
FININ AND SILVERMAN 79 

INTERACTIVE CLASSIFICATION 

as a Knowledge Aquisition Tool 

Tim Flnln 
Computer and Information Science 

University of Pennsylvania 
Philadelphia PA 

1. ABSTRACT

David Silverman 
IntelllCorp 

Meno Park, CA 

The practical application of knowledge-based systems, such as in expert systems, often requires the 
maintenance of large amounts of declarative knowledge. ·As a knowledge base (KB) grows in size and 
complexity, it becomes more difficult to maintain and extend. Even someone who is familiar with the 
knowledge domain, how it is represented in the KB and the actual contents of the current KB may have 
severe difficulties in updating it. Even if the difficulties can be tolerated, there is a very real danger that 
inconsistencies and errors may be introduced into the KB through the modification. This paper describes 
an approach to this problem based on a tool called an Interactive classlffer. An interactive classifier 
uses the contents of the existing KB and knowledge about its representation to help the maintainer 
describe new KB objects. The interactive classifier will identify the appropriate taxononomic location for 
the newly described object and add it to the KB. The new object is allowed to be a generalization of 
existing KB objects, enabling the system to learn more about existing obects. 

2. INTRODUCTION

!! The practical application of knowlege-based systems, such as in expert systems, requires the maintenance 
� } of large amounts of declarative knowledge. As a knowledge base (KB) grows in size and complexity, it
0 
11' becomes more difficult to maintain and extend. Even someone who is familiar with the domain, how it is 
f being represented and the current KB contents may introduce inconsistencies and errors whenever an
"' 

addition or modification is made. 

One approach to this maintenance problem is to provide a special KB editor. Schoen and Smith, for 
-t' example, describe a display oriented editor for the representation language STROBE 125]. Freeman, et. 
� 
1 al., have implemented an editor/browser for the KNET language 113, 14]. Lipkis and Stallard are 
j;: 0 
t 
'ii 

developing an editor for the KL-ONE representation language 121]. There are several problems inherent in 
the editor paradim, for example: 

• The system must take care that constraints in the KB, such as those defined via subsumption,
are maintained.

• The system must distinguish at least two different kinds of reference to a KB object: reference
by name and reference by meaning. A reference by name to an object should not be effected if
the underlying definition of the object is changed by the editor. If one refers to an object by
meaning, however, and later edits the object refered to, then the reference should still refer to
the original description.



I
�-- EXPERT DATABASE SYSTEMS 

• The system must keep track or the ongm or the subsumption relationship to distinguish
between those explicitly sanctioned by the KB designer and those inferred by the system (e.g.
by a classifier).

• Editors tend to be complex formal systems requiring familiarity with the editor and with the
structure and content or the KB being modified.

This paper describes another approach to the KB maintenance problem based on a tool called an 

interactive classifier. This kind or tool is not as general or powerful as a full KB editor but avoids many or 

the problems described above. The interactive classifier can only be used to make monotonic changes to 

the KB. New objects can be added to the taxonomy and additonal attributes can be added to objects 

already in the KB. It does not allow object to be deleted or their existing attributes changed or 

overridden. 

Although this may sound like a severe restriction, we believe that there are many situations where this is 

just the kind or KB update that is to be allowed. Consider, for example, the computer configuration

problem which has been the domain or several recent expert system projects 118, 13, 20]. Such a system 

needs to have an extensive KB describing a large number computer components and their attributes, 

including their decomposition and interconnection constraints. An important feature or this domain is that 

new components are constantly being introduced as the underlying technology advances. Older 

components still need to be represented in the KB since there are many instalations in the field which may 

still need them. We may, however, want to predicate additional attributes of these older components to 

distinguish them from newer ones. For example, at some point in time we may add a new laser printer to 

the line of hardcopy devices. At a later time, we may want to add a new model, a high speed laser

printer. This might involve adding two new objects: one to represent a generic laser printer with a 

attribute printing speed and another to represent the new high-speed laser printer. The original laser

printer object would be seen as a specialization or the newly created generic laser printer. 

