UMBC ebiquity
KR

Archive for the 'KR' Category

new paper: Discovering Scientific Influence using Cross-Domain Dynamic Topic Modeling

November 17th, 2017, by Tim Finin, posted in Data Science, Earth science, KR, Machine Learning, NLP

Discovering Scientific Influence using Cross-Domain Dynamic Topic Modeling

Jennifer Sleeman, Milton Halem, Tim Finin and Mark Cane, Discovering Scientific Influence using Cross-Domain Dynamic Topic Modeling, International Conference on Big Data, IEEE, December 2017.

We describe an approach using dynamic topic modeling to model influence and predict future trends in a scientific discipline. Our study focuses on climate change and uses assessment reports of the Intergovernmental Panel on Climate Change (IPCC) and the papers they cite. Since 1990, an IPCC report has been published every five years that includes four separate volumes, each of which has many chapters. Each report cites tens of thousands of research papers, which comprise a correlated dataset of temporally grounded documents. We use a custom dynamic topic modeling algorithm to generate topics for both datasets and apply crossdomain analytics to identify the correlations between the IPCC chapters and their cited documents. The approach reveals both the influence of the cited research on the reports and how previous research citations have evolved over time. For the IPCC use case, the report topic model used 410 documents and a vocabulary of 5911 terms while the citations topic model was based on 200K research papers and a vocabulary more than 25K terms. We show that our approach can predict the importance of its extracted topics on future IPCC assessments through the use of cross domain correlations, Jensen-Shannon divergences and cluster analytics.

W3C Recommendation: Time Ontology in OWL

October 26th, 2017, by Tim Finin, posted in KR, Ontologies, OWL, Semantic Web

W3C Recommendation: Time Ontology in OWL

The Spatial Data on the Web Working Group has published a W3C Recommendation of the Time Ontology in OWL specification. The ontology provides a vocabulary for expressing facts about  relations among instants and intervals, together with information about durations, and about temporal position including date-time information. Time positions and durations may be expressed using either the conventional Gregorian calendar and clock, or using another temporal reference system such as Unix-time, geologic time, or different calendars.

2018 Ontology Summit: Ontologies in Context

September 12th, 2017, by Tim Finin, posted in events, KR, Ontologies, Semantic Web

2018 Ontology Summit: Ontologies in Context

The OntologySummit is an annual series of online and in-person events that involves the ontology community and communities related to each year’s topic. The topic chosen for the 2018 Ontology Summit will be Ontologies in Context, which the summit describes as follows.

“In general, a context is defined to be the circumstances that form the setting for an event, statement, or idea, and in terms of which it can be fully understood and assessed. Some examples of synonyms include circumstances, conditions, factors, state of affairs, situation, background, scene, setting, and frame of reference. There are many meanings of “context” in general, and also for ontologies in particular. The summit this year will survey these meanings and identify the research problems that must be solved so that contexts can succeed in achieving the full understanding and assessment of an ontology.”

Each year’s Summit comprises of a series of both online and face-to-face events that span about three months. These include a vigorous three-month online discourse on the theme, and online panel discussions, research activities which will culminate in a two-day face-to-face workshop and symposium.

Over the next two months, there will be a sequence of weekly online meetings to discuss, plan and develop the 2018 topic. The summit itself will start in January with weekly online sessions of invited speakers. Visit the the 2018 Ontology Summit site for more information and to see how you can participate in the planning sessions.

