
18
Inheritance in Logic
Programming Knowledge
Bases
T. Finin

Unisys Paoli Research Center;
P.O. BOX 517, Paoli, PA 19301, USA

and J. McGuire

LOckheed A.I. center; 2710 Sand
Hill Road, Menlo Park, CA 94025,

USA

Abstract

This paper presents an extended model for a logic programming lan­
guage's knowledge base. Instead of being restricted to one global
knowledge base, as is the case with Prolog, we allow segmentation into
units which are linked together into a lattice. Each unit defines a view
on the knowledge base which includes those clauses which have been
asserted into that unit as well as clauses inherited from its ancestors
higher in the lattice structure. This model supports arbitrary retrac­
tion. Retracting a clause in a knowledge base unit effectively blocks
its inheritance for that unit and all of its descendants. Motivations for
using this model are given. We also discuss the design-iterations of a
Prolog-based implementation (Pha) of this model.

1. Introduction

Most logic programming languages have followed Prolog in having a single, global
knowledge base or database in which both the program and data reside. The
knowledge base is the only mutable data structure and also the only one which
persists from one query to another. This has provided Prolog with a number of
benefits. Conceptually, this is a very simple scheme which new users find easy
to learn, use and reason about. Pragmatically, it eases the prototyping of new
programs, since one does not need to worry about issues of which programs need
to access what other programs and data. Theoretically, it presents a simple model
of the database as a. set of axioms on which the system rests. After all, a fact is
either true (in which case it should be in the database) or it is not (in which case
it should not) - there is no middle ground.

Contrast this with the more typical ways of storing information in modern
programming systems. Most higher-level programming languages provide various
mechanisms to store and represent data in ways that control access to it. This

Inheritance Hierarchies in Knowledge Representation and Programming Languages
Edited by M. Lenzerini, D. Nardi and M. Simi. © 1991 John Wiley & Sons Ltd

292 T. Finin and J. McGuire

shows up in programming languages in a variety of ways, including the use of local
variables, modules, packages, objects, environments, etc.

This paper describes a design for a hierarchical data model for a logic pro­
gramming language. In particular, we have implemented this model for Prolog in
the form of a meta-interpreter (Phd'). In our model, the database is segmented
into data base units each of which is a local collection of Prolog clauses. These
database units are partially ordered by a parent relation along which clauses can
be "inherited". Thus, each database unit defines a Prolog database view. The
clauses in such a view consist of the union of the clauses in the local database unit
and the inheritable clauses from the unit's parent units.

One important feature of our model is that it supports a notion of relative
retraction. That is, one can retract a clause with respect to a particular database
view. This can be done for a clause which is local to the view (i.e. is recorded in
the unit which determines the view) as well as for a clause inherited from some
ancestor. In either case, the retraction can only affect the database view in which
the retraction was done and (potentially) its descendants.

A more precise definition for a database view as seen from database unit U is
that it contains clauses equal to the set of local assertions in U unioned with all
clauses in the views of U's immediate parents minus all of U's local retractions.
There are several things to note: (i) retracting a clause from a database unit
never affects any of the unit's ancestors or the database views they define; (ii) it
is not possible for a clause to appear more than once in a database view; and (iii)
thinking of a database as a set of clauses implies that they are unordered. When
solving a goal with respect to a database unit (DBU), only the clauses in the view
of that DBU will be used to prove the goal. The aim of this paper is to present
our model and some of the implementation issues that we have addressed.

An Example

As an example, consider a circuit simulation scenario involving discrete time delays
[17]. Figure 1 shows a typical device to be modeled, a full adder, and a portion of
the Prolog code which models its behavior. A full adder takes three inputs, (in1,
in2, and carry in) and produces two outputs (sum and carry out). The rule in
the figure states that the value Sum of full-adder FA's sum port can be inferred
from the values of the carry-in, inl, and in2 ports after a time delay of 2. Other
devices in this domain, such as multipliers, can be modeled in a similar fashion.

Figure 2 shows an organization of a simulator which uses the hierarchical
database facility in three ways: (i) as a module system; (ii) to support temporal
reasoning about the state of a circuit; and (iii) to reason about hypothetical cases.
The rules defining the behavior of each class of device (e.g., full-adder, multiplier,
etc.) are placed in a separate DBU. All port value information, which is true at
the onset of the simulation is stored in DBU timeO. Future port value information
will be stored in descendant DBU 's of timeO. Conceptually, each DBU descended
from timeO represents a later discrete point in time. Old information inherits

uding the use of local

odel for a logic pro­
s model for Prolog in
ttabase is segmented
rolog clauses. These
ng which clauses can
database view. The

. e local database unit

a notion of relative
t particular database
w (i.e. is recorded in
inherited from some
tabase view in which

n database unit U is
1 U unioned with all
r.J's local retractions.
:om a database unit
N'S they define; (ii) it
;abase view; and (iii)
.re unordered. When
.e clauses in the view
s paper is to present
tve addressed.

� discrete time delays
'der, and a portion of
�s three inputs, (inl,
ry out). The rule in
port can be inferred
ne delay of 2. Other
in a similar fashion.
1ses the hierarchical
to support temporal
.t hypothetical cases.
ull-adder, multiplier,
ion, which is true at
>rt value information
each DBU descended
information inherits

ini

in2

ci

Inheritance in Logic Programming Knowledge Bases

full
adder

fa_truth_table(i,1,1,1,1).
type(fa1,fa).
fa(FA,sum,Sum,Delay):-

sum val(FA,cin,V1),

cout val(FA,in1,V2),
val(FA,in2,V3),
fa_truth_table(V1,V2,V3,Sum,Cout),
Delay= 2 .

