

Towards Semantic Exploration of Tables in Scientific Documents

Varish Mulwad¹, **Vijay S. Kumar**², Jenny Weisenberg Williams²,

Tim Finin³, Sharad Dixit², Anupam Joshi³

1: GE Research, Bengaluru, KA, India
 2: GE Research, Niskayuna, NY, USA
 3: University of Maryland, Baltimore County, Baltimore, MD, USA

1st Workshop on Semantic Technologies for Scientific, Technical and Legal Data, ESWC, May 28, 2023

Introduction

- An explosion in scientific publication rates
 - as exemplified by the COVID-19 infodemic
 - large amounts of scientific documents freely accessible online
- Contributing factors:
 - Open science, open-access initiatives
 - preprint servers, generative AI
- Problems:
 - 'burden of knowledge': rate of scientific research progress not keeping up with publication rates
 - 'fake science': rise in prevalence of misinformation

Else, H., 2020. How a Torrent of COVID Science changed Research Publishing—in seven charts. *Nature*, V588 (553).

Need more machine-driven, human-interpretable approaches to scientific knowledge discovery

The rise of Al-assisted Science

- Open datasets, e.g., <u>CORD-19</u> (articles on COVID-19)
 - Led to tools for search, Q&A, recommendation, summarization, and claim verification over scientific documents.
- Foundation models, e.g., GPT-n, Galactica
 - Led to tools for literature review, explaining scientific concepts, scientific code generation, intelligent reading interfaces.
 - Allen Al's <u>Semantic Reader</u> product aims to integrate tools to augment the scientific reading & discovery experience.
- From scientific discovery to scientific understanding
 - Early works show potential emergent autonomous scientific research capabilities of LLMs (<u>Boiko et al. 2023</u>)

Most research to process, analyze, explore scientific documents focuses only on text content. Significant information also present within structured artifacts, e.g., tables, charts.

Jannei

PYTHON → Code execution

Our research Focus: (Scientific) Tables

- Information in tables is critical to emerging knowledge-driven applications:
 - e.g., intelligence analysis and production, *genomic surveillance*
 - technical experts (scientists, analysts) look to discover vital knowledge nuggets not only from text but also from tables
- Automated mechanisms to infer the semantic meaning of scientific tables
 - relevance to a knowledge discovery scenario
 - generate tabular responses on-the-fly by possibly fusing information from multiple tables

Understanding information contained in **tables** from scientific & technical documents within specialized domains (e.g., biomedical)

"Treatment efficacies against the top prevalent COVID-19 variants in each US state"

Scientific documents \rightarrow Collection of content-rich tables + descriptive context Apply semantic technologies to model information in scientific tables to enable discovery

Tables have been extensively studied

Most recent acceptance rates of the top 3 semantic web conferences as a table

Searching for: acceptance rates of ISWC ESWC SEMANTICS 2021

✓ Generating answers for you...

I found some information about the most recent acceptance rates of the top 3 semantic web conferences (ISWC, ESWC and SEMANTICS) in 2021. Here is a table that summarizes the information I found:

Conference	Year	Acceptance Rate	
ISWC	2021	33.6% (research t	track)
ESWC	2021	25%	
SEMANTICS	2021	N/A	
Note: I could not find the	acceptance rate for SEMANT	iCS 2021, so I marked it as N/	A (not available).
Learn more: 1. 2021.eswo	-conferences.org 2. dl.acm.org	3. openresearch.org	5 of 20

