
An Integrated Architecure for Secure Information Discovery, Composition

and Management in Pervasive Environments

Sasikanth Avancha, Dipanjan Chakraborty, Lalana Kagal, Filip Perich, Anupam Joshi, Timothy

Finin, Yelena Yesha

Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21250

e-mail : fsavanc1,dchakr1,lkagal1,fperic1,joshi,fining@cs.umbc.edu

I. INTRODUCTION

Computing in this day and age is on the way to becoming completely ubiquitous and pervasive. The

computational capability of commonly used devices, like cellular phones and handhelds, and their ability to

wirelessly communicate with other devices are driving forces behind the progress of pervasive computing.

Wireless technologies of the hour – the various flavors of the IEEE 802.11 standard and Bluetooth – are play-

ing an important role in allowing the multitude of devices to spontaneously form short-range, short-term,

ad-hoc networks. In order to support and maintain these networks, efficient routing and transport protocols

are required. Much of the research in academia and industry has and continues to be focused on the devel-

opment and improvement of these protocols. The next, and perhaps most important (from user perspective)

step, is for applications on the devices forming these networks to exchange information with one another.

Unlike devices in infrastructure-based networks, however, those in ad-hoc networks are often restricted in

terms of power and memory capabilities. These restrictions reduce the possibility that the devices can store

all required information and services locally. Thus, in order to satisfy user requests, applications on a device

must be able to discover information on other devices in the ad-hoc network. In some situations, information

available on multiple devices must be composed together after being discovered, before being presented to

the user. Users often pose queries to applications, which in turn may query other applications in the ad-hoc

network, to eventually obtain an answer. Needless to say, all of these tasks must be performed in a secure

manner.

To this end, the eBiquity research group (http://research.ebiquity.org) at the University

of Maryland, Baltimore County is involved in the design, development and evaluation of an integrated

architecture whose primary components are

� Semantic Service Discovery: The process of discovering information and services – described in a struc-

tured manner – based on the semantics of the descriptions rather than patterns present in them.

� Service Composition: The process of creating complex services from simple, easily executable lightweight

services by dynamically discovering, integrating and executing the simple services in a planned manner, to

satisfy a client request.

� Profile-Driven Data Management: The process of intelligently managing the access, storage, monitoring,

and manipulation of data and other resources, such as communication bandwidth, disk bandwidth, and cache

space, based on user data requirements specified in profiles.

� Distributed Trust Management: The process of using trust relationships as a way of authenticating users

and providing access control.

In designing this architecture, we have chosen two classes of “tools” that we believe are essential building

blocks: semantic models/languages and reasoning engines. A semantic model or language is necessary to

describe information in a well-defined and structured manner so that machines, rather than humans, can

“read” and “understand” it. The Resource Description Framework (RDF) and the DARPA Agent Markup

Language (DAML) are examples of a semantic model and language, respectively. Information in a structured



manner lends itself to easy conversion to statements in first-order logic. Reasoning engines can use these

statements to derive new statements that would lead them closer to the “ideal” response to a user request.

The most common reasoning engines are based on Prolog.

In the following sections, we describe the applicability and overview of this architecture and briefly

discuss the components.

II. A SCENARIO FOR THE FUTURE

Fig. 1. Philip’s PDA/Phone in an Ad-Hoc Environment

Let us now look at a scenario set in the future. Philip is traveling in a car and has a IEEE 802.11b/Bluetooth-

enabled personal digital assistant (PDA) with a Global Positioning System (GPS) device attached to it. His

colleague in the car, Mark, suddenly takes ill and must go to hospital immediately. Philip has to find the

route to the nearest hospital and the traffic conditions on the road are really bad. So, Philip does not want

to simply find any route to the hospital, but one that consists of least crowded highways, roads and streets.

The first task for Philip’s PDA is to discover services in his (mobile) neighborhood that could help achieve

Philip’s goal. These services could be in other cars alongside or in buildings that he is driving (at possibly 60

mph) past. The PDA should be able to compose these services together in order to obtain the “best” route.

It must query, obtain and manage information provided by the services it discovers.