293

Figure 1: This figure shows a typical device to be modeled, a full adder, and

a portion of the Prolog code which defines its behavior.

down, with new information being stored in spawned DBU's.

Consider the time context represented by DBU t3. New port values have been
generated for full-adder fal's cin and in2 input ports. To find out what can be
derived from these new port values, the query fa(fal,Port, Value,Delay) is posed
with respect to DBU t3. The existing value for the inl port has persisted from the
past, and is inherited down. Using clauses in DBUs fulladder, ti, and t3, the new
value of 1 can be inferred for fal 's sum port. This new value needs to be stored in
a descendant DBU (t4) to represent the delay, but a value already exists for fal 's
sum port. Therefore, we need to relatively retract the old sum value from DBU
t4's database view as well as assert the new value.1 The relative retraction will
preyent the inheritance of val(fal ,sum, 0) into DBU t4 and its descendants.

This representation also supports the ability to ask 'what if' questions. For
example, 'What if the value of fal 's cin port was a O at the time represented by
DBU t3?'. To represent this, we could spawn a new DBU (tS), relatively retract
val(fal,cin,1}, assert val(fal,cin,O}, and then store all inferred results beneath or
in DBU tS.

As this example suggests, our model is similar to an assumption-based truth
maintenance system or ATMS [11). The analogy can be seen by considering treat­
ing each database unit as an assumption and each database view as an environment
(i.e., as a set of assumptions). Under this analogy, the addition or removal of a
clause from a database unit corresponds to the addition or a constraint or the
modification of one or more existing constraints (see Section for details). Our
model is of interest in that is a more specialized application of the general ATMS
ideas. This specialization can be more efficiently implemented to support the
needs of a maintaining a hierarchical database in a logic programming language.

The next section of this paper will present some motivations for developing a
hierarchical model for the database of a logic programming language. The third

1Such bookkeeping can be done automatically with forward chaining rules using a system
such as Pfc [15].

294

multiplier

T. Finin and J. McGuire

dbroot

I \

\

fulladder

I

timeO

ti +val(fa1,in1,1).

tj +val(fa1,sum,O).

I
t3 +val(fa1,in2,1). +val(fa1,cin,1).

I \

-val(fa1,cin,1) t5 t4
+val(fa1,cin,O)

-val(fa1,sum,O).

+val(fa1,sum,1).

Figure 2: The hierarchical database can be used as a module system, to

support temporal reasoning and to support hypothetical reasoning

section will define a slightly simplified version of the model through several Prolog
predicates and present two different implementation techniques. The fourth sec­
tion will discuss the relationship between our work and several related projects.
We conclude with a final section which summarizes our research.

2. Motivation

There are a number of potential advantages to having a hierarchical database in
a logic programming language as well as, of course, some disadvantages. An ini­
tial observation we can make is that the issues can be divided into those at the
'programming language' level and those at the 'representational' level. By 'pro­
gramming language' level, we mean issues that involve the features and limitations
of a language like Prolog that affect its utility as a general higher-level program­
ming language (e.g., the addition of modules to Prolog). There are also motivating
issues which have more to do with making a logic programming language better
a better tool for knowledge representation (e.g., providing better support for hy­
pothetical reasoning). This section will briefly list some of the motivating factors
that have caused us to begin this research.

Some programming language related motivations for a hierarchical database
are:

.l(fa1,cin,1).

module system, to

I reasoning

irough several Prolog
tues. The fourth sec­
eral related projects.
arch.

rarchical database in
sadvantages. An ini­
ied into those at the
ional' level. By 'pro­
Ltures and limitations
ti.igher-level program­
re are also motivating
ning language better
,etter support for hy­
he motivating factors

hierarchical database

Inheritance in Logic Programming Knowledge Bases 295

• Modules. Our model for a hierarchical database is one way to provide a logic
programming language with a module facility. It differs from most current
module/package systems in that it is non-flat, predicates can be split across
database units and it supports the notion of (relative) retraction. These
differences offer additional flexibility at the expense of efficiency. On the
other hand, our model does not provide a way to define some information
to be private within a module and thus unaccessible by external processes.

• Theories as first-class objects. Treating theories (e.g. collections of clauses)
as first class objects is a powerful way to extend the richness and expressive
power of a logic programming language [9].

• Access efficiency. Dividing the database into units arranged in a partial
order can reduce the time searching the database for clauses. In our imple­
mentation this reduction comes through not having to search any database
units not in the current view. Whether or not there is a realization of this
potential depends on the particular implementation and the applications to
which it is put to use.

• Debugging ease. A hierarchical database can ease the process of debugging
programs which alter the database. The general technique is to create a new
database view which includes the current one and run the (buggy) program
with respect to it, isolating any database updates to the new view.

The development of a hierarchical database model for a logic programming
language has some advantages in representing knowledge for specific applications.
Some examples are:

• Generic vs. specific information. Many AI applications such as diagnostic
expert systems need to represent a knowledge base of general information
(e.g. diagnostic rules) and are then applied to one or more specific cases.

Processing each case might involve making additional assertions specific to
just that case. The general knowledge needs to be included in the model for
each individual case. The hierarchical database provides a language-level
mechanism to keep such different information separate and have it share
common knowledge.

• Hypothetical reasoning. A hierarchical database is a useful tool in applica­
tions involving hypothetical reasoning and assumption-based reasoning. Cre­
ating a new theory of a situation which contains a set of assumptions simply
involves creating a new descendant database view of the current one and as­
serting the assumptions in the new view. The new view can then be used
to attempt to prove any relevant queries.