Dataset retrieval over <u>Open data</u> with view discovery, augmentation

Dataset search engines help prepare datasets for data science applications

Extraction & interpretation of <u>web tables</u> for search, retrieval, Q&A

Some capability already integrated into modern-day search engines

Auctus	covid-19 vaccination rate		Q
	Advanced Search: 🛗 Any Date 🗸 🍥	Any Location	✓ C Related File ✓ Source ✓ T Data Type ✓
COVID-19 Ou (229.3 kb) data.cityofchicago.	tcomes by Vaccination Status	•	COVID-19 Outcomes by Vaccination Status
Weekly rates of and deaths among Show more	COVID-19 cases, hospitalizations, ong people living in Chicago by va		Augmentation (JOIN) Join on:
Abc Outcome	Week End Acc Age Group te # Vaccinated Rate	>	Available columns: Select which columns should be added to the final merged dataset.
Categorical	# Numerical (Temporal)		Ale: Outcome 📛 Week End # Unvaccinated Rate # Vaccinated Rat # Crude Vaccinated Ratio # Crude Boosted Ratio # Age-Adjusted Un # Age-Adjusted Vaccinated Rate # Age-Adjusted Boosted Rate # Age
Download Download Augment Option	View Details Q Search Related		# Age-Adjusted Boosted Ratio # Population Unvaccinated # Popula # Outcome Unvaccinated # Outcome Vaccinated # Outcome Boost

Tables have been extensively studied

- Significant advances in pre-trained / table representation learning models for well-structured tabular data and a variety of downstream tasks.
- Some specifically address tables in scientific/technical documents:

Dataset	Downstream task
PubTables-1M	Table detection, Table structure recognition
ChemTables	Table classification
<u>ArxivPapers</u>	Table extraction
<u>SciGen</u>	Reasoning-aware Table-to-text generation
TAT-QA	Question-answering over Tables and text
<u>S2abEL</u>	Entity Linking for scientific Tables

Scientific tables bring additional challenges and opportunities

Tables in Scientific Documents

- Optimized for human visual consumption
 - minimize information overload
 - various information compaction practices to ensure fit under space constraints
- Machine-driven understanding and discovery of scientific tables is challenging

Table 1 specificity of the Elecsys® Anti-SARS-CoV-2 and LIAISON® SARS-Co Test and resu COVID-19 NAAT tes Sensitivity PPV (%) NPV (%) result (COVID-19 (COVID-19 prevalence prevalence Positive Negative 1/5/10%) 1/5/10%(n = 40)(n = 161)Elecsvs® Anti-SARS-CoV-2 2^{b} 92.5 Positive 98.8 42.9/79.7/89.2 99.9/99.6/99.2 (CI: 79.6 (CI: 95.6-98.4) 99.9) 159 Negative 3a LIAISON SARS-CoV-2 S1/S2 IgG Positive 99.9/99.3/98.6

Less text, more numbers ... sub-columns ... merged cells

Developed serology	tests for SARS	-CoV-2 detectior	n by different	companies and researchers.	
Developer	Platform	Target antigen	Target antibody	Other features	References
Abbott Laboratories	CMIA	Nucleocapsid	IgG	Return 100–200 test results in 1 h, specificity 99.6%, and sensitivity of 100%	<u>Abbott</u> <u>Laboratories</u> . <u>(2020b)</u>
DiaSorin	CMIA	Spike	IgG	Fully automated, quantitative, 97.4% sensitivity, 98.5 specificity	<u>DiaSorin (2020)</u>
Pharmact AG	Lateral flow assay	-	IgG and IgM	POC, results in 20 min, can determine the phase of the disease, 99.8% agreement with PCR for non-affected cases	<u>Pharmact (2020</u>
Hangzhou Biotest	Lateral	Spike	IgG and	100% specificity for IgM	(<u>Hangzhou</u>
Biotech	flow assay		IgM	and IgG, 100% sensitivity	Biotest Biotech

Similar to web tables ... with domain-specific entities

Approach and Contributions**

- Collect tables from scientific articles
- Represent scientific tables as semantically-annotated linked data through a two-stage methodology:
 - Automated rule-based structural characterization; syntactic parsing through "specialists"
 - Semantic table interpretation with joint inference
- Enable discovery of tabular information from knowledge graph
 - Search queries under rich contextual constraints (including information reliability)
 - On-the-fly table generation by fusing information from compatible tables

Dataset Collection Pipeline

 harvest tables and provenance metadata from <u>PubMed Central</u> open-access subset

Preliminary Prototype Systems

- 1. Automated pipeline to construct a knowledge graph of scientific tables
 - Ontology to model tabular data and context
 - Core entity linker for scientific tables
 - Joint inference based on KG embeddings
- 2. Scientific table discovery system
 - UI to specify table-based semantic search requests and explore responses
 - Discovery engine to produce ranked lists of matching tables (including on-the-fly tables) with explainability

** <u>https://github.com/ge-knowledge-discovery</u> (currently in process of being open-sourced) Looking for collaborations to build on/extend our work, co-develop new datasets & applications

Dataset Collection Pipeline

Taxonomy to Characterize Tables

Lautert, L. R., Scheidt, M. M., & Dorneles, C. F. (2013). Web table taxonomy and formalization. ACM SIGMOD Record, 42(3), 28-33.

