
Auton Agent Multi-Agent Syst (2007) 14:187–206
DOI 10.1007/s10458-006-0013-z

Modeling conversation policies using permissions
and obligations

Lalana Kagal · Tim Finin

Published online: 23 August 2006
Springer Science+Business Media, LLC 2006

Abstract Both conversation specifications and policies are required to facilitate
effective agent communication. Specifications provide the order in which speech acts
can occur in a meaningful conversation, whereas policies restrict the specifications
that can be used in a certain conversation based on the sender, receiver, messages
exchanged thus far, content, and other context. We propose that positive/negative per-
missions and obligations be used to model conversation specifications and policies.
We also propose the use of ontologies to categorize speech acts such that high level
policies can be defined without going into specifics of the speech acts. This approach is
independent of the syntax and semantics of the communication language and can be
used for different agent communication languages. Our policy based framework can
help in agent communication in three ways: (i) to filter inappropriate messages, (ii)
to help an agent to decide which speech act to use next, and (iii) to prevent an agent
from sending inappropriate messages. Our work differs from most existing research
on communication policies because it is not tightly coupled to any domain informa-
tion such as the mental states of agents or specific communicative acts. Contributions
of this work include: (i) an extensible framework that is applicable to varied domain
knowledge and different agent communication languages, and (ii) the declarative
representation of conversation specifications and policies in terms of permitted and
obligated speech acts.

Keywords Agent communication · Conversation policy · Conversation
specifications · Permissions · Obligations · Speech act ontology ·
Ontology languages

L. Kagal (B)
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
e-mail: lkagal@csail.mit.edu

T. Finin
University of Maryland, Baltimore County, Baltimore, MD 21250, USA
e-mail: finin@cs.umbc.edu

188 Auton Agent Multi-Agent Syst (2007) 14:187–206

1 Introduction

Multi-agent systems require that agents interact and collaborate to satisfy their goals.
Agent communication plays a very important part in these systems. A conversation
can be defined as a sequence of communicative acts exchanged between interacting
agents towards satisfying a particular goal [10, 12, 23]. Most rich agent communica-
tion languages have protocol specifications that require meaningful conversations to
adhere to various structural constraints. For example, if one agent sends a PROPOSE
message to another, meaningful responses are restricted to ACCEPT-PROPOSAL
or REJECT-PROPOSAL messages. However, these conversation specifications or
interaction protocols solely define the order in which communicative acts can be per-
formed and do not take into consideration the content of the message, the attributes
of the sender or the recipient or any other context. Similar to Phillips and Link [23],
we propose that along with conversation specifications, agents should use policies that
define constraints over different aspects of the conversation in order to provide more
flexible control over agent communication. This also allows the communication mod-
ules of agents to be less dependent on the communication protocols permitting the
modification of conversation specifications and policies without requiring the modules
to be changed.

We differentiate between conversation specifications that define the order of com-
municative/speech acts and policies that affect how conversation specifications are
used and how conversations are carried out. Conversation specifications, or interac-
tion protocols as they are known within Foundation for Intelligent Physical Agents
(FIPA) [9], define the order in which communicative acts can occur within a conversa-
tion. For example, on receiving a REQUEST communicative act, an agent can reply
with REFUSE or AGREE [9]. On the other hand, we define conversation policies as
restrictions on the conversation based on the content of the communicative act, the
attributes of the sender and recipient including their beliefs, desires and intentions
and other context like the current team they belong to, the time of day, and their
location. For example, a conversation policy would oblige an agent to provide an
evasive answer to a QUERY about a political issue in an office setting but permit it to
provide a more truthful answer in a social setting. However, we also consider other
policies such as privacy, work, and social that may establish additional restrictions and
limitations on the communicative capabilities of the agent. Consider an agent that has
a privacy policy prohibiting it from disclosing the social security number (SSN) of the
user. Though the conversation specification provides the set of communicative acts
the agent can use to reply to a QUERY, its privacy policy prohibits it from responding
to any query that asks about the user’s SSN.

In this paper, we describe our preliminary work in modeling conversation specifi-
cations and policies as positive/negative permissions and obligations. We also discuss
how ontologies can help in developing high level policies that are independent of
the specific agent communication language being used. We describe mechanisms for
resolving conflicts between specifications and policies that enable an agent to decide
what communicative act to perform next within a conversation. Our work differs from
most previous research in communication policies in that it is not tied to a specific
model of agent mental states, a specific agent communication languages, nor to a spe-
cific set of communicative acts [8, 12, 27, 28]. Rather, we provide an extensible frame-
work that can be used to develop conversation protocols and policies over different
kinds of domain-specific knowledge and different agent communication languages.

Auton Agent Multi-Agent Syst (2007) 14:187–206 189

As an example, we describe the issue with the Medicare prescription drug bill in
the United States [2] in terms of agent communication. According to the CNN arti-
cle, Rick Foster, chief actuary for the Centers for Medicare and Medicaid Services,
stated that he was asked not to answer questions from Democratic members of the
United States Congress regarding the cost of the bill before a series of key votes sum-
mer of 2003. We describe how this would have worked within a multi-agent system
driven by our conversation specifications and policies. Agents, including Foster, have
a conversation specification that states that in response to a QUERY, the agent is
permitted to use either AGREE followed by an INFORM/FAILURE or REFUSE
or ignore the message. Their work policy states that all state employees are obliged
to answer queries from members of Congress. However, agency chief Thomas Scully,
has enforced a temporary policy of the highest priority on Foster stating that he is
obliged not to answer queries from congressional Democrats regarding the estimated
cost of the Medicare prescription drug bill until the end of summer. A sanction is
associated with the failure to fulfill this obligation that states that Foster could lose
his job.

