
t j

: 1
l • 44

R
presenting knowledge about some
spect of the world is fundamental
o most AI systems. This is true of all
inds of AI systems: expert systems,

natural language interfaces, text understand­
ing systems, perceptual systems, planning
systems, etc. It is also true for all kinds of do­
mains over which these systems operate.

Over the last 25 years the AI community
has devised and experimented with a variety
of special purpose languages for represent­
ing knowledge. These languages attempt to
provide AI programmers with a tool to ease
the task of encoding domain knowledge and
to allow the system to effectively and effi­
ciently use this knowledge.

Although no single representation lan­
guage is likely to be optimal or even satisfac­
tory for all types of systems or all domains, a
small number of generic types of representa­
tion languages have been found to have very
attractive properties for a wide class of appli­
cations. Frame-based representation lan­
guages (FBRLs) form one of these classes.
Other popular types of representation lan­
guages include those based on first-order
logic, on production rules, or on some com­
bination of frames, logic, and rules.

In very general terms, the need to repre­
sent some aspect of the world could be satis­
fied by any system in which we can name and
refer to objects in the domain (whether they
be primitive or complex, concrete or ab­
stract) and to describe relations between
them. The semantic network was an early rep­
resentation technique that provided this ca­
pability in a straightforward manner.

A semantic network is simply a graph con­
taining a set of named nodes and a set of asso­
ciative links between them. Early work on se-
mantic networks as AI representational

A simple language
called PFL can meet
many AI knowledge

representation needs

systems1
•
3 showed the formalism to be flexible

and powerful as well as intuitively attractive
from a psychological point of view.

The current notion of a frame-based repre­
sentation language evolved out of attempts to
remedy the deficiencies (both theoretical and
practical) found in simple semantic network
systems as well as a desire to provide a uni­
form set of representational services. Al­
though these problems will not be discussed
in this article; the interested reader will find
excellent discussions in several sources.4'

5 In
this article we will describe the concepts and
mechanisms that underlie FBRLs by dis­
cussing a particular implementation, a sim­
ple pedagogical frame language (PFL). Part
II, to appear in the December issue of AI EX­

PERT, will demonstrate some of the features
of Common LISP in the context of the PFL
program.

PFL is was written for pedagogical pur­
poses-it does not attempt to be very power­
ful, expressive, or efficient. It is deliberately
kept simple, both in its features and imple•
mentation. PFL is written in Comrrion LISP
and has been run on a Symbolics LISP Ma­
chine, a VAX (in VAXLISP), and a Hewlett­
Packard Bobcat.

Although PFL is quite simple (amounting
to less than 250 lines of commented Common
LISP code), it is sufficiently powerful to sup­
port the representational needs of many AI
applications. We will use the university world
(the world of students, instructors, courses,
departments, and so on) as an example in
which to discuss the concepts in this article.

SEMANTICS AND TAXONOMY

Given the importance of knowledge repre­
sentation to Al, it is natural to be concerned
about the meaning one can ascribe to de- 45

I
I

i
1
1

,,

FIGURE 1.

A fragment of the
abstraction taxon­

omy for the univer-
sity world.

scriptions built in a given knowledge repre­
sentation language. Pat Hayes

6
provided an

early attempt to specify formally the seman­
tics of FBRLs in terms of first-order logic.

,David Etherington and Ray Reiter
7

have
looked in more detail at the problem of for­
malizing the exception mechanism com­
monly found in such languages. Many lan­
guages, such as those in the KL-ONE family
(for example, KL-ONE, NIKL, and KRYP­
TON) have been designed to include just
those features for which a formal account of
meaning can be given.

On the other hand, most of the frame­
based languages used today (such as KEE,
KnowledgeCraft, ART, and HP-RL) do not at­
tempt to provide a careful account of their
semantics. These languages include a large
and rich set of features that have been found
to be of practical utility but would be very
difficult to formalize.

Our PFL language, although rather simple,
is in this second category. Instead of attempt­
ing a formal account for the semantics of
PFL, we will instead give an operational de­
scription. The meaning of a network of PFL
frames will be given in the form of descrip­
tions of the functions used to create, modi(y,
and access them. In particular, we will de­
scribe a small set of special slots and slot
facets, which have special meaning in PFL.

FBRLs are essentially object-oriented lan­
guages in which a representation consists of a
set of frames. In PFL, as in most FBRLs, a
frame can represent either an individual ob­
ject in the domain (for example, George
Washington, the integer three, the king of
France in 1985, the largest prime number) or
a generic class of objects (for example, U.S.
presidents, positive integers, heads of Eu­
ropean states, prime numbers greater than

100). Note that representing an individual
does not imply its existence in any possible
world.

FBRLs typically have a number of features
that distinguish them from other representa­
tional systems. These are:

Generalization hierarchy. The frames are
organized into a generalization hierarchy in
which frames inherit information from their
ancestors.

Slots. A frame has a number of subunits,
called slots, which can take on values or de­
scribe, in general terms, constraints on what
their values can be.

Limited reasoning services. The functions
for creating, modifying, and accessing the
representation provide a limited number of
reasoning functions, such as attribute inheri­
tance, default reasoning, constraint check­
ing, and classification of new frames.

