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Abstract—Existing Cloud-based Electronic Health Record
(EHR) services face challenges in handling heterogeneous data
and maintaining performance with large records since they often
use a relational database or only partially store information in
a graph database. We have developed a novel approach that
allows fine-grained field-level security for Cloud EHRs to protect
patient privacy and data security. Our graph-based EHR has
been developed by integrating Attribute-based Encryption (ABE)
with ontology reasoning using Semantic Web technologies. The
novelty of our approach lies in providing differential access
to an EHR by using a comprehensive knowledge graph that
stores all medical data as encrypted nodes, thereby handling
heterogeneous patient data while preserving good performance.
In this paper, we describe our system in detail, along with the
results demonstrating that the system maintains consistent data
retrieval performance with different data sizes and allows real-
time updates on the data while supporting queries.

Index Terms—Attribute-Based Encryption (ABE), Attribute-
Based Access Control (ABAC), Searchable Encryption (SE), At-
tribute Revocation, Electronic Health Record (EHR), Knowledge
Graph (Ontology), Cloud Security, Cloud Computing

I. INTRODUCTION

Medical organizations continually turn to cloud-based solu-
tions to maintain their digital data as they allow centralizing
patient data management and utilize cost-effective cloud-based
storage services [4], [28], [29], [32]. Team members can
collaborate more effectively in cloud settings since they can
access the same infrastructure and work in parallel. Several
research projects have been developed to emphasize safe,
cloud-based EHR solutions [4], [29]. Despite the numerous
benefits cloud services offer, they pose distinct threats to
medical organizations regarding data privacy and security.
Individuals whose health information gets unlawfully accessed
suffer adverse consequences if their privacy is infringed.
Given the security threats, all healthcare providers must adhere
to the Health Insurance Portability and Accountability Act
(HIPAA) [13], [40] and the Health Information Technology
for Economic and Clinical Health (HITECH) [39] privacy
requirements established by the Office for Civil Rights, U.S.
Department of Health and Human Services. Thus, an EHR
system must comply with all applicable regulations while al-
lowing for a smooth and straightforward interchange of patient
data. Failure to comply with the acts can have serious financial

consequences, including sanctions, detention, or significant
fines.

While several Cloud-based EHR solutions have recently
flooded the market, the majority of the proposed approaches
lack guaranteeing an attribute-based access control and en-
cryption mechanism. We have developed a cloud-based EHR
management solution that guarantees secure encrypted access
control and patient data security down to the field level.
Healthcare providers can use our system to maintain EHRs
securely at a very low operational cost.

This work extends our previous version [45] presented
a cloud-based EHR system with a semantically rich, policy-
driven method that assesses users’ access to the system using
Attribute-Based Access Control (ABAC) [18]. Semantic web
technology [6] was used to design the system architecture. The
system used a knowledge graph [20] containing details about
each individual in the organization and their unique attributes.
The knowledge graph was queried with SPARQL, and the
results were utilized to extract user attributes and associated
EHR fields based on the kind of request. A user’s unique
attributes control different access to distinct fields in an EHR.
As a result, each person has unique access to a patient’s EHR.
The system also allowed the user to look through encrypted
data using keyword searches rather than having to download
and decode the data from the cloud. Moreover, the system
allowed revoking user attributes by addressing their changes
over time. The key features of this EHR include.

• The system handles data heterogeneity. Highly varied
heterogeneous data sets exist in the medical domain
that is needed to create reliable data models for better
healthcare. This is an improvement over the previous
version of our system [45] which was a combination
of a graph database and flat files.

• The system allows flexible expansion of data schema. For
instance, a doctor may get new certifications or degrees
that can change his/her attributes. Moreover, all users
and patients may also not have the same attribute. For
example, a patient may have only one EHR field, like
allergies, whereas another may have multiple EHR fields,
like allergies, diagnosis, billing information, etc. It is
apparent that medical users have additional attributes over
time, and the system easily facilitates these changes.
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• The data retrieval performance of our system remains un-
affected by the number of EHR records. Data is growing
daily, and providing fast patient service is essential.

• As with [45], the knowledge graph handles EHR func-
tions such as ABAC, encryption/decryption, revocation,
searchable encryption, and data storage.

