
CDFMR: A Distributed Statistical Analysis of
Stock Market Data using MapReduce with

Cumulative Distribution Function
Devendra Dahiphale∗, Abhijeet Wadkar†, Karuna Pande Joshi‡

Dept. of Computer Science and Electrical Engineering ∗†,
Dept. of Information Systems ‡,

University of Maryland, Baltimore County, USA
Email:{devendr1∗, abhi6†, karuna.joshi‡}@umbc.edu

Abstract—The stock market generates massive data daily on
top of a deluge of historical data. Investors and traders look to
stock market data analysis for assurance in their investments, a
prime indicator of our global economy. This has led to immense
popularity in the topic, and consequently, much research has been
done on stock market predictions and future trends. However,
due to the relatively slow electronic trading systems and order
processing times, the velocity of data, the variety of data,
and social factors, there is a need for gaining speed, control,
and continuity in data processing (real-time stream processing)
considering the amount of data that is being produced daily.
Unfortunately, processing this massive amount of data on a single
node is inefficient, time-consuming, and unsuitable for real-time
processing. Recently, there have been many advancements in Big
Data processing technologies such as Hadoop, Cloud MapReduce,
and HBase. This paper proposes a MapReduce algorithm for
statistical stock market analysis with a Cumulative Distribution
Function (CDF). We also highlight the challenges we faced during
this work and their solutions. We further showcase how our
algorithm is spanned across multiple functions, which are run
using multiple MapReduce jobs in a cascaded fashion.

Index Terms—Big Data, MapReduce, Hadoop, Prediction,
Stock Market Analysis, Distributed, Streaming, Probability Dis-
tribution, Cascaded Jobs.

I. INTRODUCTION

In today’s data-driven world, algorithms, and tools are con-
stantly collecting data about everything around us, including
humans, systems, processes, and organizations. This results
in an ever-increasing volume, velocity, and variety of data. It
must be processed efficiently and continuously to gain mean-
ingful insights from this data. This is where the MapReduce
[1] framework comes in. MapReduce is a programming model
and an associated implementation for processing big data sets
in a parallel and distributed fashion. We have briefly explained
MapReduce in Section II-A.

Predicting stock market trends has long been a challenge.
The gist of the problem lies in huge data sizes, processing
speed, network delays, various data sources (such as tweets
and stock indices), and streaming [2] nature of the data.
Despite this, millions invest in the stock market each year,
hoping to make a profit. Professional analysts use various
methods to predict future trends, but success is not guaranteed.

Machine Learning [3] can also be used for finding patterns
in large datasets for making predictions or recommendations

[4]. Big Data [1] [5] offers the promise of building more
intelligent decision-making systems. However, traditional Ma-
chine Learning algorithms are not well-suited for all big
data problems due to their high computational complexity.
Distributed processing algorithms such as MapReduce can be
used to overcome this challenge.

As we enter into a new era of Big Data and Big Data
processing frameworks, the ways we process stock market data
and make predictions [6] has changed. For example, social
media feeds have begun outlining future trends in companies’
values, and stock exchanges are beginning to outsource their
traditional RDBMS [7] to cloud providers for faster data
manipulation, reliability, maintenance, and cost savings. While
social media prediction analysis is beyond the current scope
of this paper, we did make use of cloud technologies (Hadoop
[8], HBase [9], MapReduce).

In this paper, we collected historical data on companies from
the NYSE and NASDAQ stock exchanges. We used cascading
[10] MapReduce strategy with a distributed statistical analysis
of stock market data using MapReduce based on cumulative
distribution function (CDF) [11] to analyze the data. Fur-
thermore, we display the results in a web application. The
web application shows price, volume, and prediction graphs.
Anyone can use the web application to search for a company
and determine whether or not to invest in the company with
some probability.

II. BACKGROUND SURVEY

A. MapReduce

MapReduce [1] is a programming model developed by
Google for processing big data sets in a distributed fashion.
Mapreduce operates in two phases: first, a Map phase, in
which input data is split into multiple chunks/splits, and for
processing each chunk/split, a mapper (a thread that applies the
Map function on data) is spawned which uses the user-defined
function for filtering and shuffling rows/records(a record is
a key-value pair), called the Map function; and second, a
Reduce phase, which aggregates the data produced in the
Map phase (by mappers) to generate the final output. The
Reducers (workers from the Reduce phase) aggregate all the
rows/records with the same key.

