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Abstract 
A central problem in text-understanding research is the in- 
determinacy of natural language. Two related issues that 
arise in confronting this problem are the need to make com- 
plex interactions possible among the system components 
that search for cues, and the need to control the amount of 
reasoning that is done once cues have been discovered. We 
identify a key d.ifEculty iu enabling true interaction among 
system components and we propose an architectural frame- 
work that minimizes this difficulty. A concrete example of a 
reasoning task encountered iu an actual text+mderstanding 
application is used to motivate the design principles of our 
framework. 

Introduction 
The central problem confronting text-understanding re- 
search is what in recent years has been characterized as 
the economy of natural language [Barwise and Perry, 
19831. Natural languages possess an economy of ex- 
pression because humans take advantage of situational 
cues in conveying whatever information they intend to 
partially encode as a natural language utterance. For 
a text-understanding system to approach human com- 
petence in coping with natural language, it must be 
capable of exploiting the same linguistic cues and gen- 
eral knowledge that humans exploit. Two related issues 
that arise in efforts to endow systems with this capa- 
bility are the need to make complex interactions pos- 
sible among the processing components, or knowledge 
sources, that search for cues, and the need to control 
how much reasoning is done with the cues;once they are 
discovered. 

In the following section, a conflict between two dif- 
ferent, processing methodologies is identified as the key 
difficulty in enabling complex interactions among the 
processing components of text understanding systems. 
An architecture is proposed that minimizes this prob- 
lem, but that places a burden on system designers to 
insure that the underlying representation language used 
as a communication medium among the system’s pro- 
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cessing components is rich enough to capture the in- 
formation content of an input text at a sufficient level 
of detail to be useful for the application-specific tasks 
the system is serving. We propose six design princi- 
ples addressing the issue of how expressive the under- 
lying representation language needs to be, and how the 
reasoning processes that manipulate expressions in this 
language should be controlled. 

In order to convey as concretely as possible the depth 
of understanding that text, understanding systems are 
expected to achieve, we have selected a particularly 
instructive example from a recent evaluation effort in 
which participating text-understanding systems per- 
formed a summarization task. Our discussion of this 
example will motivate our six design principles and in- 
dicate how our proposed framework permits evolution- 
ary progress towards more reliable text analysis. 

Component Interaction 
The flow of control in most text-understanding systems 
generally consists of an initial phase of syntactic pars- 
ing and semantic interpretation that results in a logi- 
cal form which is then translated into a less expressive, 
unambiguous representation serving as input to what- 
ever general reasoning modules the system has access 
to. Although there are many variations on this general 
theme, systems that rely on a careful syntactic analysis 
of textual input typically enumerate a set of unambigu- 
ous or partially ambiguous (least commitment) parses 
for a given utterance that are semantically interpreted, 
and the first coherent interpretation is passed on to 
the knowledge representation and reasoning component 
as the literal information content of the utterance. In 
systems possessing such architectures, the interaction 
between linguistic processing and general reasoning is 
minimal, since the general reasoning mechanisms are 
not defined over the data structures used in linguistic 
processing. 

A similar lack of interaction between linguistic 
processing and general reasoning is present in text- 
understanding systems that are less dependent on a 
Careful Syntactic analysis of textual input. SCISOR is 
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an example of such a system [Rau and Jacobs, 19881. 
When SCISOR processes a sentence in a text, it first tries 
to derive a full parse using a chart-based parsing algo- 
rithm. If this is not possible, a partial parse can be used 
to instantiate event descriptions based on expectations 
of how a given type of event is structured, including 
script-based intuitions about likely orderings of events 
in a typical scenario. Although this use of a backup, 
expectation-based processing strategy is a promising 
technique for handling gaps in coverage, it doesn’t ac- 
tually result in true interaction between the parser and 
the reasoning mechanisms used to analyze situation 
structure. Other well documented text-understanding 
systems that are heavily dependent on knowledge-based 
techniques exhibit difficulty in taking advantage of lin- 
guistic cues. In Hirst’s Absity system, e.g., the use of 
marker-passing as the principal reasoning mechanism 
makes it difficult to accommodate syntactic cues in lex- 
ical disambiguation [Hirst, 19861. 

