
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence

ISSN: 0883-9514 (Print) 1087-6545 (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Agent-based approach for manufacturing
integration: The ciimplex experience

Y. Peng , T. Finin , Y. Labrou , R.S. Cost , B. Chu , J. Long , W. J. Tolone & A.
Boughannam

To cite this article: Y. Peng , T. Finin , Y. Labrou , R.S. Cost , B. Chu , J. Long , W. J. Tolone &
A. Boughannam (1999) Agent-based approach for manufacturing integration: The ciimplex
experience, Applied Artificial Intelligence, 13:1-2, 39-63, DOI: 10.1080/088395199117487

To link to this article: https://doi.org/10.1080/088395199117487

Published online: 26 Nov 2010.

Submit your article to this journal

Article views: 57

View related articles

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/088395199117487
https://doi.org/10.1080/088395199117487
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/088395199117487
https://www.tandfonline.com/doi/mlt/10.1080/088395199117487
https://www.tandfonline.com/doi/citedby/10.1080/088395199117487#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/088395199117487#tabModule

u AGENT-BASED APPROACH
FOR MANUFACTURING
INTEGRATION:
THE CIIMPLEX EXPERIENCE

Y. PENG, T. FININ, Y. LABROU, and R. S. COST
Department of Computer Science and Electrical
Engineering, University of Maryland Baltimore County,
Baltimore, Maryland, USA

B. CHU, J. LONG, and W. J. TOLONE
Department of Computer Science, University of North
Carolina, Charlotte, North Carolina, USA

A. BOUGHANNAM
IBM Corporation, Boca Raton, Florida, USA

The production management system used by most manufacturers today consists of
disconnected planning and execution processes and lacks the support for interoperability
and collaboration needed for enterprise-wide integration. This situation often prevents the
manufacturer from fully exploring market opportunities in a timely fashion. To address this
problem, we are exploring an agent-based approach to intelligent enterprise integration. In
this approach, a set of agents with specialized expertise can be quickly assembled to help
with the gathering of relevant information and knowledge, to cooperate with each other and
with other parts of the production management system and humans to arrive at timely
decisions in dealing with various enterprise scenarios. The proposed multiagent system,
including its architecture and implementation, is presented and demonstrated through an
example integration scenario involving real planning and execution software systems.

The production management system used by most of today’s manufacturers
consists of a set of separate application softwares, each for a di� erent part of
the planning, scheduling, and execution processes (Vollmann et al., 1992).*
For example, Capacity Analysis (CA) software determines a master pro-
duction schedule that sets long-term production targets. Enterprise Resource
Planning (ERP) software generates material and resource plans. Scheduling
software determines the sequence in which shop ¯ oor resources (people,

This work is supported in part by the Advanced Technology Program administered by the National
Institute of Standards and Technology under agreement number 70N ANB6H2000.

Address correspondence to Yun Peng, Department of Computer Science and Electrical Engineering,
University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, M D 21250, USA. E-mail :
ypeng@ cs.umbc.edu

* In the rest of the article these planning and execution application software systems are referred to
as P/E applications.

Applied Arti ® cial Intelligence, 13 :39­ 63, 1999
Copyright 1999 Taylor & FrancisÓ

0883-9514/ 99 $12.00 1 .00 39

40 Y . Peng et al.

machines, material, etc.) are used in producing di� erent products. The
Manufacturing Execution System (MES) tracks real-time status of work in
progress, enforces routing integrity, and reports labor/material claims. Most
of these P/E applications are legacy systems developed over years. Although
these software systems perform well for designated tasks, they are not
equipped to handle complex business scenarios (Bermudez, 1996 ; Jennings
et al., 1996 ; Tennenbaum et al., 1993). Typically, such scenarios involve
coordination of several P/E applications to respond to external environ-
mental changes (price ¯ uctuations, changes of requests from customers and
suppliers, etc.) and internal execution dynamics within an enterprise
(resource changes, mismatches between plan and execution, etc.). Timely
solutions to these scenarios are crucial to agile manufacturing, especially in
the era of globalization, automation, and telecommunication (Dourish &
Bellotti, 1992). Unfortunately, these scenarios are primarily handled by
human managers, and the responses are often slow and less than optimal.

The Consortium for Intelligent Integrated Manufacturing Planning-
Execution (CIIMPLEX), consisting of several private companies and uni-
versities, was formed in 1995 with matching funds from the National
Institute of Standards and Technology. The primary goal of the consortium
is to develop technologies for intelligent enterprise-wide integration of plan-
ning and execution for manufacturing (Chu et al., 1996). Our vision of a
successful integrated P/E system for manufacturing has the following fea-
tures.

1. Interoperability : heterogeneous P/E applications from di� erent vendors
are able to operate together as integrated parts of the system.

2. Integration : software tools and infrastructures to support integration
tasks not covered by existing P/E applications are provided. In particu-
lar, the integrated solution should support runtime dynamic coordination
in dealing with unexpected events.

3. Distributed : resources such as software and data are allowed to be physi-
cally or logically distributed.

4. Openness : the user shall be able to select and change di� erent applica-
tions and tools easily and with little additional integration cost.

One approach to an integrated P/E system might be to rewrite all appli-
cation software into a monolithic integrated P/E system capable of handling
all foreseeable scenarios. This approach is judged to be unfeasible because of
high development and maintenance cost, and the closedness and in¯ exibility
of such monolithic systems (Hammer, 1996). Conventional object-oriented
distributed systems also seem inadequate because they work at the level of

Agents for Manufacturing Integration 41

objects and thus lack the support for abstraction at higher levels (Jennings
& Wooldridge, 1998).

Instead, CIIMPLEX has adopted as one of its key technologies the
approach of intelligent software agents and is developing a multiagent
system (MAS) for enterprise integration. In sharp contrast to traditional
software programs, software agents are programs that help people solve
problems by collaborating with other software agents and other resources in
the network (Bradshaw et al., 1998 ; Compositional Research Group, 1996 ;
Jennings & Wooldridge, 1998 ; Nwana, 1996 ; Parunak et al., 1997). For
instance, individual agents can be designed to perform data collection and
analysis of plans and schedules and to keep constant vigil against mis-
matches among these plans and schedules at di� erent levels of abstraction
and time horizons. Other agents can be designed to resolve the con¯ icts
either by themselves or in coordination with human managers and analysts.
Personal assistant agents can be designed to assist human managers/
analysts. Still other agents can be created to provide legacy systems with
better communication and coordination capabilities so they can more e� ec-
tively cooperate with each other and with other agents. Moreover, MAS, as
a society of autonomous agents, is inherently open and distributed, and
interagent communication capability provides the essential means for agent
collaboration.

