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This paper presents an extended Clausal Database
Model for a logic programming language. Instead of
being restricted to one global database, as is the case
with Prolog, we allow segmentation of the database
into database units which are linked together into a
semi-lattice. Each database unit defines a database
view which includes clauses which have been asserted
into that unit as well as clauses inherited from its an
cestors higher in the lattice structure. This model
supports arbitrary retraction. Retracting a clause in
a database unit effectively blocks its inheritance for
that unit and all of its descendants. Motivations for
using this model are given. We also discuss the im
plementation of a Prolog meta-interpreter that uses
this model. (hereafter referred to as (Phd) or Pro- 6
log Hierarchical Database) This meta-interpreter is
in the spirit of Prolog and therefore has a version of
assert, retract and cut.
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tion and related work sections and generally tighten
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first author (Finin).
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1 INTRODUCTION

1 Introduction

Most logic programming languages have followed
Prolog in having a single, global database in which
both the program and data reside. The database is
the only mutable data structure and also the only
one which persists from one query to another. This
has provided Prolog with a number of advantages.
Conceptually, this is a very simple scheme which new
users find easy to learn and think about. Pragmati
cally, it eases the prototyping of new programs, since
one does not need to worry about issues of which
programs need to access what other programs and
data. Theoretically it corresponds to thinking of the
database as consisting of the set of axioms on which
the system rests. After all, a fact is either true (in
which case it should be in the database) or it is not
(in which case it is not in the database) - there is no
middle ground.

Contrast this with the more typical ways of storing
information in modern programming systen1.s. Most
higher-level programming languages provide various
mechanisms to store and represent data in ways that
control the access to it. This shows up in program
ming languages in a variety of ways, including the use
of local variables, modules, packages, environments,
etc.

This paper describes a design for a hierarchical
database for a logic programming language. In par
ticular, we have implemented this model for Prolog in
the form of a meta-interpreter (Phd). In our model,
the database is segmented into data base units each
of which is a local collection of Prolog clauses. These
database units are partially ordered by a parent re
lation along which clauses can be "inherited". Thus,
each database unit defines a Prolog database view.
The clauses in such a view consists of the union of
the clauses in the local database unit and the inheri
table clauses from the database unit's ancestors.

One important feature of our model is that it sup
ports a notion of relative retraction. That is, one can
retract a clause with respect to a particular database
view. This can be done for a clause which is "local"
to the view (i.e. is recorded in the unit which deter
mines the view) as well as for a clause inherited from
some ancestor. In either case, the retraction can only
effect the database view in which the retraction was
done and (potentially) its descendants.

A more precise definition for a database view as
seen from database unit u is that it contains clauses
equal to the set of local assertions in U ul1ioned with
all clauses in the views of u's immediate parents mi
nus all of u's local retractions. There are several
things to note: (i) retracting a clause from a database
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dbroot
/ \

ussr usa
\ /
now: +pres(reagan).
/ \ +gen_secr(gorby).

/ \
hyp1: hyp2:

+pres(joe_democr). +pres(joe_republ).
-pres(reagan). -pres(reagan).

Figure 1: Simple Example

unit never effects any of the unit's ancestors or the
database views they define; (ii) it is not possible for a
clause to appear more than once in a database view.
When solving a goal with respect to a DBU, only the
clauses in the view of that DBU will be used to prove
the goal. The aim of this paper is to discuss the as
sumptions made in our implementation of a Prolog
meta-interpreter using this model.

An Example

As an example, consider a system which must do
hypothetical reasoning about American-Soviet rela
tions (see figure 1). We would like to keep related
data together. We have a DBU called now which
describes the current state of affairs. We also have
bodies of knowledge on Soviet and American politi
cal situations in DBUs ussr and usa respectively. The
database view associated with DBU now includes the
info stored in ussr and usa. Clauses inherit down.
Now say we wish to consider the world after Rea
gan. We can spawn two new DBU's representing a
hypothetical state of affairs where Reagan is not pres
ident. To prevent inheritance of a clause, we use a rel
ative retraction. The relative retraction -pres(reagan)
makes +pres(reagan) invisible to the database views
of hypl and hyp2.