Efficient linguistic processing is based upon a 
generate-and-test search methodology. In contrast, 
general reasoning techniques involve the creation and 
maintenance of persistent, complex, data structures. A 
generate-and-test methodology is effective if the cost of 
creating data-structures representing hypotheses is rela- 
tively cheap, which is not the case with the sorts of data 
structures that must be created and maintained when 
doing general reasoning. Consequently, there is a fun- 
damental conflict between efficient linguistic processing 
techniques and general reasoning techniques that re- 
sults in a natural tendency to separate the two forms 
of processing [Passonneau et al., 19891. 

There is a growing realization that although a strict 
separation between linguistic processing and general 
reasoning makes for a modular, efficient system archi- 
tecture, it is ultimately untenable because it, doesn’t al- 
low processing decisions to be postponed until adequate 
information is available to make well-motivated choices 
[Allen, 19891. Efforts to allow for the postponement 
of such decisions through the use of canonical struc- 
tures intended to capture multiple interpretations have 
been problematic. For example, Wittenberg and Bar- 
nett have observed that the use of canonical structures 
in the Lucy system developed at MCC resulted in aban- 
donment of bot h compositional interpretation and mod- 
ularity in the declarative representation of information 
[Wittenburg and Barnett, 19881. 

We conclude that current text-understanding sys- 
tems are not properly designed for the sort of inter- 
action among components that is required to cope with 
the indeterminacy of natural language. An obvious 
framework for achieving this sort of interaction is a 
blackboard architecture in which individual processing 
components communicate with one another via a com- 
mon language that they use to post and examine facts 
in some globally accessible data-structure. A few nat- 
ural language processing systems already make limited 

use of a blackboard architecture. Thus, the manner in 
which Polaroid words in Graeme Hirst’s Absity seman- 
tic intepreter communicate with one another is via a 
blackboard structure [Mirst, 1986]. The discourse com- 
ponent in the Lucy system developed at MCC exhibits 
a blackboard style of interaction among a number of 
sub-components that are used to perform reference res- 
olution [Rich and LuperFoy, 19881. We believe text- 
understanding systems should incorporate a blackboard 
architecture in which all components communicate via 
a common language over which the system’s available 
reasoning mechanisms have been defined, and that this 
language be expressive enough to capture all of the in- 
formation that the various system components are ca- 
pable of contributing to the text-understanding task. 

Six Design Principles 
Unfortunately, it is currently impossible to design a 
text-understanding system in which all components 
communicate via a common language with great, expres- 
sive power over which sophisticated reasoning mecha- 
nisms have been defined. The knowledge representation 
and reasoning techniques currently available are simply 
not up to the task of capturing the nuances of mean- 
ing in natural language. James Allen has suggested 
that this inadequacy is the principal reason that data 
structures commonly referred to as representations of 
logical form are created; they capture more of the ex- 
pressiveness of natural language than do current, knowl- 
edge representation formalisms with well-defined infer- 
ence mechanisms [Allen, 19891. 

Given this state of affairs, one can either abandon 
the design of text understanding systems based on the 
existence of a communication medium of the sort that 
is required, or one can pursue the design of such sys- 
tems with the hope that appropriate representation lan- 
guages will be developed in the near future. We recom- 
mend the latter choice for two reasons. First, experi- 
ence has shown that research and development efforts 
based on the old enumeration paradigm have begun to 
show diminishing returns. Second, there is a growing 
recognition in the knowledge representation and rea- 
soning community that general purpose knowledge rep- 
resentation systems need to be built that incorporate 
more expressive languages, even if doing so requires the 
abandonment of completeness [Doyle and Patil, 19891. 

We propose a design methodology based on the fol- 
lowing six principles: 

1. A capability for data-driven reasoning. 
The system should be endowed with the intelligence to 
know when available data suggests that a particular line 
of reasoning would be worth pursuing. 