The environment of the CIIMPLEX consortium is di� erent from that of
academic-oriented research laboratories. Most of the companies in the con-
sortium are P/E application system vendors and users. This situation gives
us the opportunity to work with real-world P/E systems (rather than imag-
ined toy problems) and appreciate the complexity of realistic business sce-
narios. On the other hand, the agent-base approach, as a relatively
immature technology that has not yet reached industrial strength, under-
standably receives only guarded enthusiasm by some members in the con-
sortium. They are more concerned with integration of the P/E systems, using
more mature technologies, to better handle normal or expected business sce-
narios. Our immediate priority is thus not to design and develop a complete
agent system that integrates all aspects of manufacturing planning and execu-
tion but to develop one that is limited in scope but reliable and scalable and
clearly adds commercial value to the end user. In addition, the initial proto-
type agent systems must have minimum interference with the normal work
of existing P/E applications.

Based on these considerations, we have decided to concentrate on those
P/E scenarios that represent exceptions to the normal or expected business
processes and whose resolution involves several P/E applications. For
example, consider the scenario involving a delay of the shipment date on a
purchased part from a supplier. This event may cause one of the following
possible actions : the manufacturing plan is still feasible (no action is

42 Y . Peng et al.

required); order substitute parts ; reschedule ; or reallocate available material.
To detect this exception and determine which of these actions to take, di� er-
ent applications (e.g., MES, ERP, CA, and Scheduler) and possibly human
decision makers must be involved. Examples of similar scenarios include a
favored customer’s request to move ahead the delivery date for one of its
orders, a machine breakdown being reported by MES, a crucial operation
having its processing rate decreased from the normal rate, to mention just a
few.

Figure 1 illustrates at a conceptual level how an exception (e.g., a ship-
ment of a purchased part is delayed) should be handled by an integrated
system. The decision module decides, with the instruction from a human or
an analysis module, what constitutes an exception. The monitoring module
determines what data are to be monitored to detect such exceptions and
conducts actual monitoring of the data stream. When noti ® ed by the moni-
toring module of the occurrence of an exception, the decision module makes
appropriate decisions in consultation with other P/E applications and the
analysis module. The decision (e.g., a request to reschedule) will then be
carried out by the designated P/E application(s). Note that what constitutes
an exception and how to monitor it is a dynamic decision that cannot be

FIGURE 1. Manufacturing integration example : handling exceptions.

Agents for Manufacturing Integration 43

speci ® ed prior to the plan execution. For example, a factory may not nor-
mally consider a delay of shipment of an ordered part exceptional unless the
delay is greater than ® ve days. However, if a part is crucial for an order of a
preferred customer or the inventory of a part is below a threshold, then a
delay of greater than three days may become an exception. To make the
situation more complicated, an action taken to address one exception may
trigger another exception to occur (e.g., a reschedule to handle the delay of
shipment of one part may delay the delivery date of an important order for
which the respective sales representative needs to be noti® ed).

To provide an integrated solution to the above outlined scenarios,
simple as they are, is by no means a trivial undertaking. First, a set of agents
of specialized expertise needs to be developed to provide functions, such as
those performed by the analysis module, decision module, and monitoring
module in Figure 1, which are not covered by any of the existing P/E appli-
cations. As integration tasks, these functions fall in the ‘‘white space’’
between these P/E applications. Second, a reliable and ¯ exible interagent
communication infrastructure needs to be developed to allow agents to e� ec-
tively share information, knowledge, and services. Third, some means to
support interaction with P/E applications, which will not be agenti ® ed at
this stage, needs to be provided. And ® nally, a mechanism for the runtime
collaboration of all these pieces also needs to be developed.

In this article, we describe our experience of developing an agent-based
system for the CIIMPLEX project. The rest of this article is organized as
follows. In the next section, we brie¯ y describe the software agent technol-
ogies that are relevant to the task of manufacturing integration. The two
subsequent sections form the core of this article, where we ® rst present the
proposed multiagent system architecture and then its work through an
example scenario that involves real P/E applications. The ® nal sections
evaluate our approach and compare it with other, related work and con-
clude with discussions of ongoing work to expand the agent system, along
with the directions for future research.

MULTIAGENT SYSTEM AND AGENT COLLABORATION

There is currently no consensus on the de® nition of software agents or of
agency, and some people go so far as to suggest that any piece of software or
object that can perform a speci ® c given task is an agent. However, the pre-
vailing opinion is that an agent may exhibit, to varying extents, three impor-
tant general characteristics : autonomy, adaptation, and cooperation
(Genesereth & Katchpel, 1994 ; Nwana, 1996). By ‘‘autonomy,’’ we mean that
agents have their own agenda of goals and exhibit goal-directed behavior.
They are not simply reactive but can be proactive and take initiatives, as

44 Y . Peng et al.

they deem appropriate. Adaptation implies that agents are capable of adapt-
ing to the environment, which includes other agents and human users, and
can learn from the experience in order to improve themselves in a changing
environment. Cooperation and coordination among agents is probably the
most important feature of MASs (Nwana, 1996). Unlike those standalone
agents, agents in many MASs share information, knowledge, and tasks
among themselves and collaborate with each other to achieve common
goals. The intelligent properties of a MAS are not only re¯ ected by the
expertise of individual agents but also by the emergent behavior of the entire
collection.

Cooperation and coordination of agents in a MAS requires agents to be
able to understand each other and to communicate with each other e� ec-
tively. The infrastructure that supports agent cooperation in a MAS is thus
seen to include at least the following key components :

common agent communication language (ACL) and protocol,d a
common format for the content of communication, andd a
shared ontology.d a

In CIIMPLEX, we take the Knowledge-Sharing-E� ort (KSE) approach
toward achieving the infrastructure needed for agent cooperation (Patil et
al., 1992). Three component technologies developed by the KSE are
adopted. They are Knowledge Query Manipulation Language (KQML) as a
communication language and protocol, Knowledge Interchange Format
(KIF) as the format of the communication content, and the concept of a
shared ontology. In what follows, we brie¯ y describe these three components
and justify their selections in the context of a manufacturing integration
environment.