Knowledge-based systems often represent declarative knowledge using a set of nodes, corresponding to 

discrete •concepts• or descriptions, which are partially ordered by a subsumption, or inheritance relation. 

One concept subsumes another if everything that is true about the first is also true about the second. 

Whenever a new node is added to the knowledge base, either during its initial construction or later 

maintenance, it must be placed in the appropriate position within the ordering - i.e. all subsumption 

relationships between the new node and existing nodes must be established. This is called classification

because a subsuming node can be considered as a representation of a more abstract category than its 

subsumees. The notions or. subsumption and automatic classification are very useful and have been 

offered as centeral features or several recent knowledge representation languages (see 15], 1231, 171, and 

12I for example). 

Current classifiers require a complete description of the node to be added before they begin. (See [30] for a 

description of classification, and 117I or 124] for examples of a classifier for the representation language 

KL-O�'E 14].) When the classifier is used directly by a user to add a new node, the user must know the 

descriptive terms in use in the existing KB and something or its structure in order to create a description 

which will be accurately classified. Ir the classifier places the new node in the wrong place, or if the 



FININ AND SILVERMAN 81 

description of the node contains errors or omissions, the user must repeatedly modify the node and redo 

classification until he is satisfied. The process of adding a node is much more efficient if done 

interactively, so that immediate feedback based on the contents of the KB is available to the user as each 

piece of information about the new node is entered. 

The rest of this paper describes an interactive classification algorithm, which has been implemented in 

Prolog. Together with a simple knowledge representation language, this implementation forms a system 

called KuBIC, for Knowledge Base Interactive Classifier. The system takes a user's initial description of a 

new node and a (possibly empty) KB and either classifies the node immediately, if enough information has 

been specified, or determines relevant questions for the user that will help classify it. Thus a user who is 

familiar with the knowledge base may completely avoid the question/answer interaction with KuBIC, and 

use it only as a classifier, while someone who has never seen the knowledge base before may use the 

interaction to be presented with just those portions of the KB which are relevant to the classification of 

the new concept. The algorithm .could be applied, for example, to knowledge representation systems or 

environments for building expert systems which contain classifiable knowledge bases, such as KEE [151, 

HPRL 1161, SRL 1121 or LOOPS l3J. 

3. THE REPRESENTATION LANGUAGE

In order to explore the underlying ideas of interactive classification, a simple knowledge representation 

language was chosen. The KB is constrained to be a tree structure, so each node has at most one parent. 

Nodes have single-valued attributes which represent components or characteristics that apply to the 

object or concept described. Values of attributes can be numbers, intervals, symbols, sets of symbols. 

The meaning of a set or range with multiple values is disjunctive; children of a node with an attribute 

with multiple values can have any subset or subrange (including single values) of the parent's value. Each 

node inherits all the attributes of its parent node, but its values can be restrictions of the parent 

attribute's values. Finally, no procedural attachment is allowed. 

The Subsumptlon Relation 

The tree structure of the knowledge base is formed by the partial ordering of its nodes with respect to the 

subsumption relation. The intended meaning of "X subsumes Y" is that whatever is represented by 

description Y, is also represented by the more general description X. All of X's characteristics are 

inherited by Y, perhaps with some restriction. Since the subsumption relation is transitive, Y also inherits 

the characteristics of X's subsumers (i.e. all its ancestors in the tree). In KuBIC, subsumption information 

is used to achieve economy of description and to localize distinguishing information.

Economy of description is a direct consequence of the inheritance of attributes and attribute values. Each 

description is considered to be a virtual description whose attributes are either local to the real 

description, or inherited from an ancestor. Only the most restricted value of an attribute appears in the 

attribute of the virtual description, even if the value occurs in an attribute of more than one ancestor 

description. 