The core of a representation is a collection
of frames organized into a generalization/
specialization hierarchy (also commonly re­
ferred to as an abstraction hierarchy, isa hier­
archy, or concept lattice) defined by
primitive directed links. In PFL, we will refer
to these links as AKO for "a kind of" links. An
AKO link exists between frames Fl and F2 just
in case we wish Fl to be seen as a specializa­
tion of F2.For example, Figure 1 shows a frag­
ment of the abstraction taxonomy for the uni­
versity world. The most general concept
defined, university-person, is specialized in to
two subconcepts: student and staff. As the fig­
ure shows, these are further refined into still
more specialized concepts. The heavily
shaded frame,john, represents an individual
person in the domain. Note that a frame may
have more than one immediate ancestor, such
as teachingfellow, which is both a kind of gradu­
ate student and a kind of instructor.Using PFL,

,idual
ssible

itures
sen ta-

es are
:hy in
t their

,units,
or de­
t what

ctions
tg the
ber of
nheri­
check-

ection
:ation/
1ly re-
1 hier­
d by
1 refer
ks.An
1<'2 just
:ializa­
a frag-
1e un1-
mcept
d into
he fig­
to still
1eavily
vidual
1e may
r, such
·gradu­
� PFL,

we could define the subtaxonomy below in­
structor in Figure 1 by evaluating the following
expressions:

I

(fdefineq professor instructor)

(fdefineq teaching-fellow instructor)

(fdefineq john (teaching-fellow PhD-student))

The fdefineq function is used to define a
frame and to optionally specify its immediate
ancestors in the taxonomy and, perhaps,
some additional attributes. Note that the
frame john is defined as being both a kind of
teaching fellow and also a kind of Ph.D. student.
The ability to define one concept as the inter­
section of several more general concepts is
extremely useful and greatly adds to the ex­
pressive power of this kind of language.

The AKO link is significant in that it allows
one frame to inherit information from an­
other under certain restrictions. The
specifics of inheritance is one of the princi­
ple ways in which frame-based languages dif.

8 fer. Some systems (for example, KL-ONE,
NIKL,9 and KRYPTON10

) specify that a frame
necessarily inherits all information from all
of its ancestors.

The approach we have taken in PFL is typi­
cal of many simple object-oriented lanRuages
and FBRLs (for example, LOOPS and
FRL12

). A frame inherits information from its
ancestors unless overridden by local infor­
mation. Before discussing inheritance in
more detail, we will describe the structure
and content of a frame's slots.

One important concept in FBRLs is the no­
tion of subsumption. One concept subsumes
another if it includes it; for example, we
might say that the concept of "student" sub­
sumes that of "graduate student." In a FBRL,
a frame Fl subsumes another F2 whenever F2
and all of its descendants are necessarily de­
scendants of Fl.In some FBRLs (such as those
in the KL-ONE family) the system itself has
the responsibility of taking new frames to be
added to the knowledge base and determin­
ing all of the subsumption relationships be­
tween it and the exisiting frames. This pro­
cess is known as classification (see discussion
of automatic classification13

•
14

).

In PFL, however, the subsumption relation­
ships are determined by the AKO links. A
frame Fl subsumes another F2 if there is a
chain of AKO links between F2 and Fl. PFL
also provides a mechanism by which the
knowledge-base designer can attach special
procedures to frames that will be used to
check candidate subsumption relationships.
This facility is discussed later in the article.

Given we have a way to define objects and
place them in a taxonomy, we need to have a
way to describe various attributes an object
has. In PFL, as in most frame languages, we
express such attributes through a frame's
slots. We can think of a slot as a subobject of a

frame which can take on one or more values
and have several additional properties speci­
fied. Collectively, we will refer to the value(s)
and the other properties as facets.

For example, we could evaluate the follow­
ing expression to describe the fact that john is
both a teachingfellow and a Ph.D. student whose
major is computer science and course is num­
ber 121:

(fdefineq john (phd-student teaching-fellow)

(major (:value computerScience))

(course (:value cse121)))

In defining a frame with the fdefineq func­
tion, any arguments after the second define
the frame's slots and give them initial values
for some of their facets. Each slot specifica­
tion has the form of list beginning with the
name of a slot (for example, major) followed
by any number of facet descriptions. These
have the form of a list beginning with the
facet's name and continuing with the data in
the facet (for example, (.value csel21)).

Once we have defined a frame, we can eas­
ily add and remove slots, facets of slots, or
information in the facets. For example, to re­
flect the fact that john has changed his major
to electrical engineering and his advisor is
Mr. Chips, we could evaluate the following
expressions:

(!remove 'john 'major :value 'computer-science)

(fput 'john 'major :value 'ee)

(fput 'john 'advisor :value mister-chips)

Each of these functions takes four arguments:
the names of a frame; slot, and facet, and the
datum to be removed or added.

FACETS STRUCTURE SLOTS

A frame's slot is much more than a place to
put values. The other slot facets provide a
structure that allows us to specify useful in­
formation about the slot. The structure used
by PFL and the functions for manipulating
these slot structures are general in that one
can create facets of any name on a slot. This is
a very useful feature that makes it easy to ex­
tend the representation system or to cus­
tomize it for a particular application.

Eight facets have special, predefined mean­
ing in PFL.

:value holds the actual values for the slot.
:default holds any default values for the slot.

These may be used (under certain circum­
stances) when a value is needed for the slot,
but the :value facet is empty.

:type constrains the possible values for the
slot. The data must be frame names. For an
expression to be a legal value for a slot, it
must be subsumed by all of the frames in the
:type facet. PFL will refuse to put a value which
does not satisfy this type constraint.

:min contains a single positive integer that

A frame's
slot is
much more
than a
place
to put a
value

· oc.-:

47

FIGURE 2.

A graphic represen­
tation of how facets

can be used to build
useful descriptions.

specifies the mm1mum number of values
needed by the slot for the frame to be well
formed. The system will refuse to remove
from a slot a value that would cause it to have
fewer than this minimum number of values.

:max contains a single positive integer that
specifies the maximum number of values al­
lowed in the slot for the fr;ime to be well
formed. PFL will refuse to add a value to a
slot if it would result in the slot holding more
than this maximum number of values.

:if-needed holds procedures (known as
demons) to be run whenever a value is
needed for the slot but none is present. These
must be two argument functions, the argu­
ments being the names of the frame and slot
for which values are sought. The procedures
are invoked in order until one of them re­
turns a non-nil result, which is interpreted as
a list of virtual values for this slot.

:if-added holds demon procedures to be run
whenever a value is added to the slot. These
must be three argument functions (frame,
slot, and value). All of the procedures are run
and their return values ignored.

:if-removed holds demons to be run
whenever a value is removed to the slot. These
must be three argument functions (frame,
slot, and value). Again, all of the procedures
are run and their return values ignored.