KQM L

KQML is a message-based ACL (Finin et al., 1993, 1998), and it con-
siders that each message not only contains the content but also the attitude
or ‘‘intention’’ the sender has for that content. For instance, consider that
agent A sends the following statement as the content of a message to agent
B :

the processing rate of operation 1 at machine X is greater than 5.

Agent A, in di� erent circumstances, may have di� erent intentions about this
statement. Agent A may simply tell B that this statement is true in its own
database, or ask if this statement is true in B’s database ; or attaches some

Agents for Manufacturing Integration 45

other intention to this statement. KQML provides a formal speci ® cation for
representing the intentions of messages through a set of prede® ned per-
formatives used in the messages. A subset of KQML performatives that is
particularly relevant to our agent system includes ask-one, tell, advertise, sub-
scribe, recommend-one, error, sorry, etc.

A KQML message is thus divided into three layers : the content layer,
the communication layer, and the message layer. The content layer bears the
actual content of the message in a language chosen by the sending agent.
The communication layer encodes a set of features to the message to
describe the lower-level communication parameters, such as the identity of
the sender and recipient, and a unique identi ® er tag associated with the
communication. The message layer encodes the message, including its inten-
tion (by a chosen performative), the content language used, and the ontol-
ogy. The structured syntax of KQML messages is based on a balanced
parentheses list whose ® rst element is the performative and the rest are the
parameters in the form of keyword/value pairs. The following is an example
of an actual KQML message sent by agent ‘‘joe’’ to agent ‘‘stock-server,’’
inquiring about the price of a share of IBM stock where ?x is an unin-
stantiated variable. The reader is referred to Finin et al. (1993) for a detailed
description of the KQML speci ® cations.

(ask-one

: language KIF

: content (Price IBM ?x)

: sender joe

: receiver stock-server

:reply-with k a unique string as the tag of this messagel

KIF

Although KQML allows agents to choose their own content language, it
is bene® cial for all agents within one MAS to exchange most if not all of
their messages in a single neutral format. One obvious advantage of adopt-
ing a common content format is efficiency. Instead of many-to-many format
conversion, each agent only needs to convert the content of the message
between its own internal representation and the common format. KIF,
because of its rich expressive power and simple syntax, is probably the most
widely used neutral message content format for agent communication.

46 Y . Peng et al.

KIF is a pre® x version of First Order Predicates Calculus (FOPC) with
extensions to support nonmonotonic reasoning and de® nitions (Genesereth
et al., 1992). The language description includes speci ® cations for both its
syntax and its semantics. Besides FOPC expressions of facts and knowledge,
KIF also supports extralogical expressions such as those for the encoding of
knowledge about knowledge and of procedures. KIF is currently the subject
of an American National Standard Institute (ANSI) standardization study.

Shared Ontology

Sharing the content of formally represented knowledge requires more
than a formalism (such as KIF) and a communication language (such as
KQML). Individual agents, as autonomous entities specialized for some par-
ticular aspects of problem solving in a MAS, may have di� erent models of
the world in which objects, classes, and properties of objects of the world
may be conceptualized di� erently. For example, the same object may be
named di� erently (‘‘machine-id’’ and ‘‘machine-name’’ for machine identi® ca-
tion in the databases of two agents). The same term may have di� erent
de® nitions in di� erent agents’ internal representations (‘‘salary-rate,’’ refer-
ring to hourly rate in one agent and annual rate in another). Also, di� erent
taxonomies may be conceptualized from di� erent perspectives by individual
agents.

Therefore, to ensure correct mutual understanding of the exchanged
messages, agents must also agree on the model of the world or at least that
part of the world about which they are exchanging information with each
other. In the terminology of the agent community, agents must share a
common ontology (Patil et al., 1992). An ontology for a domain is a concep-
tualization of the world in terms of the objects, qualities, distinctions, and
relationships, etc., in that domain. A shared or common ontology refers to
an explicit speci ® cation of the ontological commitments of a group of
agents. Such a speci ® cation should be an objective (i.e., interpretable outside
of the agents) description of the concepts and relationships that the agents
use to interact with each other, with other programs such as legacy business
applications, and with humans. A shared ontology can be in the form of a
document or a set of machine interpretable speci ® cations.

Agent Collaboration

With a common communication language, a common content language,
and a shared ontology, agents can communicate with each other in the same
manner, in the same syntax, and with the same understanding of the world.
In addition to these three essential ingredients, some common service agents
are often used in a MAS to make agent collaboration more efficient and

Agents for Manufacturing Integration 47

e� ective. One type of a service agent is the Agent Name Server (ANS). The
ANS, similar to the White Pages phone book, serves as the central reposi-
tory of the contact addresses for all involved agents, i.e., it maintains an
address table of all registered agents, accessible through the agents’ symbolic
names. Newly created agents must register with the ANS their names,
contact addresses, and possibly other information by sending to the ANS a
message with the performative register. (As a presumption, every agent in
the system must know how to contact the ANS). The ANS maps the sym-
bolic name of a registered agent to its contact address when requested by
other agents.

Another type of a service agent is the Facilitator Agent (FA), which pro-
vides additional services to other agents. A simple FA is a Broker Agent
(BA), which provides a ‘‘Yellow Pages’’ type service. It registers services
o� ered and requested by individual agents and dynamically connects avail-
able services to requests whenever possible. Agents register their available
services by sending BA messages with the performative advertise and request
services by sending to the BA messages with brokering performatives such
as recommend-one. In both cases, the description of the speci ® c service is in
the content of the message. In a reply to a recommend-one message, the BA
will send the symbolic name of an agent that has advertised as being able to
provide the requested service at the BA, or sorry if such request cannot be
met by current advertisers.

CIIM PLEX AGENT SYSTEM ARCHITECTURE

In this section, we describe the MAS architecture that supports inter-
agent cooperation in the CIIMPLEX project, emphasizing the agent com-
munication infrastructure. Figure 2 gives the architecture of CIIMPLEX
enterprise integration with MAS as an integrated part.