• Belief modeling. Modeling the beliefs of other agents often involves a hierar­
chy of clauses representing the beliefs. For example, the GUMS system [14,

296 T. Finin and J. McGuire

13] modeled users via a hierarchy of stereotypes, each of which was repre­
sented as a collection of clauses. A similar use of a hierarchy of user models
is employed by Kass [21, 20] to capture beliefs of users' along different di­
mensions.

3. The Model and its Implementations

This section presents our model for a hierarchical database for a logic program­
ming language in more detail by way of presenting and discussing three different
implementations. Each of these preserves what we take to be the essential charac­
teristics of the model (i.e. a hierarchical database with multiple inheritance and
relative retractions) but differ in a number ways (e.g., whether or not the order
of clauses with a database view is defined).

The section will first present an elegant (although inefficient) implementation
of a depth-first inheritance using the notion of relative retractions. That will be
followed by a presentation of the first-cut implementation of the Phd language.
Next, we describe another scheme based on the labeling technique first used in the
Conniver language [25]. Finally we discuss how the two schemes can be integrated.

3.1 A simple implementation

Constructing the database view from database unit u1 can be conceptualized as
a set operation. It is a two step recursive process. First we must create the
set of all local assertions in DBU u1 unioned with all clauses in the views of u1 's
immediate parents. From this set we must remove all clauses which match u1 's
local retractions. The resulting set is the view of u1 . The match operation is
like unification except that a variable can only unify with another variable and
the shared variable relationships in the terms must be the same. Retractions are
stored as negative assertions. As an example, consider the hierarchy in Figure 3
in which the depth-first inheritance from DBU d causes the DBU s to be searched
in the following order: (d,b,a,c). The database view associated with d contains
the clauses p{1J, p{2J and p(3J.

To present this model, we show the basic predicates for adding a clause to a
database (add/2), retracting a clause from a database (rem/2) and querying a
database for a clause (get/2). The hierarchical database is represented by two
predicates: db/3 and parent/2. The db/3 predicate records the clauses which
have been locally asserted and retracted in database units. In particular we have:

e db(DBV ,+,CJ- true if the clause Chas been locally asserted in the database
unit DBU

e db{DBV ,-, CJ- true if the clause Chas been locally retracted in the database
unit DBU

of which was repre­
a.rchy of user models
,' along different di-

tons

for a logic program­
Lssing three different
the essential charac­
.i ple inheritance and
her or not the order

ent) implementation
ctions. That will be
,f the Phd language .
. ique first used in the
.es can be integrated.

)e conceptualized as
we must create the
in the views of u1 's

es which match u1 's
, match operation is
mother variable and
,me. Retractions are
1ierarchy in Figure 3
mu s to be searched
1ted with d contains

adding a clause to a
1/2) and querying a

represented by two
ls the clauses which
1 particular we have:

�rted in the database

1cted in the database

Inheritance in Logic Programming Knowledge Bases

+p(4) b

db(a,+,p(3))
db(b,+,p(4))
db(c,-,p(3))
db(c,+,p(2))
db(d,-,p(4))
db(d,+,p(1))

I

\

a +p(3)

\

I

d

C +p(2) -p(3)

-p(4) +p(1)

parent(a,b)

parent(a,c)
parent(b,d)
parent(c,d)

297

Figure 3: The hierarchical database can be represented with the parent/2
relation, which encodes the lattice of database units, and the db/3 relation,
which records the clauses and their status with respect to local database
units.

The parent/2 predicate records the lattice organization of the database units with
parent{ A,B} indicating that database unit B inherits from database unit A.

The add/2 predicate takes two arguments, a database unit and clause to be
asserted. It asserts the clause into the database view determined by the given
unit (and its descendants). Unlike standard Prolog, only one copy of a clause is
recorded in a given unit.

add(Db,C) :-

'l. already asserted locally.

loca1Db(Db,+,C,C2).

add(Db,C) :-

'l. already retracted locally.

loca1Db(Db,-,C,C2),

retract(db(Db,-,C2)),

assert(db(Db,+,C)).

add(Db,C) :-

'l. no local record.
\+(localDb(Db,_,C,_)),

assert(db(Db,+,C)).

The localDb/4 predicate is used to find clauses which match the current one and
which have been explicitly asserted or retracted in this database unit. Note the
use of the match/2 predicate which is like unification except that variables can
only unify with other variables and no binding is done.

298 T. Finin and J. McGuire

localDb(Db,Mode,Cin,Cout)

db(Db,Mode,Cout),

match(Cin,Cout).

match(X,Y) :­

copy_term(X,X2),

copy_term(Y,Y2),

numbervars(X2,1,N),

numbervars(Y2,1,N),

X2==Y2.

The rem/2 predicate is used to retract clauses from a database associated with

a database unit. As in standard Prolog, it retracts the first clause in the database

which unifies with its argument. However, the retraction is only in the database

determined by the given database unit and its descendants.

rem(Db,C) :-
% recorded as a local clause.
loca1Db(Db,+,C,C2),

retract(db(Db,+,C2)),

assert(db(Db,-,C)).

rem(Db,C) :-
% unifies with an inherited clause.
get(Db,C),

assert(db(Db,-,C)).

Finally, the get/2 predicate takes a database unit and clause and succeeds

if there is a matching clause in the database determined by the database unit.

This is determined by seeing if the clause sought is a member of the set formed

from the union of all of the inherited and locally asserted clauses minus the lo­

cally retracted clauses. Note that the equality test used in the set Union/3 and

setMinus/3 predicates must be the match/2 predicate of above. The explicit set

operations ensure that a clause will only appear in a view once, even though it

might be inherited from several ancestors.

get(Db,C) :- clauses(Db,Cs), rnernber(C,Cs).

clauses(DB,Clauses) :-
% Clauses is a list of clauses in view DB
parentClauses(DB,Pc),
localClauses(DB,Lc),
localRetractions(DB,Lr),
setUnion(Lc,Pc,C),
setMinus(C,Lr,Clauses).