Classification is aided by the structure of the knowledge base. In such a taxonomic data base, 



EXPERT DATABASE SYSTEMS 

distinguishing information is localized. Once a new description has been determined to be subsumed by 

node X, only X's subsumees are possible candidates for a more specific subsumer or the new description. 

The information stored at X's immediate subsumees allows the classifier to select questions which will 

determine which node is this more specific subsumer. 

4. INTERACTIVE CLASSIFICATION

The interactive classification process is divided into three phases: acquiring the initial description or the 

new concept, finding the appropriate parent concept in the existing taxonomy (the most specific subsumer) 

and finding the apropriate immediate descendants in the existing taxonomy (the most general subsumees). 

4.1. Acquiring the Initial Description 

To make the interaction more efficient and minimize the number or questions the user has to answer, the 

user is allowed to specify an initial description or the new node. Attributes or the new node can be given, 

and a subsumer can be stated directly it known. Note that the user can say only that a node subsumes 

the new node, not that it is the moat apeclflc subsumer. Ir enough information is given, it is possible to 

classify the new node immediately without any further interaction. Ir not, KuBIC must determine what 

attributes to ask about so that classification can be completed. 

Ir the initial description includes an attribute which in not currently in the KB, then the user is asked to 

supply certain information about the new attribute. In the simplified representation language used in 

KuBIC, this information is just the general constraint on possible values that the attribute can take on 

and a question form that the system can use to ask for a value for this attribute. 

4.2. Establishing the Most Specific Subsumer 

Because the characteristics or a node are shared by all its descendants, it is most efficient to search the 

tree for the new node's most specific subsumer (MSS) in a top-down manner, starting with the root. Two 

strategies are used to speed the search for the most specific subsumer: classification by attribute profile 

and classification by exclusion. The first stategy is used to take the partial description of the new KB 

object the user initialy presents and to identify a likely ancestor as low in the taxonomy as possible. The 

second strategy, classification by exclusion, is used to push the new KB concept lower in the taxonomy, 

eliciting new information from the user as needed. This second strategy is more basic to the interactive 

classifier and will be described in detail first. 

Classifying Using Exclusion 

Classifying by exclusion makes use of the fact that every node (except the root) has exactly one 

immediate subsumer, or parent. At all times during classification, there is one node which has been 

verified to be a subsumer of the new node, and is the most specific such node (the current most specific 

subsumer, or MSS). Only subsumees or this node need be considered as more-specific subsumers. 

Moreover, at most� or the immediate subsumees or this node may be a more-specific subsumer. 



FININ AND SILVERMAN 83 

Exclusion therefore proceeds by looking for inconsistencies between the current description or the new 

node and the immediate subsumees or the current MSS. Ir no subsumees are consistent, the current MSS 

remains the actual MSS, and classification continues with the search for the new node's subsumees. Ir only 

one node is consistent, it must be verified to be a subsumer or the new node. This is done by asking the 

user, if necessary. Ir two or more nodes are consistent, attributes must be found to ask the user about 

which will help exclude as many or them as possible, until less than two nodes remain consistent. 

The word •consistent• is a bit inadequate - what is actually meant by "node Sis consistent with the new 

node N" is "node S subsumes the current description of the new node." (Note that this consistency 

relation is not symmetric.) Because the new node's description changes during its interactive classification 

as the user adds new information, it is possible for S to become inconsistent with it. Thus the meaning or 

the term consistant that we are using is similar to that used in discussions or non-monotonic logic [19J. 

