
A semantics approach for KQML –

a general purpose communication language for software agents *

Yannis i ~brou

Computer Scien~ e Department

University of Maryland, Baltimore County

Baltimore MD 21228

email: jklabrou :Hlcs.urnbc.edu

voice: (410; 455-2667

fax: (410) .55-3969

Abstract

We investigate the semantics for Knowledge Query Manipu-

lation Language (KQML) and we propose a semantic frame-

work for the language. KQML is a language and a pro-

tocol to support communication between software agents.

Based on ideas from speech act theory, we propose a se-

mantic description for KQM L that associates descriptions

of the cognitive states of agents v?ith the use of the lan-

guage’s primitives (performatives). We use this approach to

describe the semantics for the basic set of KQML performa-

tives. We also investigate implem:,v.tation issues related to

our semantic approach. We suggtst that KQML can offer

an all purpose communication lang ~Age for software agents

that requires no limiting pre-commitments on the agents’

structure and implementation. KQ vIL can provide the Dis-

tributed AI, Cooperative Distribu.. .i Problem Solving and

Software Agents communities with an all purpose language

and environment for intelligent inter-agent communication.

1 Introduction

Let us picture a company where cl> :ployees keep calendars

in their personal computers. A da! base keeps information

on the employees, such as names, offices, phone numbers.

Another database may register coni.xence rooms, with addi-

tional information regarding capacity, availability, scheduled

activities and so on. One may want to build a system that

can schedule group meetings in the company, according to

the availability of employees and locations. The well-known

approach is to built an application from scratch, so that one

?wiication holds all necessary information and knowledge.
The alternative would be to use the existing applications.

Doing that, would require: 1) the applications to be able

to comprehend each other’s ‘knowledge stores, despite dif-

ferences in implementation languages and knowledge repre-

sent ation schemes, and 2) the appl; at ions to communicate

wit h each other and dynamically m:) tie queries, answer them,

●This work wss supported m part by L, ? Am Force Office of Sclen-

tlfic Research under contract F49620-92- ! .0174, and the Advanced

Research Projects Agency

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
CIKM ’94- 11/94 Gaitherburg MD USA
@ 1994 ACM 0-89791 -674-3/94/001 1..$3.50

Tim Finin

Computer Science Department

University of Maryland, Baltimore County

Baltimore MD 21228

email: Ihin(lcs.umbc,edu

voice: (410) 455-3522

fax: (410) 455-3969

assert or remove facts from their knowledge stores, in short,

to interact intelligently.

This example is an instance of the larger problem of pro-

viding for an environment where software agents may effec-

tively communicate and exchange knowledge and informa-

tion. Addressing this problem is the primary goal of the

ARPA Knowledge Sharing E..ort (KSE) [23]. KSE is an ini-

tiative to develop the technical infrastructure to support the

sharing of knowledge among systems [22]. Its goal is to de-

velop new systems by selecting components from libraries of

reusable modules and assembling them together. One of the

key areas identified by KSE was that of protocols for commu-

nication between separate knowledge-based modules, as well

se between knowledge-based systems and databases. The re-

sult was Knowledge Query Manipulation Language (KQML)

(see [1, 2, 14] for documentation on KQML) a message for-

mat and a message-handling protocol to support run-time

knowledge sharing and interaction among agents.

Interaction is more than an exchange of messages. Issues

associated with it, are: models of agents (beliefs, goals, rep-

resentation and reasoning), interaction protocols (an inter-

action regime that guides the agents) and interaction lan-

guages (languages that introduce standard message types

that all agents interpret identically). KQML is intended to

be a unioersalinteraction language, that supports communi-

cation through explicit linguistic actions. Our focus in this

paper is the formal description of the semantics of the lan-

guage. Although the language is partly designed and in use,

it lacks a formal semantics, and its current description [2]

is based on natural language descriptions of its primitives

called performatiues. We believe that a formal semantics is

necessary for the unambiguous definition of the language,

and its appropriate use. Furthermore, the semantic descrip-

tion is related to implementation issues.

Research communities with a potential interest in such

a language are those of Distributed A rtijicial Intelligence

(DAI’) ,the subfield of AI concerned with concurrency in

AI computations, (Cooperative) Distributed Problem Solv-

ing, that studies how a loosely coupled network of problem

solvers can work together to solve problems that are beyond

their individual capabilities [12], and Multi Agent Systems,

concerned with coordinating behavior among a collection of

(possibly pre-existing) autonomous intelligent agents. The

rising demand for software agents that can interoperate [16],

and for intelligent agents that can take advantage of the

1 For an introduction to the issues that DAI is concerned w]th, see

[4] and [15].

447

http://crossmark.crossref.org/dialog/?doi=10.1145%2F191246.191320&domain=pdf&date_stamp=1994-11-29

enormous resources of today’s Internet (like Etzioni’s lnter-

net softbots [13]) provide a proving -round for a communica-

tion language. KQML can be used in any environment where

software agents need to communic~te something more than

pre-defined and fixed statements Jf facts and provides for

dynamic run-time interaction, so th it intelligent agents can

combine their efforts, or make use uf other agents’ abilities,

in order to achieve their goals.

In the remainder of this paper we will begin by provid-

ing a brief introduction to speech ,.ct theory which under-

lies our approach to defining the s:mantics of KQML. We

will then associate KQML messagw with speech acts and

present a general semantic framew c<k for KQML. Following

this framework, we will give the semantics for a small set of

KQML performatives. In the final two sections of the pa-

per we discuss the impact of our artalysis on some software

implementation issues and discuss ‘he kinds of applications

which are appropriate for KQML.