We leverage and extend multiple existing taxonomies and classification techniques in order to adequately characterize scientific tables

Table Characterization at different granularities

Hanlotyne		,	farke			Species
паріотуре	Xrj5	Xid3	Xri6	Xīd4	Xrj7	Species
H1	594 ^a	718	797	176	961	T. urartu (30, 30.30%) ^e T. turgidum (37, 38.95%) T. aestivum (117, 54.42%)
H2	594	808	7 9 7	176	961	T. urartu (2, 2.02%)
H3	594	655	797	176	961	T. urartu (1, 1.01%)

1%)		
	↓	
He	eader Co	olum

	Viremia category					
	PSV	LLV-I	LLV-II	HLV		
	n = 716	n = 46	n = 52	n = 201		
Gender [n (%)]	(70.370)	(4.570)	(5.170)	(2090)	0.011	
Male	468 (65%)	39 (85%)	36 (69%)	148 (74%)		
Female	248 (35%)	7 (15%)	16 (31%)	53 (23%)		
Age at inclusion [median years (IQR)]	39 (33-46)	43 (35–50)	39 (34-49)	39 (33-47)	0.28	
Ethnicity [n (%)]					0.0027	
Caucasian	307 (43%)	25 (54%)	29 (56%)	96 (48%)		
African	172 (24%)	12 (26%)	12 (23%)	68 (34%)		
Asian	81 (11%)	2 (4.3%)	3 (3.8%)	9 (4.5%)		
Other/unknown	156 (22%)	7 (15%)	8 (15%)	28 (14%)		

	To:								
From:	Employment ³	Sick leave	Vocational rehabilitation	Medical rehabilitation	Time limited disability pension	Disability pension	Emigrated	Dead (8)	Alive and at risk ^b
Employment ^a (1)	0	1 657 895	45 865	48 607	3 736	20 314	28 421	10 860	729 891
Sick leave (2)	1 595 592	133 909	53 398	48 325	559	3 309	454	726	105 714
Vocational rehabilitation (3)	101 605	983	2 009	962	3 816	9 3 5 1	175	85	288
Medical rehabilitation (4)	82 070	130	0	14 381	1 320	5 164	93	81	10 566
Time limited disability benefits (5)	1 153	68	148	84	0	7 930	7	23	191
Disability benefits (6)	7 729	307	75	26	37	0	1 404	819	45 265
Emigrated (7)	26 487	317	32	51	0	46	53	13	5
Total	1 814 636	1 793 609	101 527	112 436	9 468	46 114	30 607	12 607	891 920

Horizontal Table (Main Classification)

n

Vertical Table

Matrix Table

Developer Platform Target Target Other features References antigen antibody

Simple Header

Concise Header

	1&2 ^a	3	4	5	6	7	9 1	fissing
Variables	n	n	n	n	n	n	n	Ν

Multilevel Header

IQ test taken		No IQ test taken			Combined score			
Stanine Score	Ν	Percent	Score	N	Percent	Score	Ν	Percent
1	15 709	1,9%	C (assumed below average)	3 769	14,9%	Assumed below average ^a	57 092	6,6%
2	37 614	4,5%	B (assumed average)	20 318	80,6%	Assumed average ^b	691 580	80,1%
3	75 441	9,0%	A (assumed above average)	1 124	4,5%	Assumed above average ^C	114 697	13,3%

Splitted (*Header*)

Sample type (n)	Method	No. of positive sample	No. of positive sample by any method	Positivity rate ^a [%(95% CI)]	No. of positive patients by any methods in any sample types	Positivity rate ^b [% (95% CI)]
OPS (n=68)	qRT- PCR A	12	24	50.0 (29.6- 70.3)	56°	21.4 (12.0- 34.8)
	qRT- PCR B	18		75.0 (52.9- 89.4)		32.1 (20.6- 46.1)
	RT-RAA	20		83.3 (61.8- 94.5)		35.7 (23.7- 49.7)

Concise Body

Characterize tables with 18 different labels at cell, row, column, and table levels (full list in the paper)

Rule-based approach for Table Characterization

Selection

size

(Max:*)

References Representativeness Sample

(Max:*)

Table Characterization – Illustrative Example

Table 1

Main TiO₂ nanoparticles (NP) physicochemical properties, as described in Joint Research Centre (JRC) Report [42].