The remainder of the paper is structured as follows – we
discuss related work in Section II, preliminaries in section III,
system architecture in Section IV, system implementation in
Section V, and conclusion in Section VI.

II. RELATED WORK

A. Electronic Health Record System

An EHR system brings many benefits, including reliable
recording, illness tracking, data exchange, statistical analysis,
and more. Hospitals commonly use digital health record sys-
tems to improve services, increase clinical effectiveness, and
lower deductibles [14], [22]. Security and privacy concerns
have restricted the growth of the EHR system, and they have
gotten a lot of attention in recent years [29], [30], [31],
[38]. To safeguard the privacy of EHR data, Narayan et al.
[36] suggested adopting ABE. Joshi et al. [21] presented a
cloud-based EHR system that uses semantic web technologies
to encrypt patient records using CP-ABE, and Wang et al. [47]
proposed another solution that employs blockchain technology
to secure the integrity and traceability of health data. Both
systems lack searchable encryption and attribute revocation.
Walid et al. [46] proposed an EHR system that allows ABE
and searchable encryption using two schemes, so multiple keys
must be managed. Moreover, their system does not address
the attribute changes over time. Controlled access, searchable
encryption, and attribute revocation are currently lacking in
most cloud-based EHR systems. Furthermore, the bulk of the
accessible applications uses a relational database or a flat file
system, which has various drawbacks.

B. Regulatory Policy

In the United States, patient data is protected by several
laws, and the most important is the HIPAA Act [9]. The
main goal of HIPAA is to preserve the privacy of individ-
ually identifiable health information. While the HITECH Act
permits sharing electronic safe health information (ePHI), it
also requires that HIPAA regulations be enforced [1]. There
is no mention of encryption techniques in these regulations.
Also, data encryption is described as addressable rather than
required. This created room for multiple meanings, which
became a point of contention when distributing ePHI.

C. Semantic Web Technology

Our system’s knowledge graph and reasoning were devel-
oped using semantic web technologies. These allow us to
create the schema using W3C-defined languages that meet
our design objectives, such as interoperability, sound seman-
tics, and web integration. Semantic web technologies include
languages for constructing ontologies and describing meta-
data using these ontologies and tools for reasoning over these

descriptions, such as Resource Description Framework (RDF)
[23] and Web Ontology Language (OWL) [35]. Data can
be tagged with machine-understandable meta-data, enabling
automated retrieval and use of appropriate contexts.

D. Attribute-Based Encryption

ABE, introduced by Sahai and Waters [15], is considered
one of the prominent security measures for EHR [2], [5], [36].
It uses a set of attributes to encode data and a distinct set
of attributes to establish the private key. According to the
threshold setting, the ciphertext can only be decoded if the two
sets of attributes coincide. Due to a lack of expressibility, ABE
has been separated into ciphertext-policy ABE (CP-ABE) [7]
and key-policy ABE (KP-ABE) [3]. The ciphertext is paired
with an access policy, and the secret key is associated with an
attribute defined in CP-ABE. The policy is usually expressed
as a Boolean expression with certain attributes. If the attributes
match the access policy, a secret key can decipher a ciphertext,
but in the KP-ABE scheme, the scenario is the opposite.
Because each ciphertext sets a policy that specifies explicitly
the properties that data users must possess for the encryption
process, CP-ABE [7] is thought to be more effective for cloud
authentication.

E. Attribute-Based Encryption With Attribute Revocation

ABE architectures require an attribute revocation feature
because the user’s attribute might change considerably over
time. Perretti et al. [37] were the first to use a timed rekeying
mechanism to perform attribute revocation. The approach was
later enhanced by Bethencourt et al. [7], who linked the user’s
private key to a single expiration period. One key factor in
the most recent ABE algorithms is computational efficiency.
Decoding technologies that are outsourced can help users save
time and money on their computers. Green et al. [16] were
the first to suggest such a scheme. The CSP, utilizing the
users’ key, performs most decryption operations. Zhou et al.
in [52] proposed a mobile-centric data management system
in which portions of the crypto operations were outsourced
to the CSP without compromising sensitive data. Li et al.
[25] presented an ABE system for outsourced decryption that
includes thorough verification, addressing the issue of assuring
the correctness of outsourced decryption for unauthorized
personnel. In comparison to the scheme suggested in [17],
[33], [44], [50], the scheme applied in our systems appears to
be ideal.