In proceedings of IEEE CLOUD Summit Conference 2023, July 2023

Hadoop Online Prototype (HOP) [12], [13], [14], [15] is a
widely used MapReduce implementation. It is a modification
of the traditional Hadoop implementation, which runs the Map
and Reduce phases sequentially. In HOP, the Map and Reduce
phases run simultaneously, which makes the overall system
more efficient. In addition, HOP is well-proven, popular, and
efficient in processing large datasets, such as stock market
datasets. Therefore, we decided to use HOP for processing
stock market datasets in our study.

Hadoop uses HDFS for data storage in the backend. HDFS
[8] is a distributed file system that provides reliable and
scalable data storage. It is designed explicitly for spanning
large clusters on the commodity hardware.

B. Prediction Analytics

Currently, there are many approaches to stock market pre-
diction [16], either using different processing or data sources.
Approaches to processing stock market data can be categorized
into two groups. The first group emphasizes statistical analysis
[17] of a company’s stock price movements from the past. The
second group focuses on machine learning techniques.

To improve the accuracy of stock price predictions, some
algorithms currently in use also consider social, political,
economic, and environmental factors. For example, Karl et al.
[16], R. J. Kuo et al. [18], and Kimoto T. et al. [19] indepen-
dently used neural network approaches in their research. Rohit
Verma’s [20] work also uses a neural network approach for
stock market prediction. He uses a standard Error Correction
Neural Network (ECNN) [20] [18] for daily forecasting, and
an extension of ECNN for weekly predictions.

Our predictions use statistical data with Score Adjust Fac-
tors (as shown in Figure 5, which vary according to daily stock
price movements. For long-term investments, we calculate the
rank of each company. The rank determines how likely a
particular company is to perform compared to other companies
in the given data. In addition to calculating the positions of
companies, statistical analysis was also used to predict the next
day’s stock price for each company, with probabilities ranging
from 0 to 1.

C. Cumulative Distribution Function (CDF)

In probability theory and statistics, the cumulative distri-
bution function (CDF) of a real-valued random variable X ,
or just the distribution function of X , evaluated at x, is the
probability that X will take a value less than or equal to x.
We will use the CDF on the percentage change of stock price
values for a day, calculated for a few years of data.

FX(x) = P (X ≤ x)

FX(x) = function of X

X = real value variable

P = probability that X will have a value <= x

Fig. 1: Serial Data Collector

Fig. 2: Data Flow and Algorithm Processing

III. OUR CONTRIBUTION: PREPOSSESSING AND
ALGORITHM

A. Data Collection and Preparation

As part of data collection and preprocessing, we identified
what data sets are available for the stock market. Most data
sources require paid subscriptions, but the historical data sets
on finance.yahoo.com are free of cost. As depicted in Figure
10, the historical data set contains the date, opening price,
highest price in a day, lowest price in a day, closing price, the
volume traded, and adjusted volume for each stock symbol.

First, we collected all current ticker symbols from the NYSE
and NASDAQ stock exchanges. Then, we developed a multi-
threaded application for downloading and collating historic
stock market-related data using the Hadoop framework. In this
multi-threaded approach, many Hadoop Mappers (mapping
threads) use ticker symbol lists as input and simultaneously
collect historical data from the Yahoo Finance site. However,
when the Mappers made multiple HTTP requests to the
server, the server interpreted it as an attack and rejected the
HTTP requests. Therefore, we replaced the multi-threaded data
collectors with serial (as shown in Figure 1) versions of the
data collector if we only needed sample data for one year. In
other cases, we limited the number of threads in an application.
Limiting the number of threads is done by allocating a set of
tickers to a thread rather than one thread for one ticker symbol.

We have collected historical data for approximately 3,000
NASDAQ and 1,450 NYSE ticker symbols. The original data
set is in comma-separated value (CSV) file format.

Furthermore, we developed an application for raw stock
market data and stored it in the HBase database. The unique
key is the combination of the exchange symbol, the ticker
symbol, and the date (even though the ticker itself is supposed
to be unique, we added this provision for a safer approach). We
also developed a CSV file generator application that combines
all raw data files into one CSV file with a corresponding
exchange symbol and ticker symbol prefix to each record. We
could generate a unique key from the first three columns: the
exchange symbol, the ticker symbol, and the record date.