2 Speech act theory and spe~.ch act semantics

Speech act theory is a high-level ti,eoretical framework de-

veloped by philosophers and lingui:~ts to account for human

communication. It has been extensively used, formalized

and extended within the fields of Computational Linguistics

and AI as a general model of communication between arbi-

trary agents. As such, we believe that speech act theory can

provide us with a framework for the semantics of KQML,

a language focused on the communication between software

agents. Speech act theory is primarily concerned with the

role of language as action. The fohowing three distinct ac-

tions can be identified in a speech act: (1) a locution, i.e.,

the actual physical utterance (wirk a certain context and

reference), (2) an diocution, i.e, thi conveying of the speak-

ers intentions to the hearer, and ; 2) the perlocutioras, i.e.,

actions that occur as a result of the Nocution. For example,

“I order you to shut the door” is a [jcution, its utterance is

the allocution of a command to shu, the door and the per-

locution may be (if all goes well) tl,at the hearer shuts the

door. An allocution is usually consi{tered to have two parts:

an Wocutionrwy force and a prop<: $ition. The illocutionary

force classifies speech acts into the following classes2: I)

assertive, that are statements of iacts, 2) directives, that

are commands, requests or suggesti.ms, 3) cornrnisivetr, e.g.,

promises, that commit the speakm to a course of action,

4) deckamtives, that entail the occ ~rrence of an action in

themselves, and 5) ezpre$siues, 1,.at express feelings and

attitudes.

There is no consensus in the lit:. rature regarding the se-

mantic approaches for speech acts iut no matter what one

may consider as speech act semantics, it is necessary to make

reference to the cognitive states of the agents that use them.

After all, speech acts are supposed to be the result of agents’

efforts to act upon the world and/or other agents. The

representation of and reasoning about the states of agents

and the world and how agents’ actions affect them is a pre-

requisite for any semantic approac’1. There is a plethora

of approaches regarding the abstra<.tions (models) used for

capturing and describing such states, depending on one>s

motivations. They range from info-] ,al references to propo-

sitional attitudes, like “believe” o: “want”, as in Searle’s

early work [25] where speech acts i 4.S used in the context of

the investigation of r-e$erence and 01 Iler Phttosophy of Lan-

2 variations of this classification appea- also in the literature
3

as m “I name this ship the Z’itanZc”

guage issues, to strict formalisms, as in the work of Cohen

and Levesque [6, 8, 7] that define a formal model of the cog-

nitive state of an agent and then use it to interpret speech

acts as actions that are derived, guided and controlled in the

context of the cognitive states of the related agents. Camp-

bell [5] uses predicates (that stand for epistemic operators),

and propositions to describe mental states associated with

specific speech acts (like warning or bargaining). Cohen

and Perrault in their pkm-based theory of speech acts [9] use

a believe modal operator based on Hintikka’s ideas about

propositional attitudes, knowledge and belief [20]. Singh is

interested in modelling agents in terms of beliefs and inten-

tions [26] and uses this description to provide a semantic

approach for speech acts [27], enhancing the usual model-
theoretic framework with modal operators for the primitive

concepts of intention and know-how. The common denom-

inator of most of the formal semantic approaches is the

possible-world model that has an axiomatization in terms

of modal logic (for an introduction to the possible worlds

model and the issues related to it see [21]).

We adopt Searle’s description (approach) for speech acts

[25, 24], A speech act may be described asF(P) where F is

the illocutionary force indicator and P is the propositional

content of the illocutionary act 4. Searle suggests the follow-

ing seven components of the allocution ar y force:

1.

2.

3.

4.

5.

6.

The iltocutionary point is a fundamental primitive no-

tion. The illocutionary points are: asserttve, directive,

commisive, declarative, and expressive. The illocution-

ar y point of a type of allocution ary act is achieved if the

act is successful. The illocutionary point of a promise

to do act P (commisive), is for the speaker to commit

himself to doing P and the illocutionary act will be

successful if the promise is to be kept in the future.

The degree of .streragth of the illocutionary point can

distinguish between “shut the door!” and “could you

please close the door?” that are both directives, but

the first is a command and the second is a plea.

The mode of ach~evernent suggests the special ways or

set of conditions under which the illocutionary point

has to be achieved in the performance of the speech

act. A command may require a position of authority

on behalf of the speaker; use of this authority may

be necessary in issuing the utterance and eventually

achieving the illocutionary point.

The propositional content conditions impose what can

be in the propositional content P for a specific force F.

For example, a speaker can not promise that a third

agent will do something.

The preparatory conditions are conditions that should

hold for the successful performance of an illocutionary

act. In the case of a promise, such conditions might be

that whatever was promised is in the hearer interest

and the hearer in fact wanted him to issue the promise.

The sincerity conditions relate to the psychological (or

cognitive) state of the agent. Agents have beliefs, in-

tentions and desires. The propositional content of the

illocutionary act should be identical to the proposi-

tional content of their psychological state.

4The truth might be a httle more comphcated because P can by a

proposition plus syntact]c features and a context for the utterance

448

7. Finally, the degree of strength of the sincerity cond~-

tions suggests the existence [.f a degree of strength in

the expression of the psychological state of the speaker.

“Requesting” and “begging”, do not suggest the same

level of desire for something t) occur.

3 KQML and speech act theory, as a context for its
semantics

KQML is intended as a generzd pw pose communication lan-

guage for the exchange of information and knowledge be-

tween software agents. Here is an example of a KQML mes-

sage:

(tell : language prolog

: ontology Genealogy

: in-reply-to ql

: sender Gen- 1

: receiver Gen-i)B

: content ‘ ‘father (John, Alice) ‘ ‘)

In KQML terminology, “tell” is a perforrnatiue5 (see Ta-

ble 1 for more KQML performat’ves). Performatives ex-

plicitly suggest the illocutionary force. The value of the

:content slot is an expression in some “computer inter-

preted” languages, in other words it is the propositional

content of the illocutionary act (technically, the illocution-

ary act is the “delivery” of a KQML message). The other

parameters (keywords), introduce ~alues that provide a con-

text for the interpretation of the propositional content and

at the same time hold information to facilitate the process-

ing of the message. In this example, “Gen-1” is stating to

“Gen-DB” (these are symbolic names for applications), in

Prolog, that “father(John,Alice)”. Thisisa responsetothe

KQML message (illocutionary act; identified by “ql”. The

ontology7 named “Genealogy” may provide additional infor-

mation regarding the interpretatio,- of the content.

