasoning, modeling data provenance and reasoning about 
reputation and trust, machine learning for outlier detection, 
argumentation protocols for resolving inconsistencies, and 
custom query probes to find inconsistent data. Scalable 
approaches such as those based on Markov Logic Networks 



and Bayesian Logic are needed to handle large volume and 
velocity data. 

B. Foundations for Trustworthy Data 

Our objective is to explore the foundations of data 
trustworthiness as well as assured information sharing so 
that accurate and trustworthy data is provided to carry out 
cyber security experiments. In addition, we need to 
introduce a novel idea of the repeatability of cyber security 
experiments.  

Data Trustworthiness: It is critical to provide 
comprehensive solutions for assessing and assuring the 
trustworthiness of the collected information to carry out 
cyber security experiments (as well as for several other 
applications). Attacks may result in inaccurate data being 
provided to decision makers and analysts. Our goal is to 
address this problem by developing a framework for 
assessing and assuring the data trustworthiness.  

Assured Information Sharing: Daniel Wolfe (formerly of 
the NSA) defined assured information sharing (AIS) as a 
framework that “provides the ability to dynamically and 
securely share information at multiple classification levels 
among U.S., allied and coalition forces.” Furthermore, 
Lonny Anderson, the Chief Information Officer of the NSA, 
has stated that the agency is focusing on a “cloud-centric” 
approach to information sharing with other agencies 
[Nsa11] and has recently stated that “the leaks actually 
reinforced the need to move to the cloud and move there 
quickly” [Sef13]. Development of a framework to securely 
share the cyber security data is being pursued by NIST 
under a Presidential directive. While various assured 
information sharing strategies and systems have been 
developed during the past decade, the foundations for 
assured information sharing is yet to be established.  

Repeatability of Experiments: As in natural sciences, it is 
critical that experiments be described in detail and data used 
and generated by experiments be made available so that 
experiments can be repeated and generalized. 
Reproducibility is crucial to validate results, discover errors 
and detect scientific frauds. A similar principle is emerging 
in the Computer Sciences. As discussed by Freire et al. 
[Fre12], “in a computational environment, it should be 
possible to repeat a computational experiment as the authors 
have run it or change the experiment to see how robust the 
authors’ conclusions are to changes in parameters or data (a 
concept called workability).”  While research on 
reproducibility is active in certain areas of Computer Science, 
it has yet to be articulated in cyber security.  We are 
investigating this problem. 

a) Trustworthiness of Data Based on Provenance 

To correctly identify which data can or cannot be trusted, 
we are investigating a novel method, based on the iterative 
filtering technique [Ker10] and provenance. Provenance can 
be physical (e.g., geographical locations, network nodes in 
Internet) or logical (e.g., business entities in workflow 
systems, roles in a social network). Provenance is important 
in that data provided by a trusted source and manipulated by 
trusted system components can be deemed trustworthy.  
There is thus inter-dependency between data, and data 

sources and system components with respect to the 
assessment of their trustworthiness, i.e., trustworthiness of 
the data affects the trustworthiness of its source and 
components that manipulated the data, and vice-versa. We 
have developed a preliminary approach to determine the 
trustworthiness of data in systems based on provenance. It 
includes the computation of confidence levels and similarity 
measures. For example, the trustworthiness level of a 
component is determined by confidence level of its related 
data items. Furthermore, we also compute provenance 
similarity. Details are given in [Thu16].  
Accurate evaluation of trustworthiness: The key component 
to achieve high accuracy is the similarity measure technique. 
In addition to our preliminary approach which uses the 
normal distribution, we need to develop a more elaborate 
probability model to evaluate data similarity. We also need 
to apply various graph topology matching techniques to 
improve the accuracy of provenance similarity.  
Protection from collusion: Current approaches based on 
iterative filtering techniques are not able to protect against 
collusion. We need to investigate how to extend our initial 
approach by using more robust variance estimation methods. 
Efficient processing for very large-scale systems: Evolving 
trustworthiness in the cyclic framework can be done 
whenever a new data item arrives. We call this approach the 
immediate mode. The immediate mode immediately reflects 
change in information; however it is not applicable for 
large-scale systems. To achieve reasonable performance, we 
need to develop a batch mode which periodically updates 
the trustworthiness levels only once for a considerable 
number of accumulated data items, while providing 
comparable accuracy to the immediate mode.  

b) Formal Policy Analysis  

We have developed multiple assured information 
sharing systems under the common MURI project. One such 
system shares data in the cloud. In this approach, the data 
and policies are represented in RDF and stored in the cloud. 
We developed a SPARQL query engine to query the data 
and a RDF policy engine to process the information sharing 
policies [Cad12]. One limitation of our approach is the lack 
of a formal policy analysis for information sharing. Our 
current work focuses on applying formal policy analysis for 
privacy protection in federated environments. We believe 
that such formal policy analysis [Ham12a] will be needed 
for addressing limitations in assured information sharing.  