Verifying Sub11umption of a Consistent Node 

Because the new description is entered interactively, one attribute at a time, it is incomplete during 

classification. Suppose that there is only one candidate node in the set of consistent children of the current 

MSS. This is not enough to ensure that the candidate is a more specific subsumer of the new node since 

the candidate may have additional attributes that the new node does not. We are assuming, of course, 

that the user is giving us a partial description of the new KB object. Ir the canadiate has additional 

attributes, we must verify that is indeed subsumes the new node. For each such attribute, the user is 

presented with its value in the candidate node and is asked to confirm, deny, or restrict the value as 

appropriate for the new node (see figure 4-2). This is done to ensure that the values of the new node's 

attributes are restrictions of the values of the candidate's values. Note that the new node may have 

attributes which the candidate does not; this does not affect subsumption. Ir the user does not verify that 

the single candidate node is a subsumer of the new node, then the current MSS of the new node is 

established as the final MSS. 

An example showing a KB fragment which requires such verification is shown in figure 4-1, and the 

verification interaction is shown in figure 4-2. For each node in figure 4-1, only the attributes which are 

either defined locally or locally restricted are displayed at that node. The new description, tandemBicycle, 

has been determined to be subsumed by unmotorizedWheeledVehicle. Since one attribute of tandem 

Bicycle is that it has two wheels, only bicycle is a consistent candidate for a more specific subsumer of 

tandemBicycle. Before asserting that tandemBicycle is subsumed by bicycle, the user is asked to verify 

that tandemBicycle also has a cargo attribute whose value is people and has a driveMechanism whose 

value is a subset of { directDrive, chain}. Ir the user does not agree, tandemBicycle's MSS remains 

unmotorizedWheeledVehicle. 

Determining the Next Question 

Ir there are two or more candidate nodes in the set of consistent children of the current MSS, more 

information about the new node is required to exclude some of them. This is done by selecting an 

attribute to ask about, getting the answer from the user, and repeating until the set of consistent children 

has been reduced to zero or one node, or there are no more attributes which will help reduce the set. Two 

strategies are used to select an attribute to ask about from the set or attributes which apply to the set of 



84 EXPERT DATABASE SYSTEMS 

candemBicycle 
, 

, 

unmocorizedWheeledVehicle 

,, , powerSource: {human, wind] 
, ' sceeredWith: [handlebars] 

, ' range: 0 to 500 

num Wheels: 2 to 2 
powerSource: [human] tricycle 

bicycle 

driveMechanism: [directDrive] 
num Wheels: 3 to 3 
powerSource: [human] 
cargo: (people] 

�iveMechanism: [directDrive, chain} 
num Wheels: 2 to 2 
powerSource: {human} 
cargo: (people) 

DaJhed lines mean "s11bsumes1
" with subsumer above subsumee 

Figure 4-1: KB Fragment Just Before Verification 

There is evidence that the new description is a bicycle. I will now 
question you on each unverified aspects of bicycle. Please confirm, 
deny, or restrict the value, for each attribute. 

What is the cargo? 
cargo = [peopleJ 
Enter yes, no, or a restriction of the answer: Jle•• 

What is the drive mechanism! 
driveMechanism = [directDrive,chainJ 
Enter yes, no, or a restriction of the answer: /chain]. 

I've verified that bicycle subsumes tandemBicycle 

Is this acceptable?: a,u. 

Subsumer changed from unmotorizedWheeledVehicle to bicycle. 

Figure 4-Z: Interaction During Verification 

(user's response in bold italics) 

consistent children: explicit attribute ranking and maximal restriction. 

In our simple representation language, one can attach to a concept a list of some of the concept's 

attributes which are ranked with respect to their importance in classifying by exclusion. Ir such a ranking 

has been defined, then the attributes are selected in the given order. This strategy supercedes the next 

one, because the ranking contains external information which is not otherwise available to the system. The 

ranking could be based on numerical weights, but here it is a non-numerical ordering. 

Ir there are no more attributes in the ranked list, the attribute selected to ask about is the one which 

maximally restricts the set of consistent children, in the worst case. In other words, no matter what 

answer is given as the value of this attribute, the minimum number of consistent children which are 

excluded by the answer is greater than or equal to the same minimum for any other relevant attribute. Ir 

more than one attribute is best, one is selected without regard to other considerations. 