F. Searchable Encryption

SE is an encryption method that allows users to scan
cyphertext for keywords without disclosing the keywords.
The major obstacle inhibiting computer systems in medical
practice, according to Dawes et al. [11], is time restrictions.
Because doctors have limited time to make decisions, any
EHR system must provide quick and fast searchability. Song
et al. [42] developed the first practical SE technique based
on symmetric cryptography, laying the groundwork for a
substantial standard for keyword search on encrypted material.



Since then, many SE schemes were created to increase search
efficiency, security, and functionality [8], [10], [26], [43]. In
recent history, there have been several hypes around attribute-
based keyword search, which combines ABE and SE features
[24], [27], [48], [51].

III. OVERVIEW OF OUR SYSTEM

a) Multi-layer System: We developed the EHR frame-
work by employing a straightforward user-id/password-based
authentication technique and establishing a policy-defined
ABAC. All stakeholders, including caregivers, pharmacists,
and patients, have access to the system. The system is split into
four layers. Users can seek access to relevant EHR at layer 1.
Users are authenticated at layer 2, where requested actions are
assessed in light of access rules, policies, user attributes, and
EHR fields. If the operation is allowed, the request is sent to
layer 3, where adjustments are made to the EHR and encrypted
using the user’s attributes. The CSP is at layer 4 and acts
like a data storage center for storing the Knowledge Graph,
which details the relationships between different entities in the
medical organization. It is outside the organizational border
and considered untrusted, while layers 1 through 3 are inside.

b) Encrypted data on the cloud: As with [45], we use
the revocable, searchable ABE technique proposed by Wang
et al. [49]. The scheme allows for data encryption as well
as searchable encryption. The data is encrypted using ABE,
where the attributes are obtained by querying the knowledge
graph.

c) Knowledge Graph: The EHR system functions such as
ABAC, ABE, attribute revocation, searchable encryption, and
storing data are integrated with the knowledge graph. HIPAA
act has been considered while designing the graph. It holds
user attributes, patient records, semantic web rule language
(SWRL), medical entities, and object properties needed in an
EHR system. The graph limits access to the system following
the ABAC rules defined using SWRL. It provides attributes
during any crypto operation and searchable encryption. Patient
data is stored as encrypted nodes in the graph as a data
properties to handle heterogeneity. There are other nodes for
medical users like doctors, nurses, etc., and their attributes
contain plaintext data that is not encrypted. Therefore, using
dynamic SPARQL, each user can navigate the graph freely
with the only restriction of decrypting the patient data.

d) Threat Model and Edge Computing: We adopt the
honest-but-curious (HBC) threat model [34], where CSP runs
the programs and algorithms correctly but may examine the
information exchanged between entities. Our system uses the
edge computing concept [41], which refers to the requirement
to examine data locally before transmitting it to the cloud.
The organizational perimeter is the edge, where a data access
control mechanism is implemented. Users are only vetted
inside the organization’s boundaries, ensuring their anonymity.
A powerful encryption technique within the edge is established
that protects data integrity from privacy issues until it is moved
to the cloud. As a result, the border remains a powerful data-
protection barrier.

IV. PRELIMINARIES

A. Revocable, Searchable ABE

In this section, we describe revocable, searchable attribute-
based encryption scheme [49] that we implement and use.
Here, we will describe only the syntax of the scheme to show
how this the scheme can be used for setting up the system
initially, generating secret user keys, encrypting data, gener-
ating encrypted index file, generating tokens for searchable
encryption, generating search results, decrypting data partially
on the cloud, and fully on the user end, updating several keys
like the master secret version key, master public key, secret key
on the cloud, and ciphertext when the user attribute changes.
For security definitions and proofs, we refer the readers to the
original paper [49].

a) Syntax: Let λ be the security parameter. Let X be
the attribute universe. A revocable, searchable ABE consists
of the following algorithms:

• Setup(1λ,X ) → (mpk,msk,msvk). The setup algorithm
gets as input the security parameter λ, the attribute
universe X . It outputs the public parameter mpk, the
master secret key msk, and the master secret version key
msvk.
The master secret version key will be updated when users
or attributes are revoked through algorithm Update-msvk
described below.