Lbase associated with
lause in the database
only in the database

clause and succeeds
iy the database unit.
ber of the set formed
clauses minus the lo­
t the setUnion/3 and
►ove. The explicit set
once, even though it

--

Inheritance in Logic Programming Knowledge Bases

parentClauses(Db,Cs) :-

Y. Cs is a list of clauses inherited by Db.

bagof(C,P�(parent(P,Db),clauses(P,C)),ListOfCs),

mapSetUnion(ListOfCs,Cs).

Y.Y. Cs is a list of local clauses in Db

localClauses(Db,Cs) :- bagof(C,db(Db,+,C),Cs).

Y.Y. Rs is a list of local retractions in Db
localRetractions(Db,Rs) :- bagof(C,db(Db,-,C),Rs).

299

Although this implementation is straightforward, it is quite inefficient and
is presented for expository purposes only. There are two sources of gross inef­
ficiencies. First, adding and removing a clause to a database unit takes time
proportional to the number of clauses in the unit. This stems from the fact that
the localDb/4 predicate does a sequential search through the local clauses looking
for matches. Second, looking up a clause in a database unit takes (at best) time
proportional to the number of clauses in the entire view of the unit. This stems
from the need to explicitly compute and manipulate the sets of local clauses and
clauses in the views of the parents.

3.2 The Phd implementation

Our first serious implementation of this model was in the Phd meta-interpreter
[16]. This implementation provides additional functions for creating and mutating
the hierarchy of databases as well as a mechanism for context switching - changing
the interpreter's notion of the current database view.

The Phd implementation is similar to the simple one presented above. It
differs in two details. First, it keeps pointers between local relative retractions
and the ancestral clauses that they effectively retract. These pointers allow the
implementation to be relatively more efficient. The second difference is the search
strategy employed by the inheritance mechanism. The simple model presented
above searches ancestor database units in a depth-first manner. In the Phdmodel,
the order of inheritance reflects the partial ordering defined by the parent-child
relationships in the hierarchy.

In the Phd model, each database unit is assigned an integer representing its
'level' in the hierarchy, with the requirement that a database unit's level be strictly
less than the level of its immediate descendants. The inheritance order with
respect to any DBU could be found by sorting all ancestor DBU s by their level.

There was one major drawback to the Phd model, which caused us to search
for better implementation strategies. By searching through each DBU in the in­
heritance order, all the clauses that are potentially in the current view are known.
However, we must also examine relative-retractions encountered along the way
to confirm whether a candidate clause is in fact in the current view. This turns

300 r. Finin and J. McGuire

out to be a difficult problem, since an ancestor clause may be retracted along one
path from the current DBU but not along another path from the current DBU .
We concluded that this process was much to expensive to be done at query time.
It would be preferable if this information could be 'compiled' at update time.
Techniques for doing just this are described in the next section.

3.3 Clause labeling implementations

In this section, we describe extensions of the elegant labeling technique first used
in the Conniver language [25] and described by McDermott [22]. This general
technique is also used to implement assumption based truth maintenance systems
(ATMSs) [11]. Our clause-labeling implementation can be thought of as a special
purpose ATMS with specialized labeling and propagation algorithms [24, 12].

McDermott's basic idea works for a system in which the database units form
an extensible tree (i.e., one which can grow from leaves), where clausal assertions
and retractions can be made only to existing leaf database units. The internal
representation for this technique prevents the enforcement of any inheritance or­
der. First we present the basic model. Then we discuss extensions to the model
that allow retractions on non-leaf DBU's, allow multiple inheritance, and support
the notion of an inheritance order (i.e. provide a clause ordering).

McDermott's technique

The basic idea in this scheme is to associate with each clause in the database
a label which encodes those views from which the clause is visible. In order to
retrieve all clauses visible in view V which unify with a goal G, we define the
current context to be V, retrieve all clauses in the entire database which unify
with G, and then filter these candidate clauses by discarding any whose labels do
not evaluate to true in the current context.

To realize this scheme, we assign each DBU a unique identifier (DBID) which
also acts as a boolean variable. The view defined by a DBU can be established by
only assigning the value true to the DBID's of DBU itself and all of its ancestors
and assigning all other DBID's the value false).

All clauses are stored in a single global database. Each clause contains a label,
which is boolean combination of DBIDs. By evaluating a clause's label, it can
be determined whether the clause is visible (true) in the current view. Since the
clauses are internally stored in the same global database, clause ordering within
views cannot be enforced. The views and DBUs define conceptual segmentations
of the database, but there is no corresponding internal physical separation.

Adding a clause p to a database unit U with identifier u simply requires chang­
ing p's label from l to l V u. In the absence of relative retractions, p's new label
will also evaluate to true in the views of newly added DBU's descended from U.

