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Abstract—Healthcare organizations exchange sensitive
health records, including behavioral health data, across
peer-to-peer networks, and it is challenging to find and
fix compliance issues proactively. The Healthcare industry
anticipates a growing need to audit substance use disorder
patient data, commonly referred to as Part 2 data, having
been shared without a release of information signed by the
patient. To address this need, we developed and evaluated a
novel methodology to detect Part 2 data exchanged between
organizations that integrates Blockchain technologies with
knowledge graphs. We detect substance use disorder data
in patient encounters exchanged using clinical terminology
based upon the value sets provided by the National Institutes
of Health for the Substance Abuse and Mental Health
Services Administration. Generally, we consider sharing Part
2 data without consent as Byzantine medical faults, as they
represent data shared between known and trusted network
participants, that is valid, but is not relevant, and sharing it
causes a breach. In this paper, we present our methodology in
detail along with the experiment results. We model a medical
network of hospitals based upon the most recent healthcare
legislation, TEFCA, and generate synthetic patient encounter
data dynamically in HL7 format. We convert exchanged
encounter data into a knowledge graph data model so that
we can use SNOMED-CT for identifying Part 2 data. For
cohorts of 1,000 patients, we detect Part 2 data in a subset of
their encounter data shared between organizations and log
that securely on an Ethereum-based blockchain.

Index Terms—HIPAA, Substance Use Disorder, Part 2,
Byzantine Medical Faults, TEFCA, Automated Compliance

I. INTRODUCTION

Medical organizations share protected health informa-
tion by following the guidelines set forth in Health In-
surance Portability and Accountability Act (HIPAA) and
by adhering to whatever data use agreement governs the
variables and cohort of data that can be shared between
them. Depending upon the use case, the organization
may send data sets via API endpoint or through secure
file exchange. Regardless of channel, when a recipient
organization receives a data set, some quality checks
are typically done to check for syntactic accuracy before
assuming the data conforms to the expected format.
Most costly and done less frequently is a deeper analysis
of the data set, evaluating clinical terms against the
intention behind whichever data use agreement governs
what data can be shared between organizations. We refer

to sharing medical data that is not relevant between
trusted partners as Byzantine Medical Faults. Identifying
Byzantine Medical Faults is challenging, and these types
of issues will likely surface more often in the near future.

The need to share data has grown, driven by socioeco-
nomic forces, including new technology, the pandemic,
and legislation. Key to the future of medical data ex-
change in the U.S. is legislation passed in 2016 - the 21st
Century Cures Act. The Cures Act encourages the inter-
operability of health data through new regulations and
organizational structures [1]. The Department of Health
and Human Service’s Office of the National Coordinator
(ONC) is leading the implementation in partnership with
a designated Recognized Coordinating Entity (RCE), a
non-profit called the Sequoia Project [2]. The RCE is
creating a meta-network of qualified health information
networks (QHINs). A QHIN must qualify in order to
participate, but can be any organization of health care
providers, institutions and health information exchanges
(HIE) with data sharing agreements in place and IT
platforms to exchange data. The Sequoia Project is re-
sponsible for holding stakeholder meetings and work-
groups to facillitate TEFCA implementation, approves
QHIN applications, and in future will monitor the entire
network to ensure information blocking does not occur
[3]. Sequoia worked with stakeholders to form the draft
versions of the Trusted Exchange Framework and Com-
mon Agreement (TEFCA) that form the technical and
legal foundation for the meta-network of QHINs [2], [4].
The TEF is a list of seven technical principles for QHINs
to adhere to, and concentrates around existing standards,
quality measures, and information security best practices
[4]. The CA is a binding contract for QHINs to com-
plete and submit to the RCE. The Cures Act’s Common
Agreement stipulates that qualified health information
networks must:

...maintain, throughout the term of this Com-
mon Agreement...a policy or policies of insur-
ance for cyber risk and technology errors and
omissions..." [2].