Sample	Crystalline Phase	Primary Particle Size (nm)	Primary Density (g/cm ³)	Specific Surface Area (m ² /g)
NM- 100	Anatase	100.0 ± 50.0	3.84	9.23
NM- 101	Anatase	6.5 ± 1.5	3.84	316.07

"NUM_BODY_ROWS": 2,

"BODY CONCISE": false,

"BODY COLS": ["CELLS DATATYPE": "string", "CELLS DATATYPE": "number with tolerance", "CELLS DATATYPE": "number",

Table Characterization Stats and Results

Characterization	System Count	# of Tables manually labelled	Precision	Recall
Tables with Header Rows	113,582	110	1.00	0.94
Tables with Header Columns	48,733	103	1.00	0.55
Tables with Concise Header Rows	36,182	34	0.84	0.94
Tables with Multi-level Header Rows	32,169	33	1.00	0.97
Tables with ONLY Numeric Data Cells	12,969	29	1.00	0.83
Tables with Concise Body	40,158	39	0.97	0.67
Horizontal Tables	21,863	38	0.95	0.50
Vertical Tables	7205	16	0.91	0.62

PMC8185411

unxiety symptoms 3.0 6.0 faced symptoms 2.0 5.0 unctioning: social 3.0 6.0 unctioning: social 0.0 5.0 pailsy of life 3.0 5.0 unxiety symptoms 100 5.0
dood symptoms 2.0 5.0 unctioning: social 3.0 6.0 unctioning: occupational 0.0 5.0 pailsy of life 3.0 5.0 anxiety symptoms 10 10
unctioning: social 3.0 6.0 unctioning: occupational 0.0 5.0 puality of life 3.0 5.0 unxiety symptoms
unctioning: occupational 0.0 5.0 buility of life 3.0 5.0 haxiety symptoms
Juality of life 3.0 5.0 Instity symptoms
anxiety symptoms
AL 4.0 10.3
IAM-A 4.0 9.0
ata were not normally distributed.
"BODY_CONCISE": true,
"HAS_HEADER_COLUMN": t
"HAS_HEADER_COLUMN": t "HAS_HEADER_ROW": true

Manual User Annotations

Manually annotated tables from randomly selected articles. Computed Precision & Recall at the label level (Precision: # of correct predictions / total predictions; Recall: # of correct predictions / expected predictions)

Precision is generally high. Recall is low in some cases. Rule coverage not exhaustive enough. Additional supervised algorithms may help.

Specialists to Detect Commonly Occurring Data

- Scientific table cells encode commonly occurring data – e.g., references, DNA/ RNA sequences, clinical trial IDs, etc.
- Specialists assess commonly encoded data types to avoid linking such cells
 → overall better table characterization and semantics
- Specialists may be regex/patternbased, dictionary-based, or ML-based depending on the data type
- Each applicable specialist assesses the cell values independently

Identified using Pint python package <u>https://pint.readthedocs.io/</u>

Large amount of literals in scientific tables. Important to detect and learn to not link literals.