Whenever Foster receives a message, he reasons over his conversation specifica-
tions and policies to figure out how he should respond. When he receives a QUERY
from a congressional Democrat asking about the estimated cost of the bill he knows
from the conversation specifications that the correct response is AGREE or REFUSE.
As his work policy obliges him to answer all queries from congressional members,
under normal circumstances Foster would agree. However, as Scully’s temporary pol-
icy overrides the work policy and because of the associated sanction, Foster follows
Scully’s policy and REFUSEs the query. Scully’s policy could also include rules oblig-
ing Foster to send an evasive reply to the congressional Democrats instead of refusing
to answer.

2 Framework

A communicative or speech act is defined in terms of the set of actions that are
implied when an agent makes an utterance. Generally, there are three actions that
can be identified: (i) locution, which is the action of uttering the speech act, (ii)
illocution, which deals with conveying the intentions of the sender, and (iii) perlocu-
tion, which are actions that occur due to the illocution. Conversation specifications
define the sequence in which communicative acts can be performed in order for
agents to have a meaningful dialog. We model them as a set of permissions and
obligations on speech acts based on the communicative acts exchanged thus far. We
believe that conversation specifications should be very simple and only provide a
list of possible speech acts that can be performed at a given time. This list of pos-
sible acts is then restricted by the policies acting on the agent. However, within
our framework it is also possible to develop complex specifications that resemble
policies.

Though our policy language [13, 14] is defined in Web Ontology Language (OWL)
[31], an ontology language used to describe vocabularies on the web, for concise-
ness and ease of explanation, we use expressions in predicate logic to describe
speech acts, positive and negative deontic objects, and policies. Variables begin with
upper case alphabets, instances and property names begin with lower case
alphabets.

190 Auton Agent Multi-Agent Syst (2007) 14:187–206

• A communicative or speech act is performed by an agent to achieve a certain
intention. A speech act is usually assumed to have two main components; the
performative and the proposition.
We describe a communicative act as a tuple

performative(Sender, Receiver, Proposition)

For example, a QUERY-REF speech act sent from agent X to agent Y asking
agent Y what he believes the values of the included proposition to be

query-ref(agent X, agent Y, estimatedCostOfBill(Cost))

• Domain actions are actions that an agent can perform and are described by the
following tuple

action(Actor, Target, PreCondition, Effect)

The printAPage domain action can be described as

printAPage(X, hpLaitPrinter,

(numPages(hpLaitPrinter, N), N>0),

(numPages(hpLaitPrinter, N-1)))

• Deontic concepts of permissions, prohibitions (negative permissions), obligations
and dispensations (waiver from an obligation) are used to describe the behavior
of the agent. These concepts are represented by the following tuple

deontic(Actor, Action, [Constraint],

[StartingConstraint], [EndingConstraint], [ObligedTo],

[Sanction])

Consider the permission of an agent to perform an AGREE speech act to
any agent regarding the estimated cost of the Medicare prescription bill. This is
considered a policy as it includes domain knowledge of the proposition used to
model the cost of the bill.

permission(X, agree(X, Y, estimatedCostOfBill(Cost)))

Permissions and prohibitions are used to describe positive/negative authori-
zations whereas obligations and dispensations describe positive/negative respon-
sibilities. All these objects could be represented in terms of a single concept, either
permission or obligation, but we use different terms for simplicity.

Associated with each deontic object is either a constraint field, which defines
the conditions under which the deontic object is applicable, or startingConstraint
and endingConstraint that together define the window within which the deontic
object is applicable. These constraints could also include conditions on time pro-
viding time validity to the deontic object. Obligations and dispensations have an
additional field, obligedTo, which describes whom the agent is obliged. Another
property called sanctions is associated with both obligations and prohibitions and
is used to describe the penalties imposed on the agent if it fails to fulfill the obli-
gation or violates the prohibition. Consider a policy of a graduate assistant that
obliges him to turn in a weekly status report to his advisor or risk missing a pay
check.

Auton Agent Multi-Agent Syst (2007) 14:187–206 191

obligation(X, inform(X, Y, weeklyStatus(X, W, Status)),

(advisor(Y, X), endOfWeek(W)), Y, missPayCheck (X, W))

A permission allows an agent to perform the associated action as long as the
constraint is true or while the startingConstraint is true and until the endingCon-
straint is true.1 A prohibition prevents an agent from performing the associated
action as long as the constraint is true or while the startingConstraint is true and
until the endingConstraint is true. An agent must perform an obligation before the
endingConstraint is true and while the startingConstraint is true. An agent is no
longer obliged to fulfill an obligation if there is an associated dispensation freeing
the agent from the obligation.

In order to impose a sanction it is important to reason about violations. An
agent is in violation of a prohibition if it performs the prohibited action while the
constraint on the prohibition is true or within the window defined by the starting
Constraint and endingConstraint. Similarly an agent is in violation of its obligation
if it fails to complete it before the endingConstraint is true. In order to simplify
reasoning over violations we make the following assumptions: (i) the constraints
are conditions that are true at some point of time, (ii) the endingConstraint will be
true after the startingConstraint is true, and (iii) obligations do not exist after the
endingConstraint is true [6].

• Boolean combinations of actions including AND (logical conjunction), OR (log-
ical disjunction), and XOR (exclusive disjunction or exclusive OR) are possible
within deontic concepts.

An agent is permitted to perform both an AGREE speech act as well as a
REFUSE speech act to any agent regarding the estimated cost of the Medicare
prescription bill.

permission(X, AND(agree(X,Y, estimatedCostOfBill(Cost)),

refuse(X, Y, estimatedCostOfBill(Cost))))

• In our framework conflicts can occur between permissions and prohibitions, obli-
gations and prohibitions, and obligations and dispensations. In order to resolve
conflicts, our framework includes meta-policies that are used to correctly interpret
policies. There are two kinds of meta-policies namely setting the modality prece-
dence (negative over positive or vice versa) or stating the priority between rules
within a policy or between policies [22].

