UMBC ebiquity
Clare Grasso: Information Extraction from Dirty Notes for Clinical Decision Support

Clare Grasso: Information Extraction from Dirty Notes for Clinical Decision Support

Tim Finin, 8:08pm 11 May 2015

Information Extraction from Dirty Notes
for Clinical Decision Support

Clare Grasso

10:00am Tuesday, 12 May 2015, ITE346

The term clinical decision support refers broadly to providing clinicians or patients with computer-generated clinical knowledge and patient-related information, intelligently filtered or presented at appropriate times, to enhance patient care. It is estimated that at least 50% of the clinical information describing a patient’s current condition and stage of therapy resides in the free-form text portions of the Electronic Health Record (EHR). Both linguistic and statistical natural language processing (NLP) models assume the presence of a formal underlying grammar in the text. Yet, clinical notes are often times filled with overloaded and nonstandard abbreviations, sentence fragments, and creative punctuation that make it difficult for grammar-based NLP systems to work effectively. This research focuses on investigating scalable machine learning and semantic techniques that do not rely on an underlying grammar to extract medical concepts in the text in order to apply them in CDS on commodity hardware and software systems. Additionally, by packaging the extracted data within a semantic knowledge representation, the facts can be combined with other semantically encoded facts and reasoned over to help to inform clinicians in their decision making.


Comments are closed.