BUP

A Bottom Up Parser

Tim Finin and Bonnie Lynn Webber

Cemputer and Information Science
The Moore School
University of Pennsylvania
Philadelphia, PA

report MS-CIS-83-18
2 November 1884
Abstract

BUP is a bottom up syntactic analyser that can be used in several ways: as a simple bottom up parser for
context free languages, as a bottom up parser for extended phrase structure grammars (equivalent in
power to an ATN), or as a transducer for either. BUP accepts 2 grammar and lexicon specified as rules.
It will then analyze input strings according to those rules, recording its findings in a ¢hart and producing
all analyses in parallel. Rules can be displayed, added or deleted incrementally. BUP provides a small set
of tools for building structures and specifying tests.

key words and phrases: parsing, chart parsing, bottom-up parsing, naturai language processing,
computational linguistics.

draft BUP - A Bottom Up Parser draft

1. Introduction

BUP is a bottom up syntactic analyser that can be used in several ways: as a simple bottomm np parser
for context free languages, as a bottom up parser for extended phrase structure grammars (equivalent in
power to an ATN), or as a transducer for either. BUP accepts a grammar and lexicon specified as rules
{Section 3). It will then analyze input strings according to those rules, recording its findings in a chart
and producing all analyses in parallel. Rules can be added and deleted incrementally {Section 5). Section 4
describes tools BUP provides for building structures and specifying tests. Section 6 gives some examples

of BUP grammurs.
1.1. Accessing BUP

The Franz Lisp version of BUP is in UPENN:/[finin.bupfbup.l. Example grammars can be found in
IPENN::[finin.bupjgrammars.l.

You can load BUP into Maryland Lisp on the MSCF’'s Univac 1100 via:
@ADD FININ*BUP.BUPPER
The sample grammars described in the last section of this note can be loaded via:

QADD FININ*BUP.GRAMMARS
2. Theory of Cperstion

The parsing stategy embodied in BUP is similar to that described in [pratt73] and [pratt75]. For a good

general treatment of parsing, see [winograd]. etc. etc. ete.

3. Rule Structure

BUP rules are represeuted as lists which have at least two components corresponding to the Left Hand
Side (LHS) and Right Hand Side (RHS) of a standard CF rule. This is true whether the rule is to
represent a phrase structure rule like S = NP VP, written (S (NP VP})), or a lexical entry like N = dog,
written (N dog). In the VAX implementation, the RHS of a rule may be elther a list or an atom.
However, on the 1100, it must be a list, even if it only contains a single element - e.g., a rule like VP =2 V
would be written (VP (V}). If no rule has more than two components, BUP will act like a simple bottom
up CF parser. Figure 1 shows a simpie context free grammar for a trivial subset of English in the

common format and in BUP’s format.

BUP includes a special [acility for dealing with "unkrown words®. BUP allows the value of the reserved
atom "“wordSymbol?, initially set to <word>, u5 a RHS term. The value of wordSymbol is a wild-card

which will match any LISP expression. Normally, it would be used along with a teat atiribute on a rule,

draft BUP - A Bettom Up Parser draft

Figure 3-1: a simple CF'G grammar

S = KP VP V = chased
P = DET N V¥V = ate
NP o= o N = aa
NP = NP PP N =+ woman
VP = V ¥ = dog
VP = VNP H = cat
VP =3 VP FP DET =% the
DET = a
(2ddrules
(S (NP VP)) (V chaged)
(NP (DET ¥)) V ate)
(KP (M) (4 man)
(NP (WP PP)) (¥ woman)
(VP (V) (¥ dog)
(VP (V XP)) (N cat)
(VP (VP PP)) (DET tha)
(DET a)
)

a facility which we will describe later. The following rule, for example, can be used to recognize numbers:
(NUMBER <word> #1 -if (numberp #1))

This rule will have a structural match with any single LISP expression, and will apply whkenever the

derived structure associated with that expression (i.e., #1) is a number.