2. A capability for constraint reasoning. 
The system should be capable of propagating constraints 
on an interpretation and reasoning about them. 
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3. An MRL with adequate expressive power. 
In selecting a knowledge representation and reasoning 
component, the expressive power of the MRL should take 
precedence over completeness and worst-case time com- 
plexity. 

4. A single MRL. 
The system

’

s 

knowledge representation and reasoning 
component should provide a single meaning representa- 
tion language (MRL) h h w ic may be used as a medium of 
communication for all system components. This language 
should serve both domain-specific and application-specific 
representation and reasoning tasks. 

5. A capability for delayed reasoning. 
The system should be able to postpone making a decision 
if insufficient information is available to make a reason- 
able choice. 

6. A capability for demand-driven reasoning. 
The system must be intelligent enough to know that cer- 
tam decisions simply do not need to be made. 

In the following sections, we provide a detailed exam- 
ple of a reasoning problem encountered in a text under- 
standing task and illustrate how the design principles 
we have proposed make it possible to properly confront 
it. To follow our discussion, it is necessary to have a ba- 
sic understanding of the knowledge representation and 
reasoning component used in the KERNEL text under- 
standing system that, we are currently building. 

The knowledge representation and reasoning compo- 
nent in KERNEL is based on the tripartite model popu- 
larized by Brachman, Fikes, and Levesque in the KRYP- 
TON system [Brachman et ul., 19851. The key feature in 
this architecture is the use of an interface language to 
insulate other processing components from the imple- 
mentation details of the knowledge representation and 
reasoning modules. This interface language, called PKR 
in KERNEL, serves as a protocol for asserting what to 
include in representations of the information content of 
texts, and for asking queries about the current state of 
such representations [Weir, 19881. PKR does not possess 
all the expressive power ultimately needed for text un- 
derstanding, but it does provide adequate access to the 
two knowledge representation and reasoning modules 
that KERNEL currently uses, as shown in Fig. 1. 

Concept hierarchies are currently defined in KERNEL 
using a KL-ONE style representation language called 
KNET [Matuszek, 19871. Assertions are expressed in 
terms of facts posted to the database of a forward- 
chaining system called Pfc [Finin et al., 19891. It is 
the forward-chaining database maintained by Pfc that 
serves as a blackboard structure in KERNEL. Pfc is 
built on top of Prolog and provides justification-based 
truth maintenance for expressing and reasoning about 
instances of concepts. Moreover, Pfc is able to manip- 
ulate two fundamentally different types of rules: eager 
rules and persistent rules. An eager rule is a typical 
forward-chaining rule that provides KERNEL with the 
capability to do data-driven reasoning. A persistent 
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Figure 1: Kernel
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current knowledge representation and rea- 
soning system has four components: PKR provides an abstract 
interface; KNET is a terminological representation system, Pro- 
log is used for some backward chaining, and Pfc provides a 
more flexible reasoning component with an integrated truth 
maintenance system. 

rule is a rule that is posted to the forward-chaining 
database, but that remains inert until a consumer ap- 
pears for one of its conclusions. When a consumer ap- 
pears, an instance of the rule is instantiated as an ea- 
ger rule to satisfy that consumer. The use of persistent 
rules helps control the amount of reasoning engaged in 
by the system. 

Archetypal NL 

As part of an effort to develop evaluation metrics for 
text understanding systems, NOSC sponsored a work- 
shop in which participating systems trained and were 
tested on a summarization task for a corpus of mili- 
tary messages [Sundheim, 19891. The texts consisted 
of OPREP (Operational REPort) messages describing 
naval sightings of surface, subsurface and airborne ves- 
sels. Fig. 2 illustrates a sample text and the target 
output. To demonstrate understanding, each partici- 
pating system had to recognize the events mentioned 
in a message and determine whether they fell into one 
of 5 critical types of events. At most, two such events 
were to be identified per message: the most important 
such event initiated by the friendly forces and, similarly, 
the most important one initiated by the hostile forces. 
Generating one template per reported event and cor- 
rectly filling the 10 slots of each template constituted 
successful understanding. In cases where two templates 
were generated, the system was to determine the cor- 
rect temporal ordering. Fig. 2 illustrates a message 
with two event templates where the correct temporal 
ordering is not provided explicitly in the message, but 
instead must be inferred from the message content. 