In a multi-policy environment, it is possible to state that one policy overrides
another. For example, it is possible to say that in case of conflict the CS depart-
ment policy always overrides the Lait lab policy. As another example, consider
the CS department policy. Students are prohibited from using the faculty printer
but research assistants are permitted to. There is a potential conflict if a student
is a research assistant and needs to use the faculty printer. This can be solved by
setting the priority between the rules and stating that the permission overrides the
prohibition.

rule1 : prohibition(X, print(X, facultyPrinter),

student(X), _)

1 Though startingConstraint and endingConstraint can be combined into a single constraint, we have
separated them for pragmatic reasons.

192 Auton Agent Multi-Agent Syst (2007) 14:187–206

rule2 : permission(X, print(X, facultyPrinter),

researchAssistant(X))

overrides(rule2, rule1)

Our approach is based on statements that one policy has priority over or dom-
inates another and within a policy that one rule dominates another. The assertions
produce a priority graph over policies and, for each policy, a priority graph for
policy rules. In such a scheme we have to worry about two issues: the presence
of cycles in the priority graph and of having only a partial ordering when a total
ordering is desired. The first problem is a serious one can be avoided by analyz-
ing the priority graphs to detect cycles and reporting any found as “bugs” to be
corrected by the policy authors. Whether the second issue is a problem or not is
a design issue. We propose to induce a possible total ordering, if necessary, in the
priority graph for policies and for rules within a policy.

If instead of priorities, modality precedence is used, then when a conflict
occurs the rule with the preferred modality overrides the other. For example, if
positive modality is preferred then in case of conflict, permissions and obligations
will override prohibitions and obligations will override dispensations. The conflict
in the CS department policy in the earlier example can also be resolved if positive
modality is given precedence.

precedence(positive-modality)

• Our framework allows the default behavior of a policy to be set such that all ac-
tions being controlled by the policy are permitted if not explicitly prohibited by
the policy, prohibited if not explicitly permitted by the policy, or require explicit
permissions and prohibitions.

default-behavior(implicitpermexplicitproh)

• We also use some additional expressions to describe the sequence of message that
have been exchanged so far in an actual dialog.

– received(M): states that a message, M, was received.
– rec-notrespondedto(M): states that a message, M, was received but no response

has been sent as yet.
– rec-respondedto(M): states that a message, M, was received and a response

has been sent.
– sent(M): states that a message, M, was sent.
– incomplete-sent(M): states that a message, M, was sent, but another message(s)

is required to complete the conversation, e. g., if an agent sends an AGREE
as a response to a QUERY-REF, the agent is required to follow up with either
an INFORM or a FAILURE.

3 Conversation specifications

Using the semantics of the deontic objects and domain actions and the syntax of speech
acts, we can model conversation specifications in agent communication languages such
as Knowledge Query and Manipulation Language (KQML) [8, 18] or FIPA [9] as a
set of permissions and obligations on the sender or the receiver depending on the
performatives used thus far in the conversation.

Auton Agent Multi-Agent Syst (2007) 14:187–206 193

As examples, we describe one possible interpretation of the QUERY-REF specifi-
cation and proposed interaction in FIPA.

3.1 QUERY–REF Specification

• Speech acts used: QUERY-REF, REFUSE, AGREE, FAILURE, INFORM
• Sequence of messages: An agent sends a QUERY-REF message to another agent.

The latter can reply either with a REFUSE or an AGREE stating its intent to
either provide an answer or refuse to answer. Once an agent has sent an AGREE,
it is obliged to send an INFORM providing the information required.

– Every agent has the permission to perform a QUERY-REF performative

permission(X, query-ref(X, Y, Proposition))

In the above expression, the constraint field is left empty to specify that
there are no constraints on the performing of a QUERY-REF performative.

– On receiving a QUERY-REF, the recipient has the permission to REFUSE
the query or AGREE to provide the answer if the query has not already been
answered.

permission(Y, XOR(agree(Y, X, Proposition),

refuse(Y, X, Proposition))))

permission(Y, refuse(Y, X, Proposition),

rec-notrespondedto(query-ref(X,Y, Proposition)))]]

permission(Y, agree(Y, X, Proposition),

rec-notrespondedto(query-ref(X,Y, Proposition)))

Though the recipient has both permissions to start with, as soon as one
permission is used the other one becomes invalid because of the status of
the rec-notrespondedto predicate. The constraint ensures that the agent has
received a QUERY-REF speech act but has not sent a response to it as yet.
This allows the agent to either send a REFUSE or AGREE in reply to a
QUERY-REF but not both.

– Once an agent has accepted a QUERY-REF, it is obliged to answer to it
either with a FAILURE or with an INFORM and the agent is obligated to the
recipient of the agree message.

obligation(Y, XOR(failure(Y, X, Proposition),

inform(Y, X, Proposition)),

incomplete-sent(agree(Y, X, Proposition))).

Unlike the earlier permissions, the agent has only one obligation—the
obligation to either send a failure or an inform.

3.2 Propose Interaction Protocol

• Speech acts used: PROPOSE, REJECT-PROPOSAL, ACCEPT-PROPOSAL
• Sequence of messages: An agent sends a PROPOSAL message to another

agent. The recipient can either use the REJECT-PROPOSAL or the ACCEPT-
PROPOSAL.

194 Auton Agent Multi-Agent Syst (2007) 14:187–206

– Every agent has the permission to perform a PROPOSAL performative

permission(X, proposal(X, Y, Proposition))

– On receiving a PROPOSAL, the recipient has the permission to either reject
the proposal or accept it.

permission(Y, X or (accept-proposal(Y, X, Proposition),

reject-proposal(Y, X, Proposition)))

permission(Y, accept-proposal(Y, X, Proposition),

rec-notrespondedto(proposal(X,Y, Proposition)))

permission(Y, reject-proposal(Y, X, Proposition),

rec-notrespondedto(proposal(X,Y, Proposition)))