BUP rules may have, in addition, one to four optional components. The first optional component allows
arbitrary derived structures to be built, making BUP into a transducer. For examnple, BUP can be
used to output a funectional deseription of its input (i.e., in terms of roles like "subject®, "cbject®,
"theme®, etc.), a case analysis description of its input (i.e., in terms of rules like “agent"®,
"benefactor®, “instrument®, etc.) or a logical analysis (i.e., in terms of predicates, quantifiers, variable

bindings, etc.}.

This first component, if present, would appear right after the rule's RHS. We sometimes refer to it as
the "generator®. It can be any LISP expression. If the rule matches, the generator expression will be
evaluated, and the resulting derived structure will be bound to the LHS term just found. (Note that this

derived structure coexists with the syntactic structure associated with the term: it does not replace it.)

While a generator expression can be any LISP form, special functions are provided which support a
compositional approach to derived structure. These functions allow access to information associated with
each of the RHS constituents used in instantiating the rule. Thus, the structure generated for the LHS
term can depend upon the structures built for its RHS terms (and, as will be seen, their features as well).

These access functions are described in Section 4.1.

In addition to the generator expression, there are three other optional components of a rule: a test
expression, an expression which evaluates to the features to be associated with the new LHS term, and
an expressiop which evaluates to a weight to be associated with it. They can be specified in any order:
however, the test expression should be preceded by either "-t* or *-if*; the features expression should be

preceded by "-f*, and the weight expression, by "-w®*. For example,

draft BUP - A Bottom Up Parser draft

(V chased ’chase -f ’'(transitive))
(VP (V NP) -if (feat 1 ’'transitive) -f (list (feat 1 ’'number)))

Here, in addition to its LHS and RHS components, the first rule specifies both a derived structure for its
new LHS term V (i.e., the atom ®chase®) and features for it - i.e., "(transitive)®. The second rule specifies
both a test and features: it does not explicitly specify a derived structure to be associated with the new
VP. As we shall sece, BUP provides default procedures for building a term’s derived structure, as well

as its features and its weight.

As for what these three remaining optional components represent, the test specifics additional
conditions that must hold {over and beyond the structural match) in order for the rule to apply. If the
test cvaluates to the value of the reserved atom FAILURE (initially set to NIL), the rule fails. It is the
presence of this component that turns the grammar from simply CF to an extended phrase structure
grammar (PSG}) with Turing Machine power. For example, the second rule above would not apply unless
the verb (V) that matched had the feature "transitive®. The test can be any LISP expression, but again
access functions (described in Section 4.1) are provided for specifying which, if any, structures or features

the test depends on.

(Actually, if any of these four optional components evaluates to FAILURE, the rule will not apply. This
is not thecretically motivated, but rather found to he convenient. FAILURE is discussed more in Section
4.1.)

The features component is an arbitrary LISP expression that evaluates to the list of features to be
associated with the newly built LHS term. A feature is either a feature name like "transitive" or a
feature-value pair like "(number plural)®. Like the derived structure component, there is .a default
procedure for combining the features associated with the RHS terms in the rule to produce a set of

features associated with the LHS.

Finally, the wedght component is also an arbitrary LISP expression that evaluates to a weight to be
associated with the new LHS term. If it is not specified explicitly, the system will use a default procedure.
Since BUP produces all possible analyses in parallel, these weights cannot be used for deciding what path
to follow (as they might be if the analyses were being proposed sequentially): Rather, they can be used for

rank-ordering the analyses after they've beer done.

As noted above, BUP provides default procedures for computing a derived structure, features and/or
weight for a LHS term £ f such expressions are not specified explicitly mnd the constiiuents matching th
RHS terms have their own derived structures, features and/or weights. These procedures are specified as

the values of the reserved atoms

defaultRuleSemantics (for generating derived structures)
defaultRuleFeatures
defaultRuleWeights

The first constructs a list comsisting of the LHS term followed, in order, by the derived structure

draft BUP - A Bottom Up Parser draft

associated with each of its RHS terms. For example, consider the rule (VP (V NP)), which does not
explicitly specify a derived structure. Suppose V is associated with the derived structure
(Relation CHASE) and NP is associated with the derived structure (NP DOGS). Since the rule does not
specify a generator, the defaultRuleSemantics procedure will produce (VP (Relation CHASE)(NP DOGS)).