The next section of this paper will present some
motivations for developing a hierarchical model for
a logic programming language database. The third
section will define a slightly simplified version of the
model through several Prolog predicates. The fourth
section will then present the model in more detail
and described its implementation in Phd. The fifth
section will discuss the relationship between our work
and several related projects. We conclude with a final
section which summarizes our research and describes
several open questions.



3 A SIMPLE IMPLEMENTATION

2 Motivation

There are a number of potential advantages to having
a hierarchical database in a logic programming lan
guage as well as, of course, some disadvantages. An
initial observation we can make is that the issues can
be divided into those at the "programming language"
level and those at the "representational" level. By
"programming language" level, we mean issues that
involve the features and limitations of a language like
Prolog that effect its utility as a general higher-level
programming language (e.g., the addition of modules
to Prolog). There are also motivating issues which
have more to do with making a logic programming
language easier to use to represent certain kinds of
information or knowledge (e.g., to support hypothet
ical reasoning). This section will briefly list some of
the motivating factors that have caused us to begin
this research.

Some programming language related motivations
for a hierarchical database are:

• Modules. Our model for a hierarchical database
is one way to provide a logic programming lan
guage with a module facility. It differs from most
current module/package systems in that it is
non-flat, predicates can be split across database
units and it supports the notion of (relative) re
traction. These differences offer additional flexi
bility at the expense of efficiency.

• Theories as first-class objects. Treating theories
(e.g. collections of clauses) as first class objects
is a powerful way to extend the richness and ex
pressive power of a logic programming language
[8] .

• Access efficiency. Dividing the database into
units arranged in a partial order can reduce the
time searching the database for clauses. In our
implementation this reduction comes through
not having to search any database units not in
the current view. Whether or not there is a re
alization of this potential depends on the partic
ular application.

• Debugging ease. A hierarchical database can ease
the process of debugging programs which alter
the database. The general technique is to create
a new database view which includes the current
one and run the (buggy) program with respect
to it, isolating any database updates to the new
view.

The development of a hierarchical database model
for a logic programming language has some advan-
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tages in representing knowledge for specific applica
tions. Some examples are:

• Generic vs. specific information. Many AI ap
plications such as diagnostic expert systems need
to represent a knowledge base of general informa
tion (e.g. diagnostic rules) and are then applied
to one or more specific cases. Processing each
case might involve making additional assertions
specific to just that case. The general knowl
edge needs to be included in the model for each
individual case. The hierarchical database pro
vides a language-level mechanism to keep such
different information separate and have it share
common knowledge.

• Hypothetical reasoning. A hierarchical database
is a useful tool in applications involving hypothet
ical reasoning and assumption-based reasoning.
Creating a new theory of a situation which con
tains a set of assumptions simply involves creat
ing a new descendant database view of the cur
rent one and asserting the assumptions in the
new view. The new view can then be used to
attempt to prove any relevant queries.

• Belief modeling. Modeling the beliefs of other
agents often involves a hierarchy of clauses rep
resenting the beliefs. For example, the GUMS
system [10, 9] modeled users via a hierarchy of
stereotypes, each of which was represented as a
collection of clauses. A similar use of a hierar
chy of user models is employed by Kass [15, 14]
t? capture beliefs of users' along different dimen
SIons.

3 A Simple Illlplernentation

The power of our model lies in the ability to supply
different views of the data while incorporating relative
retractions. The specific ordering of the clauses in
the database view of some DBU is determined by
some inheritance scheme. In this section, an elegant
(although inefficient) implementation of a depth-first
inheritance using the notion of relative retractions is
presented. In the next section, we will describe our
meta-interpreter which implements a more efficient
inheritance scheme.