To see how these facets can be used to build
useful descriptions, consider a description of
the generic concept for a student:

(fdefineq student university-person

(major (:type department)

(:default "deferred major")

(:min 1))

(advisor (:type professor)

(:if-added add-inverse)

(:min 1)

(:max1))

(teachers (:type instructor)

(:if-needed

(lambda (f s)

(collect (lambda (x)

(fvalues course 'instructors))

(fvalues f courses)))))

(courses (:type course)))

Graphically, we will depict this concept as
shown in Figure 2 (this follows the graphical
conventions used in the KL-ONE family of
FBRLs). Each slot is shown as a small circle
with an inscribed square. The individual
facets of the slot are shown as arcs between
the slot and their data.

This definition illustrates how the various
facets in PFL can be used to describe general
concepts that provide partial descriptions of
the various slots. It encodes the following
information:

A student is a kind of university-person and,
in general, inherits all of its attributes. In ad­
dition, a student has four local slots: major,
advisor, teachers and courses. A student must
have at least one major, which must be a kind
of department. If a student's major is not
known, assume it is "deferred major." A stu­
dent must have exactly one advisor who must
be of type professor and can have any number
of teachers. If the teachers are not known, they
can be computed by a particular procedure.
A student has any number of courses, all of
which must be of type course.

INHERITANCE

Knowledge representation systems offer
their users two things. They provide a lan­
guage for building an explicit knowledge
base of descriptions to represent objects and
relations in some domain, and they provide a
set of inferential services to allow access to
implicit information that can be automati­
cally inferred from the explicit knowledge
base. For FBRLs, the typical services include
attribute inheritance, default reasoning, at­
tached procedures, consistency mainte­
nance, and classification.

In PFL, these services are built into the
functions for accessing and updating a
frame's slots and facets. Of these services, the
inheritance of slots, facets, and data within a
facet is the most important. In general, a
frame inherits all of the information in its
ancestors except where overridden by locally
defined data. This occurs at the level of slots
within a frame as well as at the level of facets
within a slot.

In PFL, the procedure for retrieving a par­
ticular facet of a slot in a frame is:
■ If there is a facet local to the frame, then
use its data.
■ If there is no local facet, then recursively
search the immediate ancestors of the frame
until one provides the data.

The extraction of a value from a slot is

rnore c
of i nh
defau
slot S
tried

LI
data

2.I
data

3.I,
its d
quen
This
for t

4.
arer
until

PRO

(fdef

(s

(def

(def

fra
if-a
are
inv
sp
tio
wit
wil
ma

ad
in
to
an
we
fes
th
A

as
:al
of
:le
1al
�n

us
·al
of
ng

or,
ust
nd
lOt

,tu­
ust
Jer
1ey
ire.
I of

ffer
lan­
dge
and
:ie a
s to
iati­
dge
ude
, at­
nte-

the
g a
,the
1in a
al, a
n its
cally
slots
acets

. par­

then

;ively
rame

lot is

more complex and involves the intertwining
of inheritance, procedural attachment, and
default assumptions. If we seek a value for
slot S of frame F, then the following steps are
tried in order:

l. If a local slot S contains a :value facet, its
data are taken as the values.

2. If a local slot S contains a :default facet, its
data are the values.

3. If a local slot S contains an :if-needed facet,
its data are procedures that are invoked se­
quentially until one returns a non-nil value.
This value is then taken as a list of the values
for the slot.

4. The immediate ancestors of the frame
are recursively checked in a depth first search
until one provides a value.

PROCEDURES

In addition to if-needed procedures, which can
compute values for a slot when-none is explic·
itly recorded, PFL also provides procedures
that will be automatically invoked whenever a
value is added or removed from a slqt. These
are quite useful for maintaining a consistent
knowledge base.

For example, we may. wish to have a spouse
slot on the generic frame for a person which
represents a symmetric relationship. That is,
if A is the spouse of B, then it is the case that B
is the spouse of A. This can be easily accom­
plished via if-added and if-removed procedures
as the following example shows:

(fdefineq person animal

(spouse (:type person)
(:max 1)

...)

(:if-added 'add-symmetric)
(:if-removed 'remove-symmetric))

(defun add-symmetric (frame slot value)
(fput value slot :value frame))

(defun remove-symmetric (frame slot value)
(fremove value slot :value frame)

Whenever a value is added to a slot of a
frame, a search is made for local or inherited
i/added procedures. Any procedures found
are then called with the frame, slot, and value
involved. Thus if we add the value mary to the
spouse slot of john, this will trigger the invoca·
tion of the general procedure add-symmetric
with arguments john spouse and mary, which
will cause john to be added as the spouse of
mary.

Another common technique is to use if
added and if-removed procedures to maintain
inverse relations. For example, we may wish
to have an advisor slot on the student frame
and an advisee slot on the professor frame. If
we assert that the advisor of student S is pro•
fessor P, then the fo)lowing will cause the fact
that an advisee of professor Pis the student S.
A similar transaction will transpire upon the

removal of a value from either the advisor or
advisee slot.

(fdefineq student

(advisor (:min 1)

...)

(:type professor)
(:if-added 'add-inverse)
(:if-removed 'remove-inverse))

(fdefine professor

(advisee (:type student)

...)

(:if-added 'add-inverse)
(:if-removed 'remove-inverse))

(fdefine advisor slot (inverse (:value advisee)))
(fdefine advisee slot (inverse (:value advisor)))
(defun add-inverse (frame slot value)

(fput value slot :value frame))
(defun remove-inverse (frame slot value)

(tremove value slot :value frame))

For this to work we introduce frames to
represent the slots advisor and advisee. This al­
lows us to express that these two slots define
inverse relationships.

SLOTS WITH SPECIAL MEANING

A frame's slot represents a potential relation­
ship between that frame and some other ob­
ject (that is, the values of the slot). In general,
the meaning of a slot is totally up to the
knowledge base designer. Three slots, how­
ever, have special meaning in PFL. These
slots are used to represent the taxonomic
links between frames and to hold procedures
that are used to tell when the frame subsumes
or is subsumed by some other frame or ex­
pression. These special slots are:

AKO. The values in this slot are the names
of frames that are the immediate subsumers
(parents) in the abstraction hierarchy.

subsumes-if. The values should be one-argu­
ment predicates. If any is true of an arbitrary
LISP expression S, then S is subsumed by the
frame.

subsumed-if. The values should be one-argu­
ment predicates. If any is true of an arbitrary
expression S, the frame is subsumed by S.