The defaultRuleFeatures procedure is straightforward: it appends together the set of features associated
with each of the RHS terms. The defaultRuleWeights procedure produces an average of the weights
associated with each of the RHS terms. Since we have not made great use of weights, this may change if
and when we do. (N.B. There is also a defau!tRuleTest procedure, whose value is T. One might want to

change this, but it’s not obvious why.}

4. Expressing Tests, Derived Features & Derived Structures

4.1. Access Functions

BUP provides a set of functions for accessing the syntactic structure, derived structure, features and/or
weight associated with the constituents matching the RHS terms. These access functions can be used for
expressing additional criteria that must be met for a rule to match (i.e., its £est) or for expressing the

derived structure, features and/or weight to be associated with the new LHS term. These functions are:

(syn <N>) access to syntactic structure
(sem <N>) access to derived structure
(feat <N>) |

(feat <N> <FEAT>) |- access to features

(feat <N> <FEAT> <FEATVAL>) |

(weight <N>) access Lo weight

The argument <IN>> must be either -1, 0 or a positive integer. If <N> is a positive integer, the function
will return information for the Nth RIS term. The functions hehave somewhat differently for N==0. The
value of (syn 0) is a list consisting of the LHS term followed by the syntactic structure of each RHS term.
The value of (sem 0) is a list consisting of the LHS term followed by the derived structure associated with
each RHS term. The value of (feat 0) is a list of the feature set of each RHS term, and the value of
(weight 0) is simply a list of numbers, the weight of each RHS term. N==-1 is defined the same for all four

functions: the value is simply the LHS term.

The function feat has two additional forms: if a second argument <FEAT> is given, what is accessed
is the <FEAT>> feature of the Nth RHS term, and what is returned is its value. If a third argument
<FEATVAL> is given as well, feat acts as a test of whether the value of the Nth RHS term’s F EAT
feature is FEATVAL. {N.B. "sem® may be abbreviated "#", in which case the expression need not be in

parentheses - i.e., (sem 1) and #1 are equivalent.

These syn, sem, feat and weight functions may be used in accessing information, say for specifying tests

or for passing on features/weights. For example, consider again the rule

draft BUP - A Bottom Up Parser draft

(VP (V NP) -if (feat 1 ’transitive) -f (list (fesat 1 ’pumber)))

This rule uses feaf in two places: first, to test that the first term on the RHS - V - has the feature
"transitive®, and second, to associate V's number feature and its value (e.g., (number pl)) with the new
VP. Notice that if the verb isn’t transitive and the test (feat 1 'transitive) evaluates to the value of
FAILURE - i.e., NIL - the rule will fail to match.

4.2, Structure Building

In addition to their use in specifying tests, features and weights, the above functions may be used for
building new derived structures. Structure building makes use of the backquote feature intrinsic to
dialects of Lisp in the Commen Lisp family (e.g. MacLisp, FranzLisp LispMachineLisp, ZetaLisp, NIL Lisp)
and imported to Maryland Lisp on the 1100. In the Common lisp implementations, the baxkquote
character is *'* and in the Maryland Lisp implementation it is the caret or up arrow symbol *“*. Within
" a backquoted list, all expressions taken as literals {e.g are quoted) except those preceded by the symbols
*" or ",.". A Comma (,) by itself causes the value of the next expression to be inserted into the list.
Used in conjuction with *.*, comma causes the value to be spliced ¥n. For example, suppose the value of
Ais (1 2 3) and the value of B is (4 5 6). Then

“(A ,AB.B) has the value (A (1 2 3) B (4 5 6))
“(A ,.AB,.B) has the value (A123B4658)

“(A ,{car A) B ,(car B)) has the value (A 1 B 4)