Constructing the database view from database unit
Ul can be conceptualized as a a set operation. It
is a two step recursive process. First we must cre
ate the set of all local assertions in DBU Ul unioned
with all clauses in the views of Ul 's immediate par
ents. From this set we must remove all clauses which
match Ul'S local retractions. The resulting set is the
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d1: +l(j,m)
/ \

+l(a,b) b2 c2: +l(b,c)
\ /

d3: -l(a,b)
+l(t,j)

parent(d1,b2)
parent(dl,c2)
parent (b2,d3)
parent(c2,d3)

db(b2,+,l(a,b))
db(d1,+,l(j,m))
db(c2,+,l(b,c))
db(d3,-,l(a,b))
db(d3,+,l(t,j))

Figure 2: Sample Hierarchy with internal representa
tion

view of Ul. The match operation is like unification
except that a variable can only unify with another
variable. Retractions are stored as negative asser
tions. As an example, consider the hierarchy in Fig
ure 2 in which the depth-first inheritance from DBU
d3 causes the DBU's to be searched in the following
order: (d3,b2,dl,c2). The database view associated
with d3 contains the clauses l(t,j), l(j, m) and l(b, c).

To present this model, we show the basic predi
cates for adding a clause to a database (add/2), re
tracting a clause from a database (rem/2) and query
ing a database for a clause (get/2). The hierarchical
database is represented by two predicates: db/3 and
parent/2. The db/3 predicate records the clauses
which have been locally asserted and retracted in
database units. In particular we have:

• db(Dbu, +, C) - true if the clause C has been lo
cally asserted in the database unit Dbu

• db(Dbu,-,C)- true if the clause Chas been locally
retracted in the database unit Dbu

The parent/2 predicate records the lattice organiza
tion of the database units with parent(A,B) indicat
ing that database unit B inherits from database unit
A.

The addl2 predicate takes two arguments, a
database unit and clause to be asserted. It asserts
the given clause into the database view determined
by the given unit (and its descendants). Unlike stan
dard Prolog, only one copy of a clause is recorded in
a given unit.
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add(Db,C) :-
%already asserted locally.
localDb(Db,+,C,C2).

add(Db,C) :-
%already retracted locally.
localDb(Db,-,C,C2),
retract(db(Db,-,C2)),
assert(db(Db,+,C)).

add(Db,C) :-
%no local record.
assert(db(Db,+,C)).

The localDb/4 predicate is used to find clauses which
match the current one which have been explicitly as
serted or retracted in this database unit. Note the
use of the match/2 predicate which is like unification
except that variables can only unify with other vari
ables and no binding is done.

localDb(Dbu,Mode,Cin,Cout)
db(Dbu,Mode,Cout),
match(Cin,Cout).

match(X,Y) :
numbervars(X,X2,1,N),
numbervars(Y,X2,1,N).

The rem/2 predicate is used to retract clauses from
a database associated with a database unit. As in
standard Prolog, it retracts the first clause in the
database which unifies with its argument. However,
the retraction is only in the database determined by
the given database unit and its descendants.

rem(Db,C) :-
% recorded as a local clause.
localDb(Db,+,C,C2),
I. ,
retract(db(Db,+,C2)),
assert(db(Db,-,C)).

rem(Db,C) :-
%unifies with an inherited clause.
get(Db,C),
assert(db(Db,-,C)).

rem(Db,C) :-
% Record un-unified retraction
assert(db(Db,-,C)).

Finally, the getl2 predicate takes a database unit
and clause and succeeds if there is a matching clause
in the database determined by the database unit.
This is determined be seeing if the clause sought is
a member of the set formed from the union of all of
the inherited and locally asserted clauses minus the
locally retracted clauses. Note that the equality test
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(0)dbroot
I
a (1)

/ \
b (2)

I
I d (3)

\ /
e (4)

Figure 3: Initial hierarchy with levels indicated

• disown(Parent,Child)
• kill(DBU)

(2) c

%% Cs is a list of locals clauses in Db
localClauses(Db,Cs) :

bagof(C,db(Db,+,C),Cs).

parentClauses(Db,Cs) :-
% Cs is a list of clauses inherited by Db.
bagof(C,

(parent(P,Db) ,clauses(P,C»,
ListOfCs) ,

setsUnion(ListOfCs,Cs).

clauses (DB ,Clauses) :-
% Clauses is a list of clauses in view DB
parentClauses (DB ,Pc) ,
localClauses(DB,Lc),
localRetractions(DB,Lr),
setUnion(Lc,Pc,C) ,
setMinus(C,Lr,Clauses).

get(Db,C) :- clauses(Db,Cs), member(C,Cs).

used in the set Union/3 and setMinus/3 predicates
must be the match/2 predicate of above. phd> create (a) •create(c) •create(b).

create(d) ,create(e) ,
adopt(a,c),adopt(c,e),
adopt(a,b),adopt(b,d),
adopt(d,e).