These last two slots provide a way for the
knowledge base designer to bridge the gap
between frames and arbitrary LISP expres­
sions. For example, using the :type facet we
can constrain a slot to be filled with values
subsumed by a given set of frames.

Often, however, we would like to represent
values using not frames but some other kind
of LISP expression. To represent a person's
age, for example, it is natural to use integers.
We can accomplish this by defining a frame
valid-age to represent the class of legal age val­
ues and providing it with a subsumes-if slot
filled with a predicate to recognize the appro­
priate LISP expressions.

AI EXPERT■ NOVEMBER 1986

The
meaning
ofa
slot is
totally
up to the
knowledge
base
engineer

49

50

Tim Finin, Ph.D., is
an assistant pro­

fessor in the Dept.
of Computer and
Information Sci-

ence at the Univer­
sity of Pennsylva­
nia, Philadelphia,
Pa. His current re-

search interests
include knowledge
representation, ex­

pert systems, and
computational

linguistics.

(fdefineq person

(age (:min 1)

(:max 1)

(:type valid-age))

...)

(fdefineq valid-age thing

(subsumes-if (:value valid-agep)))

(defun valid-agep (n)

; returns Tiff n is reasonable as a person's age.
(and (integer n)

(> = n 0)

(< n 150)))

Before placing a value in a slot, PFL will
check to see if the value is subsumed by all of
the frames in the slot's :type facet. In PFL we
have extended the subsumption relation to
be one that can exist between two frames or a
frame and an arbitrary LISP expression. Basi­
cally, one expression, SI, subsumes another,
S2, if any of the following conditions holds:
■ Both SI and S2 are frames and there is a
chain of AKO links between S2 and SI.
■ SI is a frame that has a subsumes-if slot, one
of whose values is a predicate, which is true
ofS2.

■ S2 is a frame that has a subsumed-if slot, one
of whose values is a predicate, true of SI.

This makes it easy to have PFL recognize
arbitrary expressions (such as "LISP integers
between O and 150) as being subsumed by a
frame (for example, valid-age) as well as en­
abling one to experiment with various defini­
tions of subsumption.

This ends our initial discussion of frame­
based representation languages and of PFL
in particular. Part II of this article, to appear
in the December issue of AI EXPERT, will dis­
cuss the implementation of PFL both from
the point of view of implementation tech­
niques particular to FBRLs and more general
issues of good Common LISP programming.

The reader wishing to further his or her.
understanding the role of knowledge repre­
sentation languages in AI might start with an
introductory AI text such as Artificial Intelli­
gence,

15
LISP,

16 and Introduction to Artificial In­
telligence.

17 Additional details can be found in
"The Role of Frame-Based Representation in
Reasoning," 18 which describes frame-based
representation systems from the perspective
of their use in e;._pert systems applications,
and in Readings in Knowledge Representation,

19

which is a collection of 31 papers on knowl­
edge representation. Also available are de­
tailed descriptions of particular frame-based

14 20 21 languages, such as FRL, SRL, KRL,
KEE,22 and HP-RL.23 IJ

REFERENCES

1. M. Ross Quillian. "Word Concepts: A Theory and
Simulation of some Basic Semantic Capabilities." Behav­
iorial Science 12 (1967): 410-430.

2. M. Ross Quillian. "Semantic Memory."' In Semantic
Information Processing, edited by Marvin Minsky. Cam­
bridge: MIT Press, 1968.

3. S.C. Shapiro. "A Net Structure for Semantic Infor­
mation Storage, Deduction, and Retrieval."' In Proceed­
ings of the Second International joint Conference on Artificial
Intelligence. Los Altos, Calif.: IJCAI (Aug. 1971): 512-523.

4. R. Brachman. "On the Epistemological Status of
Semantic Networks." In Associative Networks: Representa­
tion and Use of Knowledge by Computers, edited by
N.V. Findler. New York: Academic Press, 1979: 3-50.
Reprinted in Readings in Knowledge Representation, edited
by RJ Brachman and HJ Levesque, Los Altos, Calif.:
Morgan Kaufmann, 1985.

5. W. Woods. "What's in a Link: Foundations for Se­
mantic Networks." In Representation and Understanding:
Studies in Cognitive Science, edited by D.G. Bobrow and
A.M. Collins. New York: Academic Press, 1975: 35-82.
Reprinted in Readings in Knowledge Representation, edited
by RJ Brachman and HJ Levesque. Los Altos, Calif.:
Morgan Kaufmann, 1985.

6. Pat Hayes. "The Logic of Frames." In Readings in
Knowledge Representation. Edited by RJ Brachman and
HJ Levesque. Los Altos, Calif: Morgan Kaufmann,
1985: 287-295.

7. Etherington, David, and Ray Reiter. "On Inheri­
tance Hierarchies with Exceptions." In Proceedings of the
National Conference on Artificial Intelligence. AAAI, 1983.

8. Brachman, RJ, and Schmolze,J.G. '/\n Overview
of the KL-ONE Knowledge Representation System." Cog­
nitive Science 9 (1985): 171-216.

9. Kaczmarek, T., R. Bates, and G. Robins. "Recent
Developments in NIKL." In Proceedings of the 1986 Annual
National Conference in Artificial Intelligence. AAAI, Aug.
1986.

10. Brachman, RJ, Pigman, VG., and Levesque, HJ
An Essential Hybrid Reasoning System: Knowledge and Symbol
Level Accounts of KRYPTON. Los Altos, Calif.: IJCAI,
1985: 532-539.