• KeyGen(msk,msvk, x) → (sk1x, sk
2
x). The key generation

algorithm gets as input msk,msvk and a set of attributes
x. It outputs a pair of secret keys (sk1x, sk

2
x).

The first key sk1x will be sent to the user, and the second
key sk2x will be stored on the cloud server.

• Enc(mpk,msk, f,m) → ctf . The encryption algorithm
gets as input mpk, msk, and a boolean formula f over
X , and a message m. It outputs a cipehrtext ctf .

• EncInd(mpk,W ) → IW . The encrypted index algorithm
gets as input mpk, and a set of keywords W . It outputs
an encrypted index IW for W .

• Token(sk1x, w) → tw. The token generation algorithm
gets as input the user secret key sk1x and a query keyword
w. It outputs a token tw.

• Test(sk2x, IW , tw) → 0/1. The test algorithm gets as in-
put the cloud secret key sk2x, the encrypted index IW and
the user generated token tw. If the embedded keyword in
tw is contained in IW , it outputs true; otherwise it outputs
false.
Note that this algorithm can be performed by the cloud
that holds the key sk2x when it receives the token tw for
the user; the encrypted index IW is typically stored on
the cloud server.

• Decrypt-cloud(sk2x, ctf ) → pd. This algorithm gets as
input the cloud secret key sk2x and the ciphertext ctf . If
f(x) = 1, it outputs partial decryption pd; otherwise, it
outputs an error.

• Decrypt-user(sk1x, pd) → m. Given the partial decryp-
tion, the user with sk1x will recover the message m.



• Update-msvk(msvk, x) → ∆x. This algorithm is run by
the central authority to update the attribute x when a
user with attribute x is revoked. The algorithm updates
the master secret version key for the attribute x, and also
outputs ∆x to be used for updating the master public key,
the cloud secret key that is associated with attribute x,
and ciphertexts associated with attribute x.

• Update-mpk(mpk,∆x). This algorithm updates the mas-
ter public key mpk using ∆x.

• Update-cloudkey(sk2x,∆x). This algorithm updates the
cloud secret key sk2x using ∆x.

• Update-ct(ct,∆x). This algorithm updates ciphertext ct
using ∆x.

V. SYSTEM ARCHITECTURE

The system is based on edge computing ideas [41]. As
illustrated in Figure 1, it is separated into two sections, with the
organizational border consisting of the Authentication Module
and Data Processing Module. Organizations are recognized as
trustworthy bodies and regulate the Authentication and Data
Processing Module. The other section is about a dubious CSP.
The data is encrypted within the organizational limit before
uploading data to the cloud. The CSP might potentially be
sabotaged by an attacker. In our system, we expect a corrupted
CSP to act in an HBC model [34].

The framework encompasses many healthcare industry
users, authorities, and data owners. The knowledge graph,
encrypted index file, and user’s secondary secret keys are all
stored in a single cloud server. Any request to the framework
is thoroughly checked by the Authentication Module. The
organization’s policies decide which attributes are used to
provide access permissions to each user. Patients own their
data and have read-only access to all fields in their EHR.

a) Use cases: Our framework offers various use cases,
including the ability to read, write, revoke an attribute, and
browse encrypted EHRs. User first request access to the
system. The Authentication Module examines the application
by looking at the user attributes in the knowledge graph and
the ABAC rules specified per the company’s policies. Access
is allowed if the attributes comply with the company’s policies.

The framework employs the Data Processing Module to
encrypt the updated information of the accessible fields when-
ever a user edits an EHR. During the procedure, the Attribute
Control Center in the module provides the user attributes.
The Key Production Unit provides encryption keys for re-
encryption. The ciphertexts are later updated in the knowledge
stored in the CSP. During a read request, a similar action is
done.

The user inputs the search keyword as a query during the
search procedure. The Key Production Unit creates the keys
for the search. The Token Origination Unit uses the search
phrase and concealed keys to produce a trapdoor. The trapdoor
is transmitted to the CSP to be compared to the encrypted
Indexes. If there is a match, the search procedure brings
encrypted EHRs.