Complex tables

Flatten by importing to Pandas dataframe

< />
HTML table

Table	
Characterization	

Detect Table, Header, and Body types

S/N

15

16

17

16

18

Import into Pandas DF

otoin: S1 do

ORF1ab polyprotein; nsp6

ORF1ab polyprotein; RdRp

ORF1ab polyprotein; RdRp

Pandas "Flatten"

-	Spike protein, Si domain	C101	~
2	Spike protein; S1 domain	A222V	4
3	Spike protein; S1 domain	D614G	898
4	Spike protein; S2 domain	E780Q	2
5	Nucleocapsid phosphoprotein	P13L	2
6	Nucleocapsid phosphoprotein	R203K	602
7	Nucleocapsid phosphoprotein	G204R	602
8	ORF3 protein	Q57H	60
9	ORF3 protein	G251V	4
10	ORF8 protein	L845	16
11	ORF1ab polyprotein; nsp2	T265I	26
12	ORF1ab polyprotein; nsp2	D448dela	6
13	ORF1ab polyprotein; nsp2	I739V	3
14	ORF1ab polyprotein; nsp2	P765S	3
15	ORF1ab polyprotein; nsp5	G32785	73

SARS-CoV-2 region Mutation observed Occurrence

L3606F

A4489V

P4715L

898]

After flattening, this complex table is now
correctly classified as a horizontal table

Re-export Table		
NC-CAPOIL TABIC		
as HTMI		

as HTML

< />
HTML table

S/N	SARS-CoV-2 region	Mutation observed	Occurrence
1	Spike protein; S1 domain	L18F	2
2		A222V	4
3		D614G	898
4	Spike protein; S2 domain	E780Q	2
5	Nucleocapsid phosphoprotein	P13L	2
6		R203K	602
7		G204R	602
8	ORF3 protein	Q57H	60
9		G251V	4
10	ORF8 protein	L84S	16
11	ORF1ab polyprotein; nsp2	T265I	26
12		D448del ^a	6
13		I739V	3
14		P765S	3
15	ORF1ab polyprotein; nsp5	G3278S	73
16	ORF1ab polyprotein; nsp6	L3606F	45
17	ORF1ab polyprotein; RdRp	A4489V	3
18		P4715L	898

• Recently included BioTables, BiodivTab datasets

Core Entity Linker

- We developed a practical, scalable entity linker to keep up with rate of publication of scientific tables
- Given a cell string, we retrieve top *k* matching Wikidata items, performing type analysis and filtering to return top-ranked candidate.
- Currently focused on CTA, CEA only
- Adapted to scientific tables in the biomedical domain

Mulwad, V., Finin, T., Kumar, V. S., Williams, J. W., Dixit, S., Joshi, A. **A Practical Entity Linking System for Tables in Scientific Literature**. *In 3rd Workshop on Scientific Document Understanding at AAAI-2023.*

Embeddings-based Joint Inference

overview

assigned to data cells in a column

Inferring table semantics is improved via joint inference using embeddings of Wikidata items (i.e., embeddings-driven agreement function to compute compatibility between entities)

Embeddings-based Agreement

a clustering approach

K-Means Clustering

Required Input: NUM_CLUSTERS (target number of clusters)

Embeddings-based Joint Inference

perform clustering on embedding vectors; example

Ranked List of Candidate Entities (using base entity linker) Embedding vectors (via Wembedder API) Cluster IDs (K-Means) "Mode" Cluster ID (most frequently occurring as first-

ranked vector)

Candidate Selected

(highest-ranked entity with mode cluster id)

Annotations for Evaluating Table Semantics [®] [®]

- Manually annotated 47 tables drawn from randomly selected 45 PMC articles
- Each table cell was mapped to:
 - Wikidata Item
 - Literal (string/numeric data not representing an entity)
 - Reference (header cells for cols. with references)
 - Clinical Trial IDs (header cells for cols. with clinical trial IDs)
 - Index (header cells representing index cols. in a table)
 - NA (entity, but doesn't exist in reference KG)
- **3600** table cells were annotated

Annotation Type	Count
Wikidata	910
Literal	2548
NA	118
Clinical Trial ID	4
Reference	14
Index	6

Distribution of manual annotations amongst different types

Semantic Annotation: Overall Evaluation

Anno. Type	# of cells	Pr.	Re.	F-Score
Literal	2548	0.98	0.81	0.89
Wikidata	910	0.33	0.50	0.40
NA	118	-	-	-
Reference	14	0.91	0.71	0.80
Index	6	-	_	-
Clinical Trial ID	4	1.00	0.50	0.67

Computed Precision & Recall at the label level Precision: # of correct predictions / total predictions Recall: # of correct predictions / expected predictions Rule-based methods (basic types + specialists) lead to high precision for Literals, CT IDs, and Ref.