FININ AND SILVERMAN 85 

The above strategies could be augmented by using information about the particular user. Since not all 

questions need to be asked to perform one classification, questions which the user is more likely to be able 

to answer should be asked first. The user's ability to answer can be decomposed into his or her ability to 

understand the question, determi::.,e an apprnptiate response, and commun;cate the response to the system. 

The user mode! could be created initially by asicing the user several questions intended to establish a 

stereotype of the user, and refined later as the user answers (or doesn't answer) questions. (See 1221 and 

1101 for examples of this use of stereotypes.) 

Classifying Using Attribute Profiles 

The second classification strategy is a heuristic for searching the tree more quickly. Given the operations 

of determining consistency and asking the user to verify subsumption described above, if a guess could be 

made about possible subsumers of the new node, it would be a simple matter to verify the subsumption. 

A good guess is necessary, however, because the user must get involved in the verification. 

The particular heuristic used in KuBIC examines the set of attributes specified by the user in the initial 

description to try to restrict the possible subsumers of the new node. The heuristic could also be used 

whenever volunteered information is allowed. It works by picking an attribute of the initial description, 

finding the common ancestor of all nodes in the KB which have the attribute, and using this common 

ancestor as a guess. The guess must be a subsumee (immediate or not) of the current MSS of the new 

node. 

If the user verifies the guess, then it becomes the current MSS and the process continues. The user has 

been spared from having to answer questions about attributes of concepts which lie between the original 

MSS and the guess. The deeper the guess in the tree, the more questions avoided. If the user does not 

verify the guess, perhaps because the attribute has more than one meaning in the current KB, all is not 

wasted. Questions asked during verification can contribute information to the new node, or, if the 

attribute in question is not an attribute of the new node, KuBIC knows not to ask the question again. The 

system can keep guessing, whether a previous guess succeeded or not, until it runs out of attributes, or 

until the user becomes weary of incorrect guesses. 

4.3. Establishing the Most General Subsumees 

The task of classification is half completed once the most specific subsumer of the new node has been 

established. Finding the most general subsumees (MGS's) is the other half. Fortunately, this half is much 

less work because of the constraint that the KB form a tree structure. 

The only possible candidates for most general subsumees are children of the MSS of the new node - i.e. 

siblings of the new node. (This assumes that the KB is well-constructed, so that the immediate subsumer 

of each node is its MSS, and the immediate subsumees are its MGS's.) Thus to find all the MGS's, it is 

only necessary to check whether the new node is •consistent• with each sibling in turn, and to ask the 

user to verify that there is no missing information about either node which misled the classifier. Note 

that by establishing a node as the MGS of the new node, the interactive classifier can implicitly change 

the descriptions of the MGS and all its subsumees - nodes which were already in the KB - because they 



86 EXPERT DATABASE SYSTEMS 

,, •• 
inherit new attributes from the new node. 

Ir the subsumption relationship is alloweed to define a latice rather than a tree, then determining the 

MGS's is more difficult. A newly entered node may not subsume its siblings, but could subsume some of 

its sibling's descendants. For example, consider a taxonomy for living things which includes a concept 

livingThing with two immediate children: animal and plant. We could use the interactive classifier to 

enter a new node genderedLivingThing to represent the ,concept of a livingthing with an attribute gender 

whose values come from the set { male,female}. This concept would initially be an immediate descendant 

of the concept livingThing. Neither animal nor plant, however, is a descendant of this new concept, since 

there are genderless animals and genderless plants. Many of their descendants, however, are subsummed 

by the new concept genderedLivingThing. 

5. FURTHER WORK

There are two areas on which our current work is focused. First, we are extending the idea of an 

interactive classifier to a more complete representation language. Second, we are incorporating a more 

sophisticated user model to guide the interaction. 