11. Bobrow, D.G., and Stefik, M. "The Loops Manual."
Technical Report KB-VLSI-81-13. Xerox PARC, 1981.

12. Roberts, B.R., and I.P. Goldstein. The FRL Manual.
MIT-AI Memo 409. Massachusetts Institute of Technol­
ogy, 1977.

13. Finin, Tim. "Interactive Classification as a Knowl­
edge Aquisition Tool." In Expert Database Systems, edited
by Larry Kerschb�rg. Menlo Park, Calif.: Benjamin/
Cummings Publishing Co., 1985.

14.-Schmolze,J.G., and Lipkis, T.A. "Classification in
the KL-ONE Knowledge Representation System."' In Pro­
ceedings of the International joint Conference on Artificial In­
telligence. Karlsruhe, Fed. Rep. of Germany, 1983.

15. Winston, P. Artificial Intelligence. Addison-Wesley,
1983.

16. Winston, P., and B.K.P. Horn. LISP Addison­
Wesley, 1984.

17. McDermott, D.E., and Charniak. Introduction to Ar­
tificial Intelligence. Addison-Wesley, 1985.

18. Fikes, R., and T. Kehler. "The Role of Frame-Based
Representation in Reasoning." Communication of the ACM
28, 9 (1985): 904-920.

19. Brachman, RJ, and HJ Levesque, eds. Readings in
Knowledge Representation. Los Altos, Calif.: Morgan Kauf.
mann, 1985.

20. Fox, M.,J. Wright and D. Adam. "Experiences
with SRL: An Analysis of a Frame-based Knowledge
Representation." In Axpert Database Systems edited by
Larry Kerschberg. Menlo Park, Calif.: Benjamin/Cum­
mings Publishing Co., 1985.

21. Kehler, T.P., and Clemenson, G.D. '/\n Application
Development System for Expert Systems."' Systems & Soft·
ware (Jan. 1984).

22. Lanam, D., R. Letsinger, S. Rosenberg, P. Huyun,
and M. Lemon. "Guide to the Heuristic Programming
and Representation Language Part 1: Frames." AT­
MEMO-83-3. Application and Technology Lab., Com·
puter Research Center, Hewlett-Packard,Jan. 1984.

23. Bobrow, D., and T. Winograd. '/\n Overview of
KRL, a Knowledge Representation Language." In Read·
ings in Knowledge Representation, edited by RJ Brachman
and HJ Levesque. Los Altos, Calif.: Morgan Kaufmann,
1985: 263-285. Originally appeared in Cognitive Science l,
1 (1977): 3-46.

. AI EXPERT ■ NOVEMBER 1986

:er.

will

>ra­

p-

ace

to

tter

an­

t

gthe

ly

Part II

K
nowledge representation is funda­
mental to AI. Over the past 25
years, many special-purpose lan­
guages have been developed for

representing knowledge in AI systems.
Frame-based representation languages
(FBRLs) form a class that has achieved wide
popularity.

In Part I of this article, we discussed the
concepts that underlie frame-based represen­
tation languages and introduced a pedagogi­
cal frame language (PFL). In Part II we give a
functional description of PFL, discuss imple­
mentation issues, and exhibit portions of the
Common LISP code that implements PFL.

The purposes of PFL and this article are
twofold: to describe in the most concrete
terms possible (by using code) some of the
concepts and mechanisms that underlie
frame-based representation languages, and
to demonstrate some of the features of Com­
mon LISP in the context of a complete, useful

PFL-THE BASICS

The primary PFL functions can be classified
into those used to create, access, modify, or
display frames. The complete list is:

(!define F . ..). Defines the frame F
(fget Fr SF D). Returns data facet F of slot S

of frame Fr
(jualue(s) F S). Returns data in the :value

facet of slot S of frame F
(!slots F). Returns names of slots in frame F
(!facets F S). Returns names offacets in slotS

offrameF
(fput Fr SF D). Adds datum D to facet F from

slot S of frame Fr
(!remove Fr SF D). Removes D from facet F of

slot S of frame Fr
(!erase F). Removes all local information

52

from frame F then deletes it
(jramep F). True if Fis the name of a frame
(!subsumes Fl F2). True if Fl subsumes F2
(!show F). Shows definition of frame E
The easiest way to create a frame is just to

refer to it. For example, saying (fget 'john 'age
':value) has the side effect of establishingjohn
as a frame if it is not one already. Two func­
tions are provided for explicitly creating a
frame and giving it some information:

(fdefine frame-name parents &rest slots)

(fdefineq frame-name parents &rest slots)

The function fdefineq is just like /define except
that it does not evaluate its arguments. A typi­
cal call to fdefineq looks like this:

(fdefineq cs-student student
(major (:value computer-science)))

This expression defines cs-student to be a kind
of student whose major is computer science.
The first argument provides the frame's
name, the second its immediate subsumers in
the taxonomy, and the remaining arguments
(if any) its slots. The slots specifying argu­
ments are lists with the structure:

(slot-name facet1 facet2 ... facetn)

where a facet looks like:

(facet-name datum1 datum2 ... datumn)

A more elaborate example of a frame defi­
nition is:

(fdefineq course university-thing
(name (:type string)(:min 1)(:max 1))
(number (:min 1) (:max 1))
(department (:type dept) (:min 1))
(prerequisites (:type course))
(lecturer (:type instructor)(:min 1))
(teaching-assistant (:type ta))
(students

(:type student)
(:min 1)
(:if-added check-prerequisites)))

Note that redefining a frame will cause the
old definition to be overwritten.

ACCESSING PARTS OF FRAMES

Four basic functions are provided to extract
information from a frame. The functions fget
and fvalues extract data stored in the facets of
the frame slots. Fget retrieves data from arbi­
trary facets of a frames slot;jvalues retrieves
data from the :value facet.

The functions /slots and ffacets operate on a
more schematic level, retrieving the slots of a
frame and the facets of a slot, respectively.
Whether or not inheritance is done (and de-

faults and demons are used) is controlled
through the use of optional keyword
parameters.

