UMBC ebiquity
Jennifer Sleeman dissertation defense: Dynamic Data Assimilation for Topic Modeling

Jennifer Sleeman dissertation defense: Dynamic Data Assimilation for Topic Modeling

Tim Finin, 2:54pm 27 June 2017

Ph.D. Dissertation Defense

Dynamic Data Assimilation for Topic Modeling

Jennifer Sleeman
9:00am Thursday, 29 June 2017, ITE 325b, UMBC

Understanding how a particular discipline such as climate science evolves over time has received renewed interest. By understanding this evolution, predicting the future direction of that discipline becomes more achievable. Dynamic Topic Modeling (DTM) has been applied to a number of disciplines to model topic evolution as a means to learn how a particular scientific discipline and its underlying concepts are changing. Understanding how a discipline evolves, and its internal and external influences, can be complicated by how the information retrieved over time is integrated. There are different techniques used to integrate sources of information, however, less research has been dedicated to understanding how to integrate these sources over time. The method of data assimilation is commonly used in a number of scientific disciplines to both understand and make predictions of various phenomena, using numerical models and assimilated observational data over time.

In this dissertation, I introduce a novel algorithm for scientific data assimilation, called Dynamic Data Assimilation for Topic Modeling (DDATM), which uses a new cross-domain divergence method (CDDM) and DTM. By using DDATM, observational data in the form of full-text research papers can be assimilated over time starting from an initial model. DDATM can be used as a way to integrate data from multiple sources and, due to its robustness, can exploit the assimilating observational information to better tolerate missing model information. When compared with a DTM model, the assimilated model is shown to have better performance using standard topic modeling measures, including perplexity and topic coherence. The DDATM method is suitable for prediction and results in higher likelihood for subsequent documents. DDATM is able to overcome missing information during the assimilation process when compared with a DTM model. CDDM generalizes as a method that can also bring together multiple disciplines into one cohesive model enabling the identification of related concepts and documents across disciplines and time periods. Finally, grounding the topic modeling process with an ontology improves the quality of the topics and enables a more granular understanding of concept relatedness and cross-domain influence.

The results of this dissertation are demonstrated and evaluated by applying DDATM to 30 years of reports from the Intergovernmental Panel on Climate Change (IPCC) along with more than 150,000 documents that they cite to show the evolution of the physical basis of climate change.

Committee Members: Drs. Tim Finin (co-advisor), Milton Halem (co-advisor), Anupam Joshi, Tim Oates, Cynthia Matuszek, Mark Cane, Rafael Alonso


Comments are closed.