After preparing the data into CSV format, the files are
uploaded to the Hadoop Distributed File System (HDFS)
for the analysis step. We have collected and preprocessed
approximately 15 million records. The preprocessing is done
using multiple MapReduce jobs.

Algorithm 1 Predicting Stock Price Movement Statistically
for a Company (Ticker).

1: procedure PREDICTOR(ticker, close prices)
2: number of days← len(close prices)
3: ptg changes← []
4:
5: for <d in range(1, number_of_days)> do
6: today price← close prices[d]
7: yesterday price← close prices[d− 1]
8: price change← today price−yesterday price
9: ptg change← ((price change÷ today price) ∗

100)
10: ptg changes.append(ptg change)
11: sort ptg changes values descending order
12: end for

B. Serial Statistical Analysis

We first created a serial algorithm (for running on a single
node) based on current approaches for predicting stock price
movement statistically. Specifically, we used the Cumulative
Distribution Function (CDF) described in the background
survey. The serial algorithm we wrote for statistical analysis
on a single node for the analysis of a company is shown in
Algorithms 1 and 2.

Algorithms 1 and 2 can be used for one ticker symbol.
This must be repeated for all the tickers we used for analysis
in our work. Processing this big data for all the companies on
a single node is impractical and useless for taking real-time
action. Therefore, we further fit this algorithm by adding more
algorithm steps (for aggregation and re-processing until we get
the final results) to the MapReduce framework using multiple
MapReduce jobs working towards achieving one goal. The
algorithm 2 queries the data represented using the graph in
Figure 9.

C. Distributed Statistical Analysis

The data analysis is done using three different MapReduce
jobs (including data collection and preprocessing, we devel-
oped five MapReduce jobs; however, we are focusing on three

primary data analysis MapReduce jobs). The three MapReduce
jobs are:

1) Calculate the percent change for each company for each
day.

2) Sort the output generated by the first MapReduce job
according to calculated scores for each company.

3) Calculate the probability distribution of stock price
movement.

All the jobs are run in a cascaded fashion. Cascaded MapRe-
duce jobs enable us to run all the jobs under an umbrella job,
where the output of one job is used as input to the next job,
and so on. Eventually, the results are available to the end user
via a simple interface. Figure 3 presents the overall approach
and data flow.

Algorithm 2 Predicting Stock Price Movement Statistically
Query Function.

1: procedure QUERY(price, ptg changes)
2: days← len(ptg changes)
3: split index← nearest location in ptg changes
4: probability ← (split index÷ days)× 100
5:
6: return probability ▷ Probability that price will be

greater or equal to price.

1) MapReduce Job 1: The first MapReduce job calculates
the scores and percentages of stock price increases for each
company. These two indicators are used to rank the companies.
The score is an integer value calculated for each company
using the price fluctuations and adjust factor (which is
dynamically adjusted) for that company. The company with
the highest rank is likely to be the best investment because it
has shown the greatest growth potential.

Map Function:
The first MapReduce job takes as input data that has been

prepared and stored on the Hadoop Distributed File System
(HDFS). The data is stored in a directory containing multiple
files, each representing a company’s historical stock trading
data for each day. The percentage change in stock price for
each day is used to calculate the score value for each company.
For a record R, opening price OP , and closing price CP ,
the percentage change PC is calculated using the formula as
PC = (CP −OP)/OP) ∗ 100.

The Map function for all the mapper threads is presented in
Listing 1. Each thread in the MapReduce job will apply the
Map function to its assigned chunk of data. The Map function
calculates the %change in the stock price for each day for
a company, represented by a ticker symbol. The output of
the MapReduce job is a daily record in the key-value pair
format, where the key is the company ticker and the value is
the %change in price for that company on that day.