The critical sentence of the sample message is: 

friendly CAP a/c splashed hostile tu-16 proceeding 



Narrative text horn message 

Friendly CAR A/C splashed hostile TU-16 proceeding inbound to Enterprire at Sbnm. Last hostile acft in vicinity. Air warning red 
weapons tight. Remaining alert for additional attacks. 

Paraphrase of narrative text 

A friendly combat air patrol aircraft shot down a hostile TU-16 aircraft thirty-five nautical miles away from the carrier Enterprise. The 
hostile aircraft had been proceeding towards the carrier at the time of the attack. It was the last hostile aircraft in the area. All friendly 
forces should remain at the highest level of alert, but are not given permission to fire their weapons. 

Figure 2: This figure shows an example of the narrative free text portion of one of the Oprep messages, a paraphrase of the 
intended meaning, and the properly filled database templates which represent the meaning. 

inbound to enterprise at 35nm.l 

In this domain, an aircraft proceeding towards an op- 
posing carrier constitutes a track event, thus licensing 
the first template shown above. An aircraft that gets 
splashed has been shot down into the ocean, which 
counts as an attack event. Note that the track tem- 
plate is correctly ordered prior to the attack template.2 
An accurate analysis of the sentence shown above leads 
to the correct ordering of the two templates demanded 
by the application, but requires close cooperation be- 
tween linguistic and knowledge-based processing. We 
describe below how this sentence illustrates the need to 
simultaneously make use of local linguistic information 
and global contextual information. But note that the 
information required by the application cannot predict 
in general the degree to which such reasoning will be 
required. For messages with more explicit temporal in- 
formation, linguistic analysis alone may be sufficient to 
provide the correct template fills. 

Given that the template filling task requires tem- 
poral information, the system should provide its best 
guess regarding the temporal order of the proceed and 

‘See Fig. 2 for a paraphrase. 
‘The Kernel system generates the template output 

shown in Fig. 2, relying on a combination of linguistic pro- 
cessing, deep reasoning, and application-specific heuristics; 
however, we have not fully implemented the architecture 
proposed here. 

spkash events even in the absence of explicit assertions. 
But since the system may have access to many different 
kinds of knowledge, the need to control deep reasoning 
with respect to specific goals arises. For example, for 
this task, the system should not attempt to infer the 
tu-16’s location of origin because it is irrelevant. As we 
describe the inference problem in more detail, it should 
be clear both that the original sentence does not explic- 
itly order the two relevant events, and also that infer- 
ring the temporal order depends on multiple knowledge 
sources. 

The proceeding event, a temporally situated occur- 
rence involving the referent of the noun phrase hostile 
tul6, is mentioned in a post-modifier with no explicit 
temporal information, i.e., no tense and no temporal 
locatives. Given the sentence structure, there are three 
possible temporal locations for the event. These three 
possibilities are that the reference time of the event is 
the same as the matrix clause reference time specified 
by the simple past tense, a different past time, or the 
present time (utterance time, or here, message composi- 
tion time). Graphic representations of three illustrative 
sentences are shown in Figs. 3-5.3 

Given that the linguistic structure permits three tem- 

‘A Reichenbachian interpretation of tense involves three 
temporal indices, one of which, ST, represents the time at 
which a speech or text event occurs [Reichenbach, 19471. 
Since in these examples event time (ET) and reference time 
(RT) are identical, only ST and RT are used. 
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We votedfor the woman (now) wearing the 
blue dress. 

voting 

wearing 

utterance 

RT ST 

TEMPORAL RELATIONS: 

@ The utterance occurs at time ST. 
a The voting occurs at time RT. 
o RT<ST. 
l The wearing occurs at time ST. 