Our information sharing system is applicable to a variety 
of mission-critical, high-assurance data sharing problems 
that span multiple, mutually-distrusting organizations, data 
sources, and principals. In order to provide maximal 
security assurance in such settings, it is important to 
establish strong formal guarantees regarding the correctness 
of the system and the information sharing policies it 
enforces. To that end, we are developing an infrastructure 
for constructing formal, machine-checkable proofs of 
important system properties and policy analyses for our 
system. Machine-checkable proofs constitute the highest 
level of rigor for verifying security properties of software 
systems because, unlike human-readable proofs, they can be 



automatically validated by proof-checking software that has 
undergone extensive manual verification by the 
mathematical community. Thus, such proofs reduce the 
trusted computing base of the systems they concern down to 
the foundations of mathematics [Kau04]. While machine-
checkable proofs can be very difficult and time-consuming 
to construct for many large software systems, our choice of 
SPARQL, RDF and as query and policy languages, 
respectively, opens unique opportunities to elegantly 
formulate such proofs in a logic programming environment. 
Our prior work on machine-checking program-rewriting 
software security systems in Prolog (e.g., [Sri11]) has 
resulted in a powerful model-checking and formal reasoning 
system that we are applying to the analogous query-
rewriting validation problem posed here. This system 
leverages recent advances in co-logic programming [Gup07] 
to encode co-inductive reasoning that is otherwise difficult 
to express in standard programming environments. We 
therefore encode policies, policy-rewriting algorithms, and 
security properties as a rule-based, logical derivation system 
in Prolog, and to apply these model-checking and theorem-
proving systems to produce machine-checkable proofs that 
these properties are obeyed by the system.  

Policy-rewriting in our context can be understood as a 
special case of in-lined reference monitoring [Sch00]. In-
lined Reference Monitors (IRMs) enforce software security 
policies by in-lining the logic of a security monitor (e.g., for 
enforcing access control) directly into untrusted code. This 
results in self-monitoring code that can safely be executed 
on systems that lack native controls adequate to enforce the 
desired policy. To support data sources that do not trust the 
cloud-based information sharing system, we plan to 
supplement our system with a certifying IRM framework. 
Certifying IRMs allow code or query recipients to 
automatically and independently verify the policy-
compliance of code or queries of untrusted provenance 
[Ham06, Sri11]. In the context of our information sharing 
system, this introduces at least two major opportunities for 
trusted computing base reduction: 
• It allows data sources to receive mediation from untrusted 
mediators by independently certifying the local policy-
compliance of the requests they receive. 
• Policy enforcement (or re-enforcement as a second line of 
defense) can be pushed down to the level of the data 
management system.  

Our certifying IRM-based protections will support 
bytecode-based data management systems such as Hadoop 
MapReduce [Dea08]. In prior work we have developed 
extensive certifying IRMs for enforcing data access controls 
in similar environments, including those based on Java 
[Ham12] and Microsoft .NET [Ham06], and we have 
implemented supplemental protection systems for Hadoop 
in the past [Kha10]. This makes us well-equipped to 
conduct the research. The machine verification strategy 
discussed in the previous paragraph leads directly to the 
development of the certifying IRM because it establishes the 
correctness of the certification procedure; in many cases the 
verifier’s implementation follows directly from the proof. 
Our prior work has developed machine certifiers for IRMs 

based on type-checking [Ham06] and model-checking 
[Ham12]. 

c) Reproducibility of Security Experiments  

To tackle the problem of reproducibility of security 
experiments, we need to analyze scientific literature in the 
area of security to determine which specific security topics 
involve experimental analysis and the types of experiment 
that are carried out. We need to also determine commonly 
used datasets by the security research community. We need 
to then extend available reproducibility tools or develop 
new tools for security experiments and apply these tools to 
specific security attacks and defenses, such as return-on-
programming attacks and the corresponding defense 
techniques (e.g. randomization) and intrusions and the 
corresponding intrusion detection techniques.  

