
Backward and forward chaining-our nascent science of
Artificial Intelligence-has ancient antecedents: Aristotelian

rhetoric reasons deductively from the Universal to the Particular;
Socratic dialectic reasons inductively from the Particular to the
Universal, as does scientific method. The seedling confluence
of computer graphics and Artificial Intelligence has deep roots.

As computer graphics evolves and expands into an
essential component of many interactive systems, it is
almost inevitable that the applications themselves become
more complex and ambitious. In particular, the interactive
system is rapidly becoming the intelligent system: Not only
does the interface permit convenient access to the entities
and operations of the application, but it also aids and
augments the mere interaction in significant ways. For
example, computer-aided design systems check topological
constraints while an object is being constructed, robot
simulators assist in avoiding collisions, and slide-making
systems have automatic layout modes.
The implication of these aids is that the new generation

of graphical systems will provide increasing intelligence in
the human-computer interface. The study of the charac-
teristics and capabilities necessary to effect communication
between human and machine on this higher level is a
central aspect of Artificial Intelligence (AI). One of our
principal goals in presenting this special issue is to bring the
approaching confluence of computer graphics and artificial
intelligence into sharper focus. In addition, we hope to spur
interest in common issues and open new pathways for
future graphical systems.
The fields of artificial intelligence and computer graphics

have interacted in a number of ways in the past. This
interaction has been particularly strong in the areas of
image processing and robotics. Image processing and
graphics are naturally related because they share a common

November 1985 A.7 X 1

Computer Graphics
5nd Expert Systems

Norman 1. Badler and Timothy W. Finin

University of Pennsylvania

problem: How does the three-dimensional world appear

when projected onto two dimensions. Another relation,
one shared by robotics, is that graphics provides an

important tool for presenting the data being processed by
these systems as well as their internal states.

Other areas within Al also have a natural relationship
with computer graphics. Natural language processing, for
example, was once seen as offering a kind of interface that
would be an alternative to a graphic one. The current
trend, however, is to build sophisticated interfaces that
combine both graphic and linguistic modalities. The rela-
tionship between graphics and natural language processing
becomes more interesting when one looks at the underlying
issue-communication. The study of natural language
processing is really the study of communication between
intelligent agents. In dealing with this larger problem of
communication, researchers have developed a number of
theories and techniques directly relevant to systems that
communicate with people through graphics as well.
The papers presented in this special issue of IEEE

CG&A involve the interaction of computer graphics and
the relatively newer subfield of Al, expert systems. Each of
the three systems described in this special issue is offered as

a graphic interface to an expert system. Moreover, each
system, although primarily designed as a graphic interface,
makes good use of some of the new techniques that have
come out of Al research. Thus, each can be characterized
as an expert system.

025$01wnei 19S5 IEEEi oQ,; 25

Guest Editors'
Introduction

...-.V02 -'SW/ _VV V.WW_ s70 1-v2/2-1 I1- I., IIH)/O.II-

Expert systems

An expert system could be defined as a computer
program which solves problems in some particular domain;
these problems normally require some specialized knowl-
edge (e.g.,expertise) on the part of humans who successfully
solve them. The operant terms in this definition are solves
problems, particular domain, and specialized knowledge.
This definition would exclude programs that are not

characteristically problem solvers (e.g., a text editor),
attempt to be very general (e.g., a theorem prover), solve
problems that are considered straightforward implemen-
tations of well-defined theories (e.g., computing fast Fourier
transforms), or are just mundane (e.g., simple record-
keeping). Typical domains for expert systems are medical
diagnosis, signal interpretation, fault diagnosis, and com-

puter configuration.

Unfortunately this definition is still much too broad: It
encompasses most of what used to be called "application
programs." To capture what is new and valuable in recent
work on expert systems, it is useful to enumerate some of
the major features found in "good" examples of expert
systems. In addition to the partial definition offered above,
a good example of an expert system would be likely to
have the following characteristics:

1. Separate knowledge base. The special domain
knowledge that the expert system uses is explicitly
represented in a module (the knowledge base or KB)
which is separate from the components that use it.

2. Multiple use of knowledge. Since the KB is explicitly
represented as a separate module, it can be used in
several different ways: to make decisions, to construct
explanations, to construct tutorials, etc. This requires
that the knowledge be represented in a more general
way so that it does not favor one use at the expense of
another. The goal is to express the knowledge in a

general way that allows it to be reasoned about as

well as reasoned with.
3. Special knowledge representation languages. The

knowledge in an expert system is usually encoded in a

special representation language. Most current Al
systems use representation languages that rely on one

or more of three general techniques: rules, frames,
and logical relations.