Figure 3: The first possibility for the reference time of the Figure 4: The second possibility for the reference time of the 

modifier is that it is the same as the time when the sentence modifier is that it is the same as the time specified by the 
or utterance is produced (ST). matrix clause tense (RT). 

poral interpretations for the time of the proceeding, the 
next step is to examine what factors favor one interpre- 
tation over another. The three inference rules presented 
in Figs. 6, 7 and 8 illustrate a reliance on multiple 
knowledge sources. Note that the rules use the follow- 
ing symbols and relations4: 

e SI - the event or situation mentioned in the matrix clause 

o S2 - the event or situation mentioned in the postmodifier 

l s3 - the situational context at the time of the utterance 

o holds(S, RT) - t rue if event or situation S holds at time 
RT 

l salient(E, S, ST) - t rue if entity E is salient in situational 
context S at time ST 

o consistent(E, SI, S2, RT) - true if what is predicated of 
entity E in situation SI, where SZ holds at RT, is consis- 
tent with the assumption that Sr also holds at RT 

In all three rules, the first 5 clauses are the same, and 
depend on the local linguistic structure. They make 
reference to syntactic relations like matrix clause or se- 
mantic correlates thereof, such as the event or situation 
evoked by a clause, the specification of a reference time 
for that event or situation, e.g., a known RZ’l for the 
tensed matrix clause and an unknown RT2 for the un- 
tensed reduced relative. Similarly, the first 5 clauses 
of all three rules make reference to the consistency of 
the -ing predicate with what is known about the modi- 
fied entity at various other known times. In general, 
the three rules depend on both context-independent 
semantic interpretation and context-dependent prag- 
matic processes such as determing the reference time of 

4Terminological note: an event is a specialization of a 
situation; a situational context for an utterance or text is 
also a specialization of a situation. 
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Friendly CAP ale splashed hostile tu-16 
proceeding inbound to enterprise at 35nm. 

proceeding 

splashing 

utterance 

RT ST 

TEMPORAL RELATIONS: 

0 The utterance occurs at time ST. 
0 The splashing occurs at time RT. 
o RT<ST. 
o The proceeding occurs at RT. 

the matrix clause, determining the referent of the noun 
phrase, and determining the salience and consistency 
of entities in the discourse context. While there is no 
space here to discuss salience and consistency in detail, 
salience of an entity can be taken as a discourse prop- 
erty that involves the notions of local and global focus 
[Grosz and Sidner, 19861. Consistency involves a com- 
bination of lexically driven inference (i.e., what facts 
about X and Y follow from splash@, Y); likewise for 
proceed(X Y)h g eneral world knowledge about times 
and situations, and an evaluation of what is known 
about the relevant entity and situations at a particu- 
lar reference time. 

The three inference rules capture a general reasoning 
process that can be described as follows: when resolv- 
ing the referent E, attempt to find a known time to 
assign the situation S2 that is the same or prior to ST 
by insuring the consistency of S2 with everything else 
that is known about E for that time. The question is 
when and how to execute this reasoning process, and 
more crucially, whether it can be performed as a simple 
sequential process. We believe it cannot be performed 
as a sequence of distinct steps in distinct semantic and 
pragmatic processing stages for the following reasons. 
If the reasoning is done incrementally, as a semantic 
interpretation for each phrase is arrived at, then all 
the relevant local syntactic and semantic information 
specified in the first 5 clauses of the inference rules in 
Figs. 6-8 will indeed be available. But the problem 
here would be to handle the interdependence between 
the two pragmatic processes of resolving the referent 
of the noun phrase and finding the temporal location 
of its modifier. There is a cirularity in that knowing 
the referent of the noun phrase might eliminate certain 
temporal locations for the situation predicated of that 



We voted (this morning) for the woman 
distributing leaflets at the meeting 
(yesterday). 

distributing voting utterance 

RT2 RTl ST 

TEMPORAL RELATIONS: 

o The utterance occurs at time ST. 
* The votin 
.RTl <S 9 

occurs at time RTl. 
. 

0 The distributing occurs at time RT2. 
.RT2<RTl. 

We voted for the woman wearing the blue dress. 

a) holds(Sx, RTI) 
b) RTI < ST 
c) hold+, RT2) 
d) unknown( RT2 ) 
e) saZient(E, SS, ST) 
f) wnsident( E, SZ ,233, ST) 

;Ta = ST. 
L J 

Figure 6: This rule handles cases where the RT of the post- 
modifier (RT2) and ST are the same. 