Wewilluse theterm semantics t.~ refer to: I) everything

that provides for an unambiguous i~,terpretation of the per-

formative, viewed asanillocutionary force indicator, 2) the

perlocutionary effects, i.e, how agints’ states change after

sending or receiving a KQML messs.ge, and 3) criteria that

suggest when the illocutionary pc~int of the performative is

satisfied.

Searle broke down the illocutionary force into seven com-

ponents (presented in Section 2). Next, we examine those

components that are of interest to m, and how they relate

to our effort to provide meaning tc, oerformatives. The per-

formative’s iilocutionar-g point and ,egr-eeo ~strengthareax-

somatically defined by the designei-. (in our current analysis

we ignore the degree of strength). rable I shows the illo-

cutionary points for the performatives of this presentation.

The sincerit~ conditions and their degree of strength are of

no immediate interest, because we assume that sJl agents are

sincere to the best of their ability. Thepropositiona] content

conditions assure that agents do n,}t make promises about

other agents, they do not respond to queries not directed to

them, etc. They are enforced by ihe conversation policies

(more about them in the Section 6.1) and the application

5term first coined by Austin [3], to suggest that some verbs can be

uttered so that they perform some actmr (later, it was decided that

a(l verbs may be considered as performa~ ~,es)

61n the full version of KQML (not ,. esented here), the content

may also be a KQML message itself.

‘An ontology is a repository of semanfl: and primarily pragmatic

knowledge over a certain domain. Onto’, jies are part of the Shared

and Reusable Knowledge Bases Group o’ he KSE,

programmer. The mode oj achievement refers to estab-

lishing certain relationships between speakers and hearers

that make certain illocutionary acts, meaningful, The mode

of achievement is set by the “organizational” hierarchy or

interaction protocol that the agents may use in their inter-

action. In Contract Net [28] , the fact that some agents

act as managers and others as potential contractors, creates

a context for the negotiation [11] , through bidding, that

characterizes the protocol. The preparatory cond~tions are

viewed as preconditions on the cognitive state, for an agent

to use a performative.

For theperiocutionary eflects we provide suggestions for

thestates of the sender, after sending a message and for the

receiver, after processing it (presented as postconditions).

The objective is to help with the interpretation of the per-

formative, by suggesting the desired effects of its use, and

to link (and restrict) the possible responses that will be ac-

ceptable follow-ups to the sender’s action, by establishing

preconditions for the possible response.

Finally, we need to know when the illocutionary point

of a performative is eventually satisfied, e.g., a query is sat-

isfied when it is answered appropriately. Other illocution-

ary acts are satisfied just by being uttered, such as telling

(tel/), and others, like asking (ask-ij and other query per-

formatives), require a further exchange of messages, i.e., a

“conversation”. Thus, weprovide satisfiability (completion)

condition, that indicate the state of affairs after the comple-

tion of the speech act (performative).

4 Aframework forthesemantics of KQML

The central idea is to formally define cognitive states for

agents, use them to describe the performative, the precon-
ditions, postconditions and satisfiability conditions, men-

tioned before, and associate those states with the use of the

performatives. We use expressions in First Order Predicate

Calctdus(FOPC), to do that. In these expressions we use

operators that have a reserved meaning (the operators will

be identified by predicates). The use of such operators, to

describe mental states of agents that use speech acts, can be

found in approaches as diverse as Campbell’s [51 and Singh’s

[27]. The~perators used inthisprese~tation -a~e: -

1.

2.

3.

4.

13el, as in bel(A,P) which has the meaning that P is

true for A. P is an expression in the native language

of A’s application. We will further refer to this op-

erator in Section 7. For now, it suffices to say that

P “exists” in the agent’s knowledge base (or virtual

knowledge base).

Know, like the following two operators, refers to the

cognitive state of the agentsg. Know(A, P) expresses a

state of knowledge awareness on behalf of A, about P.

Want, as in want(A,P), to mean that agent A desires

the event (or atate) described by P, to occur.

Intend, as in intend(A,P), to mean that A has every

intention of doing P.

s It is necessary for the programmer to guarantee that an applica-

tion does not use bizarre propositional contents for a certain perfor-

mative, due to their pragmatic nature Since KQML M opaque to the

content of the message, there is no way to guarantee that, for instance,

an agent does not promise that “the time is 12,30PM” However, the

conversation pohcles will ensure that if agent A poses a query to agent

B, B wdl respond only to A and A wdl receive responses to this query,

only from B

9 As such, all three could be termed as ep%stemzc operators

449

I Name I Illoczbtionar$71 Meaning 1
point 1

tell assertive A states to B that A believes the content to be true

deny assertive ‘~ A states to B that A d oes not beheve the content true
-;

ask-if dmectwe , A wants to know what Bb eheves regarding the truth status of the content

ask-all dmectlve ~-A wants to know all B’ s responses that would make the content true of B

-E;::::::e:::g::::::::::one
1 (the response will be a colle&ion of expressions)

: end of a stream of responses to an earher query

U
I . .

sorry assertwe
I

A states to B that B’ s message was processed. . by A, but no reply can be provided H

Table 1: Perfo,matives mentioned in this

Roughly, know, want and intend stand for the psychologi-

cal stat es of knowledge, desire and intention, respectively.