At the current stage of the project, the entire P/E integration architec-
ture is composed of two parts, the P/E application world and the agent
world, and is supported by two separate communication infrastructures.
Although these legacy P/E applications have not been agenti ® ed, they have
been wrapped with APIs, which provide them with limited communication
capability (Chu et al., 1998). Di� erent transport mechanisms (e.g., MQ Series
of IBM and VisualFlow of Envisionit) are under experimentation as com-
munication infrastructures for the wrapped P/E applications. These mecha-
nisms are persistent but only support static, predetermined communication
patterns.

In the agent world, besides the service agents ANS and BA, several other
types of agents are useful for enterprise integration. For example, data-
mining/parameter-estimation agents are needed to collect, aggregate, inter-
polate, and extrapolate the raw transaction data of the low-level (shop ¯ oor)

48 Y . Peng et al.

FIGURE 2. CIIMPLEX integration architecture.

activities, and then to make this aggregated information available for higher
level analyses by other agents. Monitoring agents monitor, detect, and
notify about abnormal events that need to be attended. The CIIMPLEX
Analysis Agents (CAA) evaluate disturbances to the current planned sched-
ule and recommend appropriate actions to address each disturbance. The
Scenario Coordination Agents (SCA) assist human decision making for spe-
ci® c business scenarios by providing the relevant context, including ® ltered
information, actions, as well as work¯ ow charts.

All these agents use the KQML as the agent communication language
and use a subset of KIF that supports Horn clause deductive inference as
the content language. TCP/IP is chosen as the low-level transport mecha-
nism for agent-to-agent communication. The shared ontology is an agree-
ment document established by the P/E application vendors and users and
other partners in the consortium. The agreement adopts the format of the
Business Object Document (BOD) de® ned by the Open Application Group
(OAG). BOD is also used as the message format for communication among
P/E applications such as MES and ERP, and between agents and applica-
tions. A special service agent, called the Gateway Agent (GA), is created to
provide interface between the agent world and the application world. GA’s
functions include making connections between the transport mechanisms
(e.g., between TCP/IP and MQ Series) and converting messages between the
two di� erent formats (KQML/KIF and BOD).

Agents for Manufacturing Integration 49

FIGURE 3. DFA state-diagrams for selected KQML conversations : (a) ask-one conversation and (b)
subscribe conversation.

The agent system architecture outlined above is supported by the agent
communication infrastructure called JACKAL developed by the consortium
(Cost et al., 1998). The acronym JACKAL indicates that JACKAL is written
in JAVA to support agent communication using the KQML agent commu-
nication language. The decision to select JAVA as the implementation lan-
guage was based mainly on its interplatform portability, its networking
facilities, and its support for multithread programming. The next two sub-
sections provide a detailed description of JACKAL.

Conversation Policies in JACKAL

KQML itself only de® nes the syntax of the language. However, a good,
workable semantics is imperative for conducting coherent conversation
among agents. To support both syntactic and semantic aspects of the lan-
guage, JACKAL takes a semantic interpretation of KQML for Labrou

50 Y . Peng et al.

(1996) and Labrou and Finin (1997) and realizes part of it as a set of conver-
sation policies.

The conversation policies are procedures that, based on the per-
formatives involved, specify how a conversation (consisting of a sequence of
messages) is to start, to proceed, and to terminate. For example, a conversa-
tion started with an ask-one message will terminate as soon as the sender
receives a proper reply. (Possible replies include an error message, indicating
that the format of the message is incorrect ; a sorry message, indicating that
the receiver cannot provide an answer to the question ; a tell message, whose
content contains an answer to the given question ; or an untell message,
which retracts a previous tell message). A conversion started by a message
with performative subscribe would have a di� erent policy. When agent A
starts such a conversation with agent B, the conversation remains open, with
A continuing to listen for new messages from B that satisfy the subscription
criterion.

Conversion policies chosen for JACKAL can be described using a Deter-
ministic Finite Automata (DFA) model. In this model, each conversation
starts with a state called START and ends with a state called STOP. A
conversation moves from one state to another according to the given state
transition diagram. Figure 3 shows examples of the DFAs for ask-one and
subscribe conversations.

Overview of JACKAL’s Design

JACKAL was designed to provide comprehensive functionality, while
presenting a simple interface to the user. Thus, although JACKAL consists
of roughly seventy distinct classes, all user interactions are channeled
through one class, hiding most details of the implementation.

Figure 4 presents the principal JACKAL components and the basic
message path through the system. We will ® rst discuss each of the com-
ponents and then, to illustrate their interaction, trace the path of a message
through the system.

JACKAL Components
The Intercom class is the bridge between the agent application and

JACKAL. It controls startup and shutdown of JACKAL, provides the appli-
cation with access to internal methods, houses common data structures, and
plays a supervisory role to the communications infrastructure. Agents create
and use an instance of Intercom rather than extending an agent shell. This
gives us great ¯ exibility for the design and implementation of other parts of
the agent.

JACKAL runs a Transport Module for each communication protocol it
uses. The current JACKAL implementation includes a module for TCP/IP ,

Agents for Manufacturing Integration 51

FIGURE 4. Overview of JACKAL.

and users can create additional modules for other protocols. The Transport
Module is responsible for message transmission and receipt.

Messages received by the Switchboard must be directed to the appropri-
ate places in the Conversation Space. This is the role of the Message
Handler. Messages are associated with current (logical) threads based on
their ID (the value of the ‘‘reply-with’’ or ‘‘in-reply-to’’ ® eld). This directs
their assignment to ongoing conversations when possible. If no such assign-
ment can be made, a new conversation appropriate to the message is started.

Conversation protocols, described above, are ‘‘run’’ as independent
threads for all ongoing conversations. This allows for easy context manage-
ment, while providing constraints on language use and a framework for low-
level conversation management.