It decides that in order to satisfy the goal, it needs to discover a dynamic traffic information service

provider, a road map service provider and a route calculating service provider. First, the PDA determines

its current location using the GPS device. It then discovers the road map service and provides this location

and the hospital’s location as inputs to the road map service provider. The traffic information service is

discovered next; its input is the result from the road map service. Current traffic conditions are thus obtained.

These, along with the location and map information, are given as inputs to the route calculating service to

finally obtain the best route to the nearest hospital. Philip now realizes that Mark’s hospital records must be

obtained from his doctor’s office and made available to the hospital they are headed to. He does this using

his trust relationship with Mark.



Fig. 2. Architecture for Secure Information Discovery, Composition and Management

III. OVERVIEW OF THE ARCHITECTURE

IV. SEMANTIC SERVICE DISCOVERY

The fundamental components of a service discovery protocol or mechanism are the service description

and the matching technique. In most prevailing protocols, the service description typically contains the fol-

lowing information: name of the service, a unique service identifier, the expected inputs to the service, the

name and/or address of the service provider, the protocol(s) required to use the service and other attributes

describing specific service capabilities. The matching technique is typically tied to either the service name,

the unique identifier, the service invocation mechanism or a combination of all three. For example, the

matching technique in Jini– the well-known Java-based service disocvery protocol – uses the method inter-

face to match service requests against the service descriptions, while that in the Bluetooth Service Discovery

Protocol (SDP) uses Universally Unique Identifiers (UUID). Other commonly used protocols like Saluta-

tion, Microsoft’s UPnP and UDDI use description and matching techniques similar to those of Jini and

Bluetooth SDP. The common thread in all these protocols is the use of patterns – UUIDs, interfaces, names

– to implement the matching technique. We argue that service discovery based on pattern matching is ineffi-

cient in a mobile, ad-hoc environment because the heterogeneity of service interfaces in such a domain will

result in more failed matches than successful ones. For example, the road map service discovery attempt by

Philip’s PDA may fail simply because it specifies a ”RoadMapService” in its request, whereas the interface

to the map service on a neighboring device is called ”MapService”. Such failures lead to inefficient service

discovery because many neighboring devices may have to be queried before a match is found. In a dynami-

cally changing environment, such as a car on a highway, querying multiple devices may not be an option. On

the other hand, semantic description of both the ”RoadMapService” and the ”MapService” would contain

information that allows the matching technique to infer that the two are equivalent. In addition, semantic

matching allows the service disocvery requestor to specify additional constraints on the attributes.

Semantic service discovery uses a semantic model/language to describe a common ontology for services

and a reasoning engine to draw inferences between various descriptions, based on the ontology. The ontol-

ogy attempts to capture and represent as much knowledge as required, about services in an ad-hoc network

environment. In general, an ontological description allows all parties in a transaction to understand each



other unambiguously. Service disocvery requests also use the semantic language, so that the reasoning

engine can determine the closest possible match between the request and the available services.

We have enhanced the Bluetooth SDP to use semantic information associated with services and attributes

to decide the success or failure of a query [1]. We have developed two versions of Bluetooth SDP that support

semantic matching and provide service registration. The first version uses the RDF/RDF-S data model and

the second version uses DAML. We plan to extend this implementation to other service discovery protocols

over different communication media.

V. SERVICE COMPOSITION

The need for service composition in a pervasive environment arises when the functionalities of more than

one service are required, to satisfy a given request. Although it is possible to statically combine the multiple

functionalities into one monolithic service, one can easily imagine a situation where one would require

the service to possess additional capabilities. So, this service needs to be combined with at least another

service to produce the desired results. Static combinations of services in a dynamic environment, such as

a mobile ad-hoc network, are likely to be used infrequently, unless they are very common. For example,

because Philip’s PDA is attempting to determine the least crowded route to the nearest hospital, a road map

service must be combined with a route calculating service. This is required only in emergencies. Hence,

for some device to store a combination of these two device might simply be a waste of resources. Thus,

storing such combinations on low-power, resource constrained devices may not be feasible. This leads

us to believe that dynamic service compostion is the ideal solution for pervasive environments. Service

composition has been studied in depth in the context of wired or Internet-based services. We are aware

of service discovery and composition platforms like UDDI and HP’s eFlow engine (a part of the eSpeak

architecture)[4] that provide a centralized platform for composition of e-services for complex queries like

planning a business trip. Languages like WSDL and DAML-S have been proposed to describe composite

services in a structured manner. The fundamental assumption of these composition platforms – one that

often fails in dynamic, pervasive environments – is that the services exist in a stable wired environment and

that the composition can be centralized.