The development of a methodology and tools for the 
reproducibility of security experiments involves addressing 
many issues, including: 
Models for representing security attacks: As security attacks 
are often carried out through several steps, one has to 
describe not only each single step but also the step sequence 
and the time interval between each step. Attack graphs 
could be an initial model that could be extended by 
including all relevant information needed for each attack 
step. In addition, as in many cases the attacks are against a 
specific software system (as for example, a SQL injection 
attack against an application), the execution of the attacked 
system or application should be also reproduced. As in 
many cases, this may be difficult, the issue of fidelity of the 
reproduced attack is critical in that we need to understand 
what details concerning an experiment need to be preserved 
and which ones can be discarded.  
Human models: As security attack and defense experiments 
may involve humans, the challenge is how to reproduce 
experiments involving humans, as it may be difficult or not 
possible to involve the same humans involved in the initial 
experiment. It is thus relevant to investigate how to 
represent human behavior through software agents. 
Composability of Experiments: As a system may undergo 
different attacks at the same time, it is critical to perform 
security experiments in which multiple pre-existing 
experiments are combined. This is crucial in order to 
analyze different attacks and defenses in combination. For 
example, the use of a given security defense may negatively 
impact other security defenses. We believe that these types 
of experiments may result in important insights (e.g., the 
best defenses to protect against multiple attacks).  
Management of experiment repositories and visualization of 
experiments: The challenge is to develop query languages 
able to retrieve experiments and compare experiments. Also 
visualization of experiment steps is very important 
especially for educational activities. 

C. Security Metrics: A Risk Analysis-based Approach 

One of the main challenges that arises in establishing a 
science for cyber-security is to develop metrics to measure 
the security of the systems. Unfortunately, coming up with 
one “number” that measures security is problematic since 
security of a system will depend on who attacks the system, 



the resources used by the attacker, system internals, human 
factors, etc. Due to the dynamic nature of the attackers, any 
risk assessment based on the statistics learned from past data 
can quickly become obsolete. For example, intrusion data 
collected in the past may not contain any information related 
to new zero day attacks. On the other hand, any defensive 
mechanism employed by the defender may cause attackers 
to adapt and change their strategy. For these reasons, we 
need to model the entire interaction between the attackers 
and defenders as a game. Basically, an attacker or group of 
attackers will be represented by their potential objective 
and/or utility, technical capabilities (e.g., which resources 
that they can launch an attack) and resources (e.g., the 
number of simultaneous attacks that they can launch).  We 
have pioneered techniques for incorporating risk into botnet 
detection and assured information sharing [Ben10]. We 
have modeled attacks using differential games theory 
[Kan11], [Hoe12]. Our work is rather unique in that we not 
only consider adversary behavior models, but also the 
epidemic issues presented in the cyber security domain 
through network connections. We further invoke mean field 
game theories to study our unified risk framework.  

a) Modeling Attackers and Their Capabilities  

The first step in our risk assessment-based security 
measurement approach will be to model the attacker. 
Clearly, different types of attackers will have varying goals. 
For example, certain state actors may be more interested in 
gathering sensitive information covertly. On the other hand, 
different non-state attackers may want to maximize damage. 
We plan to capture these varying goals in terms of different 
utility functions. While creating these utility functions, we 
need to leverage the existing work in behavioral game 
theory related to behavioral heuristics such as loss aversion 
[Cam03]. Another important aspect of attacker modeling is 
the capture and representation of his/her capabilities. For 
example, aspects to consider in this activity include 
modeling the different capabilities (e.g., attacking 
machines), modeling the different utilities and behaviors, 
exploring ways to determine a strategy’s effectiveness and 
its applicability constraints such as computational 
requirements and measuring the cost of the strategy. 