Listing 1: MapReduce Job1 - Map Function
void map(key, value, Context context) {
for(String line : list) {

String[] columns = line.split(",");
double opening_price =

Double.parseDouble(columns[1]);
double closing_price =

Double.parseDouble(columns[6]);
double percentage_change = ((closing_price -

opening_price) / opening_price)*100;
context.write(new Text(filename), new

DoubleWritable(percentage_change));
}
}

Reduce Function:
The Reduce function is presented in Listing 2. It aggregates

the records from all the mapper threads and calculates a score
for each company. The score is calculated using three values:

1) Up Adjust Factor: It is used to increase the score for
companies with a positive %change in stock price.

2) Down Adjust Factor: It is used to decrease the score for
companies with a negative %change in stock price.

3) %Change Value: It is the %change in stock price for the
company for each day.

The score-adjusting factors are tuned according to stock
price movements, daily. Figure 5 shows how the score-
adjusting factors are changed based on feedback on stock price
movement. When the stock price increases, the Up Adjust
Factor increases, and the Down Adjust Factor decreases. When
the stock price decreases, the Down Adjust Factor increases,
and the Up Adjust Factor decreases. The score for a company
is adjusted linearly, taking into account the Up and Down
Adjust Factors, and the %Change in the stock price.

Listing 2: MapReduce Job1 - Reduce Function
void reduce(Text key,

Iterable<DoubleWritable> values, Context
context){

for (DoubleWritable val : values) {
total_records++;
if(val.get() > 0) {
score += up_adjust_factor + val.get();
times_increased++;
// tune Up and Down adjust factors

} else if (val.get() < 0) {
score -= down_adjust_factor + val.get();
// tune Up and Down adjust factors

}
}
// prepare composite value and emit the

output record
}

2) MapReduce Job 2: The second MapReduce job sorts
the output of the first MapReduce job by company score. The
output of this job is a list of companies ranked from highest
to lowest score. The website/user interface (please see Figure
6) displays the top five companies on the home page. Users
can also search for other companies by entering a company
name or ticker symbol in the search bar.

Data Sources

Data

Collectors

(Scripts + MR

Job)

Data Pre

-processors

(MR Job)

HBase

HDFS

MR

Job1

MR

Job2

MR

Job3

End User

Fig. 3: Data Flow

Fig. 4: Service Architecture

Fig. 5: Adjust Factors. 1) Up 2) Down 3) %Change

Map function: The Map function for the second MapReduce
job is shown in code listing 3. The map threads take output
produced by the MapReduce job1 as input. For each record,
the mappers create a composite key (StockKey [16]) using the
company’s name and score, whereas the value is a percentage
number that the stock price increased.

Listing 3: MapReduce Job2 - Map Function
public void map(Object key, Text value,

Context context) {
String[] result =

value.toString().split("\n");
for (String line : result) {
String[] columns = line.split("\\s+");
// floor all the values for convenience
double score =

Double.parseDouble(columns[1]);
double percentage_times_up =

Double.parseDouble(columns[2]);
context.write(new StockKey(columns[0],

score), new
DoubleWritable(percentage_times_up));

}
}

As shown in Listing 4, to sort all the records by value
(that is, a company’s score from records) rather than a
ticker, we had to override the default record comparator
function. Therefore, we used the composite key (Stock Key)
comparator to compare a record by the score (value from
the record) rather than the symbol (key from the record).
This method is overridden in CompositeKeyComparator
and NaturalKeyGroupingComparator classes from the
Hadoop framework, which is given as input to the MapReduce
job in the setup phase.

Listing 4: MapReduce Job2 - Composite Key Comparator
class NaturalKeyGroupingComparator extends

WritableComparator {
protected

NaturalKeyGroupingComparator() {
super(StockKey.class, true);

}
@Override
public int compare(WritableComparable

w1, WritableComparable w2) {
StockKey k1 = (StockKey) w1;
StockKey k2 = (StockKey) w2;

return (
k2.getValue().compareTo(k1.getValue()));

}
}

Furthermore, we have provided NaturalKeyPartitioner
class to the job; please refer to Listing in 5 for reference.
Because we want to use hashing function only on the first
part (company symbol) of the Composite Key (company sym-
bol, score). In the NaturalKeyPartitioner class, we have
overridden the getPartition method, modified to apply the
hashing function on the company symbol instead of the entire
stock key. This provision of hashing only on the symbol from
the composite key will ensure that all records for a company
will go to the same reducer each time for aggregation.