We assume a future state in which TEFCA has been
adopted by several QHINs throughout the United States.
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The potential benefits of TEFCA for better care, better
health, and reduced costs could be substantial moving
into the 2020’s, particularly in the COVID-19 era, and
its design fulfills many of the recommendations identi-
fied by the American Medical Informatics Association
(AMIA) in 2007 for widespread, secure health data
exchange [5], [6]. Using current technologies, handling
a high-volume of secure transactions as envisioned in
TEFCA will be a remarkable achievement, and in this
future state those data exchange issues that typically
occur within networks will surface, but with new inter-
mediaries in place. Moving health data within complex
networks in an unblocked manner to support TEFCA
requires the development and adoption of many new
applications and systems. We focus upon the need to
insure that Part 2 data is not shared without the patient’s
consent using blockchain and knowledge graphs.

A. Ethereum and Health Information Exchange

We migrate the TEFCA meta-network to Ethereum,
and create a smart contract to log when any network
participant shares Part 2 data out of compliance, while
protecting the privacy of the patient and the security
of the meta-network. We visualize the number of com-
pliance errors so that observers, such as the RCE, can
review the quality and accuracy of data being shared
between organizations, the cost incurred, and develop
plans for penalizing participants who incorrectly share
data. Our purpose is to enable effective oversight of
data exchange between QHINs without having to see
the data. Breaches requiring notification to the Office of
the National Coordinator (ONC) can either be stopped
before reaching the minimum threshold of 500 patients
per the HIPAA Breach Notification Rule, 45 CFR §§
164.400-414, or can provide a full audit trail for use in
reporting to the ONC [7]. In addition breach notification
rules in CA Section 12 state that network participants,
including other QHINs and the RCE, must be notified
within five days of a breach, including the "natural and
likely scope" of the breach [2].

II. RELATED WORK

The current state of health information exchange
builds upon decades of federal government regulation
intended to secure patient health data while at the same
time making it more portable.

A. Regulatory Frameworks and the Current State of National
HIE

Beginning with 1996’s Health Insurance Portability
and Accountability Act (HIPAA) there has been regu-
latory momentum to support digitizing protected health
information. The objectives have been to enable patient
data exchange between healthcare organizations to im-
prove patient outcomes, enhance quality, and reduce
costs. Since then the 2009 HITECH Act encouraged the

adoption of electronic health records through financial
incentives to providers. And in 2016 the 21st Century
Cures Act made patient information blocking - where a
patient requests their health data and is not provided it
- by healthcare providers illegal.

During this timeframe, EHRs developed as the glue
between different sub-systems, connecting previously
silo-ed applicatoins designed to support various clinical
workflows, e.g., pharmacy order fulfillment or radiology
imaging. As EHRs matured, they brought the data gen-
erated by sub-systems into one unified patient record
with one interface. Initial focus was therefore primarily
internal to the healthcare organization, with less incen-
tive provided to create externally facing data exchanges
- with the exception of those states that required health
information exchange and set up the infrastructure and
incentive to share data. In the 2010’s large EHR vendors
began creating APIs for third party applications to inter-
face with and to integrate with HIEs. While progress was
being made, there was not a federal regulation in place
to enable efficient interstate health data exchange; most
such exchange was done either point-to-point through
data use agreement between organizations, or through
the patient themselves attempting to coordinate the
data exchange. Prior to the Cures Act EHR vendors
Cerner and Epic felt they were driving towards effective
national health information exchange through market
forces, and that the Act was unnecessary and costly [8],
[9]. Both companies take up most of the market share
for EHR vendors, and as TEFCA advanced both have
embraced it, with their respective subsidiaries Epic TIS
and CommonWell selected as founding members of the
inaugural qualified health information network cohort
of six organizations [10]–[13].