The Data Processing Module is solely responsible for at-
tribute revocation. The user provides revoked attributes to the
Attribute Center, which it keeps and sends to the Cryptography
Unit. The Key Production Unit supplies the master key needed
for operation. The ciphertext and the CSP’s secondary secret
are then updated to reflect the modifications.

We will go through each sub-module in depth in the sections
that follow.

A. Authentication Module

In this module, each login request undergoes a thorough
analysis. The ABAC is the module’s critical agenda. Within
the module, there are multiple units. The database is initially
verified for the user’s login details. The sub-modules begin to
conduct their duties if it passes.

Depending on requests, the Authentication Module interacts
with the Document Processor Module and the knowledge
graph in the cloud. The knowledge graph holds all users’
attributes, access types, and permissions to linked EHR fields.
To prevent privacy leaks, a nurse, for example, is only granted
access to the data recorded in the Lab Results field of an EHR.

Policy Controller is where the organization’s policies are
kept. It is frequently described in terms of the users’ attributes.
Each user has their own set of attributes, which helps preserve
their privacy.

Regulation Processor uses SWRL to accomplish access
decisions. It accomplishes this with the assistance of the Policy
Controller and the results obtained by querying the knowledge
graph. Each person in the system has their own set of rules
in SWRL. The user attributes and control policies for the data
are also stored by the Regulation Processor and sent to the
Cryptography Unit throughout the encryption process.

B. Data Processing Module

Data cryptography, search token generation, encrypted in-
dex building, and attribute revocation are supported by sub-
modules of the Data Processing Module. The Attribute Control
Center gets the Regulation Processor’s user attributes and
control policies and assigns them to any activity. The Key
Production Unit produces the EHR encryption or decryption
keys. When a user changes an EHR, the Attribute Control Cen-
ter and Key Production Unit encrypt the data. The ciphertexts
are then uploaded to the knowledge graph as a new node.

The Key Production Unit provides the keys for building
a trapdoor in the event of a search operation. The trapdoor
searches the cloud’s encrypted index for relevant EHRs. With
the Cryptography Unit and Key Production Unit, the user may
decrypt any EHR. A clinician, for example, could wish to
locate patients with covid19 new variant symptoms so they
can be treated quickly. As a result, the doctor enters a search
query, processed with the secret key, to create a trapdoor. The
trapdoor searches the encrypted indexes for all patient records
and returns the relevant ones.

Within the Data Processing Module, Attribute Revocation
functions are also performed. For example, when a user
is promoted, the last attributes must be withdrawn, which



Fig. 1. System Architecture

necessitates these activities. During the procedure, the Key
Production Unit provides the master key. The ciphertext and
the private user key held by the CSP are changed. The newly
updated private key is then used to decrypt EHRs at any
moment in the future.

C. Cloud Service Provider

The CSP contains the knowledge graph, cryptographic in-
dex, and secondary secret keys. The CSP is situated outside
the organization’s boundary and is assumed to be an HBC
adversary model. The CSP can successfully run programs and
algorithms and examine the information provided within and
outside the company. We impose an authorization process on
data within the organizational perimeter to deal with this,
which we refer to as the framework’s edge. Consequently,
users are only verified inside the company’s borders, protecting
their privacy. We implemented the ABE encryption technique
at the organizational edge to safeguard data from privacy issues
when transmitting data to the cloud server.

1) EHR Ontology: The knowledge graph used in the frame-
work to handle heterogeneity is shown in Figure 2. It was
designed considering HIPAA regulations. As an information
graph, the ontology records medical organization users like
Doctors, Nurses, Medical Assistants, Pharmacists, and Pa-
tients. It also includes Certifications like MD (Doctor of
Medicine), PharmD (Doctor of Pharmacy), etc. Hospital Wards
like Oncology, Pediatric, and Specializations like Cardiology
and Gynaecology are also included. Likewise, EHR fields like
Prescriptions, Doctor Notes, Lab Results, etc., are stored in
the ontology as data properties to store patient data. The EHR
field access is controlled using ABAC to protect privacy. The
Certification, Specialization, and Hospital Wards serve as the
attributes of a user. Various users with specific attributes can
have multiple kinds of access to the EHR fields.