The Distributor is a Linda-like (Carriero & Gelertner, 1989) shared
memory space (conceptually like a blackboard), which serves to match mes-
sages with requests for messages. This is the sole interface between the agent
and the message traffic. Its concise API allows for comprehensive speci ® -
cation of message requests. Requesters are returned message queues and
receive all return traffic through these queues. Requests for messages are
based on some combination of message, conversation or thread ID, and
syntactic form. They permit actions such as removing an acquired message
from the blackboard or marking it as read-only. A priority setting deter-
mines the order of matching. Requests can be set to persist inde® nitely or to
terminate after a certain number of matches.

A service here is any thread ; this could be a JACKAL service or threads
within the agent itself. The only thing that distinguishes among threads is
the request priority they use. System, or JACKAL, threads choose from a set
of higher priorities than agent threads, but each chooses a level within its

52 Y . Peng et al.

own pool. JACKAL reserves the highest and lowest priorities for services
directing messages out of the agent and for those cleaning the blackboard,
respectively.

The Switchboard acts as an interface between the Transport Modules
and the rest of JACKAL. It must facilitate the intake of new messages,
which it gathers from the Transport Modules, and carry out send requests
from the application. The latter is a fairly complicated procedure, since it
has multiple protocols at its disposal. The Switchboard must formulate a
plan for the delivery of a message, with the aid of the Address Cache, and
pursue it for an unspeci ® ed period of time, without creating a bottleneck to
message traffic.

The problem of agent naming arises in any multiagent system. A naming
scheme, called KNS is developed in JACKAL. KNS is a hierarchical scheme
similar in spirit to DNS. A fully quali ® ed agent name (FQAN) is a sequence
of period-separated agent names (e.g., phil.cs.edu). The sequence denotes
registrations between agents. Agents can register together to form teams and
can maintain multiple identities to represent roles in the multiagent system.
Multiple registrations for an agent become a network of aliases for that
agent. If one name becomes inaccessible, another can be identi ® ed to ® ll the
gap. Moreover, since agents can maintain multiple contact information for
each name, agents can change locations and leave forwarding arrangements
for messages while they migrate. In this way, dynamic group formation is
supported. KNS can easily be extended to support collaborating, mobile
KQML-speaking agents using a variety of transport protocols. In such case,
the ® nal segment in a FQAN is always a URL (e.g., phil.cs.http ://
www.umbc.edu), providing unique, static location information for the base
of an agent registration chain.

The Address Cache holds agent addresses in order to defray look-up
costs. It is a multilayered cache supporting various levels of locking, allow-
ing it to provide high availability. Unsuccessful address queries trigger
underlying KNS look-up mechanisms, while blocking access to only one
individual listing. JACKAL supports KNS transparently through an intelli-
gent address cache.

Message Path
Having described the various components of JACKAL, we will trace the

path of a received message and the corresponding reply, using the numbered
arcs in Figure 4 for reference.

The message is ® rst received by a connection thread within a Transport
Module (labeled 1 in Figure 4), is processed in the Message Handler, and is
transferred directly to the input queue of either a waiting or a new conversa-
tion (2). A unique thread manages each conversation. The target conversa-

Agents for Manufacturing Integration 53

FIGURE 5. JACKAL agent skeleton.

tion awakens, takes the message from its input queue (3), and tries to
advance its DFA accordingly. If accepted, the message is entered into the
Distributor (4), an internal blackboard for message distribution. The Dis-
tributor (5), in turn, tries to match the message with any pending requests in
order of a speci ® ed priority. Ideally, a match is found, and the message is
placed in the appropriate queue or queues (6). This is the point at which the
agent gains access to the message ¯ ow, through services attending to the
blackboard.

Once the requesting service thread picks the message out of its queue (7),
it presumably performs some action, and may send (8) a reply or a new
message ; we assume it does. JACKAL arranges for reply requests to be
placed into the Distributor before messages are sent, when appropriate. The
message is directed into the Conversation Space and traces the same path as
the previous incoming message (9,10) to the Distributor. The message is cap-
tured by the Switchboard’s outbound message request (11). The Switchboard
removes the new message from its queue and assigns it to an idle send
thread (12); this results in some overhead but allows sends to proceed con-
currently, avoiding bottlenecks due to variation in delivery times. The send
thread uses the appropriate Transport Module to transmit the message.

Figure 5 depicts the typical design of an agent using JACKAL for agent
communication. A main thread serves primarily to start and direct JACKAL
and a collection of service threads. Each service thread interacts with the
Distributor to send and receive messages, and potentially with the main
thread and other service threads as well. Each service thread takes some
basic role within the agent, such as processing all broker requests or logging
all message traffic to an archival agent.

54 Y . Peng et al.

APPLICATION EXAMPLE

In this section, we demonstrate how the CIIMPLEX agent system sup-
ports intelligent enterprise integration through a simple business scenario
involving some real manufacturing management application software
systems.

Scenario

The scenario selected, called ‘‘process rate change’’ and depicted in
Figure 6, occurs when the process time of a given operation on a given
machine is reduced signi ® cantly from its normal value. When this type of
event occurs, di� erent actions need to be taken based on the type of oper-
ation and the severity of the rate reduction. Some of the actions may be
taken automatically according to the given business rules, and others may
involve human decisions. Some actions may be as simple as recording the
event in the logging ® le, and some others may be complicated and expensive
such as requesting a rescheduling based on the changed operation rate. Two
real P/E application programs, namely, FactoryOp (an MES by IBM) and
MOOPI (a Finite Scheduler by Berclain), are used in this scenario.

Agents

To support managing this scenario, we need mechanisms for the follow-
ing activities :

FIGURE 6. ‘‘Process rate change’’ scenario.

Agents for Manufacturing Integration 55

in real-time information concerning operation completion orig-d collect
inated from MES,

and constantly update the process rate from the collected infor-d compute
mation,

and notify the appropriate parties if the current rate change consti-d detect
tutes a signi ® cant reduction,

appropriate actions to handle the rate change, andd decide
out the actionsd carry

A collection of agents is assembled to support the chosen scenario. All of
these agents speak KQML and are supported by JACKAL. Besides the
three service agents ANS, BA, and GA, the multiagent system also includes
the following special agents.