1) HIPAA and 42 CFR Part 2: Included in HIPAA is
42 Code of Federal Regualtions (CFR) Part 2, which
provides protections for sensitive patient information,
such as substance use disorder and mental health data
[14]. Part 2 data is subject to patient consent; such patient
data can only be shared under certain circumstances,
with the general usage being a signed release of infor-
mation from the patient allowing the transfer of data.
This regulation is critical for protecting opioid addiction
information, an extremely sensitive set of patient data.
To encourage patient management of releasing this in-
formation, the ONC funded the development of a pilot
application called Consent2Share, designed to enable a
patient to set up data segmentation of their behavioral
and mental health data [15]. Consent2Share was found
to have discrepancies between the value sets used for
defining sensitive information and what practitioners
considered sensitive [16]. Recommendations to improve
Consent2Share included using knowledge-based value
sets based upon clinical terminologies such as SNOMED-
CT for enabling algorithmic approaches to detect sensi-
tive information and using NLP techniques to automate



detecting sensitive information in the medical record
[17].

2) TEFCA: The network that TEFCA creates will in-
clude only approved qualified health information net-
works (QHINs); as such it is a permissioned (each par-
ticipant is known and has established their identity) and
the threat model is one where participants are generally
honest but curious about what data is provided. A recipi-
ent will evaluate all data provided by another participant
- even if the data provided includes patient information
that should not have been shared, such as substance use
disorders that require a patient’s release of information.

Under TEFCA, the minimum required terms and con-
ditions specify that treatment, utilization, quality assess-
ment and improvement, business planning and develop-
ment, public health, individual access services, and ben-
efits determination are the defined set of exchange pur-
poses; Qualified Health Information Networks (QHINs)
must be able to exchange this minimal data set [18].

The TEF principles determine how data should be
exchanged between network participants. It states that
data should be exchanged using existing EDI formats, or
using standards set by recognized standards defining or-
ganizations [4]. The TEF also refers the reader to existing
mechanisms for testing the syntactic accuracy of data,
such as the ONC C-CDA scorecard and the ONC Inferno
program for FHIR [4], [19], [20]. In Principle #2B the
TEF requires that any agreement between information
networks must include an addendum, or separate data
use agreement, that specifies the minimum amount of
data to be shared [4]. Under Principle #4A “Privacy,
Security, and Safety,” the ONC focuses on data accu-
racy through the application of the C-CDA and FHIR
standards [4]. The TEF also states that clinicians should
ensure the accuracy of patient data before it is exchanged
with external qualified health information networks [4].

The Common Agreement (CA) is a legally binding
contract between participants and the RCE which details
what the required information types are for exchange be-
tween Qualified Health Information Networks (QHIN).
Section #10B Individual Access Services Metadata and
Data Segmentation addresses requirements for sharing
data that is relevant to the intended recipient and for
protecting sensitive health information such as substance
abuse data [18].

B. Technologies for HIE

1) Semantic Web: While exchanging sensitive datasets,
organizations need to exchange information, queries,
and requests with some assurance that they share a
common meaning. This is critical not only for the data
but also for the data protection policies followed by the
organizations. The interoperability requirement is not
just for the data itself but even for describing policies
for data protection. One possible approach to this issue
is employing Semantic Web techniques to model and

reason about standards, such as the semantically rich
clinical terminology of SNOMED-CT. The Semantic Web
deals primarily with data instead of documents. It al-
lows data to be annotated with machine-understandable
meta-data, permitting the automation of their retrieval
and their usage in incorrect contexts. Semantic Web tech-
nologies include languages such as Resource Descrip-
tion Framework (RDF) and Web Ontology Language
(OWL) for defining ontologies and describing meta-data
using these ontologies as well as tools for reasoning
over these descriptions [21], [22]. These technologies
can be used to provide common semantics of medical
datasets and policies enabling all software agents who
understand basic Semantic Web technologies to commu-
nicate and use each other’s data and services effectively.
Knowledge graphs have been used to extract knowledge
about the security and privacy provisions included in
HIPAA [23]–[27].

2) Blockchain: Blockchain is a promising concept to
build upon because it can provide much higher levels
of security over existing technologies [28]–[32]. Most
blockchain projects in the healthcare sector focus on
utilizing blockchain as a reliable platform for secure
data sharing, and attempt to address the security and
compliance challenges inherent in large-scale health in-
formation exchange systems [33]. There has been re-
search into using Ethereum based smart contracts for
remote patient monitoring [34]. However, the applicable
blockchain-based approaches proposed so far have not
directly addressed TEFCA requirements because they
are either too specialized to convey to medical data
exchange, or too generic to overlay into health systems
data [31], [32]. One blockchain-based proposal considers
TEFCA alignment, but is not tethered tightly to it, and
leaves the technical implementation open-ended [35].