The ontology in our system holds the encrypted patient data
in the nodes. The nodes storing patient data are encrypted
using the ABE scheme discussed earlier. This approach offers
several advantages like managing fewer files, faster query

retrieval performance independent of data size, and flexible ex-
pansion of schemas. The ontology is queried using SPARQL,
created dynamically by our system based on the user account.

2) Encrypted Index: The patient’s encrypted EHR word
tokens and unique patient IDs are stored in the encrypted
index file. Any search procedure requires the file. Word tokens
from the patient’s EHR are retrieved. The tokens are then pre-
processed before being encrypted using the RSABE technique
[49] with the help of the Cryptography Unit. During the crypto
procedure, the Key Production Unit provides the public key,
and the EHR Ontology delivers the attributes to the Attribute
Control Center. The file is produced within the organization’s
limit and saved in the CSP.

VI. IMPLEMENTATION

Model-View-Controller (MVC) [12] architectural principles
are used to create the open-source EHR software, which is
constructed using the Python Django framework. The applica-
tion allows field-level ABAC access to patient EHRs as well
as data encryption using ABE. The RSABE scheme is used to
encrypt the patient data and to create the encrypted index file.
The application also enables a faster and more efficient search
of encrypted data using a searchable encryption technique with
the usefulness of the same scheme. The user attributes change
over time, which is also permitted in the system.

The EHR system enables doctors to treat their patients
safely. It includes the features that are needed for daily
operations. Protege [protege.stanford.edu] was used to create
the EHR ontology used in the system. It is an open-source
knowledge graph management tool. The ontology is queried
using SPARQL with the Apache Jena library, and the SWRL
rules are used to modify it. Thus, the application uses ABE,
searchable encryption, attribute revocation, graph database,
and semantic web for seamless functioning.

A. Dataset Description

We utilized the MIMIC-III [19] dataset to create our syn-
thetic graph dataset of different sizes. We used data with
6000, 13000, 19000, 26000, and 32000 patient records for



Fig. 2. EHR Ontology

our experiments. Each patient has several fields in their EHR
based on their medical histories, such as Allergies, Billing
Information, Prescription, etc. The nodes of the EHRs are
encrypted within the organization’s perimeter and kept in the
cloud server, as per the edge computing concept. We had 30
medical users like Doctors, Nurses, and Medical Assistants
throughout the system. Each medical user has certification,
specialization, and hospital ward attributes. Different users
with distinct attributes have unique access to the EHR fields.

B. Evaluation

We designed a proof of concept prototype to assess the
EHR framework. Let’s say a Doctor named Rachel requests
access. In the Authentication Module, the request is thoroughly
assessed; the username and password are validated against the
database; the Policy Controller examines the policies; the EHR
Ontology offers the unique attributes of Doctor Rachel; and the
Regulation Processor processes these pieces of information. If
Doctor Rachel plans to retrieve the EHR of a patient named
Andrew, the request is completed in the Cryptography Unit by
getting the Keys from the Key Production Unit. Encrypting an
EHR is accomplished similarly. To search through encrypted
records, like to find the patient EHRs that have the word token
virus, Doctor Rachel submits a search query to the Token
Origination Unit that uses the secret keys obtained from the
Key Production Unit. To remove an attribute from the system
in case of any attribute changes, such as for Junior Doctor
Jacky, who got new certification attributes, Doctor Rachel
uploads the attributes to be revoked to the Attribute Control
Center. The request is processed, and then the ciphertext and
the CSP’s secret key are changed to accommodate the changes.

We evaluated the performance of queries with different
data sizes to highlight the benefits of our proposed system

TABLE I
QUERY PERFORMANCE BY OUR PROPOSED NOVEL SYSTEM

Data Size Insert
(and
Encrypt)

Retrieve
(and
Decrypt)

Search Delete Revoke

6000 0.003376 0.010368 0.692188 0.002716 0.009746

13000 0.003302 0.009584 1.137799 0.002732 0.009722

19000 0.003264 0.009605 1.408645 0.002744 0.009637

26000 0.003132 0.009672 1.685153 0.002714 0.009594

32000 0.003584 0.009952 1.961842 0.002661 0.009665

compared to our old system [45]. The Table I shows the
performance of our proposed system for various data sizes
for different types of queries. Similarly, Table II shows the
performance of the old system [45]. The performances on both
tables are listed in seconds using an average of 10 queries.

