Modeling and Extracting information about Cybersecurity Events from Text
Tuesday, May 16, 2017, 10:00am - Tuesday, May 16, 2017, 12:00pm
ITE 325b, UMBC
People rely on the Internet to carry out much of the their daily activities such as banking, ordering food and socializing with their family and friends. The technology facilitates our lives, but also comes with many problems, including cybercrimes, stolen data and identity theft. With the large and increasing number of transaction done every day, the frequency of cybercrime events is also increasing. Since the number of security-related events is too high for manual review and monitoring, we need to train machines to be able to detect and gather data about potential cybersecurity threats. To support machines that can identify and understand threats, we need standard models to store the cybersecurity information and information extraction systems that can collect information to populate the models with data from text.
This dissertation will make two major contributions. The first is to extend our current cyber security ontologies with better models for relevant events, from atomic events like a login attempt, to an extended but related series of events that make up a campaign, to generalized events, such as an increase in denial-of-service attacks originating from a particular region of the world targeted at U.S. financial institutions. The second is the design and implementation of a event extraction system that can extract information about cybersecurity events from text and populated a knowledge graph using our cybersecurity event ontology. We will extend our previous work on event extraction that detected human activity events from news and discussion forums. A new set of features and learning algorithms will be introduced to improve the performance and adapt the system to cybersecurity domain. We believe that this dissertation will be useful for cybersecurity management in the future. It will quickly extract cybersecurity events from text and fill in the event ontology.
Committee: Drs. Tim Finin (chair), Anupam Joshi, Tim Oates and Karuna Joshi