%% Rs is a list of locals retractions in Db
localRetractions(Db,Rs) :

bagof(C,db(Db,-,C),Rs).

4 The Phd model

This section describes a much more efficient model for
the hierarchical database which we have implemented
in the Phd meta-interpreter. This model differs from
the simple one presented in the previous section in
the order in which clauses appear in a database view.

4.1 Creating the Database Hierarchy

There is initially a distinguished database unit, db
root which is the ancestor of every other database
unit. This is where all the system clauses and special
utilities reside. Each DBU is assigned an integer rep
resenting its "level" in the hierarchy with the require
ment that a DBU's level must be strictly less than the
level of it's immediate descendants. By convention,
the level assigned to dbroot is O. When a DBU is cre
ated, it is assigned as a level one plus the maxinlum
level of its parents. All parent, child, and level infor
mation is stored in the underlying Prolog database.
Initially, the newly created DBU is assigned level 1,
since it's only parent is dbroot.

Phd provides four predicates for constructing and
modifying the hierarchy:

• create(DBU)
• adopt(Parent ,Child)

The create/l predicate creates a new database unit
which is implicitly a child of dbroot. The adopt/2
predicate adds a new inheritance link between its two
arguments. There are restrictions on the use of adopt
- a descendant DBU cannot adopt an existing an
cestor. Thus cycles are disallowed. To remove a link,
call disown(Parent,Child). A DBU is not allowed to
disown itself from dbroot. A database unit can be
purged from the database with a call to kill/I. This
will wipe out all clauses local to DBU and perform the
necessary disowns from the DBU's parents. A DBU
cannot be killed if it has offspring DBU's. When an
adopt or disown is performed, the child DBU may
require a change in its level. Remember the level
of a DBU is strictly one plus the max level of the
DBU's parents. This in turn may require the need
for recomputation of the levels for the child DBU's
descendants.

Figures 3 and 4 show the effects of adopts and dis
owns on the level assigned to a database unit. The
level is listed in parentheses next to the DBU. Re
member, dbroot is the only database unit that exists
initially. Everybody has dbroot as a direct parent,
although all the links are not portrayed here.

In logic programming languages such as Prolog the
order of clauses in the database is significant. This is
one way the programmer has of controlling the search
for a solution. Thus we felt that it was important to
have a well defined model which determines the or
dering of the local and inherited clauses in a database
view. Our choice was that you inherit from your clos
est ancestors first. This is why we associate a level
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phd> disown(b,d),
disown(d,e) ,
adopt(b,e).

dbroot (0)
/ \

(1) a d (1)

/ \
(2) c b (2)

\ /
e (3)

Figure 4: Altered hierarchy and levels

with each DBU. You inherit from an ancestor DBU
with a larger level before another ancestor with a
smaller level. With multiple parents, there may be
more than one lineage to the same ancestor DBU.
This approach prevents you from searching ancestor
Ul before ancestor U2 if Ul is itself an ancestor of
U2. What about ancestor DBU's located at the same
level? We arbitrarily chose the ordering to be right
to left. (i.e. most recently defined ancestor at that
level). So for example, when proving a goal with re
spect to DBU e in Figure 3 , the DBU's would be
searched in the following order: (e,d,b,c,a,dbroot).

An inheritance order is precomputed for each DBU
and must be recomputed for affected DBU's on an
adopt or disown. Adopts and disowns create addi
tional subtleties with the assert/retract mechanism
which will be discussed later.

4.2 Assert and Retract Mechanisms

The clauses visible in any database view depend upon
the assertions and relative retractions found in the
view. For convenience we supply an equivalent for
Prolog's listing predicate:

• visible(u). Perform a listing of all clauses in the
database view of u.

The addition and removal of clauses from DBU's is
performed by

• assert(Clause,Dbu). The semantics of as-
sert(C,U) is, "Clause C is known to be present
in database unit U"

• retract(Clause,Dbu). The semantics of re-
tract(C,U) is, "Clause C is known to be absent
from the view of database unit U."