To show the use of access functions together with structure building, consider the following four-part rule:
(VP (V NP KP) ~(,#1 (OBJECT ,#3) (RECIPIENT ,#2)) -if (feat 1 'dative))

Suppose this rule matches the syntactic structure assigned to "gave the poor dog a bone®. Suppose also

that the derived structure assigned to the verb "gave® is simply "gave", that assigned to *the poor dog*

is (dog (MODIFIER poor) the), and that assigned to "a bone® is {bone a), then the derived structure built
for the new VP will be

(gave (OBJECT (bome a)) (RECIPIENT (dog (MODIFIER poor) the))))

5. Interactive functions

BUP proves a pumber of functions for maintaining the grammar (by adding and deleting rules),
exploring the results of parsing a sentence (i.e. examining the chart) and tracing the application of some

or all of the grammar’s rules.

draft BUP - A Bottom Up Parser draft

5.1. Specifying Patterns

Several of the interactive functions described in this section (in particular, rules for showing, deleting and
tracing rules) take a rule pattern as argument. A rule pattern is an atom or a 2-tuple in which the
atoms “?* and **® take on special significance. In matching a rule against a pattern, a *?% can match
any single element and a *** can match a (possibly empty) sequence of elements. {Only the LHS and RHS
of a rule are described in a rule pattern. Hence a pattern will either be the atom * for all rules or a

2-tuple.) Some examples are:

(PP ?) matches all rules which build PPs
(? (x PP %)) matches all rules which use PPs
* matches all rules

5.2. Function Deseriptions

The following gives a brief description of the functions used to define grammars and parse sentences

with them. Arguments which are evaluated are shown as quoted.

(PARSE w1 w2 ... wn)
Parse the sentence with words wl..wn and print all possible analyses, where an analysis
consists of a syntactic structure and a possibly empty derived structure, feature set and
weight.

(PARSE)
Re-parse the last sentence - i.e., the value of the reserved atom "oldSentence".

(PARSEL ’'s1 'c1)
Parse s1 as a c¢1, where sl evaluates to a list of words and cl evaluates to a non-
terminal symbol. For example,

(PARSE1 °(the man) 'NP) parses (the man) as an NP
(PARSE1 ’(the man eats) 'S) == (PARSE the man eats)

(ADDRULES r1 r2 ... rn) 4
Add the rules r1, r2 ... rn to the current grammar.

(DELETERULES p1)
Delete all rules which match the pattern pl from the current grammar. For example,

(DELETERULES (PP 7)) delete all rules which build PP’s
(DELETERULES (? (* PP %))) delete all rules using PP’s.
(DELETERULES *) delete all rules in the grammar.

(RULES ’p)
Returns a list of rules matching pattern p.

(SHOWRULES p1)
Print (on the terminal) all rules which match the pattern pl. (SHOWRULES *) will, of
course, print all rules in the grammar.

(SHOWTERMINALS) :
Display the lexicon - i.e., the list of all terminal symbols used in the grammar

draft BUP - A Bottom Up Parser draft

(SHOWNONTERMINALS)
Display the non-terminal symbols used in the grammar.

(TRACERULES p1}
Shows the application of each rule matching pattern pl, as it is used in parsing. A
message of the following form is printed:

[i,j1 A = B

where i is the starting position, j is the final position, A is the type of constituent found
and B is the structurc generated for it. Positions fall between words, i.e. position 0 is
just before the first word, position 1 is between the first and second words, ete.

{UNTRACERULES p1)
turns off the trace from those rules matching pattern pl.

(SHOWCHART from to sl s2 ... sn)
Displays a portion of the chart built up in parsing the last sentence. The initial and
final positions are given by FROM and TO. These can be integers or the atom ®*7®,
which matches any position. The Si name the constituent types we want displayed.

(SHOWCHART) - shows all entries.
(SHOWCHART 0 ?) ~ shows all entries which begin at 0,
end anyvhere and are of any type.
(SHOWCHART ? ? S NP) - shows all constituents of type S or NP,
regardless of where they begin or end.

