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Introduction
• AI & Machine Learning 

• Synthetic/machine intelligence
• Learning from experiences 

• Quantum Computers (QC)
• Quantum bit (qubit): superposition of many eigenstates 
• Quantum information processing: Entanglement & interference 
• Quantum computing: gate/circuit QC, adiabatic QC, measurement-based QC, … 

• Quantum Machine Learning (QML)
• QC can take ML models to the next level 
• quantum data 

• Not always AI/ML is successful 
• Example: Compressive sensing
• Greedy heuristics are among top candidates 



Motivation: An Opportunity in NISQ ERA

NISQ Computers
• Can better approximate 

global optimums in 
certain domains (e.g., 
optimization)

• VQA/QA generally fail to 
attain global optimums

Greedy algorithms
• Making locally optimal 

choices to yield a globally 
optimum setting

• Most greedy algorithms 
fail to achieve the global 
optimum

• Greedy methods are 
efficient 

Hybridizing

We can employ NISQ computers  to make globally optimal 
choices at each iteration of a greedy algorithm



Quantum Annealers
• Quantum Annealers (QA)

• Restricted adiabatic quantum computers 

• Single-instruction (quantum) computing machine 

• Sampling from the ground state of (Ising) Hamiltonians 

• Observation: Not all qubits 
are equal 

• QAs can quickly recognize 
the region where global 
optima reside 

𝜖 = 𝒉 𝒛 + 𝐽 𝒛 𝒛



Greedy Quantum Annealing (GQA)

• Let ∗ be the ground state of 

• We aim to find such that 
∗

𝟐
𝟐

or
∗

𝟐
𝟐

• We start with 

• On each episode
• GQA samples from the ground state of 𝐻

• We look at spins as random variables with Bernoulli distribution; we use 
sample set to estimate its parameters 

• GQA contracts spins with high certainty 

𝜖 = 𝒉 𝒛 + 𝐽 𝒛 𝒛



Benchmarking: Random Problems

• Random coefficients
• Binary {-1,+1}

• Uniform [-1,+1]

• Normal N(0,1)

• Varying sparsity rate (s)

• Baseline: QA
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• Multi-Qubit Correction (MQC)
• A novel postprocessing policy for 

QAs

• Observations
• For Chimera-like problems, 

performance of GQA approaches to 
the performance of MQC

• For clique-like problems, GQA 
demonstrates better performance 
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Summary
• Quantum Computers

• We are in NISQ era 

• NISQ computers can better approximate optimum solutions in certain domains 

• Greedy Algorithms
• The best (or the only) option in some real-world applications 

• Generally fail in finding global optima 

• Quantum-Assisted Greedy Algorithms 
• Leveraging NISQ computers for boosting the performance of greedy algorithms 

• Greedy Quantum Annealers
• A greedy scheme for finding the ground state of (Ising) Hamiltonians 
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