The main frame-accessing function is fget:

(fget frame slot facet &key inherit)

It takes three required arguments, which
specify a frame, slot, and facet, and the op­
tional keyword parameter inherit. It returns
the data in the specified frame, slot, and
facet. Some examples are:

(fget 'john 'advisor :if-needed)
(fget 'john 'advisor :type

:inherit t)
(fget 'john 'advisor :type

:inherit nil)

The optional keyword parameter inherit
controls whether or not inheritance is used. If
it is not specified, then its value defaults to
that of the global variable */inherit*.

The function fvalues is used to get the data
in a slot's :value facet:

(fvalues frame slot &key inherit default demons)

It is distinct from fget because the data in this
facet can be represented explicitly or com­
puted from the :default or :if-needed facets. This
function takes two required parameters
(which specify the frame and slot) and up to
three optional keyword parameters (which
control inheritance, the use of default values,
and the use of if-needed demons). Some exam­
ples are:

(fvalues stud 'courses)
(fvalues stud 'courses :inherit nil)
(fvalues stud 'courses

:inherit t
:default nil
:if-needed nil)

The optional keyword parameters are:
inherit. If nonnil, then data can be inher­

ited from any of the frame's parents, pro­
vided there are no local values, default values,
or if-needed demons.

default. If nonnil, then a default value will
be sought, provided there is no local explicit
value.

demons. If nonnil, then if-needed demons can
be invoked to compute values, provided there
are no local or default values.

If any of these optional keyword variables
are not specified, then their values are pro­
vided by the global variables */inherit*,
/default, and */demons*. These variables are
initially all set to T

The function fslofs returns a list of the slot
names in the frame frame:

(fslots frame &key inherit)

AI EXPERT■ DECEMBER 1986

1trolled
. eyword

1 is/get:

, which
the op­
returns
ot, and

• inherit
used. If
'aults to

the data

ions)

a in this
or com­
�ts. This
ameters
td up to

(which
t values,
e exam-

are:
e inher­
its, pro­
t values,

Liue will
explicit-'·

tons can
ed there

ariables
are pro­
rinherit*,
.hies are

• the slot

If the keyword parameter inherit is nil, then
these names will include only the local slots .
Otherwise, the list will include all local and
inherited slots.

The function ffacets returns a list of all the
facet names in frame frame and slot slot:

(ffacets frame slot &key inherit)

As with the function /slots, the keyword
parameter inherit determines whether just
the local or the local and inherited slots are
returned.

These last two functions are useful in writ­
ing functions that operate on arbitrary frame
structures. Writing a function to display the
information in a frame, for example, re­
quires iterating over all the slots in the frame
and then iterating over all the facets in each
slot:

(defun fshow (frame)
"displays a frame"
(format t " - %frame - S" frame)
(foreach slot in (fslots frame)

(format t " - % slot - S:" slot)
(foreach facet in (ffacets frame slot)

(format t " - % - S = " facet)
(foreach datum in

(fget frame slot facet)
(format t " - S " datum))))

frame)

ADDING, REMOVING INFORMATION
This next function adds a new datum to a
given frame, slot, and facet after checking any
appropriate type and cardinality constraints:

(fput frame slot facet datum &key type demons
inherit number)

If the datum is already a local value in the
facet, then nothing is done. If the facet is
:value and the keyword parameter :type is non­
nil, then the datum is checked for proper
type. The datum is then added to the facet
and, if the facet is :value and the keyword
parameter :demons is nonnil, any demons are
run.

The :inherit keyword parameter controls
whether or not inheritance is used in gather­
ing the demons and type information. The
:number keyword parameter controls the ap­
plication of any cardinality constraints (such
as those specified by the :min and :max facets.

Two primitive functions are provided for
removing information from the frame sys­
tem: /remove, which removes a given datum
from the facet of a frame's slot, and /erase,
which erases an entire frame. These two func­
tions look like this:

(fremove frame slot facet datum &key demons
inherit number)

(ferase frame &key demons inherit)

The /remove function removes the datum
from the frame, slot, and facet after checking
any appropriate cardinality constraint. If we
are removing a value (for example, if the facet
is :value) then any appropriate :min con­
straints are checked before the value is re­
moved and any if-removed demons are run
(provided the :demons parameter is nonnil).
The keyword parameter :inherit controls
whether or not these demons and :min con­
straints will be inherited.

The /erase function removes all local data in
all local facets of all local slots of the frame
frame via calls to /remove. This may, of course,
trigger if-removed demons. After the data have
been removed, the frame itself is deleted. The
optional keyword parameters demons and in­
herit are simply passed on to /remove.

FUNCTIONS, GLOBAL VARIABLES
The following predicate returns T if its argu­
ment is the name of a frame:

(framep expr)

The following function returns T if exprl can
be shown to subsume expr2:

(fsubsumes expr1 expr2)

One of the two arguments must be a frame.
Expression El subsumes E2 if one of the fol­
lowing is true:
■ Both are frames and are equal or there is a
chain of AKO links from E2 to El
■ El is a frame and there is a predicate in its
subsumes-if slot, which is true of E2
■ E2 is a frame and there is a predicate in its
subsumed-if slot, which is true of El.

The last two methods are provided to com­
pare frames with other, nonframe objects. For
example, we can define a frame "number"
that subsumes all LISP numbers and a frame
age Value which subsumes numbers between 0
and 120, as follows:

(fdefineq number thing
(subsumes-if (:value numberp)))

(fdefineq ageValue number
(subsumes-if (:value validAgeP)))

(defun validAgeP (X)
(and (numberp X)

(< = 0 X 120)))

Two simple functions are provided for dis­
playing the definition of a frame. The first of
these is /show:

(fshow frame &key inherit)

The second is/show-values:

(fshow-values frame &key inherit demons default)

The first function displays the specified

AI EXPERT ■ DECEMBER 1986

The
easiest
way to
create a
frame
is just
to refer
to it

53

54

LISTING 1.

The fget function.

(d:fun fget

frame, including all of its slots, facets, and
data. If the keyword parameter inherit is nil,
only the local information will be displayed.

The second function displays only the val­
ues for the slots in the specified frame. The
keyword parameters are similar to those for
fvalues. Again, the use of inheritance, default
values, and demons is controlled by optional
keyword parameters.