To erase a clause p from U, we need only change p's label from l to l/\ ~ u.
P's new label will evaluate to false in the views of newly added DBU's descended

,e retracted along one
>m the current DBU .
e done at query time.
iled' at update time.
;10n.

g technique first used
,tt (22]. This general
maintenance systems

hought of as a special
lgorithms (24, 12].
� database units form
1ere clausal assertions
e units. The internal
of any inheritance or­
tensions to the model
. eritance, and support
lering).

lause in the database
is visible. In order to
goal G, we define the
database which unify
Lg any whose labels do

lentifier (DBID) which
can be established by

.nd all of its ancestors

:lause contains a label,
clause's label, it can

11rrent view. Since the
clause ordering within
ceptual segmentations
·sical separation.
simply requires chang­
ractions, p's new label
's descended from U.

ibel from l to l/\ ~ u.

dded DBU's descended

a

b

I

C

Inheritance in Logic Programming Knowledge Bases

+p

+p

-p

II time I event

t1 add(b,p)
t2 rem(c,p)
t3 add(a,p)

label

b
bl\~ C

(b/\~c)Va

301

Figure 4: The standard clause labeling technique will assign an incorrect

label to the clause p when it is added to the non-leaf unit a. This label shows

p to be visible from unit c from which it had previously been removed.

a

b

I

C

+p

-p

+p

II time I event

t1 add(a,p)
t2 add(c,p)
t3 rem(b,p)

label

a

ave
(avc)/\~b

Figure 5: The standard clause labeling technique will assign an incorrect
label to the clause p when it is removed to the non-leaf unit b. This label
shows p to be invisible from unit c to which it had previously been added .

from U.

Unfortunately, this technique does not work if we allow arbitrary assertions
and retractions to any database unit or if we allow database units to have more
than one parent. The example in Figure 4 shows a situation in which the clause
p is mistakenly marked as being visible in database view of O, due to the order in
which the assertions and retractions were made. The example in Figure 5 shows
another problematic situation where the label assigned to p indicates that it is
not visible from view O.

Updates in a tree

It is relatively easy to extend McDermott's technique to allow arbitrary updates
(i.e., including those not restricted to leaf DBU's) if we assume that the database
units are organized into a tree structure. We sketch the solution. Associated with
each clause p we have three variables:

e in - list of all DBUs in which the clause has been locally asserted.

@ out - a list of all DBUs from which the clause has been locally retracted.

• label - the membership formula in disjunctive normal form.

The label of a clause is a disjunction of conjunctions. Each conjunction contains
exactly one non-negated variable, called its head. For each member of in, there
will exist a conjunction in the label with that member's DBID acting as the head.

302 T. Finin and J. McGuire

When a clause pis asserted into a database unit d, the following algorithm
is used to update label(p):

1. If p has already been locally asserted into database unit d (i.e.
d E in(p)) then stop.

2. Add d to in(p).
3. If p had previously been locally retracted from d (i.e., d E out(p)),

then delete d from out(p) and remove negated d's from each con­
junction in label(p).

4. Create a new conjunction for d and add it to label(p). The
negated identifiers in the conjunction will be those members of
out(p) that are also descendants of d.

Note that if the clause did not exist before, then in(p) would be set to [d], out(p)
would be set to [] and label(p) would be set to (d).

When a clause p is retracted from database unit d, the following algorithm
is followed.

1. Add d to out(p).
2. If d E in(p), then deleted from in(p) and delete the conjunction

corresponding to d from label(p).
3. For each conjunction in label(p), if dis a descendant of the con-

junction's head, then add ~ d to the conjunction.

Applying this method for our two earlier problem examples results in the situations
shown in Figures 6 and 7. Note that the labels are not the simplest ones possible.
The final label for p in Figure 6 could be simplified to al\ ~ c.

Updates in a lattice

This revised method does not, unfortunately, handle some cases in which the
database units form a lattice, as is demonstrated by the example in Figure 8. In
this example the final label for p is bl\ ~ d, indicating that p would not be visible
from the view from DBU e. The problem arises because there may be several paths
between a database unit and one of its descendants. If a clause p is added to the
unit, there may or may not exist a valid inheritance path for p from the unit to
a given descendant, depending on the existence of relative retractions along the
way. The revised clause labeling method will block inheritance if any one path
contains a relative retraction. What is needed is a modification to the technique
which reasons about all potential inheritance paths.

We have developed a further extension to the basic technique which will assign
a correct label to each clause when the database is structured as a lattice. For the
example in Figure 8 this algorithm will assign p the label bl\ ~ d V e, showing it
to be visible in units b, c, and e and not visible in d. We present some preliminary
definitions and sketch the solution.

e following algorithm

►ase unit d (i.e.

.e., d E out(p)),
. from each con-

label(p). The
ose members of

d be set to [d], out(p)

e following algorithm

the conjunction

iant of the con-

�sults in the situations
implest ones possible.
'c.

e cases in which the
ample in Figure 8. In

1 would not be visible
: may be several paths
mse p is added to the
or p from the unit to
retractions along the
;ance if any one path
,tion to the technique

ique which will assign
d as a lattice. For the
I\ ~ d V e, showing it
,ent some preliminary

a +p

b +p
I

C -p

Inheritance in Logic Programming Knowledge Bases

II time I event

t1 add(b,p)
t2 rem(c,p)
t3 add(a,p)

in I out I label

(b) () b
(b) (c) bl\~ C

(b,a) (c) (bl\~ c) V (a/\~ c)

303

Figure 6: The revised clause labeling technique will assign a correct label
to the clause p when it is added to the non-leaf unit a. This label shows p

to be in a and b but not c.

a +p

b -p
I
C +p

II time I event

t1 add(a,p)
t2 add(c,p)
t3 rem(b,p)

in I out I label

(a) () a
(a,c) () ave
(a,c) (b) (al\~ b) V c

Figure 7: The revised clause labeling technique will assign a correct label

to the clause p even when it is removed to the non-leaf unit b. This label

shows p to be in databases a and c but not b.

An inheritance path for a clause p holds between two database units dl and
d2 if p has been locally asserted into dl and dl is an ancestor of d2. Such a path
is a valid inheritance path if p has not been locally retracted at any intervening
database unit along the path. A merge point is a DBU which has multiple parents.
Let mpd represent the set of all merge points descended from d. An uppermost
merge point beneath a DBU d (umpd) is a member of mpd to which a path exists
from d that does not traverse another member of mpd, The following simple
Prolog predicate defines this relationship:

uppermostMergePoint(D,Ump) :-
parent(D,Ump), % must be a member of mpd.

parent(D2,Ump),
\+ D == D2,
!. % Don't search beneath identified umpd.

uppermostMergePoint(D,Ump) :­

parent (D, Child) ,
uppermostMergePoint(Child,Ump).