4 Policies

Policies such as conversation, social, and privacy add restrictions on the performa-
tives that can be used, the content of the speech the receiver, time of the message,
and other attributes of a dialog based on current attributes of the sender, receiver,
content and all other context of the conversation. Policies can be defined at two levels;
one that is independent of the syntax and semantics of the communication language
and the second that is tightly integrated with them. In the latter case, the policies use
the semantics of the performative and define constraints on how performatives can be
used and under what conditions. Though this may be true in the case of conversation
policies, we generally assume that policies such as privacy, and social norms define
restrictions at the higher level of abstraction that regulate the general behavior of the
agent. Whenever these policies deal with information flow between agents, they need
to be translated into lower level policies using the semantics of the communication
language. For example, an agent’s privacy policy might state that the SSN must not
be disclosed. This is irrespective of the agent communication language being used or
the specific performative. If FIPA is being used, the privacy policy could be translated
in our framework as ‘The agent is prohibited from sending an INFORM communi-
cative act to any agent when the content involves the SSN of the agent’. However,
if KQML is the language being used for communication, the semantics specify that
TELL is the only assertive performative that causes the agent to reveal its belief about
a proposition. In this case, the policy could translate to ‘The agent is prohibited from
sending a TELL communicative act to any agent when the content involves the SSN
of the agent’. Similarly, a social policy can specify that an agent should not be rude.
However, what it means to be rude and how it translates into speech acts and their
content depends on the application domain. The agent would have to ensure that the
effect of any speech act does not violate this social policy.

Following from the first example dealing with the Medicare bill, it is evident that
there could be several policies acting on an agent. This could lead to conflicts between
policies. Foster’s conversation specifications gave him the permission to reply to re-
quests, however, the agency head prohibited him from replying to queries about the
estimated cost of the Medicare bill. In Foster’s case, Scully’s policy would be enforced
if it was of higher priority than Foster’s other policies.

Auton Agent Multi-Agent Syst (2007) 14:187–206 195

5 Speech act ontology

As a first step towards automatic translation of high level policies to speech act spe-
cific policies, we suggest that a general ontology be defined for different kinds of the
speech acts. An ontology is a representation of the knowledge domain—in this case
of the speech acts, their properties, and their relationships. Having an ontological
description of speech acts allows policies to be defined in terms of the high level onto-
logical concepts and properties and not in terms of the actual speech acts. This helps
in further decoupling policies from the agent communication language and allows for
greater interoperability. Figure 1 illustrates a simple and partial ontology for speech
acts.

Speech Act

AnswerDisclose Question

Positive Negative

LEGEND

SubClass

Class

Fig. 1 A simple and partial ontology of generalized speech acts provides a framework to accommo-
date numerous specific agent communication languages

Speech Act

Answer

Positive Negative

Disclose Question

LEGEND

SubClass

Class

Inform

Query

Query-if Query-ref

CFP Request

Request-when
Request-
whenever

Not
Understood

Agree Confirm

Accept-
Proposal

Cancel Refuse

FailureReject-
Proposal

Fig. 2 Our simple “upper model” ontology for speech acts can be extended to include the major
communicative acts specified by the FIPA ACL

196 Auton Agent Multi-Agent Syst (2007) 14:187–206

The simple speech act ontology act can be extended to express speech acts in differ-
ent agent communication languages. Figure 2 shows how the speech act ontology can
be extended to describe FIPA speech acts.

High level policies can be defined in terms of categories or classes of speech acts
instead of individual speech acts. These policies will automatically apply to all speech
acts that belong to the specified categories. This kind of policy representation and
reasoning is supported by our OWL-based policy language [13].

As example, consider a previously described privacy policy that states that the SSN
number should not be disclosed. If the use of disclose speech acts is prohibited, the
agent is not able to let any one know what the SSN number is. On the other hand,
answer speech acts allow the agent to respond positively or negatively to questions
about the SSN numbers. These responses could lead to someone figuring out what the
SSN number is by asking enough questions. So this privacy policy can be defined by
adding a prohibition to all disclose and answer type of speech acts in the ontology.

prohibition(X, disclose(X, Y, ssn(X)), _, _)

prohibition(X, answer(X, Y, ssn(X)), _, _)

The above policy works for both FIPA (INFORM is a disclose type of speech act)
and KQML (TELL is a disclose type of speech act) agent communication languages.

As another example, consider a permission described earlier. An agent is permitted
to perform an AGREE speech act to any agent regarding the estimated cost of the
Medicare prescription bill. This can be restated in terms of the ontology as an agent
being permitted to use a positive answer type of speech act when asked by any agent
about the estimated cost of the Medicare prescription bill.

permission(X, positive-answer(X, Y, estimatedCostOfBill

(Cost)))

This policy will apply to any agent communication language that can be described in
the above speech act ontology and not just FIPA.

6 Example

We now discuss the Medicare bill example in terms of our approach. We assume that
the agent communication language used is FIPA and both Foster and Scully share
the same conversation specifications. These specifications include the QUERY-REF
specification described in Sect. 3. We also assume that the FIPA speech act ontology
is being used to define policies.

• Foster has a work conversation policy that specifies that he should respond to
all queries from members of Congress. This is defined as two obligations: (i) an
obligation to reply positively to all query type of speech acts from members of
Congress, and (ii) and an obligation to disclose required information if they have
answered positively to a request.

Auton Agent Multi-Agent Syst (2007) 14:187–206 197

ConvPolicy :

obligation(X, positive-answer(X, Y, Proposition),

(rec-notrespondedto(query(Y, X, Proposition)),

congressionalMember(Y)),

X, _)

obligation(X, disclose(X, Y, Proposition),

(sent-incomplete(positive-answer (X, Y, Proposition)),

congressionalMember(Y)),

X, _)

• Scully decides that Foster should not answer any queries from congressional De-
mocrats that ask about the estimated cost of the Medicare prescription bill. This
is a high level policy and could be translated based on the syntax and semantics
the FIPA ACL in two ways:

1. As an obligation to provide a negative answer to all queries about the esti-
mated cost of the bill from congressional Democrats.