Blockchains can be categorized into two types: per-
missionless blockchains and permissioned blockchains
[36]–[42]. Permissioned blockchains restrict network par-
ticipants to those who have proven their identity, and
run code that is provably secure through Byzantine
Fault Tolerance (BFT). Generally speaking BFT protocols
state that one must have 3 f + 1 nodes to overcome f
failures, in order to guarantee a system will function
correctly. This is intuitive, but the underlying principle
has proven difficult to reason about [43], [44]. BFT is
the core primitive behind blockchains like Ethereum
for ensuring system safety (nothing bad happens) and
liveness (something good will happen) [45].

III. METHODOLOGY

We develop an Ethereum test network (testnet) of the
recently approved inaugural class of qualified health
information networks as depicted in Fig. 1 [13]. As
shown in Table I all hospitals and QHINs are assigned
network addresses for sending and receiving data. The



recognized coordinating entity, the Sequoia Project, is re-
sponsible for only the data shared between QHINs. Man-
aging the testnet is a smart contract to handle adding
and removing QHINs, and other network participants,
and for recording out of compliance transactions to the
blockchain. Out of compliance transactions include the
sender address, the recipient address, and the compli-
ance error message; excluded is patient data.

For validation data we generate cohorts of synthetic
patient data for each hospital in HL7 comma separated
value (csv) format, taking into account each hospital’s
region for demographics and mortality, including inci-
dences of encounters with patients for reasons of opioid
use disorder [46]. The data sets are associated with a
sender hospital and receiving hospital, which minimally
traverses across at least two QHINs. We transfer en-
counter data, as if in response to a query from another
hospital. The outbound data is converted from HL7
into Terse RDF Triple Language (ttl) files so that our
knowledge graph can be used to check for compliance
errors [47]. The National Institutes of Health maintains
value sets of clinical terminology that can be used to
identify part 2 data [16].

Using the NIH value set of SNOMED-CT terms that
identify encounters that require patient consent, we
evaluate the data that was sent to see if it contained
substance use disorder encounter data [48]. In the event
Part 2 data was shared a log entry is made by the
smart contract indicating the sender organization, the
recipient organization, and a message stating Part 2 data
was shared. This causes a record to be added to the
blockchain indicating possible compliance failure.

TABLE I: Ethereum Testnet Accounts

Type Name Ethereum
Addr (hex)

QHIN

RCE The Sequoia
Project

0x00...EA72 —

QHIN CommonWell 0x17...5CE —
QHIN eHealth

Exchange
0x59...a52 —

QHIN Epic TIS 0xB3...F90 —
QHIN Health

Gorilla
0xcC...E4a —

QHIN Kno2 0xb...E1D —
QHIN KONZA 0xb6...0bd —
Hospital Johns

Hopkins
0x4F...6EB CommonWell

Hospital University
Maryland

0x90...33B eHealth

Hospital Wake Forest 0xC1...917 Epic
Hospital Duke 0x16...a377 Health

Gorilla
Hospital UCSF 0x91...5e8 Kno2
Hospital K State 0xA8...458 KONZA

We utilized a server running the Ubuntu 20.04.3 LTS
operating system allocated with 376GB memory and
72 Intel(R) Xeon(R) Gold 6140 @ 2.30GHz CPU’s. We
selected Synthea to produce patient encounter data sets
in HL7 format and converted those into RDF using a

Python library [46], [47], [49]. For querying the RDF
data set of encounters and determining if Part 2 data
is included, we use RDFox. RDFox is selected because
its queries are optimized by keeping the knowledge
graph in memory, and given its ability to adapt to
new information in real time through forward chaining
- features well-suited to big data healthcare [50], [51].
RDFox provides an http endpoint for encounter RDF
data to be imported, queried, and deleted in real time
through API calls. We develop an API in the Elixir
language using the Phoenix web framework to interface
with the endpoint as Elixir is a functional language with
proven fault tolerance attributes and the Phoenix frame-
work has a rich community of open source solutions,
including libraries to interact with Ethereum [52], [53].
The Ethereum blockchain for recording the Part 2 data
compliance checks runs locally using OpenEthereum,
and is visualized using an Ethereum blockchain browser
called BlockScout [54].