Assuming no retracts have been performed, as
sert(C,U) immediately makes C visible in U and in
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the views of DBU's which are descendants of U.
Clauses inherits down. If there exists a retraction
in U which matches the new assertion, physically re
move the retraction from U. Remember, matching is
different than unifying.

In Prolog, retracting a clause means "physically
removing" the first unifying clause found in the
database. Similarly, in our model, retraction involves
first finding a unifying assertion in the view and sec
ond updating the database hierarchy to make this
assertion invisible in the view. If the unifying clause
is local to (stored in) U, physically renlove that clause
from U. Note, we do not physically remove the uni
fying clause from the database if it is not local to U
but explicitly store the unified retraction in U.

For example, consider the initial database hierar
chy in Figure 5 (note - the inheritance order associ
ated with e is (e,b,c,a,dbroot). After the following
exchange in which the current database is e,

phd> retract(l(X,Y),e).
X=j
Y=m;

X=a
Y=b

yes
phd> visible(e).
+ l(h,X) :- g(X).
+ l(r,t).
+ g(p).

the altered hierarchy in Figure 6 results. We find the
first candidate for retraction within DBU e. Since it
is local, we physically remove +l(j,m) and record the
unified retraction. In the second retract, the asser
tion unifying with I(X,Y) is inherited, so we do not
physically remove l(a,b) from DBU b. With respect
to DBU e, + l(a,b) is known to be absent. This is
demonstrated by the call to visible.

dbroot
/ \

+ g(p). a d: + l(j,m).
/ \

+ l(r,t). c b: + l(a,b).
\ /

e: + l(h,X):-g(X).
+ l(j,m).

Figure 5: Initial hierarchy

After retract(CI,U) has been called and a unify
ing retraction found, our meta-interpreter tags ev-
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dbroot
/ \

+ g(p). a d: + l(j,m).
/ \

+ l(r,t). c b: + l(a,b).
\ /

e: + l(h,X):-g(X).
- l(j,m).
- l(a,b).

Figure 6: After Retractions

ery clause in the ancestor DBU's of U which matches
the unified retraction. The tagging takes the form of
creating pointers from the retraction to all ancestor
assertions which match the retraction. Also, all the
affected assertions contain a pointer back to the re
traction(s) which makes them invisible to a portion(s)
of the database.

This means that a newly asserted clause may be
already logically retracted by a retraction in some
descendant DBU. Thus in our implementation, every
assertion is followed by a search for descendant retrac
tions which match the new assertion. This way the re
tract pointers can be kept up to date. If an assertion
results in the physical removal of a matching retrac
tion in the same DBU, we can use the retract pointers
to unretract matching ancestor assertions. We must
also consider the effect of calling adopt(Ul ,U2). As
sertions located in Ul and ancestor DBU's of Ul may
now be logically retracted by retractions in U2 and
descendants of U2. Figure 7 shows the changes which
occur to the hierarchy in Figure 6 after the following
exchange:

phd> adopt(d,a).
yes.

phd> visible(e).
+ l(h,X) :- g(X).
+ l(r,t).
+ g(p).

There is no change to the view associated with DBU
e because the relative retraction -l(j,m) immediately
makes + l(j,m) in DBU d invisible.

Our version of retract has more of a declarative
reading than in Prolog. The time in which a retract is
done does not matter. Retracts will immediately hide
new assertions in ancestor DBU's which match them.
Likewise, asserts will always undo relative retractions
local to the DBU where the assertion is taking place.
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dbroot,
d + l(j,m)
I

+ g(p) a
/ \

+ l(r,t) c b + l(a,b).

\ /
e + l(h,X):-g(X).

- l(j,m).
- l(a,b).

Figure 7: Adoption and existing retractions

The design decision was to make assertions, retrac
tions, adopts, and disowns expensive to optimize goal
satisfaction with respect to a specific DBU. Later we
will see how these retract pointers are used to weed
out invisible clauses.