TempPolicy:

obligation(X, negative-answer(X, Y, estimated CostOfBill(Cost)),

(rec-notrespondedto(query(Y, X, estimated CostOfBill(Cost))),

congressionalDemocrat(Y)),

scully, loseJob(foster))

2. As a prohibition from disclosing information about the estimated cost of the
bill to any congressional Democrat.

TempPolicy:

prohibition(X, disclose(X, Y, estimated CostOfBill(Cost)),

(congressionalDemocrat(Y)), _)

We discuss the rest of the example using both choices.
• Scully gives his policy higher priority than the existing conversation policy.

overrides(TempPolicy, ConvPolicy)

• At some point of time, a congressional Democrat, Walter, sends a query to Foster
asking about the estimated cost of Medicare bill.

query-ref(walter, foster, estimatedCostOfBill(Cost))

• On receiving this speech act, Foster looks up the conversation specifications for
QUERY-REF, and finds that he can respond either with an AGREE or REFUSE.

• Foster checks his work conversation policy, which states that he is obliged to
answer all query kind of speech acts (both QUERY-IF and QUERY-REF speech
acts) from congressional Democrats with a positive answer (AGREE) and then
send the required information.

• Foster then reasons over Scully’s policy that is of higher priority than his work
conversation policy. If Scully’s policy states that Foster is obliged to answer nega-
tively to all queries from congressional Democrats about the estimated cost of the

198 Auton Agent Multi-Agent Syst (2007) 14:187–206

bill, then Scully is forced to send a REFUSE to Walter as by violating the policy
he could lose his job.

refuse(foster, walter, estimatedCostOfBill(Cost))

On the other hand, if Scully’s policy states that Foster is not permitted to disclose
any information to congressional Democrats about the estimated cost of the bill,
then Foster can act in two ways and still comply with Scully’s policy. He can either
send a REFUSE to Walter or he can send an AGREE to Walter but then not
follow up with an INFORM. The second option is a common social phenomenon
where people commit to performing certain tasks, which they would prefer to turn
down, just because they do not want to say no. However, they do not actually fulfill
their commitments and either make an excuse when asked or hope the requester
has forgotten. Using this option allows Foster to maintain good relations with
Walter and still conform to Scully’s policy. However, he violates his work policy
which states that after sending a positive answer he is obliged to send the required
information.

agree(foster, walter, estimatedCostOfBill(Cost))

Foster does not send:
inform(foster, walter, estimatedCostOfBill(Cost))

7 Specification language

Though we use an abstract syntax to describe the examples in this paper for ease of
explanation and for conciseness, our framework has actually been tested in Rei [13,
14], a policy language described in OWL [31]. OWL is a vocabulary extension of RDF
(Resource Description Framework) [30], which is a language for asserting facts about
resources and their properties. OWL can be used to describe ontologies as well as
relationships between ontologies. Rei extends OWL with variables in order to support
rule-based policies. Rei policies are defined over Rei ontologies in OWL and domain
knowledge express in RDF. This allows them to take advantage of the growing use of
RDF and OWL as an interlingua in which to publish ontologies and data on the web.
The policies themselves are expressed in OWL that allows the policies to be mapped
into any of several reasoning engines that can then be used to reason over the policies
and the ontologies and data they reference.

Figure 3 shows part of the Rei ontology.
Our policy language is modeled on deontic concepts of permissions, prohibitions,

obligations and dispensations [14, 15]. We believe that most policies can be expressed
as what an entity can/cannot do and what it should/should not do in terms of ac-
tions, services, and conversations, making our language capable of describing a large
variety of policies ranging from security policies to conversation and behavior pol-
icies. The policy language has some domain independent ontologies but will also
require specific domain ontologies. The former includes concepts for permissions,
obligations, actions, speech acts, etc. The latter is a set of ontologies, used by the enti-
ties in the system, which defines domain classes and properties associated with the
classes.

As an example, consider a policy that allows all members of congress to perform
printing actions on a certain resource. The Rei namespaces include ‘entity’, ‘action’,

Auton Agent Multi-Agent Syst (2007) 14:187–206 199

LEGEND

Agent

Constraint

Policy

Granting

Simple Boolean

subj, pred, obj

Resource

context

grants

to
DeonticObject

deontic

requirement

constraint
Action

Domain Action

Speech Act

precond, effect

actor

actor

action

SubClass

Class property

Fig. 3 Rei’s ontology defines concepts and relations that can be used to express policies over actions

‘constraint’, ‘metapolicy’, and ‘deontic’. The members of congress is defined in the
‘gov’ namespace whereas the printing action ontology is in the ‘abc’ namespace.

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE rdf:RDF [

<!ENTITY constraint ’http://rei.umbc.edu/

ReiConstraint.owl#’>

<!ENTITY deontic ’http://rei.umbc.edu/

ReiDeontic.owl#’>

<!ENTITY metapolicy ’http://rei.umbc.edu/

ReiMetaPolicy.owl#’>

<!ENTITY entity ’http://rei.umbc.edu/

ReiEntity.owl#’>

<!ENTITY action ’http://rei.umbc.edu/

ReiAction.owl#’>

<!ENTITY gov ’http://example.org/gov.rdf#’>

<!ENTITY abc ’http://example.org/abc.owl#’>

]>

<entity:Variable rdf:ID="Actor"/>

<entity:Variable rdf:ID="Action"/>

200 Auton Agent Multi-Agent Syst (2007) 14:187–206

<constraint:SimpleConstraint rdf:ID="IsMemberOfCongress"

constraint:subject="#Actor"

constraint:predicate="&rdf;type"

constraint:object="&gov; CongressMember"/>

<constraint:SimpleConstraint rdf:ID="IsPrintingAction"

constraint:subject="#Action"

constraint:predicate="&rdf;type"

constraint:object="&abc; Printing"/>

<constraint:SimpleConstraint rdf:ID="OnHPPrinter"

constraint:subject="#Action"

constraint:predicate=" &action;target"