We are developing a distributed architecture to perform service composition in a pervasive environment.

Central to our system is the concept of a distributed broker that can execute in any node in the environment.

An individual broker handles each composite service request, thus making the design of the system immune

to central point of failure. A broker may be selected based on various parameters like resource capability,

geometric topology of the nodes and proximity of the node to the services that are required to compose a

particular request.

We have developed a system that is capable of reactive service composition in a pervasive environment by

dynamically discovering, integrating and executing individual services available in nodes that are connected

in an ad-hoc manner. We have described composite services using DAML-S. Our work includes designing

a proactive mechanism for service composition, which allows a node to obtain and compose commonly

used services, before the application requests such a service. We also plan on implementing a distributed

brokering approach where the task of a single composite service hops from one broker to another depending

on various factors like service availability and number of hops.

VI. PROFILE-DRIVEN DATA MANAGEMENT

The foundation of peer-to-peer data management is fundamental to pervasive environments. It is crucial

in enabling mobile, wireless devices to collaborate with peers to achieve higher data availability and cur-

rency. An ideal peer-to-peer data management system provides both read and write modes of transactions

to allow every device complete access to local and remote data. For example, Philip’s PDA could cache

the route information to the nearest hospital and update its neighbors, if any, so that they do not have to go



through the discovery/composition procedures. If, however, Philip’s profile prevents arbitrary propagation

of available information proactively, the PDA could still respond to queries regarding the location of the

nearest hospital. Existing mobile data management solutions are based on the client/server model. Typ-

ically, mobile/wireless devices are clients and servers reside on a wired network. The clients are treated

as data consumers only, and the main emphasis is often on the development of disconnection management

protocols. Such solutions are not flexible or comprehensive enough to deal with peer-to-peer data man-

agement. We believe that a peer-to-peer data management system should address additional challenges to

common distributed database frameworks that arise in pervasive environments. These include the temporal

and spatial variation of data source availability, the use of both implicit and explicit queries and the absence

of a priori schema translation.

To this end, we have designed and implemented a framework prototype, MoGATU [8], through the use

of DAML-S. The primary component of our framework is InforMa - a powerful information manager that

allows applications to query and obtain responses from their dynamically changing entities. Each device

is represented by one InforMa and multiple information providers, which can range from local databases

to applications generating data dynamically. InforMa serves as a mediator among any pair of information

providers and consumers, and is responsible for query routing and processing. It provides data routing and

forwarding capabilities among mobile units in its vicinity over Bluetooth and Wireless LAN networks. It is

responsible for matching requests with possible instances of required answers and/or appropriate informa-

tion providers. Finally, it caches data that was requested locally as well as data that was advertised by other

remote devices. The present form of InforMa supports the Least Recently Used (LRU) and preliminary

semantic cache replacement algorithms. To replace existing data with new data when the cache is full, the

LRU algorithm places the new data in the location of the least recently used items. On the other hand, the

semantic algorithm tries to place the new data in the space of the item that is least likely to be used or re-

quired again based on the device user’s profile. The user profile contains preferences and other information,

and serves a base for predicting future data interaction.

Currently, the framework supports only read-mode transactions. Our present task is adding the necessary

capabilities to provide write-mode transactions as well. In addition, we plan provide InforMa with Prolog-

based reasoning capability. In the long term, we envision the framework as a base for building an ad-hoc

transaction management to allow more sophisticated interactions among peers.