(HELP topicl topic2 ...)
Prints some helpful information on the given topics. Try (HELP *) to see a list of
topics for which help is available.

(example0), (examplel), (example2), (example3)
Define example grammars that one might experiment with. These four functions may
be found on the file [tim.bup]grammars.] (on the VAX) and - (on the Univac 1100).

6. Example Grammars

The following figures define some simple grammars with examples of their operation.

7. Bibliography

[Pratt 73 Pratt, V.
LINGOL ...
In Proc. Sed International Joint Conference on Artificiol Intelligence. TJCAI August,
1973.
[Pratt 75] Pratt, V.

LINGOL, A Progress Report.
In Proc. 4th International Joint Conference on Artificial Intelligence. 1JCAI, August,
1975.

[Winograd 83] Winograd, T>.
Language as a Cognitive Process.
Addison-Wesley Publishing Co., Inc., 1083.

draft BUP - A Bottem Up Parser draft

Figure 8-1: grammar 0 - trivial syntax
(addrules
(s (P VP))

(NP (DET NP1))
(NP (NP1))
(NP1 (ADJ KP1))
(KPL (X))
(NP1 (NP1 PP))

e (V)

(VP (V NP))
(VP (V NP ¥P))
(VP (VP PP))

(PP (PREP HP))

(DET the) (DET a)

(V chased) (V ate) (V gave) (V liked) (V believes) (V knows)

(V thinks) (V put) (N man) (§ woman) (M dog) (¥ cat) (N Iish)

(N table) (N floor) (ADJ large) (ADJ hungry) (PREP on) (PREP near)
(PREP in) (PREP to))

> (parse the man ate fish)

< ((5 (NP (DET the) (NP1 (N man))) (VP (V ate) (XP (NP1 (N fish)))))
‘il
nil
1.0)

draft

(addru
(s

(fa
(fa

(NP
(xp
(np
(NP
(wp
(NP
(vp
(VP
(vp
(VP
(vp
(VP
(vp

(PP

(DE
(DE

(v
(N

BUP - A Bottom Up Parser

Figure 8-2: grammar 1 - simple syntax
les

(NP VP))

ctiveS (that S))
ctiveS (8))

(DET NP1))
(XPL)
1 (ADJ NP1))
1 (N NP1))
1))
1 (¥P1 PP))

(V) -if (feat 1 ’intransitive))

(V NP) -if (feat ‘bransitive))

(V factiveS) -if (feat 1 ’factive))
(V NP ¥P) -if (feat 1 ’dative))

(VP PP))

(VP ADV))

(ADV VP))

(PREP §P))

T the)

T a)

chased -f '(transitive))

ate ~f '(transitive intransitive))

gave -~f ’{transitive dative intransitive))

liked -f *(transitivae))

believes -f ’(transitive factive))

knows -f ’(transitive factive))

thinks -f '(transitive factive))

put) (N man) (N woman) (N dog) (N cat) (N fish) (N table)
floor) (ADJ large) (ADJ hungry) (ADV quickly) (ADV quiatly)

(ADV very) (PREP on) (PREP near) (PREP in) (FREP to))

(parse t

({5 (nP
nil
(transi
1.0)

he man ate fish)
(DET the) (NP1 (N man))) (VP (V ate) (NP (NP1 (N fish)))))

tive intransitive)

draft

draft

(addru
(s

(fa
(fa

(RE

BUP - A Bottom Up Parser

Figure 8-3: grammar 2 - more complex syntax

les
(NP VP))

ctiveS (that S))
ctiveS (S))

LS (that S/NP))

(RELS (who S/NP))

(RE

(s/
(s/

(NP
(NP
(np
(NP
(NP
(NP
(NP

(vp
(VP
(vp
(vp
(VP
(VP
(VP
(vp
(VP
(vp

(PP
(DE

LS (S/NP))

NP (VP))
NP (NP VP/NP))