constraint:object=" &abc; AHPPrinter"/>

<constraint:And rdf:ID="ActionConstraint">

<constraint:first rdf:resource=" # IsPrintingAction"/>

<constraint:second rdf:resource=" # OnHPPrinter"/>

</constraint:And>

<constraint:And rdf:ID="MainConstraint">

<constraint:first rdf:resource="#IsMemberOfCongress"/>

<constraint:second rdf:resource="#ActionConstraint"/>

</constraint:And>

<deontic:Permission rdf:ID="Perm_MemberCongPrinting">

<deontic:actor rdf:resource="#Actor"/>

<deontic:action rdf:resource="#Action"/>

<deontic:constraint rdf:resource="MainConstraint"/>

</deontic:Permission>

The policy language includes two constructs for specifying meta-policies that are
invoked to resolve conflicts; setting the modality precedence (negative over positive
or vice versa) or stating the priority between policies [19, 20]. When modality prece-
dences are used to resolve a conflict, the rule of the preferred modality overrides the
other. As an example of using priority consider a meta policy that states that in case
of conflict the Federal policy always overrides the State policy.

<metapolicy:PolicyPriority rdf:ID="PriorityFederalState">

<metapolicy:policyOfGreaterPriority

rdf:resource="&gov; Federal"/>

<metapolicy:policyOfLesserPriority

rdf:resource="&gov; MAState"/>

</metapolicy:PolicyPriority>

Auton Agent Multi-Agent Syst (2007) 14:187–206 201

Another important aspect of the framework is that it models speech acts such as
delegation, revocation, request and cancel that can be used to dynamically modify
existing policies [13, 14]. Delegations and revocations cause the permissions of agents
to be modified, whereas requests and cancels affect the obligations. A delegation
speech act, if valid, causes a permission to be created. A revocation speech act nulli-
fies an existing permission (whether policy based or delegation based) of an agent. An
agent can request another agent for a permission or to perform an action on its behalf.
The former if accepted causes a delegation and the latter leads to an obligation. An
agent can also cancel any previously made request causing a dispensation.

Rei also provides two forms of analysis : use-cases (also known as test-case analy-
sis) and what-if analysis (also known as regression testing) [13, 14]. The policy engine
includes analysis tools in the form of a Java interface that can be executed by pol-
icy engineers to check the consistency and validity of the policies and ontologies. In
use-case management, the policy maker can specify a set of use cases that are verified
against a set of policies. If the policies and ontologies are consistent, the use case will
be true. If the use case is false, the policy maker is aware that there is an error in
specifications of the policies. On the other hand, what-if analysis is used to help the
policy maker decide what changes to make to the policy or ontology. For example, if
Rule 1 no longer applies, will Walter still have the permission to print to the HPPrinter
is modeled as follows:

<analysis:WhatIfIRemoveRule rdf:ID="RemovingRule1">

<analysis:policy rdf:resource="&govpolicy; PrintPolicy"/>

<analysis:granting rdf:resource="&govpolicy; Rule1"/>

</analysis:WhatIfIRemoveRule>

<analysis:PermissionUseCase rdf:ID="CanWalterPrint">

<analysis:actor rdf:resource="&gov; Walter"/>

<analysis:action rdf:resource="&abc; Printing"/>

<analysis:target rdf:resource="&abc; HPPrinter"/>

</analysis:PermissionUseCase>

8 Policy reasoning

Rei has a reasoning engine in Flora [32], an extension of XSB2 based on F-logic [16].
The engine is built over F-OWL [34], a reasoner for OWL and RDF, enabling it to
understand and reason over policies and specifications defined in both OWL and
RDFs. Though the framework includes boolean combinations of actions within deon-
tic concepts, the policy engine does not currently support this. The engine reasons
over policies, meta policies, history of speech acts, and domain information to answer
the following types of questions :

• What are the current permissions of X?
The engine looks for all those permissions whose actor property unifies with X

and whose constraints are satisfied. If there is a conflicting prohibition or revoca-
tion, the engine uses the meta policies to decide whether the permission overrides

2 XSB: http://xsb.sourceforge.net/

202 Auton Agent Multi-Agent Syst (2007) 14:187–206

the prohibition/revocation or vice versa. If the latter case is true, the permission
is not valid. If the permission is valid, the policy engine checks the preconditions
associated with the action over which the permission is specified. The permission
is returned only if the precondition is satisfied.

The engine also looks for valid delegations from any agent to X. The delega-
tion is valid if the delegatee has the permission to make the delegation or has been
delegated the permission to make the delegation. The entire delegation chain is
checked by policy engine. At every level, the engine also checks that there is no
conflicting prohibition or revocation.

• What are the current obligations of Y?
The engine locates all obligations whose actor property unifies with Y and

whose startingConstraint is satisfied but whose endingConstraint is false. The
engine ensures that there is no conflicting dispensation.

• Does X have the permission to perform action A or speech act S?
This is similar to the first case, but in this case, the policy engine also checks

the action property of the permission and verifies that it unifies with A or S.
• Does X have any permissions on a resource R?

This is similar to the first case, but the policy engine also tries to unify the
target property of the action associated with the permission with R.

• If policy P no longer applies, does agent X still retain the permission to use the
QUERY speech act for Proposition P?

This is part of the policy analysis provided by Rei. The policy engine deletes
P but stores it in a temporary list. It then tries to verify that X has the permission
to use QUERY speech act over P. It returns the answer and then restores P.

We envision that the reasoning engine will be used together with domain knowl-
edge such as the mental state of the agents, the history of the speech acts performed
and other context by either a planning component or a workflow component to enable
enforcement of policies over agent communication.

Using the policy engine, our earlier example of the Medicare bill would be inferred
by Foster as

1. Received QUERY-REF from congressional Democrat enquiring about the cost
of the Medicare bill

2. What are my current obligations? I am obliged to AGREE to answer by my con-
versation work policy. I am also obliged to REFUSE the query that deal with the
cost of the bill by Scully’s policy.

3. As the meta policy states that Scully’s policy has the highest priority, I execute it
first.

4. So, I REFUSE the query.
5. However, do I have the permission to REFUSE a query? Yes, from the conver-

sation specifications.