Listing 5: MapReduce Job2 - Partition Method
// Overridden getPartition method
public int getPartition(StockKey key,

DoubleWritable val, int numPartitions) {
int hash = key.getSymbol().hashCode();
int partition = hash % numPartitions;
return partition;

}

Reduce function: As shown in Listing 6, the Reduce func-
tion changes the records back to their original format (as they
were before fed to the map function). The reducers emit key-
value pairs where the key is the company symbol and the value
is a composite on (score/rank, %times increases). With this
new format, we can incorporate a ticker symbol, its position,

and %times increase data in a single record.

Listing 6: MapReduce Job2 - Reduce Function
// Core part of Reduce Function
// for each value of a key
for (DoubleWritable value : values) {
// restructure the key and value to the

original format (same as before the
mapping function)

context.write(new Text(key.getSymbol()),
new Text(key.getPercentageChange().toString()
+ " " + Double.toString(value.get())));
}

3) MapReduce Job 3: The third MapReduce job is used
for calculating probability distribution [21] of stock price
movement. Using probability distribution, we can predict the
%change in the stock price with different probabilities. For
example, we can predict what will be the %change in the
stock price for 0.6 probability. For calculating probability
distribution in MapReduce job3, the Map Function is the
same as that of MapReduce job1. However, the percentage
change values must be sorted for a probability distribution.
We use the same technique as in the MapReduce job2, sorting
according to values rather than keys. The Reduce function
assigns values ranging from 0 to 1 to each percentage change
value for a particular company. Usually, the output of each
Reduce function is written into one single file. Still, we
want each company’s output to be written into different files
for this task. This will reduce the overhead of searching a
company’s data into one massive file. Therefore, MapReduce
job 3 writes each company’s final output into separate files.
For naming the output files, we use the company symbol and
the partition number (CompanySymbol-r-00000), for example,
AAL-r-00000.

IV. SERVICE ARCHITECTURE

Figures 3 and 4 depict our system’s service architecture for
the overall approach we used. The data flow and processing
are also shown in Figure 2. As mentioned in Section III-A,
we collected stock market historical data from various sources
using a Python script and a MapReduce job. The collected
data was first stored in HBase, and after preprocessing, it
was pushed onto Hadoop Distributed File System (HDFS).
We chose HDFS because it is the default storage for Hadoop.
Multiple MapReduce jobs accessed the historical data from
HDFS, and the results were stored in HDFS again. Then, a
JavaScript program transferred the final output into a database
management system (DBMS) to be queried efficiently by end
users. The web application, developed using JavaServer Pages
(JSP) and Java servlets, used the data stored in the DBMS.
We used HBase as the DBMS one more time in the end. A
snapshot of the web application user interface page is shown
in Figure 6. The various components shown in Figures 3 and
4 are explained briefly as follows:

1) Data Sources: The scripts and the MapReduce job we
developed for collecting data are source agnostic. Therefore,

Fig. 6: User Interface Snapshot

we mainly used Yahoo Finance as a data source. However, all
other sources were available with a paid subscription.

2) Historical Data: This is the first staging point for the
data we collected. The information here is in raw format and
has not yet been preprocessed. We used HBase to store the
initial raw data.

3) HDFS - for Storing Preprocessed Data: The data is
then preprocessed to eliminate unnecessary information and
presented in a well-organized format for further processing.
The preprocessed data is stored in HDFS, which is our second
staging area for data that is preprocessed but not yet analyzed.

4) The Main Processing - Mapper, Reducers: This is done
using multiple MapReduce jobs, which are run in a cascaded
manner. The output of one MapReduce job is fed to the next
one, and so on. At this stage, the actual processing of the data
is done.

5) Results - DBMS: The output of all MapReduce jobs is
stored in a huge file, which makes it difficult for humans to
read the data efficiently and quickly. Therefore, we moved all
the results to HBase so that a query engine could pull them
down whenever needed.

6) User Interaction: Finally, a website is designed for users
to take advantage of all the processing done so far. They can
populate the filters and drop-down boxes to search for what
they want.

V. VISUALIZATION

A. Design/Layout

Our overall layout includes three graphs: 1. Change in
the company’s stock price, 2. Change in volume traded, 3.
Probability for predicted percent change. Five companies were
chosen from the NASDAQ top 100 list and displayed as
selectable buttons with their data, analysis, and prediction
values on the screen. Additionally, there is an option to search
for a company’s stock symbol (the first column from Figure 8)
for viewing. The goal was to create a user-friendly, presentable
page with all operations done in one window.