The problem in Figure 8 is that we have an uppermost merge point, e , which
can still inherit from DBU b. Our approach to solving the problem displayed in
Figure 8 will associate with p the membership formula (bl\ ~ d) Ve.

In the tree-scheme, the positive literal in each conjunction was chosen from
the set in, representing each DBU containing an instance of the clause i.n question

304 T. Finin and J. McGuire

a

b: +p
event in out label

I \
add(b,p) (b) () b d: t1

-p

\ I
t2 rem(d,p) (b) (d) bl\ ~ d

e

Figure 8: For this simple lattice example, the standard labeling technique

assigns p the label bl\ ~ d, incorrectly showing it to be invisible to database

unit e.

(p). To handle lattices, we also associate with each clause a set of Hypotheses
whose members are a subset of all merge-points in the lattice. Each Hypothesis
gains support from some member of in. The support indicates that a valid in­
heritance path exists from the in member to the Hypothesis member. The idea is
to introduce the minimal necessary number of Hypotheses as positive literals into
our membership formulas.

Upon a relative retraction of p from DBU U, identify for clause pall uppermost
merge points below U to which a valid inheritance path exists from one of the
U's ancestors. The DBID's of the members of this set represent the new heads
of conjunctions which need to be added to label(p). By restricting ourselves to
uppermost merge points, we introduce the minimal necessary number of extra
conjunctions.

Upon an assertion p to a DBU d, the following algorithm is performed:

1. Execute the algorithm defined for assertions within a Tree hierarchy.
2. Identify all relative retractions of p that are descendant to d.

3. For each such relative retraction r, do:
For each uppermost merge point below r, ump

r , such that there is a
valid inheritance path for p from d to umpr , do:

(a) Create Hypothesis umpr with support from d.
(b) Set um pout to the set of all DB u 's descended from umpr that

contain a relative retraction of p.

(c) Add (umpr I\ ~ um pout) to label (p) (i.e. make it one of the con­
junctions) with support (i.e justification) from d.

label II

A :d II

labeling technique

cVisible to database

a set of Hypotheses
ce. Each Hypothesis
ates that a valid in­
member. The idea is
positive literals into

ause p all uppermost
:ists from one of the
esent the new heads
,tricting ourselves to
ary number of extra

a is performed:

, Tree hierarchy.
mt to d.

li that there is a

from umpr that

; one of the con­
,

di +p

I \
d2 d3 -p

\ I

d4

I \
d6 d5 -p

\ I

d7

Figure 9:

Inheritance in Logic Programming Knowledge Bases

11 time I event

tl add(dl,p)
t2 rem(d3,p)
t3 rem(d5,p)

in

(dl)
(dl)
(dl)

out label

() dl
(d3) dlA ~ d3 V d4

(d3, d5) dlA ~ d3 V d4A ~ d5 V d7

A correct label of dlA ~ d3 V d4A ~ d5 V d7 is assigned top.

305

II

Upon a retraction of clause p from DBU d, the following algorithm is per­
formed:

1. Execute the algorithm defined for retractions within a Tree hierarchy.
2. If this is a local retraction (i.e. d E in(p)) then remove the support d

from any Hypothesis relying on d.
3. For each database unit d

v
E in(p), such that d

v
is an ancestor of d:

For each uppermost merge point ump below d such that there is a
valid inheritance path for p from d

v
to ump:

(a) Create Hypothesis ump with support from d
v

(b) Set ump0ut to the set c,f all relative retractions of p beneath ump

(c) Add (umpA ~ umpout) to label(p)

Figure 9 shows the effects of retractions on a more complicated lattice of
database units. At time t2, a retraction of p is made from DBU d3. The tree
algorithm will produce the label (dl/\ ~ d3). This we know to be incorrect
as p is visible in DBU d4 and its descendants. DBU dl is the only ancestor of
d5 containing clause p. DBU d4 is the only uppermost merge point beneath d3
containing a valid inheritance path from dl. Thus according to the new algorithm
we should introduce a new conjunction with d4 as the positive literal (head) into
p's label.

At time t3, a retraction of pis made from DBU d5. Once again, DBU dl is the
only ancestor of d3 containing clause p. DBU d7 is the only uppermost merge point
beneath d5 containing a valid inheritance path from dl. Thus, we now introduce
a new conjunction into p's label with d7 as the positive literal. Careful inspection
of the final label in Figure 9 will show that p's label will evaluate to true in the
views of DBU's dl, d2, d4, d6, and d7.

It turns out that there is a very natural (and potentially very efficient) way
to co-routine backtracking and clause evaluation in Prolog, without the need for
meta-interpretation. The basic idea is to store a fact p with label l as p : - 1 ->
true and a rule with head p, body q and label l as p : - 1 -> q where the ->

306 r. Finin and J. McGuire

operator is the standard Prolog if - then operation. For example, the clause p in
Figure 9 would be represented as:

p :- (in(d7) ; in(d4),\+in(d5) ; in(d1),\+in(d3)) -> true.

Similarly, to add the rule that 'All full adders are digital devices' to DBU dl we
can assert:

digital_device(X) in(d1) -> £ull_adder(X).

The use of the-> operator prevents Prolog from backtracking into additional and
entirely redundant attempts to 'prove' the membership label.