Process Rate Agent (PRA) is both a mining agent and a monitoringd The
agent for shop ¯ oor activities. As a mining agent, PRA requests and
receives the messages containing transaction data of operation completion
from GA. The data originate from FactoryOp in the BOD format and are
converted into KIF format by GA. PRA aggregates the continuing stream
of operation completion data and computes the current mean and stan-
dard deviation of the processing time for each operation. It also makes the
aggregated data available for other agents to access. As a monitoring
agent, PRA receives from other agents the monitoring criteria for dis-
turbance events concerning processing rates and noti® es the appropriate
agents when such events occur.

Scenario Coordination Agent (SCA) sets the rate-monitoring cri-d The
terion, receives the noti® cation for the rate change, and decides, in consul-
tation with human decision makers, appropriate action(s) to take for the
changed rate. One of the actions would be to request MOOPI to res-
chedule if it is determined that the rate change makes the existing sched-
ule impossible to meet. This request is sent from SCA as a KQML
message to GA, where it is converted into BOD format. Details of the
internal logic and algorithms of SCA that handle the ‘‘rate change’’ sce-
nario are reported elsewhere (Tolone et al., 1998).

Directory Assistance Agent (DA) is an auxiliary agent responsible ford The
® nding appropriate persons for SCA when the latter needs to consult
human decision makers. It also ® nds the proper mode of communication
to that person.

Authentication Assistance Agent (AA) is another auxiliary agent usedd The
by SCA. It is responsible for conducting authentication checks to see if a
person in interaction with SCA has proper authority to make certain deci-
sions concerning the scenario

56 Y . Peng et al.

Predicates

Three KIF predicates of multiple arguments are de® ned. These predi-
cates, OP-COMPLETE, RATE, and RATE-CHANGE, are used to
compose the contents of messages between agents in processing the process
rate change scenario.

The OP-COMPLETE predicate contains all relevant information con-
cerning a completed operation, including P/E-Application-id, machine-id,
operation-id, starting and ® nishing time stamps, and quantity. The process
time for this operation can then be computed by the di� erence between the
® nishing and starting time stamps, divided by the quantity.

The RATE predicate contains all relevant information concerning the
current average rate of a particular operation at a particular machine with a
particular product. The operation rate is represented by its mean and stan-
dard deviation over a period of time. RATE instances are computed and
constantly updated by PRA, based on a stream of instances of predicate
OP-COMPLETE obtained from GA.

The RATE-CHANGE predicate contains all the information needed to
construct a BOD that tells MOOPI a signi ® cant rate change has occurred
and a reschedule based on the new rate is called for. In particular, it con-
tains the operation rate used to compute the current schedule and the new
rate. It is the responsibility of the rate change SCA to compose an instance
of the RATE-CHANGE predicate and send it to GA when it deems neces-
sary to request MOOPI for a reschedule, based on the process rate change
noti ® cation from PRA and consultation with human decision makers.

Additional predicates and more complicated KIF expressions are needed
when dealing with more complicated scenarios.

Agent Collaboration and M essage Flow in the Agent System

Figure 7 depicts how agents cooperate with one another to resolve the
rate change scenario and sketches the message ¯ ow in the agent system. For
clarity, ANS and its connections to other agents are not shown in the ® gure.
The message ¯ ow employed to establish connections between SCA and DA
and AA (brokered by BA) is also not shown.

Each of these agents needs information from others to perform its desig-
nated tasks. Each of them may also have information others need. Since
there is no predetermined stationery connection among agents, the broker
agent (BA) plays a crucial role in dynamically establishing communication
channels for agents’ information exchange.

Advertising to BA
GA advertises that it can provide OP-COMPLETE predicate. It also

advertises to be able to accept RATE-CHANGE predicate. PRA advertises

Agents for Manufacturing Integration 57

FIGURE 7. Agent system for ‘‘process rate change’’ scenario.

that it has current process rates available for some operations in the form of
RATE predicate. The following is an example of advertise message from GA
to BA:

(advertise

: sender GA

: receiver BA

:reply-with k a unique string as the tag of this messagel

: content (subscribe: content (ask-one : content

(OP-COMPLETE ? 3 1 . . . ? 3 n))))

Requesting Recommendation from BA
PRA asks BA to recommend an agent that can provide OP-

COMPLETE predicate and will receive the recommendation of GA in a
responding tell message. Similarly, SCA asks BA to recommend an agent

58 Y . Peng et al.

that can provide RATE predicate and receives PRA in response. It also asks
BA to recommend an agent that can accept RATE-CHANGE predicate and
receives GA in response. The following is an example of recommend-one
message from PRA:

(recommend-one

: sender PRA

: receiver BA

: reply-with k a unique string as the tag of this meassagel

: content (subscribe : content (ask-one : content

(OP-COMPLETE ? 3 1 . . . ? 3 n))))

In response, BA sends the following tell message to PRA:

(tell

: sender : BA

: receiver PRA

: in-reply-to k the tag of the message to which this message responds l

: content (GA))

Upon the recommendation from BA, an agent can then obtain the needed
information by sending ask or subscribe messages to the recommended
agent.

Monitoring/Noti�cation
When SCA knows from BA that PRA has advertised that it can provide

the current rate for a certain operation, it may send PRA the following
subscribe message :

(subscribe

: sender SCA

: receiver PRA

: reply-with k a unique string as the tag of this message l

: language KQML

: content (ask-one

: language KIF

Agents for Manufacturing Integration 59

: language KIF

: content (and (RATE . . . ? mean . . .) (k ?mean 50))))

With this message, SCA tells PRA that it is interested in receiving new
instances of RATE predicate whenever the mean value of the new rate is less
than ® fty. This e� ectively turns PRA to a process rate monitor with the
‘‘mean , 50’’ as the monitor criterion. Whenever the newly updated rate
satis ® es this criterion, PRA immediately noti® es SCA by sending it a tell
message with the new rate’s mean and standard deviation.

EVALUATION

The prototype agent system outlined in the previous section has been
installed at IBM’s Boca Raton CIIMPLEX integration center, where a host
of P/E application systems, including FactoryOp and MOOPI, is running.
The system has been tested successfully. The architecture of this system can
easily be applied to handle other types of P/E exception scenarios. For
example, we have recently assembled another agent system to manage a
di� erent exception scenario in which some BODs sent to an application are
out of sequence and need to be resynchronized.