(DET NP1))
(NP1))
1 (ADJ NP1))
1 (N NP1))
1 ()
1 (NP1 PP))
1 (NP1 RELS))

(V) -if (feat 1 ’intransitive))

(V NP} -if (feat 1 ’transitive))

(V factiveS) -if (feat 1 'factive))
(V NP KP) -if (feat 1 ’dabive))

(VP PP))

(YP ADV))

(ADV VP))

/NP (V) -if (feat 1 ’transitive))
/WP (V NP) -if (feat 1 ’dative))
/NP (V NP) -if (feat 1 ‘dative))

(PREP NP))
T the)

(DET a)

(PR

chased 'chased -f ’'{transitive))

ate ’ate -f *'(transitive intransitive))

gave 'gave -f '(transitive dative intransitive))
liked *liked ~f '(transitive))

believes 'bslieves ~f ’'(transitive factive))
knows ’'knows ~f ’{transitive factive))

thinks ’thinks -f °*{(transitive factive))

put) (N man) (N woman) (N dog) (M cat) (N fish) (N table)
floor) (ADJ large) (ADJ hungry) (ADV quickly) (ADV quietly)

EP on) (PREF near) (PREP in) (PREP to))

10

draft

draft BU?P - A Bottom Up Parser draft

Figure 8-4: grammar 3 - simple semantics

(addrules
(S (NP VP) ~(,#2 (SUBJECT ,#1)))
{factiveS (that S) #2)
(factiveS (S8) #1)
(RELS (that S/NP) #2)
(RELS (who S/NP) #2)
(RELS (S/NP) #1)
(S/NP (VYP) ~(,.#1 (SUBJECT <trace>)) -if (feat 1 ’intransitive))
(S/NP (NP VP/KP) ~(,.#2 (SUBJECT ,#1)))
(NP (DET NP1) ~(,.#2 ,#1))
(NP (NP1) #1) :
(NP1 (ADJ NP1) ~(,.#2 (MODIFIER ,#1)))
(NP1 (N NP1) ~(,.#2 (MODIFIER ,#1)))
(NP1 (N) ~(,#1))
(NP1 (NF1 PP) ~(,.#1 (MODIFIER ,#2)))
(NP1 (NP1 RELS) ~(,.#1 (MODIFIER ,#2)))

(VP (V) ~(,#1) -if (feat 1 ’intransitive))

(VP (V ¥P) ~(,#1 (OBJECT ,#2)) -if (feat 1 ’transitive))

(VP (V factiveS) ~(,#1 (OBJECT ,#2)) -if (feat 1 ’factive))

(VP (V NP NP) ~(,#1 (OBJECT ,#3) (RECIPIENT ,#2)) -if (feat 1 ’dative))

(VP (VP PP) ~(,.#1 (MODIFIER ,#2)))

(VP (VP ADV) ~(, .#1 (MODIFIER ,#2)))

(VP (ADV VP) ~{,.#2 (MODIFIER ,#1)))

(VP/NP (V) ~(,#1 (OBJECT <trace>)) -if (feat 1 ’transintive))

(VP/NP (V NP) ~(,#1 (OBJECT <trace>) (RECIPIENT ,#2)) -if (feat 1 ’'dative))
(VP/NP (V NP) ~(,#1 (OBJECT ,#2) (RECIPIENT <trace>)) -if (feat 1 ’'dative))
(PP (PREP NP) ~(,#1 ,#2))

(DET the) (DET a)

(V chased ’chased -f ’(transitive))

(V ate ‘ate -f ’'(transitive intransitive))

(V gave ’gave -f ’'(transitive dative intransitive))

{V liked ’liked -f ’{(transitive))

(V believes ’'believes -f ’(transitive factive))

(V knows ‘knows -f ’(transitive factive))

(Vv thinks ’thinks -f °’(transitive factive))

(V put ’put) (N man ’man) (N woman ’woman) (N dog ‘dog)