4.3 Representation Details

Since our meta-interpreter is implemented in Prolog,
we must represent all the separate DBU's within Pro
log's global database. This section is a description
of clauses used only by the system to simulate our
model. These clauses are kept hidden from the user
of the extended model. Information on each DBU is
stored within the database as:

db_struc(Level,DBU,Parents,Children)

All clauses within a DBU are stored in the underlying
Prolog database in a term with a functor correspond
ing to the DBU's name. For example, the arbitrary
clause (Head:-Body) local to dbul would be repre
sented as follows:

dbul(Id,Head,Body,'+',Prev,Next,Retract)

Each clause has a unique Id within its DB U. All
clauses of a certain functor and arity within a dbu
are stored as a doubly-linked list. The fourth argu
ment is a "-" for a relative retraction and a "+" for
a (local) assertion. The Retract argument is a list
of [DBU ,Id] pointers to relative retractions in other
database units which retract this clause. The Prev
and Next arguments are respectively pointers to the
previous and next clause in the list. We need to keep
clauses in doubly linked lists to maintain their cor
rect ordering. Whenever a clause is made invisible
by a retraction, the Retract list must be updated.
Asserta and assertz are not adequate to maintain the
proper ordering of clauses. A doubly-linked list does
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db_struc(O,dbroot,[],[e,d,c,b,a])
db_struc(l,d,[dbroot],[a])
db_struc(2,a,[d,dbroot],[b,c])
db_struc(3,b,[a,dbroot],[e])
db_struc(3,c,[a,dbroot],[e])
db_struc(4,e,[b,c,dbroot],[])

a(info,g,l,l,l).
b(info,1,2,4,4).
c(info,1,2,3,3).
d(info,1,2,2,2).
e(info,1,2,5,5).

a(l,g(p),true,+,nil,nil,'[]').

b(4,1(a,b),true,+,nil,nil,[[e,8]]).

c(3,1(r,t),true,+,nil,nil,'[]').

d(2,1(j,m),true,+,nil,nil,[[e,7]]).

e(5,1(h,_16),g(_16),+,nil,nil,'[]').
e(8,1(a,b),true,-,_7,_8,[[b,4]]).
e(7,1(j,m),true,-,_7,_8,[[d,2]]).

Figure 8: Internal representation

not have to be maintained for retractions, because
the order in which they are done does not matter.
When proving a subgoal, we want to search the dou
bly linked list corresponding to functor and arity of
the subgoal. For a DBU named dbul, we have sys
tem clauses of the following form to isolate on the
appropriate linked list:

dbu1(info,Functor,Arity,First,Last)

The arguments First and Last are the id's of the
first and last clauses in DBU Ul of a specific Functor
and Arity. Figure 8 shows the internal Prolog rep
resentation in Phd of the hierarchy in figure 7.

4.4 Inheritance

Assume we wish to prove a goal against DBU Ul.

First, exhaust all local clauses in Ul. Then try to in
herit clauses. At all times you carry around a list of
all DBU's which you have already searched. Retrieve
the inheritance order (discussed in the hierarchy sec
tion) associated with Ul. Examine each DBU in the
search queue in turn. When you have exhausted a
DBU, search the next DBU in the search queue. Con
tinue this process until you find a unifying visible
clause or fail to do so. Eventually you will reach
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dbroot. This is the equivalent of falling through to
Prolog.

Invisible clauses will not be searched. Every asser
tion has a pointer to the retraction which retracted
it. The pointer indicates which DBU the retraction
is local to. Therefore, if we encounter a candidate
clause whose head unifies with the current SubGoal,
we will just check if it was retracted by a retraction
in one of the DBU's we've searched. Remember that
we carry around the list of already searched DBU's.

Incidentally, our meta-interpreter does implement
the cut operation. Since there is an ordering to the
clauses in a view, the cut operation has the same
semantics as in Prolog. It would be interesting to
explore whether two types of cut were useful. One
would be a local cut which prevented backtracking to
clauses within the same DBU, but allowed inheritance
from other DBU's. The other would be a global cut
similar to Prolog's cut.

4.5 Phd Meta-Predicates

We have implemented the basics of our hierarchi
cal database model in the form of a meta-interpreter
PhaThis system maintains the notion of one database
view as the current database view against which goals
are attempted to be proven. Most of the usual Pro
log predicates which interact with the database have
been extended to take an additional, optional argu
ment which specifies the database unit (and therefore
the view) that the predicates is to be run against. If
a database view is not specified explicitly, then the
"current database" is assumed. For completeness,
here are the additional system predicates:

• localclause(P, Q, Ul). (P:-Q) is present in Ul.