B. Searching

We enable users to input desired stock symbols for viewing.
We implemented the web app as a Java servlet to query the
HBase table. Requests would come to the Java side of the

Fig. 7: Output Of Cascaded MapReduce Jobs (MapRe-
duce1&2)

application, and we would query the HBase table and send
results back to the HTML. Each company’s data is kept in
a different file for efficient searching of data required for the
probability distribution function.

C. Graphing

The graphs were implemented using the Google charts ap-
plication programming interface (API), designed for the web.
This JavaScript-based API allowed us to feed our finalized
data into a table and generate a configurable graph. In addition,
users can click on graph lines for more specific information,
such as predicting a particular probability.

VI. RESULTS AND EVALUATION

Figure 7 shows the output of the first two Cascaded
MapReduce [22] jobs. Each row from the output represents
a record (key, compositeValue) where Key=Company Symbol
and CompositeValue is a combination of score and percentage
time the stock price increased. The output file contains compa-
nies’ symbols sorted by their rank/score. Moreover, if the rank
of two or more companies is the same, the percentage time
stock price increased value is a tie-breaker. When deciding the
rank of a company, the score has given more importance than
just how many times the stock price went up. This is because
the mere value of % times the stock price increased would not
infer anything firmly; for example, if the stock price increases
on every alternate day, it does not suggest anything - 50%
Additionally, the score is a better metric because it considers
multiple factors. First, the score finds whether the stock price
has consecutively increased or decreased. The score adjust
factors are tuned after processing each day’s stock data for
each company. It also considers the percentage value by which
the stock price has changed.

The reduce function of the third MapReduce job assigns
values ranging from 0 to 1 to each %change value in in-
creasing order for each company; this is used for creating
the probability distribution of the percentage change. The
aggregated output of all the reducers is written in a massive
file per Hadoop implementation; however, here, we want each
company’s output to be written into a different file to make

Fig. 8: Raw Data for CDF - Output of MapReduce job 3

Symbol 0.90 0.75 0.50 0.25 Actual %Change
AAL +3.01 +0.51 -1.49 -0.6 +0.40
AAME -8.79 -5.41 -5.41 -3.31 +1.00
AAOI -3.74 -2.11 -0.14 +1.34 +2.01
AAVL -4.06 -1.89 -0.78 +2.04 +1.01
AAXJ -10.5 -9.06 -6.50 -3.92 0.00

TABLE I: Comparison of Predicted %Change with Actual
%Change in the Stock Price for Some Probabilities

Fig. 9: Probability Distribution Function.
A few Predictions From Above Graph:
1) Probability: 0.10 Prediction: %Change: >+3.01
2) Probability: 0.25 Prediction: %Change: >+0.51
3) Probability: 0.50 Prediction: %Change: >-1.49
4) Probability: 0.75 Prediction: %Change: >-3.45

searching fast and efficient. So the third MapReduce job is
written to output each company’s data in a separate file where
each output file is named (CompanySymbol)-r-00000. Figure 8
depicts the output of the third MapReduce job for a company.
It is used for rendering probability distribution graphs. The
probability distribution graph for a company is shown in
Figure 9. This graph can predict the next day’s stock price
with any probability. For example, according to Figure 9, there
is a 0.1 probability that the %change in the stock price of the
company will be more than +3.01%, 0.25 probability that the
%change in the stock price will be more than 0.51% and so
on. We can predict the percentage change in the stock price for
each probability using Probability Distribution Graph. Table I

Fig. 10: Raw Data Format

compares our prediction for different probabilities with actual
movement in this stock price for five random companies from
the input data. Furthermore, Table I shows that the predictions
are 100% correct for the probabilities greater than 0.25 (the
column 0.75); however, for possibilities less than 0.25, the
prediction is not always correct (in the selected test data, the
accuracy we found is 80%, however, with change in the test
data we expect the accuracy to go down). We can observe from
Table I that predictions with greater probabilities are always
accurate, but the prediction is not precise (the range is more
fantastic). These statistics are verified for all the companies
present in the input data.