Since it is hard to know the precise technical capabilities 
of an attacker in advance (e.g., the number of unknown zero 
day attacks), we plan to represent attacker’s capabilities as 
possible systems and/or components that can be attacked 
successfully with certain probability. In addition, we need to 
also model the potential effect of the successful attack. For 
example, for certain state actors, we can represent their 
capabilities as a risk profile by estimating certain attack 
related parameters. Examples of such parameters we plan to 
consider include the probability that the attackers have zero 
day vulnerability based attacks that can be used against 
certain computer systems (e.g., Windows 8), the probability 
that attack can be exploited remotely and the likelihood of 
detecting attacks based on predictive analytics as well as 
replicating the attacks the cost of replication.  

Other parameters need to be estimated to reason about 
the potential impact of an unknown attack. By changing and 

stress testing these parameters, we need to understand the 
capabilities of a wide range of attackers with varying goals. 

b) User Risk Modeling 

There are different types of users including malicious 
users and normal users. These malicious users cause the 
insider threat problem and will be considered to be 
attackers. In addition, due to the normal user errors (e.g., 
successful phishing attacks), system resources and/or nodes 
could become vulnerable. We need to handle these problems 
by considering potential user involvement in an attack either 
as a facilitator and/or a direct perpetrator. To address the 
risks due to a malicious user, we need to model the 
malicious user and/or insider as an attacker who has already 
gained control of a system. This will enable us to use our 
attacker models with slight modifications. In addition, we 
need to consider human/user errors as another attack vector. 
For example, a computer that is running Windows 7 could 
become compromised due to a user who clicks on a 
malicious link. At the same time, compared to the generic 
zero day exploit, such user error based attack may not be 
replicated as easily. Therefore, we plan to address user error 
based risks as a type of an exploit/attack that may be harder 
to replicate. These attacks and errors will cause potential 
risks to the normal users when the underlying system is 
compromised. Basically, such compromised systems not 
only endanger the success of the mission but also the safety 
of the normal users.  We need to consider such situations in 
our holistic approach to risk assessment. 

c) Modeling Network Risks under Attacks   

In order to better estimate the risks associated with 
certain attacks, we need to understand how such attacks 
could affect the computer networks to be protected. For 
example, we need to understand the impact of a zero day 
attack affecting machines running certain types of software 
attached to the network. To achieve this goal, we model 
computer networks by leveraging ideas from social network 
analysis.  Basically, over the years, many probabilistic 
models have been developed to model how ideas, diseases, 
etc. spread over the networks. For example, models have 
been developed to classify social network data using a 
combination of node details and connecting links in the 
social graph [Sen08]. We plan to use similar ideas to 
estimate the impact of an attack on a subset of computer 
and/or systems on a given computer network. Our model 
will be composed of three risk assessment models: a local 
risk assessment model, a relational risk assessment model, 
and a collective inference model. 
Local risk assessment models The local risk assessment 
model will probabilistically examine details of a computer 
and/or node and constructs risk estimation based on the 
details of that node. For instance, we can have a simple 
probabilistic model and/or probabilistic rules that specify 
the impact of a zero day attack on a particular system based 
on the attributes of this network node. In addition, these 
local models will consider interactions between the different 
system components of the node. This is important in order 
to assess the vulnerability of a specific node, since the 
different components could be exploited to launch a 



successful attack. We need to explore different probabilistic 
models (e.g., simple Bayesian belief networks) that are 
suitable for building effective local risk assessment models. 
In addition, we need to explore the best way to integrate the 
results of the detection strategies and/or alerts into the local 
risk assessment models. 
Relational risk assessment models The relational risk 
assessment model is a separate type of probabilistic model 
that looks at the neighborhood structure of a given network 
node, and uses the local risk assessment output for 
neighboring nodes to estimate how the neighbors of a node 
can affect its security risk. To build this relational risk 
assessment model, we plan to leverage tools such as Markov 
logic networks where we can also incorporate domain 
heuristic/rules for estimation [Ric06]. For instance, using 
past data or domain expert, we can infer that if a node  𝑁𝑖 is 
attacked then the probability that node  𝑁𝑗  can still work 

correctly is 𝑝𝑖𝑗 . In addition, we need tools to determine 

dependencies among the different parts of the network could 
be learned from data. Here, we would like to emphasize that 
learning such probabilistic rules based on the past data is 
used to understand the dependencies in the existing network 
and infrastructure and it is not directly related to ever 
changing attack data and/or information. In addition, we 
need to explore how the attribute similarity (e.g., software 
and/or hardware components used across nodes) can be 
incorporated into our models. 
Collective Inference The previous tools discussed are not 

sufficient by themselves to understand and assess all the 

dynamic risks under a novel attack scenario. Local risk 

models consider only the details of the network node under 

a given attack scenario. Conversely, relational models 

consider only the link and neighbor structure of a specific 

node.  Collective inference-based models attempt to make 

up for these deficiencies by using both local and relational 

models in a precise manner to attempt increasing the risk 

assessment accuracy in the network. We need to explore 

how to combine such risk estimations with mean field 

theory based approaches to make it faster in practice. Mean 

Field Theory is an averaging technique, coming from 

physics, which results in simplifications [LAS07]. 