• clause(P, Q, Ul). (P :-Q) is visible in the database
view of Ul.

• consu1t(File, Ul). Consult from a file to a specific
database unit.

Some predicates used for switching database views
are:

• demo(Goal, Ul). Attempt to prove Goal using the
view of Ul.

• cdb(X). True if X is the current database unit.
• makecdb(X). Make X the current database unit.

Much of the power of our model comes from very
procedural operations (e.g. adopt, kill, assert, re
tract) and through the explicit use of assert and re
tract to modify the database. It is our intention to
provide a language with such side-effecting operations
to allow programmers to easily and efficiently build
useful meta-level predicates to regain a declarative
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reading to programs. As an example, consider the
ability to to ask hypothetical questions. Assuming
clause P in the presense of the current database view,
is Q true?

assuming(P,Q)
newContext(C),
assert(P),
Q.

newContext(C)
create (NewDb) ,
cdb(CurrentDb) ,
adopt(CurrentDb,NewDb),
makecdb(NewDb).

5 Related Work

The idea of a hierarchical database of clause-like
objects can be found in some of the earliest pro
gramming languages for AI applications. Both Con
niver [18] and QA4 [7], for example, had hierarchical
databases. More recent work on enriching the model
of the clausal database can be divided into three
groups: the encorporation of (flat) modules and pack
ages, combining the object-oriented and logic pro
gramming paradigms, and the extension of the usual
clausal database model to (non-flat) hierarchies. Our
work falls into the last category. We will briefly men
tion the first two approaches and then describe in
more detail some of the other work in extending the
database model to hierarchies.

In the last few years, the encorporation of modules
into logic programming languages has been studied
at both the theoretical[17, 12]) and practical [3, 4, 1]
level. Most of the module systems we have studied
differ from our approach in that (1) the modules are
"flat" (2) predicates must usually be defined entirely
in one module and (3) there is no support for relative
retraction.

The past few years have seen a number of propos
als for languages which combine the logic program
ming and object-oriented programming paradigms
[20]. Some examples which include some kind of hi
erarchical database-like facility include KEE [2], Big
gerTalk [13] and LOGIN [5].

Our work falls into a category in which a logic
programming language has a hierarchical database
in which units inherit clauses, in some fashion, from
their ancestors. Examples in this category include
Bowen's meta-prolog system, an efficient implemen
tation of it designed by Bacha [6], the Horne theorem
proving system [11] and work by McDermott [16].

In [8], Bowen adopts a meta-level approach to pro
vide a logical semantics to assert and retract. His
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equivalent operations are add-to and drop-from. Re
lated sets of clauses, grouped together in lists, are
called theories. By executing add-to(tl ,C J t2), the
clause C is effectively cons'ed to theory tl to create
the new theory t2. The demo/3 predicate is used to
solve a goal with respect to a given theory yielding a
particular proof tree. A constant name is associated
with a theory which can be used to access the newest
version of the theory by using the name-of (Name, tl)
predicate. Remember, the original theory (imple
mented as a list of clauses) will dynamically change
through successive use of add-to and drop-from.

Bowen shows that an inheritance scheme between
the theories can be implemented in a frame-like fash
ion. Inorder for Theory2 to inherit the clauses In
Theoryl, the clause
is-a(Theory2-name,Theoryl-name) must exist in
Theory2. Say we call demo(Theory2,Goal,P). We
have the capability to access Theoryl. Simply
call name-of(Theoryl-name,Theoryl). Now we can
call demo(Theoryl,Goal,P), and the inheritance is
achieved. The point of his paper was to explore
the power inherent in the meta-level approach, rather
than describe a specific implementation.