For evaluating the results, initially, we suppressed all
records from 2015 and only processed data till 31 December
2014 for many companies. After comparing our prediction
with actual stock market movement, on average, our results
were correct 100% of the time for greater probabilities than
0.30. We also continued the same strategy for predicting
stock price change for other days, suppressing records after a
specific date and checking if our prediction was correct. The
correctness of our results also varied for different probabilities.
The predictions for the same companies for less than 0.25
probability were not promising.

Furthermore, we have evaluated the companies according to
their rank. The metric used is how often a company with the
higher score is likely to be a better company to invest in. We
found out that more than 60% of the time, a company with
more score or higher rank is likely to be a better firm to invest
in.

We can observe that the actual movement in the stock
price is in the prediction range for the %change 0.5 and
0.75 probability, whereas, for 0.25 probability, prediction is
approximately the same as that of actual movement. Moreover,
we found the same pattern of predictions and actual stock price
movement for other companies.

A. Challenges and Solutions

1) Multiple Connection by Hadoop Collector: In a multi-
process data collector, each process takes a ticker symbol
list as input and concurrently creates an HTTP connection
to http://finance.yahoo.com. However, the connection requests
come from the same IP range, which makes the server think
that someone is trying to perform a denial-of-service (DDoS)
[23] attack. As a result, the server rejects the connection
requests. The solution to this issue is explained in Section
III-A.

2) Input data format: Whether to keep a single large file
or a file per company. Splitting data exactly on a company
boundary would become problematic. This issue is tackled by
keeping a separate file for each company.

3) Split Size for Data Partition: Even though a separate
file is kept for each company, it could be split across many
mappers depending upon a split size. We iterated through
the input folder to decide on an optimal split size so that
a mapper will not have more than one company’s data. First,
iterating through the input folder was performed to determine
the biggest file size. Once we get the maximum size, the split
size is set to that value. This ensures that a file (a company’s
data) will go to only one mapper.

4) Sorting by values: In MapReduce job 3, which calculates
the probability distribution of stock price movement, we need
to sort the keys and values. The details about how we achieved
this are explained in Section III-C3.

VII. CONCLUSION AND FUTURE WORK

We propose a distributed algorithm for stock market pre-
diction. It can process multi-million records and highlights
challenges for future designs. Our algorithm only performs
statistical analysis on stock data, so its results may not be long-
term enough. We plan to incorporate non-statistical factors like
politics and social media (sentiment analysis [24]). The system
is simple and accurate enough to suggest companies for future
investments or monitoring.

There are many ways this work can be extended. First, the
stock market data is continuous; we could peek into partial
output regularly instead of waiting for all MapReduce jobs to
complete. Combining this approach with the early snapshot
approaches from [10] would significantly improve results.

Second, the final ranks of companies can be reshuffled by
incorporating the sentiment analysis of tickers.

Third, it would be an exciting thing to design and develop a
neural network [25], [26] based stock prediction system using
the same dataset and then compare the results. The authors
are working on this idea as a follow-up work.

Additionally, improvements in up and down score-adjust-
factors can be made while calculating companies’ rank. The
implemented code is publicly available online on the authors’
GitHub repository.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in OSDI, 2004, pp. 137–150.

[2] R. Karve, D. Dahiphale, and A. Chhajer, “Optimizing cloud mapreduce
for processing stream data using pipelining,” in 2011 UKSim 5th
European Symposium on Computer Modeling and Simulation, 2011, pp.
344–349.

[3] T. M. Mitchell et al., Machine learning. McGraw-hill New York, 2007,
vol. 1.

[4] D. Dahiphale, P. Shinde, K. Patil, and V. Dahiphale, “Smart
farming: Crop recommendation using machine learning with
challenges and future ideas,” 6 2023. [Online]. Available:
https://doi.org/10.36227/techrxiv.23504496.v1

[5] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”
IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 1,
pp. 97–107, 2014.

[6] E. Koo and G. Kim, “A hybrid prediction model integrating garch models
with a distribution manipulation strategy based on lstm networks for
stock market volatility,” IEEE Access, vol. 10, pp. 34 743–34 754, 2022.