In order to prove a goal with respect to some DBU, you must first switch
context to the new view and then simply attempt to prove the goal. Switching to
a new database view is accomplished by asserting in(D) for each database unit D
in the view and removing any other in/1 assertions. In practice, the view could
be represented via an efficient tree-based data-structure which was passed along
as an extra argument between the sub-goals. This would make context switching
less expensive, since Prolog asserts are a relatively more expensive operation.

Clause labeling with an inheritance order

The clause-labeling algorithm, as described, stores all clauses in a single global­
database. The problem with this is that there may be many clauses stored that
unify, but few which are in the current view. Thus at query time, each label
associated with a unifying clause might be evaluated. For many applications, this
will be an unsatisfactory state of affairs. Our solution is to merge the clause­
labeling scheme with the original inheritance-order scheme. In this approach,
copies of a clause will be stored in each DBU containing the clause. This can be
done efficiently in the module systems found in many Prolog systems (e.g. Quintus
Prolog). The membership labels for each clause will be stored once in the global
database. At query evaluation time, we simply retrieve the inheritance order for
the current view and then search each DBU in turn. This gives us back general
access efficiency. Also, we have in our clause labels a 'compiled' representation of
the relative-retractions.

4. Related Work

The idea of a hierarchical database of clause-like objects can be found in some of
the earliest programming languages for AI applications. Both Conniver [25] and
QA4 [8], for example, had hierarchical databases. More recent work on enriching
the model of the clausal database can be divided into three groups: the incor­
poration of (flat) modules and packages, combining the object-oriented and logic
programming paradigms, and the extension of the usual clausal database model
to (non-flat) hierarchies. Our work falls into the last category. We will briefly

tmple, the clause p in

) -> true.

levices' to DBU dl we

1g into additional and
�1.
rou must first switch
;he goal. Switching to
each database unit D
tdice, the view could
1ich was passed along
ake context switching
pensive operation.

ses in a single global-
1y clauses stored that
uery time, each label
Lany applications, this
to merge the clause­

Le. In this approach,
e clause. This can be
systems (e.g. Quintus
red once in the global
: inheritance order for
gives us back general
iled' representation of

n be found in some of
)th Conniver [25] and
ent work on enriching
ee groups: the incor­
ect-oriented and logic
ausal database model
:gory. We will briefly

Inheritance in Logic Programming Knowledge Bases 307

cover the first two approaches and then describe in more detail some of the other
work in extending the database model to hierarchies.

In the last few years, the encorporation of modules into logic programming
languages has been studied at both the theoretical [23, 18] and practical [3, 4, l]
level. Most of the module systems we have studied differ from our approach in
that (1) the modules are 'flat' (2) predicates must usually be defined entirely in
one module and (3) there is no support for relative retraction.

The past few years have also seen a number of proposals for languages which
combine the logic programming and object-oriented programming paradigms [27].
Some examples which include some kind of hierarchical database-like facility in­
clude KEE [2], BiggerTalk [19] and LOGIN [5]. There are also parallels to be
drawn with discussions of inheritance in frame inference systems [26, 10].

Our work falls into a category in which a logic programming language has a
hierarchical database in which units inherit clauses, in some fashion, from their
ancestors. Examples in this category include Bowen's meta-prolog system [9],
an efficient implementation of it designed by Bacha [7], the Rhet representation
system [6] and work by McDermott [22].

Finally, the type of hierarchical knowledge base that we have defined can be
modeled using an ATMS [11].

Although the basic idea of a hierarchical database for a prolog-like language
seems relatively simple, there are several factors which make an efficient imple­
mentation somewhat difficult to achieve. Several of these (1, 2 and 3 below) are
decisions we have made in the design and several are a consequence of using a
logic programming language like Prolog.

1. relative retraction. This makes the model much more complex than the
related models for languages such as LOGIN [5] and BIGGERTALK [19]
and much of the recent work on object oriented programming systems.

2. lattice structure. We assume that the DBUs comprising the database can, in
general, have multiple parent DBUs and thus form a lattice. This extends
the expressiveness of the model at the expense of increasing the complexity
of inheritance.

3. dynamics. We would like to be able to dynamically assert and (relatively)
retract clauses to any DBU at any time, not just to a 'leaf' DBU.

4. non-ground queries and multiple answers. A database query will, in general,
contain uninstantiated variables which enable it to be satisfied by more than
one clause in the database view. However, a particular ground instance of a
unit clause (i.e. an assertion of a fact) should only appear once as a solution
even if it can be inherited from several different ancestors.

On the other hand, there is one important factor which make this model much
more manageable than most of the related models used in object-oriented repre­
sentation languages designed for AI work (e.g. KEE [2]), - the lack of negation.

308 T. Finin and J. McGuire

The problem of determining what clauses are visible in a given database view
is very similar to determining the attribute values2 for a given object. Most AI
languages, however, allow negation of one form or another. This can be expressed
either in the form of an explicit negation operator or in the ability to explicitly
cancel or mark as an exception certain attribute values. This introduces the possi­
bility of contradictory evidence and ambiguity into the database. This problem is
avoided in our model since logic-programming languages do not directly support
negation.

5. Conclusions

This paper has described a model for a hierarchical database for a logic program­
ming language such as Prolog. In this model, the clausal database is segmented
into database units, each of which is a local collection of clauses. Each database
unit defines a database view which consists of the union of the clauses in the local
database unit and those clauses in the parent database units which have not been
explicitly retracted in this view. An important feature of our model is that it
supports a notion of relative retraction. That is, one can retract a clause with
respect to a particular database view. This can be done for a clause which is local
to the view (i.e. is recorded in the unit which determines the view) as well as
for a clause inherited from some ancestor. In either case, the retraction can only
affect the database view in which the retraction was done and (potentially) its
descendant's views.