As expected, also can lead to low recall (e.g., CT ID) when rules don't provide coverage

Lower scores for predicting Wikidata links

Wikidata Annotation – Analysis

Does the expected annotation appear in the top 25 candidates for table cells where expected annotation is a Wikidata item?

Expected Annotation in Candidate Set	~60% (554/910)
Expected Annotation Missing in Candidate Set	~40% (356/910)

Core linker is not able to retrieve candidates for a fairly large fraction of possible idiomatic strings

Did the system confuse literals and entities?

Expected Wikidata Annotation	910
System Predicted Wikidata Annotation	1373
Literal/Ref./CT ID Cells misclassified as Wikidata Links	488

Non-entity strings mapped/predicted as Wikidata annotations makes a substantial negative impact on performance

Ontology and Triple Generation

- We developed an ontology to represent article metadata, data and inferred semantics of scientific tables
 - Builds on W3C standards, including PROV
- We auto-generate RDF triples at document-level, followed by table-level, and finally at cell-level
- Roughly 1000 triples per PMC document (but varies widely based on table count and contents)
- Knowledge graph persisted in triple store to support table discovery
 - Open-source: Apache Jena/TDB2/Fuseki, RDFlib, pyfuseki, …

Discovery of Scientific Tables

overview

- Search and retrieval of tabular information from our knowledge graph
- Emulate database-style discovery operations against semantically annotated scientific tables
- Leverage semantic technologies for search:
 - Header-cell semantics → search/filter matching tables, and on-the-fly fusion of contextuallycompatible tables
 - Header-cell & data-cell semantics (incl. units) → disambiguate contents of on-the-fly fused tables
 - Reliability scores → filter out unreliable tables from the search, ranking and fusion processes