4. In the knowledge lies the power. This often-quoted
slogan underscores the fact that the real intelligence
in the expert system lies in the domain knowledge
represented in its KB, not in any of the more general
components. As a corollary, any search strategies for
problem solutions should be expressed in the general
KB rather than in the code that uses the KB.

5. Explanations. When appropriate, an expert system
should be able to justify its conclusions. This can be
done by offering an explanation which describes the
system's reasoning that led to the conclusions. It may
also be appropriate for some systems to explain why
other plausible conclusions were not reached.

6. Shell architecture. An expert system's typical archi-
tecture is a)shell, which includes a number of general,
problem-independent components, combined with
one or more specific knowledge bases encoding the
problem-specific information. The general compo-
nents can include an interaction manager, a general
"inference engine," a knowledge-acquisition system, a
KB debugger, a KB editor, and an explanation
generator.

None of these features is required to characterize a
system as expert. For example, many Al problem-solving
systems do not use a rule-based approach, and explana-
tions are not relevant in some problems. All these features
have been found quite useful in building powerful prob-
lem-solving systems, however.

The origin of expert systems

Our current notion of an expert system as a natural class
of computer programs was first articulated in the early
1970's by Edward Feigenbaum and his colleagues at the
Heuristic Programming Project (HPP) of Stanford Uni-
versity. Their work on problem solving in Al was a
methodological departure from preceding research, which
had focused on the development of general problem-
solving strategies that could be used in conjunction with
detailed descriptions of a particular problem to produce a
solution. Feigenbaum and his colleagues at HPP accepted
the legitimacy of representing and using as much problem-
specific knowledge as possible. Thus they de-emphasized
the attempt to discover and use general principals of
intelligence and accepted the utility of building in problem-
specific expertise.

The first system this group produced was called Heuristic
DendraL This system attempted to identify likely chemical
structures for unknown compounds based on their chemi-
cal formulae and data from a mass spectrogram. Besides
acknowledging the need for domain-specific expertise,
Dendral pioneered the representation of this knowledge in
the form of rules-a technique that has turned out to be
important for many subsequent expert systems.

This technique was further developed by the HPP group
in the expert system MYCIN, which assisted physicians in

IEEE CG&A26

choosing appropriate therapies for patients suspected of
having bacterial infections. Besides encoding its knowledge
in the form of rules, the MYCIN development made
important advances in the areas of reasoning with uncertain
facts and rules, generating explanations for conclusions,
managing a consultation dialogue, and providing environ-
ments for knowledge acquisition.

Rule-based systems

In simple terms, a rule-based system has two major
components: a knowledge base and an inference engine.
The knowledge base contains a set of facts and a set of
rules, which together represent the system's general domain
knowledge and specific knowledge about the current
problem. A fact is generally considered to be an atomic
proposition which is true in the world, and a rule is
considered a conditional with an antecedent (if) part and a
consequent (then) part. Thus a rule is knowledge of the
form:

IF/ antecedent-THEN/ consequent

Depending on the nature of the antecedent and conse-
quent parts, a rule can be one of several different varieties.
If both parts are viewed as logical propositions, then the
rule can be viewed as a rule of inference. If the antecedent
is interpreted as a partial description of some state of the
factual knowledge base and the consequent can be any
executable expression, then the rule is similar to the notion
of a production rule as used by cognitive scientists. Many
rule-based systems have a need to deal with uncertain data
and rules which do not always hold. A common variation,
then, is to associate with each fact or rule a degree of
certainty which represents the system's confidence that the
fact or rule is true.

The inference engine is a kind of rule interpreter which
takes the set of facts and rules and computes additional
facts or rules that hold. An inference engine can use rules in
one of two important ways. Forward chaining reasons
from the initial set of facts to derive additional facts which
must hold. The inference engine identifies rules whose
antecedent parts are satisfied by the facts currently in the
KB. Backward chaining reasons from a given goal back-
ward to a set of facts which, if in the current KB, would
support the goal. Given a goal to satisfy, the inference
engine looks for an appropriate fact or rule in the KB. If a
matching fact is found, then the goal has been satisfied. If a
rule is found in which the consequent matches the goal,
then the engine attempts to satisfy the rule's antecedent
recursively by setting it up as a subgoal.