Only for the bel predicate, it is the case that P is an expres-

sion in the agent’s implementation language. For all other

three operators, P is an expression that combines other op-

erat ors, and stands for an event ; I a state of affairs. For

example, it is correct to say “know[A,bel(B,f oo(a,b)))” (if

B “speaks” Prolog) but not “know A, foo(a,b))”. One can

ask if (and how) those operators ar, implemented in an ap-

plication. The short answer is tha, only the bel operator

has to have a concrete meaning (tn+t depends on the appli-

cation language or knowledge representation language and

scheme), and the others prescrib~ a state of affairs for the

agent that is associated with the use of the language. The

use of a specific performative sug~wts an associated state

for the speaker, as in assuming when one asks X, that he

wants to know X.

The semantics are implement. through the conversa-

tion policies to be provided by the KQML developers, and

the handier functions, to be provided by the application pro-
10 The conversation policies indicate what Perfor-grammer .

matives can follow the utterance oi a certain performative,

so that agents can have meaningful conversations. The con-

versation policies are an integral p.irt of the semantics and

are consistent with the preconditl,.ns, postconditions and

completion conditions, to be introduced for the performa-

tives. For example, when an ask-~.~ is uttered, it can only

be followed (see Figure 1) by a teii or denyll which, in re-

turn, can only be uttered as a response to an “asking”. Fig-

ure 1 gives an example of the cormersation policy for the

small subset of KQML performat]~es introduced here. It

as part of an Augmented Transitic -; Network specification,

with the constraints and relating A,.%ions missing. Details

about the implementation and functimality of conversation

policies (along with details for the tructure and construc-

tion of KQML speaking agent) can be found in Section 6.

The handler functions are defined .{ order to process mes-

sages received by an application at d should be consistent

wit h the semantics described here. H a.ndler functions are not

10The software architecture of a KQiW speaking agent Is shOwn ‘n

Figure 2 and more detads about It are ~ ,en in Section 6
11 * ~oyry or an error may alsO Occur

presentation, for sender A and recipient B.

application dependent, but rather language dependently , in

the sense that all applications using the same language share

the same handler functions.

5 Semantics for KQML performatives

The general semantic description of a KQML performative

has the following six constituents:

1.

2.

3.

4.

5.

6.

A natural language description of the performative’s

intuitive meaning.

An expression in our logic that describes the illocu-

tionary act. For all practical purposes, this is a formal

representation of the natural language description.

Preconditions that indicate the necessary state for an

agent in order to send a performative and for the re-

ceiver to accept it and process it.

Postconditions that describe the states of agents after

the utterance of a performative (for the sender) and

after the receipt (but before a counter utterance) of a

message (by the receiver) 13.

Completion conditions for the sender that indicate the

final state of the sender, after possibly a conversation

has taken place and the intention suggested by the

performative that started the conversation, has been

fulfilled.

Any natural language comments that we might find

suitable to enhance the understanding of the- perfor-

mative.

If there are non-null preconditions for the receiver, this will

mean that the performative can only be some-kind of re-

sponse to the use of another performative that established

12For an =Pphcatlon ~~ltt~~ m Prolog, a handler function to handle

ask-%f messages, looks bke this

handle(ask-,f,Content) -

(call(Content) ->

(reply -tonessage-with(tell, Content)),

(reply-tonessage_w,th(deny,Content)))

where reply _tomessage-wltb interacts with the conversation module,

that Implements the conversation polic]es, to provide the appropri-

ate values for tbe other message parameters and finally deliver the

response
13 After the receiver ~ePlies, a new cycle of preconditions and POst-

condltlons gets started

450

those preconditions14 No preconditions are necessary for

the receiver of a performative that starts a conversation (see

Pre(B) for the query performativm, such as ask-if, ask-all,

stream-all).

In a conversation, the postconcitions for the sender of

a message should be a subset of t,~e preconditions for the

receiver of the message that may ~ollow (compare Post(A)

for ask-if and Pre(A) for teli).

When no conversation is necessary after the utterance of

a performative, completion (satisfiability) conditions are a

subset of the postconditions. Such perforrnatives are satis-

fied just by being successfully uttered and processed by the

intended recipients.

In the rest of this section we give the semantic descrip-

tions for the eight performatives iri Table 1. In these de-

scriptions A is the sender, B is the receiver and X is the

propositional content. All expressions mentioned as precon-

ditions, postconditions and completion conditions, are the

minimum necessary for our specification of KQML.

c ask-if(A,B,X)

1.

2.

3.

4.

5<

6.

A wants to know what B believes regarding the

truth status of the content.

want(A,know(A,Y))j

where Y may be one of The following:

bel(B,X), bel(B,NOT(X)), NOT(bel(B,X))

(this means that Pre(Aj could also be stated as:

want(A,know(A,bel(B,X))) OR

want(A,know(A,bel(B, NOT(X)))) OR

want(A,know(A,NOT(bel(B,X)))))

Pre(A): want(A,know(A Y))

(optionally, NOT(know!,\,Y)) should also hold)

Pre(B): NONE’5

Post(A): intend(A,know(A, Y))

Post(B): know(B,want(4 know(A,Y)))

Completion(A): know(A ,Y)

Not believing something is not necessarily the

same as believing its neg. Lion, although this may

be the case for certain <,y:tems.

● ask-all(A,B,X)

1. A wants to know all of B s responses that make X

true of B. X is an expression with variables and A

wants all the expressions that are true for B and

have values for these vari~bles16.