Discovery of Scientific Tables

prototype search application and user interface

Enter list of search terms / Upload file		TABLE ID	TIME OF PUBLICATION	RELIABILITY	HEADERS								
coronavirus		FUSED_Table_9757773	2022-05-26		Vaccine	Target	Vector/Adjuvant	Type of	Stage	Participants	Country	References	Institution
1apped to Q57751738: Coronavirus					4			Study					
country		PMC7350246_Table_5	2020-06-17	-	Vaccine	Target	Vector/Adjuvant	Type of	f Study	Stage Parti	icipants	Country Re	ferences
vaccine													
lapped to Q87719492: COVID-19 vaccine		PMC7426550_Table_1	2020-07-31		Disease	Views	Main Manifostatio	on(c) He	ocnitalizati	on Antiviral	Thorapy	Vacatas	aco Estality (%)
Searching for tabular objects of the for	n: 2		1	. Interfac	ce for ta	able	-basec	l ser	nan	itic se	arch	quer	es
Searching for tabular objects of the for	n:		1	. Interfa	ce for ta	able	-basec	l ser	nan	itic se	arch	quer	es
Searching for tabular objects of the form	m: raints:			. Interface Iist of items	ce for ta query ter in knowle	able rms, s	-basec semantic base) 's	ser resol	nan Iutior	itic se n of que	arch ery ter	quer ms (m t table	es ap to
Searching for tabular objects of the form Q57751738 Q6256 Q87719492 ▼ Result Constr	m: raints: ust have caption? 2.	Return All types of tables ~	3. Ti	. Interface Iist of items	ce for ta query ter in knowle	able rms, s edge	-basec semantic base), 's	ser resol ketch	man lutior 1' des	n tic se n of que sired res	arch ery ter sultan	quer ms (m t table	es ap to
Searching for tabular objects of the form Q57751738 Q6256 Q87719492	m: raints: ust have caption? 2.	Return All types of tables ~ Constrain the type of returned tables	з. ті 2	. Interface Iist of items . Advance	ce for ta query ter in knowle ced sea	able rms, s edge arch	-basec semantic base), 's feature	l ser resol sketch	man lutior 1' des	n tic se n of que sired res	arch ery ter sultan	quer ms (m t table	es ap to
Searching for tabular objects of the form	m: raints: ust have caption? 2.	Return All types of tables ~ Constrain the type of returned tables 5 1 ~ 5 Min # of cast bios be described.	3. Ti 2	. Interface I list of items Advance Multip	ce for ta query ter in knowle ced sea ole contex	able rms, s edge arch	-basec semantic base), 's feature constrain	i ser resol sketch es nts an	man lutior ı' des d rar	n tic se n of que sired res nking pr	arch ery ter sultan	quer ms (m t table nces	es ap to
Searching for tabular objects of the form	m: Paints: Ist have caption? 2. (Instraints	Return All types of tables ~ Constrain the type of returned tables	3. Ti 2	. Interface I ist of items Advance Multip	ce for ta query ter in knowle ced sea ole contex e respo	able ms, s edge arch tual	e-basec semantic base), 's feature constrain	d ser resol ketch es nts an arch	man lutior i' des d rar que	ntic se n of que sired res nking pr	arch ery ter sultan	quer ms (m t table nces	es ap to
Searching for tabular objects of the form	m: raints: ust have caption? 2. nstraints	Return All types of tables Constrain the type of returned tables 1 Min.# of matching header cells Min.# 0.25 <= Rel_PROV <=	1 3. Ti 2 rows in	. Interface I ist of items Advance Multip S. Sample I ranke	ce for ta query ter in knowle ced sea ole contex e respo ed list of o	able rms, s edge arch ktual onse	-basec semantic base), 's feature constrain to sea al and or	d ser resol ketch es nts an arch	man lutior i' des d rar que fly fu	ntic se n of que sired res nking pr ery sed tab	arch ery ter sultan refere	quer ms (m t table nces	es ap to
Searching for tabular objects of the form	m: raints: ust have caption? 2. nstraints unstraints	Return All types of tables > Constrain the type of returned tables 1 1 > 5 Min.# of matching header cells Min.# of matching header cells Min.# 0.25 <= Rel_PROV <=	3. Ti 2 rows in 3	. Interface I list of items Advance Multip S. Sample ranke e explo	ce for ta query ter in knowle ced sea ole contex e respo ed list of o re conten	able rms, s edge arch ktual onse origina	-basec semantic base), 's feature constrain to sea al and or provena	d ser resol ketch es nts an arch n-the-	man lutior i' des d rar que fly fu of inc	ntic se n of que sired res nking pr ery sed tab dividual	arch ery ter sultan refere oles resul	quer ms (m t table nces t tables	es ap to
Searching for tabular objects of the form	m: raints: ust have caption? 2. Instraints Instraints Instraints Instraints	Return All types of tables Constrain the type of returned tables 1 0.25 <= Rel_PROV <=	1 3. Ti rows in 3	. Interface I list of items Advance Multip S. Sample ranke explo highlig	ce for ta query ter in knowle ced sea ole contex e respo ed list of o re conten ghted hea	able rms, s edge arch ktual onse origina ader	-basec semantic base), 's feature constrain to sea al and on provena cells dep	d ser resol ketch es nts an arch n-the- ance oict se	man lutior l' des d rar que fly fu of inc	ntic se n of que sired res nking pr ery sed tab dividual tic mate	arch ery ter sultan refere oles resul ch	quer ms (m t table nces t tables	es ap to

Discovery of Scientific Tables

table discovery engine: system-centric view

Any search request gets transformed into a query plan composed of one or more of 'primitive' operators. Each operator is then translated into an ad hoc query clause as part of incremental SPARQL query formulation.

Conclusions and Future Work

- Tables in scientific documents contain important information
- Knowledge discovery from scientific tables is as vital as from text
- We implemented preliminary prototype systems for constructing and searching over a knowledge graph of scientific tables.
- Novel aspects: Two-stage table interpretation, table-based semantic search, on-the-fly table generation

Table Characterization (over 120K tables)	High precision. Future : Improve recall for certain labels by including additional rules or exploring development of supervised algorithms.
Semantic Interpretation	Performs well when our system discovers appropriate entity in its ranked candidate set but fails otherwise. Future : Further adapt candidate search to idiomatic strings; Techniques to distinguish between literals and entity strings.
Tabular Data Discovery (only strict header match)	Low mean average precision, but high recall. Future : Enhanced semantic matching and information fusion across tables.

Acknowledgements

This research was based on work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via [2021-21022600004]. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government.