The queries in different systems have slightly different
operations that reflect their performances, as shown in the
tables. The insert query in Table I means time to encrypt a
patient EHR field followed by an insert SPARQL command
to store into the knowledge graph. In contrast, the insert query
in Table II means time to encrypt the same patient EHR
field, create a folder, and dump the flat file. Thus, the data
upload time is more in our proposed system than in the old
system [45]. Moreover, the data size unaffected encryption
performances in each system. The retrieve query in Table I
denotes the time to decode an encrypted EHR field stored in
the knowledge graph using the SPARQL query. However, in
Table II, the retrieve operation represents the time to locate the



TABLE II
QUERY PERFORMANCE BY OUR OLD SYSTEM [45]

Data Size Insert
(and
Encrypt)

Retrieve
(and
Decrypt)

Search Delete Revoke

6000 0.002639 0.017153 0.695360 0.000344 0.015750

13000 0.002775 0.022646 1.157350 0.000229 0.016229

19000 0.002570 0.019395 1.427119 0.000190 0.015999

26000 0.002674 0.017417 1.692440 0.000191 0.016552

32000 0.002623 0.017676 1.977922 0.000204 0.016249

same patient’s EHR field and decode the data. Our proposed
system shows improved data retrieval performance compared
to the old system [45]. The performance is also independent
of the data size, as depicted in Table I. The search operation
performs better in the new system, as shown in Table I
compared to the old system [45]. The tables show the time
to search for patient EHRs with the keyword flu and then
retrieve an EHR of one of the patients with flu. The delete
query in Table I represents the time to remove a patient EHR
field using a SPARQL query. On the other hand, the query in
Table II means locating the folder containing the EHR field
data and deleting it. Overall, our proposed system takes more
time to delete the data than the old system [45]. However,
the performance in each system stands unchanged by the data
size. The revocation time shows better performance in our new
system. In Table I, we recorded the time to revoke an attribute,
update the ciphertext and secret key and finally retrieve a
patient EHR field. In Table II, we recorded the time for the
same operation, and overall it takes more time as the old
system [45] is slow compared to our proposed system.

Our proposed system shows the great benefits of using a
graph database based on our experiments. The data retrieval
performance is fast, which is critical in the healthcare domain,
and it is independent of the data volume. The query execution
time remains almost the same. The reason is the graph
database has no global index. Each vertex holds data about
its neighbor nodes. So for a specific query, it does not need
to handle irrelevant information. Only a particular node is
addressed in the query to provide the results. Hence, the query
performance remains solid.

VII. CONCLUSION

This paper describes using a HIPAA-compliant knowledge
graph to create an EHR system that supports field-level ABE,
ABAC, searchable encryption, and attribute revocation. All
user roles and attributes in the healthcare organization are
represented in a knowledge graph. The graph keeps track of the
users’ attributes and EHR fields to grant them restricted access
to the EHR system. The patient data are stored as encrypted
nodes in the knowledge graph, which provides many benefits.
Doctors frequently need to scan through encrypted data in

a limited amount of time and computation in the presence
of Big Data, which our framework can also handle. Because
some users leave the organization, others get promoted, or the
organization’s regulations change, user attributes change over
time. As a result, all of these modifications need the revocation
of attributes. Our system solves this problem by entrusting
ciphertext and secondary secret key updates to the cloud. The
secret key, which the user keeps, stays solid. Often, a system
with a lot of functionality usually includes a lot of keys,
which adds to the user’s administrative burden. Our framework
appears more user-friendly by having a single scheme for all of
the above actions. The knowledge graph, encrypted index file,
and secondary secret key are all kept in the CSP considering
the HBC adversary model. We also assumed Edge Computing
ideas. Users are validated within the organization’s limits to
ensure privacy. All activities on the data are completed inside
the organization’s border before transporting them to the cloud
to defend against privacy concerns.

We want to expand our research in many possible directions
in the future. We plan to populate more data in the system on
the scale of billions, and we expect our novel system to show
better delete and encrypt performances. Additionally, we want
to make our system more robust by having a backup server
or redundant copies to avoid the central point of failure. We
hope to broaden our future comparisons with other systems
with distributed architectures like MapReduce. Furthermore,
we would like to consider other threat models in the future.
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