2. want(A,know(A,Y)),

where Y is bel(B, Y’) and Y’ is a finite collection

of Yl, Y2, . . . Each X is an instance of X with

values for the variables in X, identified by the

141.0 provide an ~XamPle, consider the fiituation that A asks B the

time and B responds f 2:0 OPM. From OU; point of view, two speech

acts take place (so two messages with the appropriate performatives

have to be exchanged), the asking and t~,e response to the asking. A

precondition for B to respond would be ~hat A asked him and for B

that he still wants to know the time. F,x A to pose the question,

there is a precondition that A wants to know the time (and possibly

that A does not know the time already).
15 For ~xpo~itory PUI.POSCS We have mad, the Simplifying assumption

that agents know what other agents kn. w, so they only ask them

questions that they can answer. We have to do that for the sake of

completeness of the subset we present he, r. In the full KQML version,

there are ways for agents to learn what c.. her agents can answer.
lsthe “ariable~ for which A wants valuer Ire specified by the ‘asPect

parameter in the KQML message

:-””
den

R:
POP

SR : pop

oEXPORTing rn.ssagestate .IMPOIWi”g message mm

Figure 1:

of KQML

●

●

3.

4.

5.

6.

A simple example of an ATN to parse sequences

messages.

: aspect parameter and each Y, appears once in

this collection (the collection might be empty).

Pre(A): want(A,know(A,Y))

(optionally, NOT(know(A,Y)) should also hold)

Pre(B): NONE

Post(A): intend(A,know(A, Y))

Post(B): know(B,want(A,know(A, Y)))

Completion(A): know(A,Y)

An ask-if would be appropriate to ask “is it past

5 o’clock?” and an ask-all would be more suit-

able to ask “what time it is?”. It is not necessary

that when X has free variables, an ask-ail should

be used. An ask-if with content foo(X, Y) makes

perfect sense (for PROLOG “speaking” agents),

if one wants to know if there exist X such that

foo(X,Y) is true. But if the same expression is

used wit h an ask-all, one expects something like

[foo(a,b),foo(a, c)]. The use of ask-all assumes

that the application’s language provides built-in

features for collections (such as a list in our PRO-

LOG example).

strearn-aH(A,B,X) Everything mentioned for ask-ari

holds for stream-all, too. A is interested in a series

(possibly infinite) of statements of facts, as a response.

The only difference is in the expected delivery format

of the response. Either because the sender can not

(or does not want to) process collections or due tore- .

ceiver’s inability to provide collections, the elements

of the would be collection are to be delivered one by

one (using tetlsince they are statements of facts for B).

This performative also allows for responses to be deliv-

ered one at a time, as they are computed, thus permit-

ting “pipelining” and efficient handling of very large,

or even infinite, collections. The eos performative is to

be used to mark the end of this multi-response (this

is for A’s benefit).

tell(A,B,X)

1. A states to be that A believes the content to be

true.

2. bel(A,X)]7

17Thi~ interprets tet[CM an assertive. If interpreted ss a directwe,

it should be want(A,know(B)bel(A, X))).

451

3.

4.

5.

6.

Pre(A): bel(A,X) , know A,want(B,know(B, Y)))

A does not lie and B is interested in knowing.

Y is any of the Y’s mentioned in ask-if, ask-cdl,

stream-all.

Pre(B): intend(B,know(I j, Y))

Post(A) :know(A,know(B, bel(A,X))) (optional)

Post(B): know(B,bel(A,Y))

Completion(A): know(R,hel(A,X))

Thecompletion conditiw, holds, unless asorryor

error suggests B’s inability to acknowledge prop-

erly the tell.

● deny(A,B,X) Everything mentioned about tell holds

for deny, if bel (A ,X) is replated with NOT(bel (A, X)).

For the next two performatives, we will need three extra

predicates. We consider three stagti- in the handling of a re-

ceived message. First, it is physically received (something we

implicitly assume throughout the analysisls), second, pro-

cessed, in the sense that it is a valid KQML message and

will be delivered to the application for processing, and third,

delivered to the application (t echrucally, a handler function

takes over) and the application will Iiply to that accordingly.

We will use the predicates receive, process and respond,

for those 3 stages, respectively. The predicates refer to the

stages when completed and referenc~ of each of one of those,

assumes that the prior stages hav: occurred. Reference to

the ‘message being handled is made through Id (specified in

the : reply-with parameter), and 11 refers to the message

as a whole.

● error(A,B,Id)

1.

2.

3.

4,

5.

6.

A states to B that is uot going to process the

KQML message identifieci by Id.

NOT(process(A,Id))

Pre(A): receive(A,Id)

Pre(B): NONE

Post(A): know(A,know(ti, NOT(process(A,Id))))

Post(B): know(B,NOT(~locess(A, Id)))

Completion(A): know(E, 4 OT(process(A,Id)))

An agent might respond with an error if either

he ca~not su~cessfu~y p~~se it as a KQML mes-

sage, or the message is not an acceptable one, in

the context of a “conversation” between the two

agents.

● sorry (A, B, Id)

1.

2.

3.

4.

5.

6.

A states to B that althou~k he processed the mes-

sage, he has no response .> provide.

NOT(respond(A,Id))

Pre(A): process(A,Id)

Pre(B): NONE

Post(A): know(A,know~E!, NOT(respond(A,Id))))

Post(B): know(A,NOT(,sspond(A, Id)))

Completion(A): know(B. !{ OT(respond(A,Id)))

The best analogy for u1, ierstanding the perfor-

mative, is what happens when you are asked the

time and you do not kn{. ~ what time it is.

18 Addressing the issue of agent notlt?k J ~~‘ion for messages delivered

and received, is among those considered r, KQML’s implementation.

AGENT

Appli..ti.n Route,
;,,,.,,,,,,,,,,...,, .,,.,.,.,.,,..,,,,..

i Say$&rfi:~tio.d c.%voTuTp :

+--- — + *

+ — ~

II / (.,.,,,,,, ,,..,,,,,,,..,. ,,,,,...,,-,,,: I I
I I I I

NETWORK

-

Figure 2: Logical architecture of a KQML speaking agent.