(N cat ’'cat) (N fish 'fish) (N table °table) (N floor ’floor)
(ADJ large ’large) (ADJ hungry ’hungry) (ADV quickly ’'quickly)
(ADV quietly ’quietly) (PREP on 'on)

(PREP near 'near) (PREP in 'in) (FREP to ’'to))

(parse the man ate fish)

((s (NP (DET the) (NP1 (N man))) (VP (V ate) (NP (NP1 (N fish)))))
((ate (OBJECT (fish))) (SUBJECT (man nil)))

(transitive intransitive)

1.0)

1]

draft _ BUP - A Bottom Up Parser draft

Figure 6-5: grammar 4 - a semantic grammar for data bases
(addrules

(PROPERTY-NP (DET PROP) #2)
(PROPERTY-NP (PROPERTY) #1)
(PROPERTY age ’(quote age))
(PROPERTY spouse '(quote spouse))
(PROPERTY height ’'(quote height))

(DET the)
(DET a)
(DET an)

(WH-WORD what)
{(WH-WORD who)
(WH-WORD which)

(POSSESIVE ('s))

(OBJECT PATH (list ’get (cadr #1) (car #1)))
(OBJECT john ’(quote john))

(GBJECT mary ’(quote mary))

(OBJECT NUMBER #1)

(OBJECT NEW-WORD #1 -w -1)

(OBJECT LISP-LIST #1)

(LISP~LIST <word> #1 -if (not (atom #1)))

(NUMBER <word> #1 -if (numberp #1))

(PATH (PROPE:TY-NP of OBJECT) (list #1 #3))
(PATH (OBJECT POSSESIVE PROPERTY-NP) (list #3 #1))

(5 (WH-WORD is OBJECT) #3)
(S (is OBJECT OBJECT) (list ’equal #2 #3))
(8 (PATH is OBJECT)
(list ’'putprop (cadr #1) #3 (car #1)))
(5 (OBJECT is PATH)
(1ist ’putprop {(cadr #3) #1 (car #3)))
(8 {does OBJECT have PROPERTY-NP) ~(yes-no (get ,#2 ,#4)))
(S (eval LISP-LIST) ~(eval ’,#2))
(S LISP-LIST ~(eval ’,#1))

(S (<word> is DET PROPERTY-NP) ~(addrules (PROPERTY (,#1))))
(8 (<word> is DET object) ~(addrules (OBJECT (,#1)))))

12

draft

BUP - A Bottem ’Up Parser

Flgure 8-8: A Sample Session
$ lisp
Franz Lisp, Opus 37

1.(load "[tim.buplbup™)

[fasl [tim.buplbup.o]j

"type (HELP) for (outdated!) helpful information®
t

2.0
NIL

3.(load "[tim.buplgrammars.1")
t

4. {example3)

loading example grammar 3 - semantics

Deieting all rules.([*1list:154{84%}; fixnum:1{79%}; ut:34%]
t

5.{parse the cat ate fish)

((S (NP (DET the) (NP1 (N cat))) (VP (V ate) (NP (NP1 (N fish)))))
({ate (OBJECT (fish))) (SUBJECT (cat the)))
(transitive intransitive)

1.0)

t

6.(parse the cat ate the fish on the table)

((s (NP (DET the) (NP1 (N cat)))
(VP (VP (V ate) (NP (DET the) (NP1 (N fish))))
(PP (PREP on) (MP (DET the) (NP1 (N table))))))

((ate (OBJECT (fish the)) (MGDIFIER {on (table the)))) (SUBJECT (cat tha)))

(transitive intransitive)
1.0)

((s (NP (DET the) (NP1 (N cat)))
(YP (V ate)
(NP (DET the)
(NP1 (NP1 (N fish))
(PP (PREP on) (NP (DET the) (NP1 (N table))))))))

((ate (CBJECT (fish (MODIFIER (on (table the})) the))) (SUBJECT (cat the)))

(transitive intransitive)
1.0)
t

13

draft

draft

BUP - A Bottom Up Parser draft

Figure 8-7: A Sample Session, Tracing and Examining the Chart

7. (tracerules '(NP *))
(R9 R10)

8. (parse)

Sentence is: {(the cat ate the fish on the table)

R10 [1,2] NP -> ((NP1 (N cat)) (cat) nil 1.0)

R9 [0,2] NP -> ((DET the) the nil 1.0)

R10 [1,3] NP -> ((NP1 (NP1 (N cat)) (RELS (S/NP (VP (V ate))))) ...