9 Related work

Cohen and Levesque model the cognitive state of agents and base allowable speech
acts on the cognitive states of collaborating agents [3]. In his earlier work, Singh
provides semantics for speech acts in terms of beliefs and intentions of the agents

Auton Agent Multi-Agent Syst (2007) 14:187–206 203

[25, 26] and later work [29, 33] has focused on constraints imposed by the underlying
commitments that agents acquire. Fornara and Colombetti [11] describe an approach
based on the notion of social commitment. Labrou and Finin also describe the seman-
tics of KQML based on the beliefs and desires of agents [8, 18]. These models are
very tightly coupled to the mental states of agents and the semantics of the language
that makes it difficult to extend them to work in different environments and with
different agent communication languages. Pitt and Mamdani [24] have advocated an
approach in which the ACL semantics itself is defined by protocols which, in their
model, can involve domain actions and constraints. Cost et al. [4] develop a model
using colored petri nets that can take into account various contextual properties and
attributes. Greaves et al. define conversation policies as restrictions on how the agent
communication language is used [12]. Though the last approach is similar to ours, we
believe that conversation policies should be at a higher level of abstraction and should
not involve specifics of the communication language. We also propose that all policies
related to communication be translated into permissions and obligations that the agent
has on speech acts, which are supported by the communication language being used.

Dignum formally describes agent communication in terms of the effects of this com-
munication [5, 7]. He defines four speech acts for requesting, committing, asserting,
and declaring and describes their effects in terms of added permissions and obliga-
tions, and changes in beliefs and intentions of agents. Dignum uses these speech acts
and their effects to model communication protocols. This approach, though interest-
ing, is based on the beliefs and intentions of agents and has a different focus from
ours. It focusses on how commitments and permissions caused by communication
allow dynamic protocols to occur based on certain situations and goals of agents. On
the other hand, our main goal is to develop a domain and communication language
independent framework that can be used to represent pre-defined protocols using per-
missions and obligations and that uses policies to restrict how these protocols are used.

Kollingbaum and Norman discuss how normative agents estimate the effect of
adopting a new norm [17]. The current beliefs, norms and the selected plan are taken
into consideration while estimating the level of consistency that will be brought about
by the adopted norm. This work approaches the adoption of norms (or what we call
policies) under the assumption that the agent can decide whether or not to accept a
norm. Though this is advisable for contracting agents, we believe that certain policies
are enforced by the environment and must be accepted by the agent irrespective of
whether they cause conflicts or inconsistencies in the agent’s current state. Also, Kol-
lingbaum’s approach does not try to resolve conflicts, it only categorizes the type of
conflict in terms of consistency and uses this information to decide whether or not to
accept a new norm.

Broersen et al. use agent types to resolve conflicts between beliefs, obligations,
intentions and desires [1]. The agent types are determined by their characteristics
namely social (obligations overrule desires), selfish (desires overrule obligations),
realistic (beliefs overrule everything else) and simple-minded (intentions overrule
obligations and desires). In our framework, conflicts basically occur between permis-
sions and prohibitions, obligations and prohibitions, and obligations and dispensations.
In order to resolve conflicts, our framework includes meta-policies namely setting the
modality precedence (negative over positive or vice versa) or stating the priority
between rules within a policy or between policies. Broersen et al. approach conflict
resolution from the agent’s point of view whereas we try to resolve conflicts in policies
within the environment and not within agents themselves. We believe that Broersen’s

204 Auton Agent Multi-Agent Syst (2007) 14:187–206

approach or something similar could be used by agents after conflict resolution is
provided by our framework as the enforced policies may conflict with the agent’s
internal beliefs, desires, intentions, and policies.

10 Summary

In this paper, we do not try to define the semantics of a particular agent communica-
tion language or a set of performatives but provide a flexible model that can be used to
describe conversation specifications and policies over different agent communication
languages such as KQML and FIPA using different domain-specific information.
The framework allows specifications to be described as a sequence of permitted and
obligated speech acts. Policies are described at a high level of abstraction and are
translated into positive/negative permissions and obligations over speech acts using
the semantics of the agent communication language. A speech act ontology is used to
aid in this translation. The permissions and obligations in a policy establish restrictions
over attributes of the sender, receiver, content, and other context of the conversation
such as time, and location. As part of our future work, we are looking into automating
the translation process from high level policies to performative specific permissions
and obligations.

Though we described all our examples in an abstract syntax, our actual specification
language is in OWL. We have developed a reasoning engine for our language that
reasons over domain knowledge, speech act semantics, protocols, policies, and meta
policies to answer questions about the permissions and obligations of an agent with
respect to the actions and speech acts it can/should perform. We envision that this
reasoning engine will be coupled with the planning/workflow component of an agent
to provide policy enforcement over agent communication. We are also interested in
integrating into our framework work on commitments like that by Mallya et al. [21],
which involves reasoning over the status of obligations of agents.

References

1. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., & L. van der Torre. (2001). The BOID architec-
ture conflicts between beliefs, obligations, intentions and desire. In fifth international conference
on autonomous agents (pp. 9–16).

2. Cable News Network (CNN) (2004). Probe under way on medicare cost. http://www.cnn.com/
2004/ALLPOLITICS/ 03/17/medicare.investigation/

3. Cohen, P. R., Levesque, H. J. (1990). Intention is choice with commitment. In Artificial Intelligence,
42, 213–261.

4. Cost, R. S., Chen, Y., Finin, T., Labrou, Y., & Peng, Y. (2000). Using colored petri nets for conver-
sation modeling. In F. Dignum & M. Greaves (Eds.), Issues in agent communication (pp. 178–192)
Heidelberg, Germany: Springer-Verlag.

5. Dignum, F. (1997). Social interactions of autonomous agents: Private and global views on
communication. In ModelAge Workshop (pp. 103–122).