New paper: Cognitive Assistance for Automating the Analysis of the Federal Acquisition Regulations System

September 5th, 2017, by Tim Finin, posted in KR, Machine Learning, NLP

Cognitive Assistance for Automating the Analysis of the Federal Acquisition Regulations System

Srishty Saha and Karuna Pande Joshi, Cognitive Assistance for Automating the Analysis of the Federal Acquisition Regulations System, AAAI Fall Symposium on Cognitive Assistance in Government and Public Sector Applications, AAAI Press, November 2017

Government regulations are critical to understanding how to do business with a government entity and receive other bene?ts. However, government regulations are also notoriously long and organized in ways that can be confusing for novice users. Developing cognitive assistance tools that remove some of the burden from human users is of potential bene?t to a variety of users. The volume of data found in United States federal government regulation suggests a multiple-step approach to process the data into machine readable text, create an automated legal knowledge base capturing various facts and rules, and eventually building a legal question and answer system to acquire understanding from various regulations and provisions. Our work discussed in this paper represents our initial efforts to build a framework for Federal Acquisition Regulations System (Title 48, Code of Federal Regulations) in order to create an efficient legal knowledge base representing relationships between various legal elements, semantically similar terminologies, deontic expressions and cross-referenced legal facts and rules.

New paper: Generating Digital Twin models using Knowledge Graphs for Industrial Production Lines

September 2nd, 2017, by Tim Finin, posted in KR

Generating Digital Twin models using Knowledge Graphs for Industrial Production Lines

Agniva Banerjee, Raka Dalal, Sudip Mittal and Karuna Pande Joshi, Generating Digital Twin models using Knowledge Graphs for Industrial Production Lines, Workshop on Industrial Knowledge Graphs, co-located with the 9th International ACM Web Science Conference, 2017.

Digital Twin models are computerized clones of physical assets that can be used for in-depth analysis. Industrial production lines tend to have multiple sensors to generate near real-time status information for production. Industrial Internet of Things datasets are difficult to analyze and infer valuable insights such as points of failure, estimated overhead. etc. In this paper we introduce a simple way of formalizing knowledge as digital twin models coming from sensors in industrial production lines. We present a way on to extract and infer knowledge from large scale production line data, and enhance manufacturing process management with reasoning capabilities, by introducing a semantic query mechanism. Our system primarily utilizes a graph-based query language equivalent to conjunctive queries and has been enriched with inference rules.

UMBC Data Science Graduate Program Starts Fall 2017

June 16th, 2017, by Tim Finin, posted in Big data, Data Science, Database, Datamining, KR, Machine Learning, NLP

 

UMBC Data Science Graduate Programs

UMBC’s Data Science Master’s program prepares students from a wide range of disciplinary backgrounds for careers in data science. In the core courses, students will gain a thorough understanding of data science through classes that highlight machine learning, data analysis, data management, ethical and legal considerations, and more.

Students will develop an in-depth understanding of the basic computing principles behind data science, to include, but not limited to, data ingestion, curation and cleaning and the 4Vs of data science: Volume, Variety, Velocity, Veracity, as well as the implicit 5th V — Value. Through applying principles of data science to the analysis of problems within specific domains expressed through the program pathways, students will gain practical, real world industry relevant experience.

The MPS in Data Science is an industry-recognized credential and the program prepares students with the technical and management skills that they need to succeed in the workplace.

For more information and to apply online, see the Data Science MPS site.

New paper: A Question and Answering System for Management of Cloud Service Level Agreements

May 13th, 2017, by Tim Finin, posted in AI, KR, NLP, Paper, Semantic Web

Sudip Mittal, Aditi Gupta, Karuna Pande Joshi, Claudia Pearce and Anupam Joshi, A Question and Answering System for Management of Cloud Service Level Agreements,  IEEE International Conference on Cloud Computing, June 2017.

One of the key challenges faced by consumers is to efficiently manage and monitor the quality of cloud services. To manage service performance, consumers have to validate rules embedded in cloud legal contracts, such as Service Level Agreements (SLA) and Privacy Policies, that are available as text documents. Currently this analysis requires significant time and manual labor and is thus inefficient. We propose a cognitive assistant that can be used to manage cloud legal documents by automatically extracting knowledge (terms, rules, constraints) from them and reasoning over it to validate service performance. In this paper, we present this Question and Answering (Q&A) system that can be used to analyze and obtain information from the SLA documents. We have created a knowledgebase of Cloud SLAs from various providers which forms the underlying repository of our Q&A system. We utilized techniques from natural language processing and semantic web (RDF, SPARQL and Fuseki server) to build our framework. We also present sample queries on how a consumer can compute metrics such as service credit.