[7] M. Sharma, V. D. Sharma, and M. M. Bundele, “Performance analysis
of rdbms and no sql databases: Postgresql, mongodb and neo4j,” in 2018
3rd International Conference and Workshops on Recent Advances and
Innovations in Engineering (ICRAIE), 2018, pp. 1–5.

[8] “Hadoop.” [Online]. Available: http://hadoop.apache.org/
[9] T. Harter, D. Borthakur, S. Dong, L. T. Amitanand Aiyer, A. C. Arpaci-

Dusseau, and R. H. Arpaci-Dusseau, “Analysis of hdfs under hbase: A
facebook messages case study.” 12th USENIX Conference on File and
Storage, 2014.

[10] D. Dahiphale, L. Huan, R. Karve, A. V. Vasilakos, Z. Yu,
A. Chhajer, and C. Wang, “An advanced mapreduce: Cloud mapreduce,
enhancements and applications,” vol. 11. IEEE Transactions on
Network and Service Management, 2014, pp. 101 – 115. [Online].
Available: https://doi.org/10.1109/TNSM.2014.031714.130407

[11] I. W. Burr, “Cumulative frequency functions,” The Annals of
Mathematical Statistics, vol. 13, no. 2, pp. 215–232, 1942. [Online].
Available: http://www.jstor.org/stable/2235756

[12] e. a. Tyson Condie, “MapReduce online,” in NSDI, 2010, pp. 313–328.
[13] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and

R. Sears, “Mapreduce online,” in NSDI, 2010, pp. 313–328.
[14] H. Liu and D. Orban, “Cloud mapreduce: A mapreduce implementation

on top of a cloud operating system,” IEEE International Symposium on
Cluster Computing and the Grid, vol. 0, pp. 464–474, 2011.

[15] D. Dahiphale, “Mapreduce for graphs processing: New big data algo-
rithm for 2-edge connected components and future ideas,” IEEE Access,
vol. 11, pp. 54 986–55 001, 2023.

[16] K. Nygren, “Stock prediction - a neural network approach.” Royal
Institute of Technology, KTH, 2004.

[17] T. Wang and J. Wang, “The statistical analysis of chinese stock market
fluctuations by the interacting particle systems,” in 2008 ISECS In-
ternational Colloquium on Computing, Communication, Control, and
Management, vol. 3, 2008, pp. 42–46.

[18] K. T., A. K., Y. M., and T. M., “Stock market prediction system with
modular neural networks.” 12th USENIX Conference on File and
Storage, p. 199–212.

[19] R. J. Kuo, C. H. Chen, and Y. C. Hwang, “An intelligent stock trading
decision support system through integration of genetic algorithm based
fuzzy neural network and artificial neural network,” 2001.

[20] R. Verma, P. Choure, and U. Singh, “Neural networks through stock
market data prediction,” in 2017 International conference of Electronics,
Communication and Aerospace Technology (ICECA), vol. 2, 2017, pp.
514–519.

[21] R. Li, M. S. Kang, and G. Wang, “Evaluation of statistic probability
distribution functions: Ii. chi-squared probability function and the inverse
functions of z, t, f, and chi-squared distributions,” in 2016 International
Conference on Computational Science and Computational Intelligence
(CSCI), 2016, pp. 1253–1260.

[22] D. Dahiphale, “Mapreduce for graphs processing: New big data algo-
rithm for 2-edge connected components and future ideas,” IEEE Access,
pp. 1–1, 2023.

[23] M. A. Saleh and A. Abdul Manaf, “Optimal specifications for a
protective framework against http-based dos and ddos attacks,” in
2014 International Symposium on Biometrics and Security Technologies
(ISBAST), 2014, pp. 263–267.

[24] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis
algorithms and applications: A survey,” Ain Shams Engineering
Journal, vol. 5, no. 4, pp. 1093–1113, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2090447914000550

[25] K. Gurney, An introduction to neural networks. CRC press, 1997.
[26] A. Moghar and M. Hamiche, “Stock market prediction using

lstm recurrent neural network,” Procedia Computer Science, vol.
170, pp. 1168–1173, 2020, the 11th International Conference
on Ambient Systems, Networks and Technologies (ANT) /
The 3rd International Conference on Emerging Data and
Industry 4.0 (EDI40) / Affiliated Workshops. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050920304865