The articles

In the first article of this special issue, Steve Feiner
describes a system (APEX) that generates pictures portray-
ing the performance by a problem solver of physical
actions in a three-dimensional world. As a graphic system,
APEX relates to the notion of an Al expert system in two
ways: First, APEX was designed to generate pictures from
the output of an expert system that plans physical actions.
Second, APEX is a kind of expert system itself. It takes a

general description of a set of physical objects, an action to
be performed on them, and a simple model of a human's
knowledge of the scene and determines what would be a

good graphic description of the planned action for that
person. To do this, it must decide what objects should be
included in the picture, how much detail must be used, how
the action can be indicated, and a host of other factors.
The second article describes a system called SAGE,

developed by Eric Clemons and Arnold Greenfield. Their
system is designed as a general framework for building
graphic interfaces for a wide class of sensitivity analysis
models-models that certainly fall within the general
definition of an expert system. The authors make the point
that sensitivity analysis systems require their users to make
changes in the model and quickly evaluate the results. The
graphical presentation of the effects of a model change aid
the quick evaluation.
The final article describes GUIDON-WATCH, a graphic

interface for browsing and viewing a class of expert
systems based on NEOMYCIN. The authors have included
a number of techniques for displaying the various compo-
nents of a large, complex expert system. GUIDON-
WATCH exploits trees, tables, icons, animation, and other
graphic formats in a window-based environment. The
result is an interface that helps both the end-user and the
system designer understand, debug, and modify a large
expert system.

For more information

Some sources for more information on artificial intelli-
gence, expert systems, and knowledge representation
follow:

"Special Section on Architectures for Knowledge-Based
Systems," Communications of the ACM, Vol. 28, No. 9,
Sept. 1985.

This issue contains three tutorial articles on the three
dominant paradigms for building expert systems-frames,
rules, and logic.

November 1985 27

Brachman, R., and H. Levesque, eds., Readings In Knowl-
edge Representation, Morgan Kaufman Publishers, Los
Altos, Calif., 1985.

This book contains about 30 seminal articles on various
issues concerning the representation of knowledge. These
articles are representative of most of the important ideas
developed cver the last 15 years.

Charniak, E., and D. McDermott, Introduction to Artifi-
cial Intelligence, Addison-Wesley, Reading, Mass., 1985.

This is a good general introduction to Al, emphasizing
the use of logic and deduction.

Hayes-Roth, F., D. Waterman, and D. Lenat, eds., Build-
ing Expert Systems, Addison-Wesley, Reading, Mass.,
1983.
This book contains articles that address both theoretical

and practical issues. An interesting feature of the book is
that it presents a typical expert system problem and shows
how a number of different expert system building tools
could be employed to solve it.

Special Issue on Knowledge Representation, Computer,
Vol. 16, No. 10, Oct. 1983.

This special issue of Computer gives a good picture of
the current state of the art and current research areas in
knowledge representation.

Norman I. Badler is Associate Professor of
computer and information science at the Uni-
versity of Pennsylvania, and has been on that
faculty since 1974. Badler is also a coprincipal
investigator of research projects for the
National Science Foundation and has a US
Army Research Office artificial intelligence
grant.

Badler was named associate editor-in-chief
of IEEE CG&A earlier this year, and has been an active
participant in ACM Siggraph since 1975. He was conference
tutorial chair from 1976 to 1979, and was elected vice-chair in
1979 and again in 1981. He is the coauthor of more than 35
technical papers, and operates a computer graphics research
facility with full-time staff and about 25 student participants.

Badler received his BA in creative studies mathematics from
the University of California-Santa Barbara, and his MS in
mathematics and PhD in computer science from the University of
Toronto.

Kowalski, R., Logic for Problem Solving, Elsevier, New
York, 1979.

This classic book presents the use of logic as a language
for representing knowledge and solving problems.

Shortliffe, E., and B. Buchanan, Rule-Based Expert Sys-
tems, Addison-Wesley, Reading, Mass., 1984.

This edited collection of articles, based on research done
at the Heuristic Programming Project at Stanford, dis-
cusses the important expert system MYCIN and its de-
scendants, as well as general issues.

Waterman, D., A Guide to Expert Systems, Addison-
Wesley, Reading, Mass., 1985.

This book attempts to introduce and explain expert
systems to readers who do not have a background in Al. It
contains a comprehensive catalog with descriptions of over
200 expert systems.

Weiss, S., and C. Kulikowski, A Practical Guide to
Designing Expert Systems, Rowman and Allanheld,
Totowa, NJ, 1984.

This book is based on the experience of Weiss, Kuli-
kowski, and their colleagues at Rutgers University, where
they built expert systems using the system EXPERT.

Timothy W. Finin is an Assistant Professor of
computer and information science at the
University of Pennsylvania, where he has
been a faculty member since 1980. His re-
search interests include computational lin-
guistics, knowledge representation, and expert
systems. In 1983 he was awarded an IBM
faculty development award.

Finin received the BS in electrical engi-
neering from the Massachusetts Institute of Technology, and the
MS and PhD in computer science from the University of Illinois.
He did computer vision research at MIT's Artificial Intelligence
Laboratory from 1971 to 1974, and has worked in natural
language processing with the Coordinated Science
Laboratory.

The authors' address is University of Pennsylvania, Computer
and Information Science, School of Engineering and Applied
Science, Moore School D2, Philadelphia, PA 19104.

IEEE CG&A28