VII. DISTRIBUTED TRUST MANAGEMENT

Traditionally, stand-alone computers and small networks rely on user authentication and access control

to provide security. These physical methods use system-based controls to verify the identity of a person or

process, explicitly enabling or restricting the ability to use, change, or view a computer resource. However,

these mechanisms are inadequate for the increased flexibility that distributed networks such as the Internet

and pervasive computing environments require. The main assumptions of existing mechanisms are that the

environments possess central control and that their users are all predetermined. Users of these pervasive

computing environments expect to access locally hosted resources and services anytime and anywhere via

some handheld device, causing serious security risks and access control problems.

We suggest using distributed trust as a way of authenticating and authorizing users through the help of

trusted entities, without having to completely authenticate the users or find their exact access rights in the

system.

We view trust management as the establishment of trust relationships instead of quantifying trust. Trust

relationships are formed through delegations. If a trusted user (by trusted we mean a user whose credentials

are acceptable and whose reputation is fair) delegates certain rights to another user, this delegation is also

trusted. A trust relationship is formed between the system and the delegatee for the delegated rights, that is

the user is trusted by the system only in relation to those rights. The delegatee is given those rights based



on the conditions specified in the delegation statement. Our approach involves articulating policies for

user authentication, access control, and delegation; assigning security credentials to individuals; allowing

entities to modify access rights of other entities by delegating or deferring their access rights to third parties

and revoking rights as well; and providing access control by checking if the initiators’ credentials fulfill the

policies [3], [2]. A user is assigned some generic rights deduced by reasoning over his/her credentials, the

security policy and delegations from other users. Users can also make requests to access other services.

Appropriate users with these access rights can decide to delegate the requested right to them. A user can

delegate all rights that it has the permission to delegate. Rights can also be revoked; so rights are no longer

static, but can change based on delegations and revocations.

We have applied this distributed trust model to several scenarios [6], [5]. Vigil is a system we devel-

oped recently and is designed to provide security and access control in distributed systems, and has been

optimized to work in dynamic mobile environments, where most of the clients are handheld devices. We

have developed Vigil by combining SPKI and Role Based Access Control [9], [7] with trust management.

The system contains a Security Agent that is responsible for maintaining distributed trust. It enforces the

security policy of the organization. It interprets the policy to provide controlled access to Services and uses

distributed trust.

We have developed permissions and prohibitions in Vigil and are looking into the usefulness of obligations

and entitlements as additional security mechnisms in pervasive systems. We are exploring distributed belief

as a way for the Security Agent to garner the required trust information. The policy could include rules

for belief as well. The trust information is encoded in Prolog; we are planning to use either RDF/RDFS or

DAML in addition to Prolog.

VIII. CONCLUSIONS

REFERENCES

[1] S. Avancha, A. Joshi, and T. Finin. Enhancing the Bluetooth Service Discovery Protocol. Technical report, University of

Maryland Baltimore County, August 2001. TR-CS-01-08.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The Role of Trust Management in Distributed Systems, volume 1603

of LNCS, chapter Secure Internet Programming, pages 185–210. Springer, Berlin, 1999.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. IEEE Proceedings of the 17th Symposium, 1996.

[4] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan. Adaptive and Dynamic Service Composition in eFlow. Technical

Report, HPL-200039, Software Technology Laboratory, Palo Alto, CA, March 2000.

[5] L. Kagal, T. Finin, and Y. Peng. A framework for distributed trust management. In Second Workshop on Norms and Institutions

in MAS, Autonomous Agents,2001, 2001.

[6] L. Kagal, J. Undercoffer, T. Finin, and A. Joshi. Vigil : Enforcing Security for Pervasive Enviroments. In Under review, 2001.

[7] E. C. Lupu and M. Sloman. Towards a Role Based Framework for Distributed Systems Management. Journal of Networks and

Systemss Management, Plenum Press, 1996.

[8] F. Perich, S. Avancha, A. Joshi, Y. Yesha, and K. Joshi. Query routing and processing in mobile ad-hoc environments. Technical

Report TR-CS-01-18, CSEE, UMBC, November 2001. submitted for conference.

[9] R. S. Sandhu. Role-Based Access Control. In M. Zerkowitz, editor, Advances in Computers, volume 48. Academic Press,

1998.