6.1. More Expressive Representation Languages 

The limitations of the current work stem from the simplified nature of the knowledge representation 

language we have used. Using this simplified language was a conscious research stategy choice. It allowed 

us to focus on the notion of an interactive classifier in a simple surrounding. The two major shortcomings 

in KuBIC's representation language are that nodes are organized in a tree rather than a lattice, and that 

values or attribute:s must be explicit sets or intervals. Neither of these limitations should be an obstacle to 

extending the interacth·e classifier to a more general representation language. This section sketches our 

planned approach to such an extension (we anticipate developing an interactive classifier for the 

representation language HPRL j16I). 

Suppose nodes were organized in a lattice structure, so that they would be allowed to have multiple 

subsumers. In the course of finding the new node's most specific subsumers, this would require the 

interactive classifier to search all paths from the current most specific subsumer down the subsumption 

links until a node is found that is inconsistent with the new node, or until there are no more consistent 

paths below a node on the path. The user would have to give enough information about the new node so 

that each child or the current MSS could be determined to be inconsistent or a subsumer or the new node, 

instead or stopping when the user verified one subsumer. 

Ir attribute values are allowed to be pointers to nodes (e.g. as in KL-ONE's value/restrictions) then the 

description of a new node would depend in part on the nodes it refers to in its attributes. The algorithm 

described in this paper will work when the nodes referred to are already classified in the KB; only the 

subsumption relation would have to be changed. Ir they are new nodes, however, they must be 

interactively classified before the new node which refers to them. 



FININ AND SILVERMAN 87 

6.2. More Sophisticated User Models 

The second area we are working on is the incorporation or a more sophisticated model or the user. Such a 

model could be used to select attributes to ask about next and also to provide the user with appropriate 

help and guidance is answering q11estions. This is related to work in the context or interfaces to expert 

systems (see j28, 29I for example). 

There has been some previous research on how expert systems get information from their users. For 

example, Fox 111I considered integrating reasoning with knowledge aquisition from a resource management 

perspective. Aikins Ill addressed the seemingly random question-asking behavior or systems which 

pursued lines of reasoning opportunistically, jumping around to whatever line looked most promising and 

asking for whatever information they needed at that point. This randomness annoyed and confused users. 

Aikins suggested an organization for reasoning that would result in related questions being asked together. 

Brooks [6] considered the amount or information systems may end up requesting from their users and 

found that a large number (30 or more) or requests is generally considered unacceptable. He suggested 

ways or cutting down on the amount or information requested, by enriching systems' models or their 

domains. These same sorts or considerations can be employed in the context or interactive classification. 

Expert systems vary as to when they ask the user for information and when they rely on their own 

deductions. However, in this decision, they do not take into account the user's ability to understand and 

respond reliably. In Prospector [8] for example, goals are simply marked as being either •askable• or 

•unaskable• (never both). Ir the goal is •askable•, the user is asked for the information. Ir •unaskable•,

the system attempts to deduce it. There are no other criteria. (On the other hand, Prospector does allow

the user to change his/her answer to any question and will recompute its conclusions accordingly.) In

Mycin 1261, the user is only asked for information if either the system's attempt to deduce a subgoal fails -

i.e., if no rules were applicable or if the applicable rules were too weak or offset each other - or the user's

answer would be conclusive (e.g., lab results). In Knobs 191, a system for assisting users in mission

planning, the user is asked for preferences, not facts. Ir the user prefers not to answer at any point, s/he

can turn over control to the system and let it compute an appropriate value.

Any attempt to customize a system's way or interacting to the user at hand must allow for the fact that 

at times, the system is going to guess wrong - the user is not going to be able to answer its question or 

will answer it incorrectly or will find it annoying. Thus what we are proposing has two aspects - (1) 

recovering from a wrong decision (i.e., from having asked a •bad• question, and (2) modifying subsequent 

decisions about what sort or questions to ask. It is based on our belier that one can structure and annotate 

a system's inferential space in such a way that it can modify its behavior in response to the user at hand. 