Figure 5: The third possibility for the reference time of the 
modifier (RT2) is that it is prior to the utterance time (ST) 
but distinct from the reference time of the matrix clause (RTl). 
The figure illustrates the case where RT2 precedes, rather than 
follows, RTl. 

Figure 7: This rule handles cases where RT of the matrix 
clause (RTl) and RT of the post-modifier (RTa) are the same. 

referent in the postmodifier; but, knowing the temporal 
location of the situation in the postmodifier might help 
determine the referent of the noun phrase. This argues 
for a solution which circumvents the problem of having 
to order the two pragmatic processes with respect to 
one another. We show in the following section how the 
six principles outlined in the section preceding this one 
provide this feature, as well as other advantages. 

An alternative to performing the reasoning incremen- 
tally would be to postpone it until a semantic interpre- 
tation for the whole sentence has been performed. Here 
there are two potential problems. The first is that if 
the linguistic input has alternative analyses, then being 
able to reason from the current discourse context might 
help choose among them. In contrast, if the reasoning 
is carried out after the semantic interpretation of the 
sentence, then the global discourse information may be 
available but the output of linguistic processing con- 
tains representations of entities, situations and times in 
a form quite remote from surface linguistic structure. 
The reasoning mechanism would need access to the lo- 
cal linguistic information specified in the rules above, 
i.e., that there was a particular syntactic configuration 
and consequent semantic relations. Again, the solution 
we propose in the following section circumvents this dif- 
ficulty. In addition, our solution maximizes the ability 
of the system to accurately solve for the unknown refer- 
ence time, and thus to perform the required application 
task as accurately as possible. 

Friendly cap a/c splashed hostile k-1 6 proceeding 
inbound to enterprise 

a)-d) same as above 
e) not( sahent(E, SS , RTI )) 
f) consistent(E, S2, Sl, RTI) 

;Tz = RTl. 

We voted for the woman pa&rag out leaflets at 
Tom ‘8 party yesterday 

a)-d) same as above 
e) not( sahent(E, SS , RTI )) 
f) not(consistent(E, SZ , Sl , RTI )) 

RjTa < ST, 
RTs # RTl. 

J 

Figure 8: This rule handles cases in which RT of the post- 
modifier (RT2) is distinct from ST and RT of the matrix clause 

(RZ). 

Improved Integration 

The six principles we have proposed comprise a package 
in which maximum benefit of each principle follows from 
implementing the whole. Below we use the example 
described in the previous section to illustrate how this 
combination of principles would circumvent many oft he 
processing difficulties posed by this example. 

We assume that when the modifier in the example 
sentence is semantically interpreted, the available data 
consists of the full parse tree and a partial semantic 
analysis. We also assume that in general, during lin- 
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guistic processing of a sentence, the status in the dis- 
course model of entities referenced in the same sentence 
may or may not be available. Principle 1, data driven 
reasoning, dictates that elaboration of the MRL repre- 
sentation of a sentence be data-driven. We have shown 
that the reference time of the postmodifler in the sam- 
ple sentence is constrained by the three inference rules 
provided in Figs. 6-8, irrespective of what other data 
may OP may not have been already derived about the 
entities and situations mentioned in the sentence. We 
therefore conclude that the knowledge represented in 
the three inference rules ought to be included in the 
output of linguistic processing. KERNEL currently en- 
forces data-driven reasoning in that facts derived from 
linguistic processing are posted to PKR during linguis- 
tic processing and the KR&R modules must then reason 
from this data. 

Principle 2 asserts that the MRL expressions repre- 
senting the output of linguistic processing must express 
no more nor less than can be justified by the linguis- 
tic input. Thus in cases where the linguistic input is 
indeterminate, as in the example sentence, the output 
of linguistic processing should preserve this indetermi- 
nacy. At present, we can reason with constraint rules 
such as those shown in Figs. 6-8, but we do not have 
a concise means of reasoning about constraints as first 
class objects. To return to OUP example, it might prove 
useful in some circumstances to reason about the pro- 
ceeding and the splash events in a way that takes into 
account the constraints on the reference time of the 
proceeding, e.g., that RT2 5 ST, prior to being able to 
resolve the constraints. 

