
BINDINGS

Now at U. of MiAmi:

Yoram Yakimovsky (from JPL and Stanford U.), medical student.

Now at Dept. of Computer Science, U. of Utah (Salt Lake City,
UT 84112):

Gary Lindstrom (from U. of Pittsburgh).

Al Dept. of Computer Science, CMU (Pittsburgh, PA 15213):
Donald Michie (from U. of Edinbourgh) Visiting Professor, Feb. 27

-- Apr. 16, 1977.

Now al Xerox PARC (Palo Alto, CA 94304):
Richard Fikes (from SRI) to work with Warren Teitelman and

Danny Bobrow's Understander group.

Now at UC Irvine (Dept. of Inf. and Computer Sci.):
James Meehan (from Yale).

The Samefringe Problem
Bruce Anderson

Computing Centre

AI FORUM

University of Essex Essex, England
Unfortunately (well, fortunately for Prenner, Hewitt ...) Patrick

Greussay (1976) has a correct solution but to the wrong problem!
The original puzzle, as told to me by Carl Hewitt at !JCAI2, is to test
the equality of the fringes WITHOUT CONSING. The motivation is
that after all you can walk the tree this way, for example to print it
or find if it contains FOO.

Here's why you can't do it. The obvious solution is to treat
each tree as a stream and then compare them incrementally, which
is entirely analogous to putting the trees leaf by leaf into a pair of
one-leaf buffers, comparing in between puts. But consider what the
streams do. Each has the usual depth-first tree traversal algorithm
in it, and each time it is asked for "next leaf" it must continue the
algorithm from where it last output a leaf; i.e., it must preserve its
own CONTROL state between calls, which is a thing LISP can't do
and coroutines and the continuing debate/research on AI languages
is mostly about.

This is in a strong sense the only way to do the problem, and
indeed Greussay's FRINGE constructs stream-like objects with CAR
the next leaf and CDR a coded form of what to do next, which
SAMEFRINGE interprets. (Very interesting <Weizenbaum 1976>)

Oddly enough Steve Hardy of Sussex sent essentially the same
program to me in response to my own incomplete statement of the
SAMEFRINGE problem in a draft of a paper I wrote <Anderson
1976> which touches on some of these issues.
Obvious remarks:

1. I suppose we should say "in a fixed amount of storage"
rather than "without CONSing", and indeed we have to
include the "data" qualification since the coroutine hack uses
control storage. Actually it isn't a hack since the allocation
and deallocation is handled perfectly and without garbage­
collection.

2 . Yes you can do it in a Lisp with spaghetti-stacks, since then
you can implement the streams, though not very cleanly in
Interlisp, for example.

3. Yes (Roger and all you other hackers!) in the case of no
sharing you could trade space for time and keep the stream
as a pointer to the list cell containing the last leaf compared,
next time running right through the tree until you got there,

Page 4

AI FORUM

etc. But with sharing you can't because that pointer might
not be unique and you could need O(tree storage) storage to
keep counts. And so on.

Refe1·ences

Anderson, D. B. "A brief critique of Lisp", Proc. AISB 1976 Summer
Conference, Edinburgh (1976).

Greussay, P. "An iterative Lisp solution to the Samefringe problem",
SIGART Newsletter, 59, p. 14 (1976).

Weizenbaum, J. "Response to Colby", SIGART Newsletter 59, p. 10-
11 (1976).

Dif'lerent Fringe for Difforent Foll\
Tim Finin and Paul Rutter

Coordinated Science Lab
University of Ill. Urbana, IL 61801

As Greussay has pointed out, 1 the SAMEFRINGE problem has
been notoriously overused as a justification for coroutines.
However, the "ordinary LISP" solution he offers is unnecessarily
inefficient in both time and space. Briefly, the SAMEFRINGE
problem is to write a function that will return true if the atoms in
two LISP trees are the same and appear in the same order when
the trees are traversed in left-to-right preorder (i.e., if you PRINT
them and delete all parentheses and spaces, the two resulting
character strings would be identical). The problem is in finding an
efficient solution that will not do any unnecessary work when the
two trees differ in their first positions. The obvious hack of
flattening the two trees and then using EQUAL is not a good idea
for this reason.

We note first of all that Greussay's algorithm does not treat
NIL as an atom but as a "leafless" tree. That is, the two trees (A
NIL 8) and (A 8) are considered to have the same fringe. We
consider this to be a bug, although a minor one which could be
fixed.

A more serious criticism is that his algorithm is grossly
inefficient in both execution time and memory requirements. Both
time and memory are proportional to the square of the number of
atoms in the trees to be compared, regardless of their structures.
Given two trees, Tl and T2, such that each contains N atoms and
the two have the same fringe, his algorithm requires:

3N2 - 5N + 3(pathlength(Tl) + pathlength(T2))
CONS cells to determine that the trees have the same fringe.
Although some of these cells can be "garbage collected" along the
way, the. number which cannot is still proportional to N2. For
example,

(SAMEFRINGE '(l 2 ... 100) '(l 2 ... 100))
would explicitly chew up 30,100 cells, about a third of which could
not be garbage collected until the end.

The first SAMEFRINGE algorithm we present requires memory
proportional to the number of atoms in the trees to be compared.
The total number of CONS cells used is less than the sum of the
number of atoms in the two trees. This algorithm has the nice
property that the number of CONS cells needed is inversely related
to the similarity between the two trees. For example, SAMEFRINGE
of EQUAL trees requires no additional CONS cells. In fact, we have
found it difficult to devise examples which require more than a few
extra CONS cells.