● eos(A, B, Id) This performative is somewhat unusual

with respect to the other performatives mentioned be-

cause it is only purpose is to notify B that there are

no more responses to a request for a multi-response

query.

An example

Here, is an example of a conversation between agents with

symbolic names Gen-DB and Genl. Genl wants to know

who are John’s parents, and sends a stream-all to Gen-DB,

(stream-all : sender

: receiver

: language

: ontology

: aspect

: reply-with

: content

and, in time, Gen-DB responds

(tell : sender

: receiver

: language

: ontology

: in-reply-to

: content

(tell : sender

: receiver

: language

: ontology

: in-reply-to

: content

(eos : sender

: receiver

: in-reply-to

Genl

Gen-DB

Prolog

Genealogy

“x”
ql

‘ ‘parent (John, X) “)

accordingly:

Gen-DB

Gen-1

Prolog

Genealogy

ql

‘ ‘parent (John, Alice) ‘ ‘)

Gen-DB

Gen-1

Prolog

Genealogy

ql

‘ ‘parent (John, Bob) ‘ ‘)

Gen-DB

Gen-1

ql)

6 KQMLsemantics andarchitecture of KQMLspeak-
ing agents

Theological architecture ofa KQML speaking agent is shown

in Figure 2. It is based in the KQML implementation devel-

oped at UIVISYS [14] . We identify the following four parts:

452

Application. In the case that t:iis is a non-distributed

application, the application programmer has to identify the
points in the program where external information is needed.

At those points, queries (in the general sense) have to be de-

livered to other applications (agen~.~) that can answer them.

The problem of what to send to whom can be attacked

in several ways: 1) if the query-answering capabilities of

each agent are well known in advance (like in [17] and in

[10], where early versions of KQIfL were used for inter-

agent communication) the application programer encodes

the information in thedistributecl ~pplica,tion so that when

a query has to be answered by an agent in the outside world,

the application knows in advance whom to query, 2) if the

application operates in an environr.lent mostly consisting of

open systems [19, 18] the application can ask a faciMator19

to appropriately deliver its query, c.r, 3) the application can

ask the facilitator (or other agents) to take care of appropri-

ately delivering the query or “discuss” the matter with the

facilitator or other agents, in order to deliver the query on

its own, or collect information from agents and facilitators,

so that it can make its own decision:, regarding the delivery

of its queries (such an approach i< also best suited for an

open systems’ community). KQM 5 provides perform atives

to support the implementation of all the above mentioned

approaches. Only in this last case, j,as the application pro-
grammer to provide code in order to use the extra informa-

tion regarding other agents’ capabilities.

Handler functions and Interface Module. The appli-

cation programmer has to provid~. functions (called handler

functions) that will process the various perfor-mrrtives. For

example, for the ask-if performative the handler function

(written in the application’s native language) should access

the application, check the truth st a+ us of the expression for

the application and accordingly convey this information to

the agent that made the query. Vormally either the tell

or the deny performative should be used in such a case.

Through them, the application can ~tate either that the ex-

pression is trme, or that it is not known to be true or that

the negation of the expression is trti<:. In order for the appli-

cation programmer to provide the ‘] andler functions he has

to know the exact meaning of tht various KQML perfor-

matives (here on called semantics ~;f the perjornzatives) and

the policies that govern their use (conversation policies). We

further refer to the conversation po’icies in Section 6.1.

Conversation Module. The conversation module lies be-

tween the router and the handler functions and interface

module. Every message, either recr;ved by the agent or sent

to some other agent, has to go t!,rough the conversation

module. This module implements the conversation policies

and checks all messages in order to lecide if they are allow-

able cent inuations of the agent’s cu JI.ent conversations with

other agents. Our approach regar :ng the implementation

of this module and its role and frir,. tionalit y in the overall

architecture of an agent, is the subject of Section 6.1. We

consider this module to be a partial implementation of the

semantics.

Router. The router handles all KQML messages going to

and from its associated application Each KQML speaking

software agent has its own router process but all routers are

lgFa~ilktat~r~ are specialized agents tr, at are designated with the

task of facilitating the communication o! agents by primarily holding

information regarding the query answer; o,g capabilities of the agents

in their network domain.

,..4.s .

,..!M., b

, ..r4.r e
,
, s.md., .
! . ..d. r .
,..ma. r e
t b

4 .m’i.r .

,......-
,.....”.

,r... r..r
, .-.,..,
,,...,,.,
,X...,..,
tr...,z.z
, r... i”r

1,...1,.,

em
0?,

07,

Wr,

0?s
m’

m,

m,
a,,

Figure 3: Sequence of imported and exported messages for

agent “a”.

identical. Routers are content independent message routers

that provide the agent with a single point of contact for the

rest of the network. It provides both client and server func-

tions for the application and manages multiple simultaneous

connection with other agents.

6.1 Implementation of the conversation policies for
KQ M L perform atives

The purpose of the conversation module is to assure that

the agent is involved in meaningful conversations with other

agents and keep track of them, despite the possibly asyn-
chronous behavior of the agent. The conversation module is

an implementation oft he conversation policies that suggest:

1) which performatives start a conversation, and 2) which

performative is to be used at any given point of a conver-

sation. Figure 3 gives an example of a series of messages

sent and received by an agent name a during some time pe-

riod. Between times T] and Tg messages from three different

conversations are handled. The conversation module should

handle something like that appropriately, keeping track of

all three ongoing threads. Here is the scheme we suggest for

doing that:

1.

2.

3.

When a message (either to be imported to the applica-

tion or to be exported to some other agent) reaches the

conversation module, the module attempts to match it

against one of the ongoing conversations.

If the message is not an acceptable continuation of

some current thread, an attempt is made to start a

new thread with itzo.

If no new thread can start with the current messaze, a

message with the error performative will be sent t: the

sender (if the message is to be imported) or a signal

is delivered to the application (if the message is to be

exported).