SemTk: The Semantics Toolkit from GE Global Research, 4/4

March 17th, 2017, by Tim Finin, posted in AI, KR, NLP, NLP, Ontologies, OWL, RDF, Semantic Web

The Semantics Toolkit

Paul Cuddihy and Justin McHugh
GE Global Research Center, Niskayuna, NY

10:00-11:00 Tuesday, 4 April 2017, ITE 346, UMBC

SemTk (Semantics Toolkit) is an open source technology stack built by GE Scientists on top of W3C Semantic Web standards.  It was originally conceived for data exploration and simplified query generation, and later expanded to a more general semantics abstraction platform. SemTk is made up of a Java API and microservices along with Javascript front ends that cover drag-and-drop query generation, path finding, data ingestion and the beginnings of stored procedure support.   In this talk we will give a tour of SemTk, discussing its architecture and direction, and demonstrate it’s features using the SPARQLGraph front-end hosted at http://semtk.research.ge.com.

Paul Cuddihy is a senior computer scientist and software systems architect in AI and Learning Systems at the GE Global Research Center in Niskayuna, NY. He earned an M.S. in Computer Science from Rochester Institute of Technology. The focus of his twenty-year career at GE Research has ranged from machine learning for medical imaging equipment diagnostics, monitoring and diagnostic techniques for commercial aircraft engines, modeling techniques for monitoring seniors living independently in their own homes, to parallel execution of simulation and prediction tasks, and big data ontologies.  He is one of the creators of the open source software “Semantics Toolkit” (SemTk) which provides a simplified interface to the semantic tech stack, opening its use to a broader set of users by providing features such as drag-and-drop query generation and data ingestion.  Paul has holds over twenty U.S. patents.

Justin McHugh is computer scientist and software systems architect working in the AI and Learning Systems group at GE Global Research in Niskayuna, NY. Justin attended the State University of New York at Albany where he earned an M.S in computer science. He has worked as a systems architect and programmer for large scale reporting, before moving into the research sector. In the six years since, he has worked on complex system integration, Big Data systems and knowledge representation/querying systems. Justin is one of the architects and creators of SemTK (the Semantics Toolkit), a toolkit aimed at making the power of the semantic web stack available to programmers, automation and subject matter experts without their having to be deeply invested in the workings of the Semantic Web.

SADL: Semantic Application Design Language

March 4th, 2017, by Tim Finin, posted in KR, Ontologies, OWL, RDF, Semantic Web

SADL – Semantic Application Design Language

Dr. Andrew W. Crapo
GE Global Research

 10:00 Tuesday, 7 March 2017

The Web Ontology Language (OWL) has gained considerable acceptance over the past decade. Building on prior work in Description Logics, OWL has sufficient expressivity to be useful in many modeling applications. However, its various serializations do not seem intuitive to subject matter experts in many domains of interest to GE. Consequently, we have developed a controlled-English language and development environment that attempts to make OWL plus rules more accessible to those with knowledge to share but limited interest in studying formal representations. The result is the Semantic Application Design Language (SADL). This talk will review the foundational underpinnings of OWL and introduce the SADL constructs meant to capture, validate, and maintain semantic models over their lifecycle.

 

Dr. Crapo has been part of GE’s Global Research staff for over 35 years. As an Information Scientist he has built performance and diagnostic models of mechanical, chemical, and electrical systems, and has specialized in human-computer interfaces, decision support systems, machine reasoning and learning, and semantic representation and modeling. His work has included a graphical expert system language (GEN-X), a graphical environment for procedural programming (Fuselet Development Environment), and a semantic-model-driven user-interface for decision support systems (ACUITy). Most recently Andy has been active in developing the Semantic Application Design Language (SADL), enabling GE to leverage worldwide advances and emerging standards in semantic technology and bring them to bear on diverse problems from equipment maintenance optimization to information security.