For example, one approach might be to evaluate strategies according to how much work is required or the 

user. to provide the information requested or him/her. This can be factored into how much work is 

required to: (1) understand the question; (2) acquire the information and (3) communicate the information 

to the system: 

or course there might be several alternative procedures the user. could employ in acquiring the information 



,..
EXPERT DATABASE SYSTEMS 

the system wants, each or different difficulty for him/her, each requiring somewhat different resources. 

While the system's evaluation or a strategy might be based on the assumption that the user can and will 

use the easiest or these procedures, more refined evaluations might take into account the resources 

available to the particular user as well. (This information about alternative procedures - their level or 

difficulty and resource requirements would also be useful for certain cases where a user cannot answer the 

system's question, as will be discussed in the next section.) 

A strategy evaluation based solely on how much work is required or the user would not be sufficient 

however. Another factor in the system's choice or reasoning strategy must be its a priori beliefs about the 

reliability or the user's information. The system should prefer a line or reasoning which depends on facts it 

believes the user can supply reliably over one which it believes the user can supply with less reliability. 

6.SUM:MARY

This paper presented the design and implementation or an interactive, incremental ciassifier which is used 

to add nodes to a hierachical frame oriented knowledge base. A knowledge representation language was 

defined, complex enough to resemble in certain aspects representations or current knowledge-based 

systems yet simple enough to allow focusing on interactive classification (for more detail and the Prolog 

implementation of KuBIC, see 1271). The problem of classification was described as determining most

specific and most-general subsumption relationships between the new node and nodes already in the 

knowledge base. Two components to the classification strategy were presented: classification using 

exclusion, which uses a special •consistency• relation and asks questions to exclude whole portions of the 

KB at a time, and classification using attributes, which uses a heuristic based on what attributes the user 

says the new node has to take short-cuts in the search. Both of these serve to establish the most specific 

subsumer; the most general subsumees are then relatively simple to find. Current work is focused on 

extending the concept of an interactive classifier to a more powerful representation language and 

incorporating a more sophisticated user model. 

7. BIBLIOGRAPHY

1. Aikins, J. Prototypes and Production Rules: A knowledge representation for computer consultations.
HPP-80-17, Heuristic Programming Project, Stanford University, August, 1980 .

t. Hassan Ait-Kaci. Type Subsumption as a Model of Computation. In Larry Kerschberg, Ed., Expert
Database Systems, Benjamin/Cummings Publishing Co., Menlo Park CA, 1985.

3. Bobrow, D.G. and Stefik, M. The Loops Manual. Technical report KB-VLSl-81-13, Xerox PARC,
1981.

4. Brachman, Ronald. A Structural Paradigm for Representing Knowledge. Technical Report 3605, Bolt
Beranek and Newman Inc., May, 1978.

5. Brachman, R. R. Fikes and H. Levesque. KRYPTON: A Functional Arp:roach to Knowledge
Representation. 16, Fairchild Lab for AI Research, 1983.



FININ AND SILVERMAN 89 

e. Brooks, R., Heiser, J. Controlling Question Asking in a Medical Expert System. Proc. IJCAI-79,
Tokyo Japan, 1979, pp. 102-104.

7. Francisco Corella. Semantic Retrieval and Levels or Abstraction. In Larry Kerschberg, Ed., Expert
Database Systems, Benjamin/Cummings Publishing Co., Menlo Park CA, 1985.

8. Duda, R., Gaschnig, J., & Hart, P. Model Design in the PROSPECTOR Consultant System for
Mineral Exploration. In Expert Systems in the Micro-electronic Age, D. Michie, Ed., Edinburgh
University Press, Edinburgh, 1979.

G. Engleman, C., Searl, E. & Berg, C. Interactive Frame Instantiation. Proc. First National Conference
on Artificial Intelligence (AAAI), Stanford CA, 1980.