The execution time is apparently linear with respect to the
number of atoms in the trees. We hedge because there is some
chance that N2 computations may be hiding in the calls to NCONC.
This algorithm avoids order N2 memory requirements by judiciously
"flattening" parts of the trees as it goes along. Don't let the NCONC
scare you, the algorithm is not destructive.

1. SIGART Newsletter 59, August 1976.

SIGART Newsletter No. 60 November 1976

AI FORUM AI FORUM

(DE SAMEFRINGE (t l t2)
((LAMBDA (from? depth) (EQ (SF t l t2 0.) T)) NIL 0.))

(DE SF (t l t2 depth)
(COND ((NULL t l)

(COND ((NULL t2) (SETQ from? 'BOTH) T)
((SETQ from? 't2) (NCONS t2))))

((NULL t2) (SETQ from? ' t l) (NCONS t l))
((ATOM (CAR t l))
(COND ((ATOM (CAR t2))

(AND (EQUAL (CAR t l) (CAR t2))
(SF (CDR t l) (CDR t2) depth)))

((JOIN (SF t l (CAR t2)(1+ depth)) NIL (CDR t2)))))
((ATOM (CAR t2))
(JOIN (SF (CAR t l) t2 (1+ depth)) (CDR t l) NIL))

iT (JOIN (SF (CAR tl)(CAR t2)(1+ depth))
(CDR t 1)
(CDR t2)))))

(DE JOIN (excess rest1 rest2)
(COND ((NULL excess) NIL)

((NOR rest1 rest2) excess)
((EQ from? 'BOTH) (SF rest1 rest2 (1+ depth)))
((EQ from? ' t l)
(COND (rest2 (SF (CONSER excess rest1) rest2

(1+ depth)))
(T (CONSER excess rest1))))

((EQ from? 't2)
(COND (rest1 (SF rest1 (CONSER excess rest2)

(I+ depth)))
(T (CONSER excess rest2))))))

(DE CONSER (a b)
(OR (AND a b (NCONC a (COND ((ZEROP depth) b)

(T (NCONS b)))))
a

b))
Finally, one must wonder why the obvious two-stack non-

recursive solution is unacceptable to so many people, it runs in
linear time, is easy to understand, and works for atomic arguments
and trees which contain "dotted-pairs" (CONS cells whose CDR is
atomic but not NIL) -- things which both the above solution end
Greussay's blow up on.

(DE SAMEFRINGE (t l t2)
(PROG (stack1 stack2)

(WHILE (AND (EQUAL (PROGN (UNTIL (ATOM t l)
(IF (CDR t l)

(PUSH stack1 (CDR t l)))
(SETQ t l (CAR t l)))

t l)
(PROGN (UNTIL (ATOM t2)

(IF (CDR t2)
(PUSH stack2 (CDR t2)))

(SETQ t2 (CAR t2)))
t2))

stack1
stack2)

(POP stack1 t l)
(POP stack2 t2))

(RETURN (AND (EQUAL t l t2) (NULL stack1) (NULL stack2)))))
In the above, the two stacks are implemented as lists (PUSH

and POP are macros in our system), so there is some consing
(always less than the total size of the two trees). However, the
stacks can be implemented as arrays (by appropriately changing
PUSH and POP, and the tests for stack-empty) and then there is no
consing at all.

Grosch on McCarthy on Weizenbaum
Herb Grosch

Sunnyvale, CA 94087
] read and re-read the McCarthy-Weizenbaum exchange in the

June SICART NewsLetter with keen interest. My own sympathies
and antipathies are well known, and] don't need to use up your
valuable space to express them again. Can't resist the temptation
to make two brief remarks, however. First, I call the attention of
other readers to the remarkable wording with which McCarthy
begins his review: "This moralistic and incoherent book . . . " ; that is,
he regards the adjective "moralistic" as pejorative!

More important, i want to most strongly second Weizenbaum's
position, that he finds " . . . the idea of disembodying the brain and
eyes of a cat . . . and using them as the receptors of a computing
system obscene". It isn't something one can argue about; it goes
down into the deepest wellsprings of the heart. I fervently hope
most members of our curious fraternity share Joe's horror.

No living creature should be sacrificed on such a tawdry altar,
not even a housefly. Biological contributions should be limited to
volunteers, and I would encourage appropriate individuals to step
forward!

LOGO and Faith
Fr. AIoysius Hacker, Interdisciplinary Chaplain

Cognitive Divinity Program Institute of Applied Epistemology 1
- LOGO Keeps the Faith

Dear Sir,
In these fast-changing times, with the lowering of moral

standards and the increase in new programming languages, I often
find troubled young men asking me the question, "Father, how can I
be sure that LOGO is the one true programming language?"

For such confused souls, an examination of their childhood
LOGO catechism often proves of comfort. Remember how it begins

1. What is LOGO? LOGO is a programming language.
2. Who made LOGO? Papert made LOGO.
3. Why did he make LOGO? He made LOGO to help children and

social science students know it, love it, and through it learn
to juggle and ride a unicycle.

4. Is there only one LOGO? No, there are many LOGO's but
they are all reflections of the one true LOGO.

5. Is LOGO just a programming language? No, LOGO is more
than a programming language~ it is also a theory of learning
and the path to deep psychological insight.

6. Will LOGO help me? Yes, LOGO will help you by making your
problem solving process explicit and transparent unto you.

7. What are the four last things? Procedures, debugging,
problem decomposition, and recursion.

8. Will LOGO stop people from kickin,.~ sand in my face? No, but
it should keep you off the beach. ~

1. Reprinted from A[SB E~copec~t~ Newsletter, 23, July, 1976.
2. For further details apply to Computer Truth Society.

SIGART Newsletter No. 60 November 1976 Page 5