We obviously have to define the acceptable threads of mes-

sage exchanges and provide the module with the means to

test them. We view the problem as one of parsing where the

ZONot ~11petiormativcs can be etarting points for new threads. In

the example of Figure 3 we consider the performatives ask-tf, ask-all,

stream-ail to be acceptable starting points. We believe that eventu-

ally only advertzse performatives (that are used to make known to

other agents the capabilities of an agent) should be starting points.

453

grammar defines the conversation policies and messages are

the terminals (so any series of messages in the same thread,

is a “sentence” to be parsed). It difi, rs from the usual pars-

ing paradigm, though, in that the ‘ sentence” might well be

unfinished, meaning that the threat: might not be complete

(see Figure 3 as of time Tq or T6). Figure 1 shows part of

an Augmented Transition Network .4 TN) specification that

can be used to perform this task for the subset of KQML

performatives of Table 1, The AT N iefines the conversation

policies for this subset. For illustrative reasons the states

where a message is to be importml are shaded. Not pre-

sented here are the tests and actimw of the ATN that han-

dle the necessary constraints amony the various fields of the

messages in order to define a threadz] (conversation). The

terminals are not known in advanw. As mentioned before,

the terminals are KQML messages with values for all their

fields. Every time that a new mess~ge is to be handled by

the module, the message becomes s potential new terminal.

Referring to the described, top-levei procedure, this new ter-

minal is appended to the first “sentence” (thread) and an

attempt is made to successfully p:. :se the new sentence. If

this fails, the second “sentence” is . ried and so one.

An implementation of the convr rsation policy for a con-

siderably extended set of KQML pa ,ormatives is in progress.

We believe that by providing a con~:rsation module that can

cooperate with the router the agel,t will be able to better

handle asynchronous behavior, heln the agent keep track of

its business and provide the mean< to the application pro-

grammer to build more complex sci -:mes of inter-agent com-

munication (protocols like the Cent-act Net, see [28, 11]).

7 Software agents and KQM L

We argue that our semantic approa(.] does not constrain the

kinds of software agents that can use KQML. Although the

propositional attitudes represented by the predicates know,

want, intend make reference to cognitive ‘states for the

agents, the cognitive states are necissary for understanding

the performatives but not for usir.~ them. If the applica-

tion designer wants to build a bdef model to implement

those mental states on top of the application, so that the

application can better support a ,~oblem solving strategy

or protocol, so be it. KQML does -~crt require the existence

of such a protocol or a cognitive model. Operators like want

and know are materialized by vil ~ue of use of a perform a-

tive and are implied by the use of tb.e language, rather, than

the other way round, i.e., cognitive states implying a certain

use of the language.

The really interesting question i:- how to interpret the bel

operator in a given computer program. It depends on what

the programmer ascribes to the prc gram. For a PROLOG

application (or a logic based syster: in general), bel might
stand for whatever can be proved t~~,e in the system. Similar

arguments can be made for other implications that adhere

to the physical symbol–system hypothesis (frames, scripts,

rule–based systems, semantic nets; How about a neural

net? One can still suggest an interpretation that associates

input and output. The same argu nent can be made for

devices (such as thermostats), or dibtabases. A functional

approach to provide mat erializati(j ~ for bel and common
sense about how it should be intel p, ~ted for a given system,

will do. If not, the : ontology slot can solve the problem.

By choosing an interpretation frurr a library of such, the

21The fields for the KQML subset ~, esented here, are sender,
receiver , reply-with and in-reply-to

apphcation can make known to its conversational partner
what bel means for it.

It is our view that a belief model or a cognitive model is

not necessary for a software agent to talk KQML. It can be

useful to have one, either elaborate or primitive, but nothing

more that a functional interpretation of the bel operator is

necessary, for the semantics to make sense. All that is nec-

essary is a program and handler functions. In between these

two, many things can be included. A belief space, a cognitive

model, a goal space, a problem solving strategy, or various

combinations of the above. But none of that is mandatory

for KQML to be used. In KQML, like in human communica-

tion, the personal agendas and beliefs of the agents suggest

the choice of words, but the words themselves have an ac-

cepted meaning.

8 Conclusion

We have presented an approach for the definition of the se-

mantics of KQML. Although it is eventually the programmer

that materializes the semantics through the handler func-

tions that he writes, we have provided a framework that the

programmer has to comply with. This framework is more

detailed and formal than the existent so far ([2]), and will

be supported by a software module (the conversahon rnod-

zde) that will guide and restrict the possible uses of the lan-

guages primitives (performatives). The framework is based

on speech act theory and primarily Searle’s ideas.

We envision KQML as a general purpose communication

language for software agents of all kinds. We believe that

we offer an approach towards the semantics of the language

that makes no commitments to application languages, agent

models, programming paradigms, problem solving st rat egies

and protocols. This approach stems from our belief that all

those issues are peripheral to the communication language

itself, which should be rich enough to accommodate a variety

of propositional attitudes and offer enough leeway to imple-

ment all kinds of models, strategies and protocols, beneath

the language. Ideally, KQML will rise to its full potential

with the use of the results of the other research efforts of the

KSE, because those efforts will provide the means for inter-

agent understanding of the propositional context itself.

In the future, we intend to further apply our semantic

approach to the full set of the up to date KQML performa-

tlves and refine the structure of a KQML speaking agent.

All material related to KQML and the KSE can be accessed

through the World Wide Webzz.

References

[1]

[2]

[3]

[4]

External Interfaces Working Group ARPA Knowledge

Sharing Initiative. KQML Overview. Working paper,

1992.

External Interfaces Working Group ARPA Knowledge

Sharing Initiative. Specification of the KQML agent-

communication language. Working paper, June 1993.

J.L. Austin. How to do things with words. Harvard

University Press, Cambridge, MA, 1962.