Additional experiments have been conducted to test the reliability and
scalability of JACKAL. In the experiments, JACKAL is seen to be able to
support up to forty-two agents in a ring in a single NT machine (until the
machine runs out of memory), and a message takes an average of 0.3 second
to traverse the entire ring. JACKAL is also see to easily handle messages of
large size. The largest ones we have tested are binary image data of half
megabytes.

In summary, the prototype system achieves the following, which as dis-
cussed in the beginning of this article are essential for manufacturing planing
and execution integration :

1. Specialized agents (e.g., PRA, MA, and SCA) are built to provide the
functionality needed to manage P/E exceptions in manufacturing. These
agents ® ll the white space in between legacy P/E application systems.

2. JACKAL, the interagent communication infrastructure, is reliable and
scalable. It is also easy to use in developing individual agents because it
imposes minimum interference between communication and other agent
functions.

3. Conversation policies implemented in JACKAL realize, to some extent,
the belief-desire-intention (BDI) model intended by KQML. These poli-
cies can be used to enforce semantically correct agent-to-agent conversa-
tions.

60 Y . Peng et al.

4. The brokering agent (BA) provides necessary support for ¯ exible agent-
to-agent collaboration. The gateway agent (GA) provides the interface
between the agent world and the application world. They together make
runtime collaboration among all modules possible.

5. Ontological support (i.e., the BOD de® nitions), although very limited at
this moment, enables collaboration between agents and legacy P/E
systems.

In comparison with some existing work of others, our work is more
focused on particular needs of the CIIMPLEX integration environment.
Works such as ZEUS (Nwana et al., 1998), dMARS based on the Procedural
Reasoning System (George� & Lansky, 1987), ADEPT (Jennings et al.,
1996), and RETSINA (Sycara et al., 1996) attempt to provide generic agent
construction environments and toolkits or general agent architecture. Our
work can be seen as more of a point solution, although some techniques
from this work, such as JACKAL, can be used as a general-purpose commu-
nication infrastructure for KQML-speaking agents.

We do not impose a uni ® ed architecture for all of our agents. Besides the
interface to JACKAL, each agent is free to choose its own internal structure.
Currently, we are considering Linda-like shared memory or lightweight
blackboard architecture for intraagent (component-to-component) inter-
action.

There is great deal of research activity in developing agent systems for
manufacturing and other business applications. Examples of such systems
include ADEPT (Jennings et al., 1996) for business management, COOL for
supply chain management (Barbuceanu & Fox, 1996), and ABMEI for
manufacturing integration (Shen et al., 1998), to mention just a few. A dis-
tinguishing characteristic of our work is that we explicitly deal with real
legacy P/E systems. Although others discuss legacy systems in principle
(Jennings & Wooldridge, 1998 ; Shen et al., 1998), these legacy systems are
seldom included in the actual implementation.

Another major di� erence between our work and some others is in the
way the agent collaboration is achieved. COOL (Barbuceanu & Fox, 1996)
emphasizes the high-level coordination by negotiation and extends KQML
to support the speci ® cation of conversations for negotiation.* ABMEI (Shen
et al., 1998) uses a network of mediators whose main purpose is to resolve
heterogeneity between subsystems. Agents in their systems presumably have
the knowledge of what agents to contact when certain needs arise, while in

* Like the conversation policies in our system, COOL’s conversations are also de® ned using DFA’s.
The di� erence is that their conversations specify negotiation conventions, and our conversations imple-
ment intended semantics for KQML performatives based on speech act theory. In other words, they are
at di� erent levels of abstraction, and for di� erent purposes : theirs is for specifying what it will be, and
ours for ensuring what it should be.

Agents for Manufacturing Integration 61

our system, agents do not assume knowledge of what others can do. Each
agent advertises services it can provide and announces what services it
needs. The service requests match advertises by the BAs, and the communi-
cation between the matched pairs then follows. The Open Agent Architec-
ture (OAA) (Martin et al., 1998) goes further to use a powerful facilitator to
coordinate agents’ activities in a system. The facilitator works like a planner.
Based on the knowledge stored, it is able to decompose a task received from
an agent into subtasks, delegate subtasks to appropriate agents, and
monitor and coordinate the executions of these subtasks. A drawback of
OAA is that the facilitator is also the communication center. All agents must
communicate via the facilitator, while in our system, agents can communi-
cate directly to each other after the brokering matches.

CONCLUSION

In this article, we presented a multiagent system that is capable of sup-
porting intelligent integration of manufacturing planning and execution,
especially in managing the exceptions in business scenarios. With this
approach, a set of software agents with specialized expertise can be quickly
assembled to help gather relevant information and knowledge and to
cooperate with each other and with other management systems and human
managers and analysts, in order to arrive at timely decisions in dealing with
various enterprise scenarios. This system has been tested successfully with a
real manufacturing scenarios involving real legacy MES and schedulers.

The work presented here represents only the ® rst step of our e� ort
toward agent-based enterprise integration for manufacturing planning and
execution. Further research and experiments are needed to extend the
current work and to address its shortcomings. Although KQML does not
impose many constraints and requirements on the internal structure of
agents, it may be bene® cial to have a common framework for the agent’s
internal structure within a single-agent system. We are currently considering
a lightweight blackboard architecture for such a framework, which among
other advantages, may provide ¯ exibility for agent construction, agent com-
ponent reusability, and plug-and-play. Another research direction under
consideration is to increase the functionality of the BA and make it more
intelligent. The BA in our current implementation can only conduct broker-
ing activities at the level of predicates. With the help of a machine-
interpretable common ontology and an inference engine, more intelligent
brokering can be developed to work with object hierarchies and to make
intelligent choices. The current ontological support is very limited. It only
provides de® nitions of various BODs and constraints of BOD ® elds to
ensure data consistency. We are currently extending the ontology to include

62 Y . Peng et al.

deductive rules for additional interrelations between di� erent BODs and
BOD ® elds to support more complicated business scenarios. Work is also
under way to identify more complex enterprise scenarios, which require non-
trivial interactions with more legacy systems, and their solutions represent
signi ® cant added values to the manufacturing production management.

REFERENCES

Barbuceanu, M ., and M. S. Fox. 1996. The architecture of an agent building shell. Intelligent Agents II
1037 :235 ­ 250.