PhD Proposal: Ankur Padia, Dealing with Dubious Facts in Knowledge Graphs

November 29th, 2016, by Tim Finin, posted in KR, Machine Learning, NLP, NLP, Semantic Web

the skeptic

Dissertation Proposal

Dealing with Dubious Facts
in Knowledge Graphs

Ankur Padia

1:00-3:00pm Wednesday, 30 November 2016, ITE 325b, UMBC

Knowledge graphs are structured representations of facts where nodes are real-world entities or events and edges are the associations among the pair of entities. Knowledge graphs can be constructed using automatic or manual techniques. Manual techniques construct high quality knowledge graphs but are expensive, time consuming and not scalable. Hence, automatic information extraction techniques are used to create scalable knowledge graphs but the extracted information can be of poor quality due to the presence of dubious facts.

An extracted fact is dubious if it is incorrect, inexact or correct but lacks evidence. A fact might be dubious because of the errors made by NLP extraction techniques, improper design consideration of the internal components of the system, choice of learning techniques (semi-supervised or unsupervised), relatively poor quality of heuristics or the syntactic complexity of underlying text. A preliminary analysis of several knowledge extraction systems (CMU’s NELL and JHU’s KELVIN) and observations from the literature suggest that dubious facts can be identified, diagnosed and managed. In this dissertation, I will explore approaches to identify and repair such dubious facts from a knowledge graph using several complementary approaches, including linguistic analysis, common sense reasoning, and entity linking.

Committee: Drs. Tim Finin (Chair), Anupam Joshi, Tim Oates, Paul McNamee (JHU), Partha Talukdar (IISc, India)

Knowledge for Cybersecurity

October 17th, 2016, by Tim Finin, posted in cybersecurity, KR

In this weeks ebiquity meeting (11:30am 10/18, ITE346), Sudip Mittal will talk on Knowledge for Cybersecurity.

In the broad domain of security, analysts and policy makers need knowledge about the state of the world to make critical decisions, operational/tactical as well as strategic. This knowledge has to be extracted from different sources, and then represented in a form that will enable further analysis and decision making. Some of this data underlying this knowledge is in textual sources traditionally associated with Open Sources Intelligence (OSINT), others in data that is present in hidden sources like dark web vulnerability markets. Today, this is a mostly manual process. We wish to automate this problem by taking data from a variety of sources, extracting, representing and integrating the knowledge present, and then use the resulting knowledge graph to create various semantic agents that add value to the cybersecurity infrastructure.

Streamlining Management of Multiple Cloud Services

May 22nd, 2016, by Tim Finin, posted in cloud computing, KR, Ontologies, Semantic Web

cloudhandshake

Aditi Gupta, Sudip Mittal, Karuna Pande Joshi, Claudia Pearce and Anupam Joshi, Streamlining Management of Multiple Cloud Services, IEEE International Conference on Cloud Computing, June 2016.

With the increase in the number of cloud services and service providers, manual analysis of Service Level Agreements (SLA), comparison between different service offerings and conformance regulation has become a difficult task for customers. Cloud SLAs are policy documents describing the legal agreement between cloud providers and customers. SLA specifies the commitment of availability, performance of services, penalties associated with violations and procedure for customers to receive compensations in case of service disruptions. The aim of our research is to develop technology solutions for automated cloud service management using Semantic Web and Text Mining techniques. In this paper we discuss in detail the challenges in automating cloud services management and present our preliminary work in extraction of knowledge from SLAs of different cloud services. We extracted two types of information from the SLA documents which can be useful for end users. First, the relationship between the service commitment and financial credit. We represented this information by enhancing the existing Cloud service ontology proposed by us in our previous research. Second, we extracted rules in the form of obligations and permissions from SLAs using modal and deontic logic formalizations. For our analysis, we considered six publicly available SLA documents from different cloud computing service providers.

You are currently browsing the archives for the KR category.

  Home | Archive | Login | Feed