RS [0,3] NP -> ((DET the) the nil 1.0)

R10 [4,5] NP -> ((NP1 (N fish)) (fish) nil 1.0)

RS [3,6] NP -> ((DET the) the nil 1.0)

R10 [1,5] MNP -> ((NP1 (NP1 (N cat)) (RELS (S/NP (VP (V ate) (NP (DET thse) ...
R9 [0,5] ¥P -> ((DET the) the nil 1.0)

R10 [7,8] HP -> ((NP1 (N table)) (table) nil 1.0)

R9 [6,8] NP -> ((DET the) the nil 1.0)

R10 {[1,8] NP -> ((NP1 (NP1 (N cat)) (RELS (S/NP (VP (VP (V ate) ...

R9 (0,8} NP -> ((DET the) the nil 1.0)

R10 [1,8] NP -> ((NP1 (NP:1 (NP1 (N cat)) (RELS (S/NP (VP (V ate) ...

R9 [0,8] NP -> ((DET the) the nil 1.0)

R10 [4,8] NP -> ((NP1 (NP1 (N fish)) (PP (PREP on) (NP (DET tha) (NP1 ...

R9 [3,8] NP -> ((DET the) ths nil 1.0)

R10 [1,8] NP -> ((NP1 (NP1 (N cat)) (RELS (S/NP (VP (V ate) (NP (DET the) ...
R [0,8] NP -> ((DET the) the nil 1.0)

((s (NP (DET the) (NP1 (N cat}))
(VP (VP (V ate) (NP (DET the) (NP1 (N fish))))
(PP (PREP on) (NP (DET the) (NP1 (N table))))))
((ate (OBJECT (fish the)) (MODIFIER {on (table the)))} (SUBJECT (cat the)))
(transitive intransitive)
1.0)

((S (NP (DET the) (NP1 (N cat)))
(VP (V ate)
(NP (DET the)
(NP1 (NP1 (N fish))
(PP (PREP on) (NP (DET the) (NP1 (N table))))))))

((ate (OBJECT (fish (MODIFIER (on (table the))) the))) (SUBJECT (cat the)))

(transitive intransitive)

1.0)
t

9. (showchart 1 2)

[1,2] ((NP (NP1 (N cat))) (cat) nil 1.0) -> NP
[1,2] (NP1 (N cat)) (cat) nil 1.0) -> NP{
{1,2] ((N cat) cat nil 1.0) -> N

{1,2] (cat cat nil 1) -> cat

[1,2] (cat cat nil 1) -> <word>

nil

10. (showchart ? ? s)

nil

11 . (showchart ? ? S)

[1.8] ((S (NP (NP1 (N cat))) (VP (V ate) (NP (DET the) (NP1 (NP1 ...
[0,8] ((S (NP (DET the) (NP1 (N cat))) (VP (V ate) (NP (DET the) ...
{1,8] ((S8 (NP (NP1 (N cat))) (VP (VP (V ate) (NP (DET the) (NP1 ...
[0,8] ((S (NP (DET the) (NP1 (M cat))) (VP (VP (V ate) (NP (DET

[1,5) ((S (NP (NP1 (N cat))) (VP (V ate) (NP (DET the) (NP1 (N ...
[0,5] ((S (NP (DET the) (NP1 (N cat))) (VP (V ate) (WP (DET the) ...
[1,3] {{(S (NP (NP1 (N cat))) (VP (V ate))) ((ate) (SUBJECT (cat))) ...
{0,3] ((S (NP (DET the) (NP1 (N cat))) (VP (V ate))) ((ate) (SUBJECT ...

14