Alan H. Bond and Les Gasser. An analysis of problems

and research in DAI. In Readings in Distributed Arti-

ficial Intelhgence, pages 3-35. Morgan Kaufman Pub-

lishers, San Mateo, California, 1988.

22URL ,S ht~p //WWW cs.umbc edu/kqmV

454

[5]

[6]

[7]

[8]

[9]’

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

John A. Campbell and Ma~k P. D’Inverno. Knowl-

edge interchange protocols. JI, Y . Demazeau and J.-P.

Muller, editors, Deceratraiiz~d A .1.: Proc. of the First

European Workshop on Modclling, pages 63-80. Else-

vier Science Publishers B.V. ,’ [North Holland, Amster-

dam, 1990.

Philip R. Cohen and Hector j. Levesque. Intention

= Choice + Commitment. Iv Proceedings of the Na-

tional Conference on Artificial Intelligence, pages 410–

415, July 1987.

Philip R. Cohen and Hector J. Levesque. Intention

is choice with commitment. Artificial Intelligence,

42:213-261, 1990.

P.R. Cohen and H.J. Levesque Persistence, intention,

and commitment. In P. R. Cob{- n, J. Morgan, and M. E.

Pollack, editors, Intentions in Cornrnunication, pages

33–69. MIT Press, Cambridge MA, 1990.

P.R. Cohen and C. R. Perrault. Elements of a plan-

based theory of speech acts (1979). In Alan H. Bond

and Les Gasser, editors, Readings in Distributed Ar-

tificial Intelligence, pages 169-186. Morgan Kaufman

Publishers, San Mateo, CA, 1%8.

M. Cutkosky, E. Engelmore, R. Fikes, T. Gruber,

M. Genesereth, and W. Mark PACT: An experiment

in integrating concurrent engl~ eering systems. 1992.

Randall Davis and Reid G. Smith. Negotiation as a

met aphor for distributed problrm solving. Artificial In-

telligence, 20:63–109, 1983. (AI~o published in Readings

in Distributed Artificial Intelhqence, Alan H. Bond and

Les Gasser, editors, pages 332 ;56, Morgan Kaufmann,

1988).

E.H. Durfee, V.R. Lesser, and D.D. Corkill. Coopera-

tive distributed problem solvil,g. In A. Barr, P.R. Co-

hen, and E.A. Feigenbaum, editors, The Handbook of

Artificial Intelligence, VOJ. IV, vages 83–147. Addison–

Wesley Pub. Co., Reading, MA, 1989.

Oren Etzioni and Daniel Welu. A softbot-based inter-

face to the internet. CA CM, 3-i 7):72-76, 1994.

Tim Finin, Don McKay, Ri[..1 Fritzson, and Robin

McEntire. KQML: an inform; ion and knowledge ex-

change protocol. In Kazuhiro :’uchi and Toshio Yokoi,

editors, Knowledge Building and Knowledge Sharing.

Ohmsha and 10S Press, 1994.

L. Gasser. An overview of DA i In Nicholas M. Avouris

and Les Gasser, editors, Dis!t ibrded Artijicia! Intel[i-

gence: Theory and Praxis, p-.ges 9–3o. Kluwer Aca-

demic Publishers, Dordrecht, ‘ he Netherlands, 1992.

Michael R. Genesereth and S; .<ven P. Ketchpel. Soft-

ware agents. CA CM, 37(7):48 r,3, 1994.

Mike Genesereth. Designworid. In Proceedings of the

IEEE Conference on Robotic.., and Automation, pages

2,785–2,788, IEEE CS Press.

Carl Hewitt, Offices are open s: stems. Communications

of the ACM, 4(3):271–287, Ju[:, 1986. (Also published

in Readings in Distributed Art ,ficial Intelligence, Alan

H. Bond and Les Gasser, edit,,:s, pages 321-330, Mor-

gan Kaufmann, 1988).

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Carl Hewitt and Jeff Inman. DAI betwixt and be-

tween: From “intelligent agents” to open systems sci-

ence. IEEE Transactions on Systems, Man and Cyber-

netics, 21 (6), December 1991. (Special Issue on Dis-

tributed AI).

J. Hintikka. Knowledge and Belief. Cornell University

Press, Ithaca, New York, 1962.

Kurt Konolige. A Deduction Model of Belief. Pitman,

London, 1986.

R. Neches, R, Fikes, T. Finin, T. Gruber, R, Patil,

T. Senator, and W. Swartout. Enabling technology for

knowledge sharing. A.f Magazine, 12(3):36 -56, Fall

1991.

R. Patil, R. Fikes, P. Patel-Schneider, D. McKay,

T. Finin, T. Gruber, and R. Neches. The DARPA

Knowledge Sharing Effort: Progress report. In

B. Nebel, C. Rtch, and W. Swartout, editors, Principles

of Knowledge Representation and Reasoning: Proc. of

the Third International Conference (I{R ‘92), San Ma-

teo, CA, November 1992. Morgan Kaufmann.

J. Searle and D. Vanderveken. Foundations of illocu-

tionary logic. Cambridge University Press, Cambridge,

UK, 1985.

John R. Searle. Speech Acts. Cambridge University

Press, Cambridge, UK, 1969.

M.P. Singh. Towards a formal theory of communication

for multiagent systems. In Proceedings of the IJCAI’91,

[27]

[28]

1991.

M.P. Singh. A semantics for speech acts. (to appear

in Annals of Mathematics and Artificial Intelligence),

1992.

Reid G. Smith. The contract net protocol: High

level communication and control in a distributed prob-

lem solver. IEEE Transactions on Computers, C-

29(12):1 104–1113, December 1980. (Also published in

Readings in Distributed Artificial Intelligence, Alan H.

Bond and Les Gasser, editors, pages 357-366, Morgan

Kaufmann, 1988).

455