d) Modeling Defensive Strategies  

Similar to attack models, we need to model defensive 
strategies based on their cost, effectiveness and applicability 
to specific attack types. We need to explore multiple classes 
of defensive strategies to create profiles that can represent 
their properties. While creating these defensive option 
profiles, we need to specially focus on important aspects 
related to network. Due to the diverse properties of the 
different networks and systems, it is important to understand 
the computational and/or power needs of the different 
defensive strategies. For example, certain defensive 
strategies (e.g., randomizing binaries) may not be applicable 
and/or costly (e.g., requires too much power consumption) 
for certain nodes. In the following, we provide a simplified 
mathematical model preview. In this version, concentrating 
on analyzing the defender’s optimal defense strategy in 

anticipation of various classes of attack, we consider the 
network system to be protected as one entity, and fix the 
attack severity. This entity corresponds to the command 
center of the network system. The command center defines 
a defensive strategy to best protect the assets in anticipation 
of severity of attacks, i.e., different classes of attack.  
Solving this problem provides a nominal strategy which can 
be used as a preliminary starting point. To address the ever-
changing attack parameters, defensive strategies will be 
defined for each node of the network as a function of the 
available information. 

e) Combining All Parts:  Game Theoretic Models for 

Holistic Risk Assessment  

All the previous components need to be combined in an 
extensive game. The attacker tries to optimize his attack by 
taking into account the defender’s existing defensive 
strategies, and network information. This game theoretical 
model will be able to answer questions by approximately 
analyzing the equilibrium behavior under different scenarios 
obtained by varying parameters in our models. For example, 
the impact of different zero day attacks could be estimated 
by analyzing the change in equilibrium performance. In 
addition, different defensive strategies will be tested to 
estimate their effectiveness. Of course, doing these 
estimations efficiently will require novel approaches in 
combining simulation-based schemes with analytical 
approaches such as mean field theory.  
Mean field theory [Las07] is a novel approach to take into 
account the influence of large communities on the behavior 
and the decision of a single individual. In our context, the 
safety of a single system depends on the interaction level of 
the global network it is connected to. The attacker will have 
to penetrate the defenses to reach a precise target. This 
connection to the community cuts both ways, but it is not 
neutral. When the network is very large, one can 
approximate the interaction by an averaging effect, the mean 
field term. This simplifies greatly the analytic treatment. We 
would like to investigate in this research the possibilities 
offered by Mean field theory in cyber security, which has 
not been considered extensively before. Our approach is 
detailed in [Thu16]. 

IV. SUMMARY AND DIRECTIONS 

As stated earlier, while the Science of Security (SoS) is 
evolving and there are different visions about what “science 
of cyber-security” means, if what has happened in other 
scientific disciplines is any indication, we believe that the 
SoS will be increasingly data driven. We see evidence of the 
applicability and effectiveness of a data driven approach. 
For example, recent advances in cyber-security include 
gathering data about potential attackers such as their 
techniques, incentives, internal communication structures. 
This paper describes solutions and directions for a data 
driven framework to studying the science of cyber security. 
In particular, it focusses on: (i) Data Driven Science for 
Attack Detection and Mitigation, (ii) Foundations for Data 
Trustworthiness and Policy-based Sharing, and (iii) A Risk-
based Approach to Security Metrics. 



We believe that what we have discussed here is the first 
step towards a data driven approach to SoS. There are areas 
in cyber security that will benefit from such an approach 
including the study of the inference problem, data privacy, 
and insider threat detection. As we make progress towards 
developing solutions for a data driven approach for SoS, we 
believe that additional challenges will be uncovered. As 
stated earlier, data is at the heart of science and to study the 
science of cyber security data will be a crucial aspect.  
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