PFL has a small number of global variables
that control its operation. These variables
include:

frames. This variable is bound to a list of
the names of all of the frames in existence. Its
initial value is nil.

/inherit. This is the default value for the
keyword parameter inherit, and initially is T. It
determines whether or not inheritance is
used in seeking data from facets in a slot.

/demons. The default value for the key•
word parameter demons. Initially, it is T. It de­
termines whether or not if-needed, if-added, and
if-removed demons are invoked when seeking,
adding, or removing, respectively, values
from a slot.

/type. The default value for the keyword

(frame slot facet
&key (inherit *finherit*)

(demons *fdemons*)
(d:fault *fd:fault*))

(if (equal facet :value)
(fvalues frame slot facet

:inherit inherit
: demons demons
: d:fault d:fault)

(fgetl frame slot facet inherit)))

(d:fun fgetl (frane slot facet inherit?)
"returns data in frame, slot and facet"
(or (fget-local frame slot facet)

(if inherit?
(forsane parent in (fparents frame)

(fgetl parent slot facet t)))))

(d:fun fvalues (f s
&key (inherit *finherit*)

(demons *fdemons*)
(d:fault *fd:fault*)
(finitial f))

"returns values from frame F slot S"
(or (fget-local f s :value)

(and d:fault
(fget-local f s :d:fault))

(and demons
(for sane demon in

(fget-local f s :if-need:d)
(listify (funcall demon finitial s))))

(and inherit
(for some parent in (fparents f)

(fvalues parent s
:inherit t
: demons demons
: d:faul t d:faul t
:finitial finitial)))))

parameter type. Initially, it is T It determines
whether or not type checking is done when
values are added to a slot.

/default. The default value for the key­
word parameter default. Initially, it is T It de­
termines whether or not the :default facet is
used when looking for a value for a slot but
none is found ..

/number. The default value for the key­
word parameter number. Initially, it is T. It de­
termines whether or not the :min and :max
constraints are checked when adding and re­
moving values from slots.

IMPLEMENTATION
This section describes some of the details of
PFL's Common LISP implementation. Good
programming practice dictates that any large
system should be broken up into smaller
modules.

I have followed this practice and de­
composed this PFL implementation into the
files: PFL.LISP, PFLVARIABLES.LISP,
PFLMACROS.LISP, PFLBASE.LISP, PFLDI­
SPLAY.LISP, and PFLTHING.LISP. These files
can be found on the Al EXPERT Bulletin
Board Service and CompuServe forum under
the single file name PFL.LSP.

The file PFL.LISP defines the PFL system
and can be used to load PFL. Note the use of
the read-time conditionals (such as # + symbol­
ics) to customize PFL to run on different
systems.

The file PFLVARIABLES.LISP defines and
intializes all of the global variables used in
PFL. We follow the popular LISP convention
that the names of global variables begin and
end with an asterisk.

The file PFLMACROS.LISP contains the
definitions of macros and general utilities
that are used throughout the system. It is im­
portant to have these organized into a sepa­
rate file since the macro definitions are
needed whenever any other module is
compiled.

The main body of the system is contained
in PFLBASE.LISP. This is the largest and most
important file. Several functions for display·
ing frames are found in PFLDISPLAY.LISP.
Finally, some standard frames that are to be
included in every taxonomy are defined in
the file PFLTHING.LISP

REPRESENTING A FRAME
In PFL a frame is represented as a list con·
taining the frame's name and a sublist for
each of its local slots. Each slot list has a name
and any number of facets. Each facet has a
name and any number of data. Here is the
structure schematically:

(frame-name

(slot1-name ...)

(slot2-name ...)

(slot3-name

AI EXPERT■ DECEMBER 1986

rmines
: when

te key­
� It de­
·acet is
lot but

1e key­
t It de­
d :max
and re-

tails of
. Good
y large
.maller

:id de­
rito the
S.LISP,
PFLDI­
:se files
,ulletin
t under

system
: use of
symbol­
fferent

1es and
1sed in
1ention
;in and

ins the
utilities
[t is im­
a sepa-
ins are
iule is

ntained
rid most
display­
W.LISP.
re to be
"ined in

ist con­
ilist for
a name
�t has a
e is the

(facet1-name ...)
(facet2-name datum1

datum2
.

' .)

"')

...)

And here is an example of a list structure for
a frame used to represent a person:

(person

(ako (:value animal))
(gender (:type gender-term)

(:min 1)
(:max 1))

(spouse (:type person)

(:if-added add-inverse)))

The current implementation stores a struc­
ture that represents a frame under the
"frame" property of the frame's name. In ad­
dition, the global variable *frames* is bound
to a list of the names of all current frames.
Thus the function that creates a frame is rela­
tively straightforward:

(defun !create (f)
"creates a frame with name F"

(setq *frames* (adjoin f *frames*))
(setf (get f 'frame) (list f)))

Indexing the frames in this way has the ad­
vantages of being very easy to implement and
allowing for extremely fast access. The chief
disadvantage is that it only allows a single,
global frame system to exist since Common
LISP's property list system is global. This lim­
itation makes it impossible, for example, to
maintain two separate knowledge bases and
to quickly switch between them.

A typical alternative to this scheme is to
maintain a hash-table into which all current
frames are placed, indexed by their names.
Doing this enables you to have multiple
frame systems by creating several hash tables.

ACCESSING DATA IN FRAMES

One of the most basic operations on a frame
structure involves associating the data with a
particular frame, slot, and facet. This opera­
tion can be accomplished very easily by the
internal PFL function /get-local:

(defun fget-local (frame slot facet)
;; returns the data in a facet w/o

;; inheritance or demons.
(cdr (assoc

facet

(cdr (assoc
slot
(cdr (frame frame)))))))

where the function frame returns the struc­
ture that represents the specified frame, cre­
ating the frame if necessary:

(defun fput-add (frame slot facet datum)
ii adds datum to given (frame,slot,facet)
(rplacd (last (ffacet frame slot facet))

(list datum)))

(defun .ffacet (frame slot facet)
ii returns the expression representing
ii given (frame, slot,facet), creating
ii it if neccessary.
(extend facet (extend slot (frame frame))))

(defun extend (key alist)
i i like assoc, but adds key KEY if
ii its not in the alist AlIST.
(or (assoc key (cdr alist))

(cadr (rplacd (last alist)
(list (list key))))))

(defun frame (D LISTING 2.