6. Dignum, F., Broersen, J., Dignum, V., & Meyer J.-J. (2004). Meeting the deadline: Why, when, and
how. In Third conference on formal aspects of agent-based systems (FAABS III) (April 26–27)
Greenbelt, Maryland, USA.

7. Dignum, F., & Weigand, H. (1995). Communication and deontic logic. In R. Wieringa & R.
Feenstra, (Eds.), Information systems, correctness and reusability, pp. (242–260). World Scientific.
Singapore.

Auton Agent Multi-Agent Syst (2007) 14:187–206 205

8. Finin, T., Fritzson, R., McKay, D., & McEntire, R. (1994). A semantics approach for kqml – a
general purpose communication language for software agents. In third international conference
on information and knowledge management (CIKM’94).

9. FIPA. Foundation for intelligent physical agents specifications. http://www.fipa.org.
10. Flores, R. A., & Kremer, R. C. (2002). A model for flexible composition of conversations: How a

simple conversation got so complicated. In M. P. Huget, F. Dignum & J. L. Koning (Eds.), Third
workshop on agent communication languages and conversation policies, First international joint
conference on autonomous agents and multiagent systems (AAMAS 2002). Bologna, Italy, July
15–19. 2002.

11. Fornara, N., & Colombetti, M. (2003) Defining interaction protocols using a commitment-based
agent communication language. In Second international joint conference on Autonomous agents
and multiagent systems (pp. 520–527). Melbourne, Australia. ACM Press.

12. Greaves, M. Holmback, H., & Bradshaw, J. (1999). What is a conversation policy? In F. Dignum &
M. Greaves (Eds.), Workshop on specifying and implementing conversation policies, Autonomous
Agents (AA 1999) (pp. 118–131). Heidelberg, Germany: Springer-Verlag.

13. Kagal, L. (2004). A policy-based approach to governing autonomous behavior in distributed
environments. PhD Dissertation, September.

14. Kagal, L., Finin, T., & Joshi, A. (2003). A policy based approach to security for the semantic web.
In second international semantic web conference (ISWC2003). September 2003.

15. Kagal, L., Finin, T., & Joshi, A. (2003). A policy language for pervasive systems. In IEEE interna-
tional workshop on policies for distributed systems and networks, Lake, Italy, June 2003.

16. Kifer, M., Lausen, G., & Wu, J. (1995). Logical foundations of object-oriented and frame-based
languages. Journal of ACM, 42(4), 741–843.

17. Kollingbaum, M. J., & Norman, T. J. (2003). Norm consistency in practical reasoning agents. In
Proceedings of international workshop on programming multiagent systems.

18. Labrou, Y., & Finin, T. (1994). A semantics approach for kqml – a general purpose communication
language for software agents. In Third international conference on information and knowledge
management (CIKM’94), November 1994.

19. Lupu, E. C., & Sloman, M. (1996). Towards a role based framework for distributed systems
management. Journal of Networks and Systemss Management. Plenum Press.

20. Lupu, E. C., & Sloman, M. (1999). Conflicts in policy-based distributed systems management.
IEEE transactions on software engineering, 25(6), 852–869.

21. Mallya, A. U., Yolum, P., & Singh, M. P. (2003). Resolving commitments among autonomous
agents. In Proceedings of International workshop on agent communication languages and conver-
sation policies (ACL).

22. Moffett, J., & Sloman, M. (1993). Policy conflict analysis in distributed systems management.
Journal of Organizational Computing, 4(1), 1–22.

23. Phillips, L. R., & Link, H. E. (2000). The role of conversation policy in carrying out agent
conversations. In F. Dignum & M. Greaves, (Eds.), Issues in agent communication, volume 1916
of Lecture Notes in Computer Science. Springer.

24. Pitt, J., & Mamdani, A. (1999). A protocol-based semantics for an agent communication language.
In Proceedings of the international joint conf. on artificial intelligence IJCAI (pp. 486–491).

25. Singh, M.P. (1991). Towards a formal theory of communication for multiagent systems. In Pro-
ceedings of International Joint Conference of Artificial Intelligence (IJCAI’91), Sydney, Australia,
August.

26. Singh, M.P. (1993). A semantics for speech acts. Annals of Mathematics and Artificial Intelligence,
8, 47–71.

27. Smith, I. A., & Cohen, P. R. (1996). Toward a semantics for an agent communication language
based on speech acts. In H. Shrobe & T. Senator (Eds.), Proceedings of the thirteenth national
conference on artificial intelligence, (vol. 2, p. 24–31). Menlo Park, California: AAAI Press.

28. Smith, I. A., Cohen, P. R., Bradshaw, J. M., Greaves, M., & Holmback, H. (1998). Designing
conversation policies using joint intention theory. In Proceedings of third international conference
on multi-agent systems (ICMAS98).

29. Venkatraman, M., & Singh, M. P. (1999). Verifying compliance with commitment protocols:
Enabling open web-based multiagent systems. Autonomous Agents and Multi-Agent Systems,
2(3), 217–236.

30. W3C. Resource Description Framework. Resource Description Framework (RDF) Model and
Syntax Specification, http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/, 1999.

31. W3C. Owl web ontology language. http://www.w3.org/2001/sw/WebOnt/, 2004.

206 Auton Agent Multi-Agent Syst (2007) 14:187–206

32. Yang, G., & Kifer, M. (2000). FLORA: Implementing an efficient DOOD system using a tabling
logic engine. In Proceedings of Computational Logic — CL-2000, number 1861 in Lecture Notes
in Artificial Intelligence (pp. 1078–1093). Springer-verlag.

33. Yolum, P., & Singh, M. (2004). Reasoning about commitments in the event calculus: An approach
for specifying and executing protocols. Annals of Mathematics and AI, 42, (1–3).

34. Zou, Y., Finin, T., & Chen H. (2004). F-OWL: An inference engine for the semantic web, vol. 3228
of Lecture Notes in Computer Science. Springer-verlag, November 2004. In Proceedings of the
third international workshop (FAABS), April 16–18, 2004, Greenbelt, MD, USA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