Bermudez, J. 1996. Advanced planning and scheduling systems : Just a fad or a breakthrough in manufac-
turing and supply chain management ? Report on M anufacturing, Advanced Manufacturing
Research, Boston, Massachusetts, December.

Bradshaw, J., S. Dut ® eld, P. Benoit, and J. Woolley. 1997. KAoS : Toward an industrial-strength open
agent architecture. In Software agents, ed. J. M. Bradshaw. Boston, Massachusetts : MIT Press,
375­ 418.

Carriero, N ., and D. Gelertner. 1989. Linda in context. CACM 32(4):444 ­ 458.
Chu, B., J. Long, M. M atthews, J. Barnes, J. Sims, M . Hamilton, and R. Lambert. 1998. FAIME: An

object-oriented methodology for application plug-and-play. To appear in Journal of Object-Oriented
Programming.

Chu, B., W. J. Tolone, R. Wilhelm, M. Hegedus, J. Fesko, T. Finin, Y. Peng, C. Jones, J. Long, M.
Matthews, J. May ® eld, J. Shimp, and S. Su. 1996. Integrating manufacturing softwares for intelligent
planning-execution : A CIIMPLEX perspective. Plug and play software for agile manufacturing.
Proceedings of SPIE 2913 :96 ­ 108.

Composition Research Group. 1996. Caltech Infosheres Project. Available at http ://
www.infospheres.caltech.edu

Cost, R. S., T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Soloro� , J. M ay ® eld, and A. Broughamnam. 1998.
Jackal : A JAVA-based tool for agent development. In Working Notes of the Workshop on Tools for
Developing Agents (AAAI T echnical Report), AAAI-98. http:// jackal.cs.umbc.edu/cost/cv/pub/
aaai98.pdf

Dourish, P., and V. Bellotti. 1992. Awareness and coordination in shared workspaces. In Proceedings
ACM 1992 Conference on Computer-Supported Cooperative W ork: Sharing Perspectives (CSCW ’92),
107­ 114, Toronto, November.

Finin, T., et al. 1993. Draft speci ® cation of the KQM L agent communication language. Available at
http ://www.cs.umbc.edu/kqml/kqmlspec/spec.html

Finin, T., Y. Labrou, and J. May ® eld. 1997. KQML as an agent communication language. In Software
agents, ed. J. M. Bradshaw. Boston, M assachusetts : MIT Press, 291­ 316.

Genesereth, M., and S. Katchpel. 1994. Software agents. Communication of the ACM 37(7):48­ 53.
Genesereth, M ., et al. 1992. Knowledge interchange format, version 3.0 reference manual. Technical

report, Computer Science Department, Stanford University, Stanford, California.
George� , M. R., and A. L. Lansky. 1987. Reactive reasoning and planning. Proc. of AAAI 677­ 682.
Hammer, M. 1996. Beyond reengineering: How the process-centered organizat ion is changing our work and

our lives. New York : HarperCollins.
Jennings, N. R., P. Faratin, T. J. Norman, P. O’Brien, M. E. Wiegand, C. Voudouris, J. L. Alty, T. Miah,

and E. H. Mamdani. 1996. ADEPT : Managing business processes using intelligent agents. In Pro-
ceedings of BCS Expert Systems Conference (ISIP Track). Cambridge, UK.

Jennings, N. R., and M. L. Wooldridge. 1998. Applications of intelligent agents. In Agent technologies :
Foundations , applications, and markers, eds. N . R. Jennings and M. J. Wooldridge, 3­ 28.

Labrou, Y. 1996. Semantics for an agent communication language. Ph.D. dissertation, Department of
Computer Science and Electrical Engineering, University of Maryland Baltimore County, August.

Agents for Manufacturing Integration 63

Labrou, Y., and T. Finin. 1997. Semantics and conversations for an agent communication language. In
Proc. of the 15th Int. J oint Conf. on Arti�cial Intelligence (IJCAI-97). San Mateo, CA: Morgan
Kaufmann. http://umbc.edu/ , �nin/papers/atal97.pdf

Martin, D. L., A. J. Cheyer, and D. B. Moran. 1998. Building distributed software systems with the open
agent architecture. In Proceedings of the Practical Application of Intelligent Agents and Multi-Agent
Systems, 355 ­ 376. London, UK.

Nwana, H. S. 1996. Software agents : An overview. Knowledge Engineering Review 11(3).
Nwana, H. S., D. T. Ndumu, and L. C. Lee. 1998. ZEUS : An advanced tool-kit for engineering distrib-

uted multi-agent systems. In Proceedings of the Practical Application of Intelligent Agents and Multi-
Agent Systems, 377­ 392. London, UK.

Parunak, H. V. D., A. Baker, and S. Clark. 1997. AARIA agent architecture: An example of
requirements-driven agent-based system design. Available at http ://www.aaria.uc.edu

Patil, R., R. Fikes, P. Patel-Schneider, D. McKay, T. F inin, T. Gruber, and R. Neches. 1992. The DAPA
knowledge sharing e� ort : Progress report. In Principles of knowledge representation and reasoning :
Proc. of the T hird International Conference on Knowledge Representation (KR ’92), eds. B. Neches,
C. Rich, and W. Swartout. San M ateo, California : Morgan Kaufmann.

Shen, W., D. Xue, and D. H. Norrie. 1998. Agent-based manufacturing enterprise infrastructure for dis-
tributed integrated intelligent manufacturing systems. In Proceedings of the Practical Application of
Intelligent Agents and Multi-Agent Systems, 533 ­ 550. London, UK.

Sycara, K., A. Pannu, M . Williamson, and D. Zeng. 1996. Distributed intelligent agents. IEEE Expert
11(6):36 ­ 46.

Tennenbaum, M., J. Weber, and T. Gruber. 1993. Enterprise integration : Lessons from shade and pact.
In Enterprise integration modeling, ed. C. Peter. Boston, Massachusetts : M IT Press.

Tolone, W. J., B. Chu, J. Long, T. Finin, and Y. Peng. 1998. Supporting human interactions within
integrated manufacturing systems. To appear in International Journal of Agile Manufacturing .

Vollmann, T., W. Berry, and D. Whybark. 1992. Manufacturing planning and control systems. New York :
Irwin.