IV. RESULTS

The process for generating patient data in HL7 csv
format, then converting into RDF, was measured for
single hospitals with varying patient cohort sizes. As
shown in Table II, the largest data set generated was
1,172 (1,000 living and 172 deceased) patients and took
the longest to generate (125.4s). The average time to
generate a cohort of 1,000 patients data in HL7 and
convert to RDF is approximately 109s. We optimize the
data generation by creating the data sets in parallel,
thereby constraining the data generation to the longest
running process.

TABLE II: Data Generation Runtimes

Patients Synthetic
data runtime
(s)

TTL data run-
time (s)

Total (s)

11 18 0.3 18.3
115 23 3.5 26.5
116 32 3.6 35.6
116 27 4.3 31.3
117 25 3.3 28.3
118 32 4.3 36.3
125 33 4.9 37.9
130 29 5.3 34.3
1117 58 41.2 99.2
1130 59 41.5 100.5
1130 59 42.5 101.5
1148 60 40 100
1152 69 43.1 112.1
1154 65 49.8 114.8
1154 67 51.2 118.2
1172 74 51.4 125.4
1172 66 45.9 111.9

Once in RDF format, the system must explore the
graph efficiently within that timebound to determine
if any encounter data contained one of the SNOMED-
CT codes for opioid dependence, before a new data set
is generated. We run benchmark tests on our API and



Fig. 1: TEFCA Network

gather the results shown in Table III. Each compliance
check includes minimally 1,000 patients and their asso-
ciated encounters. The longest running compliance check
was 11.16s on a file size of 110MB.

As Part 2 data is detected, the Elixir-based API invokes
the system smart contract to record the sender, receiver,
and a log message stating Part 2 data was shared to the
testnet. Fig. 2 shows blocks from the testnet, including
the addition of a network participant (blue block) and
the compliance validation contract calls (green blocks).
When Part 2 data has been shared, the transaction details
show the sender and the receiver, along with a message,
in hex as depicted in Fig. 3. To review the compliance
message, the application allows switching to UTF-8, as
shown in Fig. 4. The average time between blocks is

TABLE III: Transfer times to check compliance

Sender Receiver Encounter
file size (MB)

Compliance
Check
runtime
(s)

Hopkins University
Maryland

106 10.88

University
Maryland

Hopkins 110 11.16

Wake Duke 108 9.58
Duke Wake 94 10.52
UCSF Kansas State 104 9.16
Kansas State UCSF 95 8.85

10.8s for each 1,000 patient cohort, and the block size
is consistently 0.69KiB.



Fig. 2: TestNet Transactions

Fig. 3: Compliance Transaction Details - Raw Data Shows Sender and Receiver in Hex



Fig. 4: Compliance Transaction Details - Raw Data Shows Compliance Message in UTF8

V. CONCLUSION

In this study, we demonstrated how Knowledge
graphs can be integrated with permissioned Blockchain
technology to enable the automatic identification of com-
pliance issues within the near future TEFCA network.
We present in comprehensive detail the performance
metrics for each phase of the data generation, exchange,
and compliance checking. As part of our ongoing work,
we are augmenting our system and testing it with greater
data volumes - more hospitals and more patients - to de-
termine how well it scales. Additionally, we will expand
the value set of SNOMED-CT codes to incorporate other
clinical coding schemes, such as ICD-9CM, ICD-10CM,
and RxNorm. The ability of the system to reason about
encounter data based upon HL7 and determine if Part 2
data has been shared, and record that for later inspection,
may be of value to QHINs in the future.
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