Whenever an add-to(t l ,C,t2 ) or drop-from(t l ,C,t2 )

is called, a new theory is created. This new theory is
conceptually a slightly modified copy of the original
theory. Bacha [6] presents an efficient representation
for theories in Bowen's model. A copy of the theory
is not actually made. Instead, theory t 2 inherits all
clauses in tl except those of the same functor and
arity as clause C. This way, t2 need only contain
an effective copy of the modified collection of clauses
sharing the same functor and arity of C. Most im
portantly, he discusses how to implement his work
in the context of the Warren Abstract Machine [19].
It appears that the add-to and drop-from operations
prevent a theory from having multiple parents, since
a new theory is alway a modification of one existing
theory.

Another interesting method is described by [16]
and which is a descendant of the scheme used in Con
niver [18]. Our notion of a data base unit is equivalent
to McDermott's notion of data pools. There is also
a view associated with each data pool, since clauses
in ancestor data pools inherit down. Associated with
each clause in the database is a formula indicating
which data pool views the clause is in and which it
is known to be absent (by virtue of a retraction).
Solving a goal with respect to a data pool involves
retrieving clauses in the database and checking their
membership formulae to see if they are really in the
pool. One problem is that the membership formu
las can get quite large. In addition, you must sort
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through all the clauses unifying with the goal to de
termine if they are in the current data pool's view.

6 Conclusions

This paper has described a design for a hierarchi
cal database for a logic programming language and
its implementation in a meta-interpreter Phd. In
this model, the clausal database is segmented into
database units each of which is a local collection
of clauses. Each database unit defined a database
view which consists of the union of the clauses in
the local database unit and those clauses in the par
ent database units which have not been explicitly re
tracted in this view. An important feature of our
model is that it supports a notion of relative retrac
tion. That is, one can retract a clause with respect
to a particular database view. This can be done for
a clause which is "local" to the view (i.e. is recorded
in the unit which determines the view) as well as
for a clause inherited from some ancestor. In either
case, the retraction can only effect the database view
in which the retraction was done and (potentially)
descendant views (by preventing inheritance of the
retracted clause).

There are several ways in which our model differs
from previous hierarchical models for a logic pro
gramming language. First, our model allows the
database to have a lattice structure rather than just
a tree structure (as in Conniver, Horne and meta
Prolog). This greatly increases the expressivenes of
the language. Secondly, our model does not involve
the copying of any portions of the database, unlike
Meta-Prolog. Third, it supports the notion of "rela
tive retraction" which is essential for a number of ap
plications such as hypothetical reasoning and default
reasoning. This notion is not supported in Biggertalk
and Login. Finally, our model has an "efficiency pro
file" which makes it much more attractive for some
applications (the ones we are interested in, in partic
ular!).

We leave for future work a number of important
and interesting questions having to do with compi
lation, the structure of a hierarchical database and
efficiency.

Compilation. We have looked briefly at the issue
of compiling a logic programming language using our
extended model of the clausal database into instruc
tions for a modified version of the Warren abstract
machine. In particular, we would like to discover
what changes would be required to the indexing in
structions (i.e. try-me-else, switch-on-term, etc). We
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believe that this modification may not be straight
forward. One approach is to produce a static WAM
encoding for each unique database view. Unfortu
nately, much of the power of our model comes from
the ability to make dynamic changes to the structure
of the hierarchy and to the contents of the DBU's
which comprise the hierarchy. It is not reasonable
to assume that we can recompile affected database
views upon an adopt or a disown.

Our initial approach is to require that all predi
cate names that can be asserted or retracted must
be indicated beforehand. We will then maintain two
representations of the database. One would be an
interpretive representation in the spirit of Phd into
which dynamic predicates would be stored. In the
second representation, the static predicates of each
DBU would be compiled into a WAM encoding. Dy
namically created DBU's could only contain dynamic
predicates, so they would not have to be compiled.
The dynamic (interpretive) and static (WAM) repre
sentations would cooperate to solve goals together.

Database structure. Do we really need the lat
tice capability? Trees certainly would be much more
efficient. We would not have to maintain a dynami
cally changing inheritance order based on the notion
of levels. Also, we might be able to apply some of
the results of Bacha in [6]. We would like to do a
careful analysis of the efficiency gains to be made by
restricting the database hierarchy to be a tree.

Efficiency. There is a strong need for some empir
ical tests to study the efficiency of the three general
approaches to implementing a hierarchical database
in a language like Prolog.
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