Principle 3 embodies our belief that the expressive 
power of the MRL should take precedence over the 
ability to reason efficiently over MRL expressions (cf. 
[Allen, 19891 [Doyle and Patil, 19891). The relation of 
linguistically derived temporal information to tempo- 
ral reasoning is a good example of the potential need 
to sacrifice completeness, since temporal-interpretation 
of textual input generally results in partially ordered 
times at best [Allen, 19831. 

Principle 4 requires that the information be repre- 
sented in a common MRL so that any other process- 
ing components can potentially contribute to-or rea- 
son over the representation. The semantic and prag- 
matic interpretation procedures in KERNEL currently 
use PKR to determine how to express the facts it derives, 
thus PKR provides access to whatever KR&R compo- 
nents are available while insulating the semantic and 
pragmatic interpreters from dependence on a particu- 
lar KR framework. It is only necessary that for each 
query from KERNEL there be an equivalent MRL ex- 
pression. In thii caSe, PKR insures that all facts about 
entities, times, situations and temporal relations that 
are derived from the sample sentence are expressed in 
MRL expressions that can mediate between the linguis- 
tic modules and KR&R resources. 

By restricting the responsibility of the linguistic mod- 
ules to that of posting linguistically justifiable conclu- 
sions, the time at which deep reasoning takes place is 
open. For example, it can be postponed until contin- 
gent information is more likely to be available, as noted 
in Principle 5. For efficiency reasons, we currently post- 
poneinvocationof PFC Until after hgUiStiC PrOCeSSiUg 
of an input sentence. At this point, PFC would have 
access to the maximum set of facts pertaining to the 
determination of RT2 in the sample sentence. Accord- 
ing to our model, if the data support a specific conclu- 
sion about the identity of RTZ, that conclusion should 
be derived. If not, the representation of RT2 should 
remain expressed in terms of constraints. 

The final principle, demand-driven reasoning, com- 
plements datccdriven reasoning in a way which inte- 
grates well with application requirements. If we take 
our example sentence in isolation from its discourse 
context, there is insufficient linguistic data to equate 
RT2 with either RTI or ST; there is also insufficient 
data to unequivocally distinguish it from RTl or ST. A 
particular discourse context and the additional data it 
provides might justify more specific conclusions about 
RT2. FOP example, if the discourse context definitively 
supports the conclusion that “not (salient (E,Se, RTI))” 
(cf. clause e) of the rules in Figs. 7-8), then perhaps 
the mere presence of this extra data should trigger the 
reasoning process that would eliminate ST as a possi- 
ble value of RT2. On the other hand, it is not nec- 
essarily useful to derive all justifiable conclusions from 
a particular set of data. Even in a discourse context 
which could further constrain RT2, it may be prefer- 
able for the additional reasoning to be suspended until 
there is an explicit demand. We speculate that such a 
demand could originate either from other application- 
independent processing or from application-dependent 
tasks. In OUP example, the application should drive the 
search for relevant temporal information. 

Conclusion 
We see a fundamental conflict between linguistic pro- 
cessing strategies and knowledge-based reasoning pro- 
cesses. In adapting KERNEL to a specific application 
task, we confronted a tradeoff between our long term 
goals of designing a general purpose, application in- 
dependent NL system and the specific requirements of 
the appplication task. Although we were able to sat- 
isfy the immediate demands of the application without 
changing the fundamental architecture of the system, 
we felt that it should be possible in the long run to 
achieve a better balance between application-specific 
post-processing modules and the underlying text un- 
derstanding system. We have described our recent ef- 
forts to achieve a better solution and our current views 
regarding the promise of closer integration of general 
purpose reasoning, linguistic processing, and applica- 
tion oriented reasoning. It is our conviction that long- 
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term research goals concerning the development of prac- 
tical applications of text understanding systems must 
focus on the problem of integrating multiple knowledge 
sources as cleanly as possible. 
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