(or (get f 'frame) The ffacet function.

{fcreate f)))

Since the CDR of nil is defined to be nil in
Common LISP, this process will work even if
the frame does not have the slot or facet in
question.

Of course, attempting to get data may in
general require that it be inherited from the
frame's ancestors. If the facet in question is
the :value facet, then we may have to look for
corresponding :default or :if-needed facets.

The /get function (Listing 1) takes three re­
quited arguments, specifying a frame, slot,
and facet, and returns a list of the data found.

(de fun fput (frame slot facet datum
&key (demons *fdemons*)

(type *ftype*)
(inherit *finherit*)
(number *fnumber*))

ii add; a datum to a slot.

LISTING 3.

Putting a value into a
facet of a slot.

(cond ((member datum (fget-local frame slot facet))
datum)

((equal facet :value)
(fput-value frame slot datum

demons type inherit number))
(t

(fput-add frame slot facet datum)
datum)))

(defun fput-value (frame slot datum demons?
type? inherit? number?)

;; adds value to slot if the types are ok
;; & slot isn't full, then runs demons
(unless

(and type? (not (fcheck-types frame slot datum)))
(unless (and number?

(not (fcheck-max frame slot)))
(fput-add frame slot :value datum)
(if demons?

(foreach demon in
(fget frame slot :if-added

:inherit inherit?)
(funcall demon frc111e slot datum)))

datum)))

AI EXPERT■ DECEMBER 1986

55

56

LISTING 4.
Removing data from

a facet of a slot.

Whether or not inheritance is done is con­
trolled by the optional keyword parameter
:inherit. If the facet in question is the :value
facet, then we can control whether or not
demons can be invoked to compute the val­
ues and whether or not default values will be
accepted through the use of the optional key­
word parameters :demons and default. Note
thatfget simply passes the job onto fget-value
or fgetl, depending on whether or not the
facet sought is :value.

New data is added to a facet of a slot using
rplacd to modify the list representing the
facet and appending the new datum to the
end of the list. The jfacet function (Listing 2) is

(d:fun fremove (frame slot facet datum
&key (d:mons *fd:mons*)

(inherit *finherit*)
(number *fnurnber*))

;; removes datum from frame's slot's facet
(when (and (member datum

(fget-local frame slot facet))
(or (not (eq facet :value))

(fcheck-min frame slot)))
(d:lete datum (ffacet frame slot facet))
(if (and (eq facet :value) demons)

(foreach demon in
(fget frame slot :if-removed

:inherit inherit)
(funcall d:mon frame slot-datum)))))

used to get this facet structure, creating it if
necessary.

In general, putting a value into a facet of a
slot is somewhat more complex. If the value is
already present, then nothing need be done.
If the facet in question is the :value facet, we
must check to see if the candidate value satis­
fies all the types associated with the slot (as
specified in the :type facet). Then we must en­
sure that the slot is still open to receiving ad­
ditional values (checking the :min facet). Fi­
nally, we must trigger any if-added demons
associated with the slot. The functions in List­
ing 3 accomplish this process.

Removing data from a facet of a frame's slot
is relatively easy (Listing 4). We first must en­
sure that the datum is indeed a locally stored
one. Then, if the facet in question is the :value
facet, we must verify that the datum's removal
will not leave too few data in the facet. The
actual removal can then be done with a sim­
ple call to delete. Finally, if we are removing a
value, we must run any if-removed demons as­
sociated with the slot. l1J

If you'd like to acquire the extended, full-length ver­
sion of PFL, the PFL.LSP file can be downloaded off
any of the AI EXPERT BBS nodes or from AI EX­
PERT s account on CompuServe.

Tim Finin, Ph.D., is an assistant professor in the
Dept. of Computer and Information Science at the
University of Pennsylvania, Philadelphia, Pa.

SAPIENS STAR SAPPHIRE
A Common LISP Compiler for the IBM PC™

* 710 functions
* C source code for Libraries
* Lexical and dynamic scoping
* Compiles to C

* Unlimited multi-dimensional arrays
* Object-oriented programming (flavors)
* Numerical functions

(bignums up to 128 digits)

Star Sapphire is a Common LISP compiler for the IBM PC. LISP is high-level general. purpose programming
language especially suited for writing artificial intelligence applications. All 710 functions of Common
LISP are supported in Star Sapphire. The memory-intensive requirements of LISP are met with an 8
megabyte configurable workspace, Sapiens VS. Speed test results show a virtual memory overhead of
less than 10%. It is primarily written in C.

Star Sapphire compiles programs to C. This increases speed and efficiency, and allows for porting code to other C
environments. Compiling to C also permits the combination of LISP and C source code.

Star Sapphire includes a LISP to C translator, the runtime libraries, a runtime optimizer, and code samples, including
graphics and an expert system engine. The IBM ROM BIOS is accessible through a library of
keyboard, screen and graphics routines. The graphics library draws points, lines, and circles.

Star Sapphire is suitable for AI programming directly on the IBM PC, as well as for use as an AI delivery system.
Developers can port programs written on larger machines to the desktop computer. Our C interface
allows for delivery of commercial applications for the PC market.

SYSTEM REQUIREMENTS: The system requires a DOS-based C compiler which supports huge model.
It needs 640K of RAM. and a hard disk. Programs developed with Star Sapphire will run on a system
with 256K of RAM. A hard disk is recommended for large applications. The virtual memory manager
uses 16-128 kilobytes of RAM at the programmer's discretion.

Sapiens Software, 236 Mora St., Santa Cruz, CA 95060 • 408/458-1990

CIRCLE 33 ON READER SERVICE CARD

	1173_001.pdf
	1173_003.pdf
	1173_005.pdf
	1173_007.pdf
	1173_009.pdf
	1173_012.pdf
	1173_014.pdf