There are several ways in which our model differs from previous hierarchical
models for a logic programming language. First, our model allows the database to
have a lattice structure rather than just a tree structure (as in Conniver, Horne,
Rhet and meta-Prolog). This greatly increases the expressiveness of the language.
Secondly, our model does not involve the copying of any portions of the database,
unlike Meta-Prolog. Third, it supports the notion of relative retraction which is
essential for a number of applications such as hypothetical reasoning and default
reasoning. This notion is not supported in Biggertalk and Login.

In addition to presenting the model, we have described several different imple­
mentations which differ in their complexity and efficiency profiles. We leave for
future work a number of important and interesting questions having to do with
compilation, the structure of a hierarchical database and efficiency.

2More accurately, the problem is usually to determine what an object's attributes are and
for each, to determine the relevant values and/ or other facets (e.g. types)

given database view
ven object. Most AI
:his can be expressed
: ability to explicitly
introduces the possi­
,ase. This problem is
not directly support

, for a logic program­
dabase is segmented
.uses. Each database
Le clauses in the local
which have not been
our model is that it
:etract a clause with
clause which is local
the view) as well as
e retraction can only
and (potentially) its

previous hierarchical
llows the database to
in Conniver, Horne,

,ness of the language.
ions of the database,
e retraction which is
easoning and default
:>gin.
veral different imple­
rofiles. We leave for
ts having to do with
ciency.

iect's attributes are and
es)

Inheritance in Logic Programming Knowledge Bases 309

References

[1] Arity Prolog Reference Manual. 1986.

[2] KEEworlds Reference Manual. lntellicorp, level 3.0 edition, 1986.

[3] Quintus Prolog Reference Manual. Quintus Computer Systems, Inc, Moun­
tain View, CA, version 2.0 edition, 1987.

[4] ZYX Prolog Reference Manual. 1987.

[5] H. Ait-Kaci and R. Nasr. LOGIN: a logic programming language with built-in
inheritance. Journal of Logic Programming, 3:185-215, 1986.

[6] J. AUen and B. Miller. The Rhetorical Knowledge Representation System:

A User's manual. Technical Report 238, Department of Computer Science,
University of Rochester, September 1988.

[7] H. Bacha. Meta-level programming: a compiled approach. Proc. of the 4th

Int. Conj. on Logic Programming, 1987.

[8] D. Bobrow and B. Raphael. New programming languages for artificial intel­
ligence research. Computing Surveys, 6(3), 1974.

[9] K. A. Bowen. Meta-leval programming and knowledge representation. New

Generation Computing, 359-383, 1985.

[10] G. Brewska. The logic of inheritance in frame systems. In 10th International

Conference on Artificial Intelligence, August 1987.

[11] J. de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127-162,
1986.

[12] J. de Kleer. A general labeling algorithm for assumption-based truth mainte­
nance. In Proceedings of the 7th National Conference on Artificial Intelligence,

pages 188-192, 1988.

[13] T. Finin. GUMS-a general user modelling shell. In Alfred Kobsa and
Wolfgang Wahlster, editors, User Models in Dialog Systems, Springer Verlag,
Berlin-New York, 1988.

[14] T. Finin and D. Drager. GUMS1 : a general user modelling system. In Pro­

ceedings of the 1986 Conference of the Canadian Society for Computational

Studies of Intelligence, pages 24-30, CSCSI/SCEIO, May 1986.

[15] T. Finin, R. Fritzson, and D. Matuzsek. Adding forward chaining and truth
maintenance to prolog. In Proceedings of the Fifth IEEE Conference on Ar­

tificial Intelligence Applications, March 1989.

310 r. Finin and J. McGuire

(16] T. Finin and J. McGuire. A Hierarchical Database Model for a Logic Program­
ming Language. Technical Report MS-CIS-88-108, CIS Dept, University of
Pennsylvania, 1988. Also available as LBS Technical note 87, Paoli Research
Center, Unisys, Paoli, PA.

[17] M. R. Genesereth. The use of design descriptions in automated diagnosis.
Artificial Intelligence, 24:411-436, 1984.

[18] J. Goguen and J. Meseguer. Functional and Logic Programming, chap­
ter Equality, Types and Generic Modules for Logic Programming, pages 295-
363. Prentice-Hall, 1986.

[19] E. Gullichsen. BiggerTalk: Object-Oriented Prolog. Technical Report MCC
Technical Report Number STP-125-85, MCC, December 1985.

[20] R. Kass and T. Finin. A general user modelling facility. In Proceedings of
the Human Factors in Computer Systems Conference (CHI'88}, 1988.

[21] R. Kass and T. Finin. Modelling the user in natural language systems. Com­
putational Linguistics, Special Issue on User Modelling, 1988.

[22] D. McDermott. Contexts and data dependancies: a synthesis. IEEE Trans­
actions on Pattern Analysis and Machine Intelligence, PAMI-5(3):237-246,
May 1983.

[23] D. Miller. A theory of modules for logic programming. In Proceedings of the
IEEE Symposium on Logic Programming, Salt Lake City, Utah, September
1986.

[24] R. Reiter and J. de Kleer. Foundations of assumption-based truth mainte­
nance systems: preliminary report. In Proceedings of the 6th National Con­
ference on Artificial Intelligence, pages 183-188, 1987.

[25] G. Sussman and D. McDermott. From planning to conniving: a gennetic
approach. In Proc. FJCC, 1972.

[26] D. Touretzky, J. F. Horty, and R. Thomason. A clash of intuitions: the
current state of nonmonotonic inheritance systems. In 10th International
Conference on Artificial Intelligence, August 1987.

[27] C. Zaniolo. Object-oriented programming in prolog. In International Logic
Programming Symposium, 1984.