10. Finin, T. and D. Drager. GUMS! - A General User Modeling System. technical report MS
CIS-85-30, Computer and Information Science, U. or Pennsylvania, 1985.

11. Fox, M. S. Reasoning with Incomplete Knowledge in a Resource Limited Environment: Integrating
Reasoning with Knowledge Aquisition. Proc. 7th Int'l. Joint Conr. on Art. Intelligence, IJCAI, University
of British Columbia, Vancouver, Canada, August, 1981.

12. Fox, M and J. Wright and D. Adam. Experiences with SRL: An Analysis or a Frame-based
Knowledge Representation. In Larry Kerschberg, Ed., Expert Database Systems, Benjamin/Cummings
Publishing Co., Menlo Park CA, 1985.

13. Freeman, M., L. Hirschman and D. McKay. A Logic Based Configurator. technical memo LBS 9,
SDC, A Burroughs Company, May, 1983.

14. Freeman, M., L. Hirschman and D. McKay. KNET - A logic Based Associative Network Framework
for Expert Systems. technical memo LBS 12, SOC, A Burroughs Company, September, 1983.

15. Kehler, T.P. and Clemenson, G.D. • An Application Development System for Expert Systems•.
Systems tJ Software (January 1984).

18. Lanam, D, R. Letsinger, S. Rosenberg, P. Huyun and M. Lemon. Guide to the Heuristic
Programming and Representation Language Part 1 : Frames. AT-MEMO-83-3, Application and
Technology Laboratory, Computer Research Center, Hewlett-Packard , January, 1984.

17. Lipkis, Thomas. A KL-ONE Classifier. Consul Note 5, USC/Information Sciences Institute, October,
1981.

18. McDermott, J. Rl: A Rule-Based Configurer or Computer Systems. Carnegie-Mellon University,
1980.

19. McDermott, D and J. Doyle. •Non-Monotonic Logic I•. Artificial Intelligence 19, 1-2 (1980), 41 -
72.

20. McDermott, J. XSEL: A Computer Saleperson's Assistant. In Machine Intelligence 10, Ellis
Horwood Ltd, Chichester UK, 1982, pp. 325-337.

Zl. personal communication. 

22. Rich, Elaine. •User Modeling via Stereotypes•. Cognitive Science 9 (1979), 329-354.

23. James Schmolze and David Israel. KL-ONE: Semantics and Classification. 5421, Bolt Beranek and
Newma.n Inc., Cambridge MA, 1983.

24. Schmolze, J.G., and Lipkis, T.A. Classification in the KL-ONE Knowledge Representation System.
Proc. IJCAI-83, Karlsruhe, W. Germany, 1983.

25. Schoen, E. and R. Smith. IMPULSE: A Display Oriented Editor for STROBE. Proceedings of the
National Conference on Artificial Intelligence, AAAI, Washington, D.C., August, 1983, pp. 356-358.

28. Shortliffe, E .. Computer-based Medical Consultations: MYCIN. Elsevier, New York, 1976.

27. Silverman, David L. An Interactive, Incremental Classifier. Technical Report MS-CIS-84-10,
University or Pennsylvania, Apr., 1984.



,
._ EXPERT DATABASE SYSTEMS 

28. Webber, B. and T. Finin. In Response: Next Steps in Natural Language Interaction. In Artificial
Intelligence Applications for Business, W. Reitman, Ed., Ablex Publ. Co., Norwood NJ, 1984.

29. Webber, B. and Tim Finin. Expert Questions - Adapting to Users' Needs. technical report MS
CIS-84-19, Computer and Information Science, University or Pennsylvania, 1984.

30. Woods, W. Theoretical Studies in Natural Language Understanding: Annual Report. Technical
Report 4332, Bolt Beranek and Newman Inc., 1979.


	eds1_cropped
	eds2cropped



