
BBC:
A Blackboard Generating System

(Exfended Abstract)
t-

foshua Levy
I evy @ linc. ci s.up e nn. e du

Dr.TimFinin
tim@ linc.cís.upe nn.e du

University of Pennsylvania
Computer and Information Science

March 1987

1. Introduction

This paper describes a black board system generator, Black Board Builder in C

(BBC). This generator is unique because it is a compiler producing the black board as a

separate progr¿rm, and because this black board is in C. A discussion of the advantages

of this general architecture is followed by a discussion of the features of a specific imple-

mentation.

BBC's architecture is similar to a compiler's.l It accepts an input program which

has been created previously, and generates a separate output program; it is not interac-

tive. The input language used is similar to C, and the output language generated is C.

Lately there has been an evolution of AI techniques and systems from LISP and

PROLOG based implementations running in special environments (e.g. LISP machines)

toward implementation in conventional languages (C or Pascal) running in general

environments (UNIX or VMS). Examples of this movement include Teknowledge's

expert system shells S.1 and M.1, and the availability of AI tools as additions to conven-

tional languages such as Objective-C (similar to SmallTalk) and C++ (an object oriented

TIt is actually patterned after a compiler generator (yacc) available on UNIX systems

Extended Abstract 3-31

-2-

language).f The technical advantages of an implementation in a conventional environ-

ment are discussed below, but there is another advantage: UNIX environments are far

more cofirmon than LISP machine environments, and the same is true of UND(program-

mers compared to LISP machine programmers. The ultimate goal of the BBC project is

to bring black board ideas into the C and UNIX environment in a way which will feel

comfortable to conventional programmers.

2. Architectural Advantages

The general architecture described above leads to several advantages over conven-

tional (interpreted, LISP based) black board systems. Some advantages are the result of

inherit abilities of C (portability, number of users), others result from having a generated

program separate from the generator, and finally, some are produced by generating a pro-

gram in the local "native language" (C in the case of UNIX). Five advantages of BBC

generated black boards will be discussed:

r Integration
r Speed and Size
rPortability
rPreprocessing
rUtilities

Perhaps the biggest advantage of creating C programs as output is the ease of

integrating other programs written in C. Since C is becoming the high level language for

low level work, it is increasingly true that routines to control robots, speech devices, etc.

are written in C. Since many black board systems interface with these devices, being

written in C is a big advantage. Furthennore, many prograrus with which a black board

might want to communicate, dafa base systems, rule based expert systems, and so forth,

+TRC, a progr¿rm to ftanslate rules into C (or Pæcal) code is a microcosm of this. It was
deveþed because close interaction was required with a Pascal program which simulated the
problem an expert system was needed to solve, and no expert system shell had a good enough Pas-
cal inærface.

Extended Abstract 3-31

-3-

akeady have C interfaces. Lastly, there are large C subroutine packages available which

are useful to almost any programmer, including black board programmers.

Two other advantages of BBC are speed and size. An advantage is gained by gen-

erating C code instead of LISP, since C compilers on most machines create faster code

than LISP compilers. Speed improvements, moreover, should not be considered a foot-

note in a sales brochure. Many black board applications (and AI applications in general)

must operate in real time. Speech analysis, robot control and submarine tracking are all

black board applications in which real time response is necessary. LISP systems also

tend to be big, especially the portable dialects like Common LISP which might require

2- Wegabytes of memory to do real work. C systems tend to be much smaller.

A third advantage is portability. Since BBC creates high level C code, its output is

quite portable. Blackboards could be developed on a SUN, for example, and used on a

VAX, an IBM PC, or a specialized robot controller. The compactness and speed gained

from using C can make otherwise marginal host computers acceptable.

Because there is an input language, as opposed to interactive input, this language

can be changed by simple preprocessors or generated by other programs. For example,

BBC's input language could easily be changed from C-like to LISP-like using a prepro-

cessor. Also, the input to BBC can easily be generated from other programs, a graphical

black board design tool, or a black board building expert system.

UNIX environments are now approaching LISP machine environments in terms of

utilities available to help programmers. UNIX includes debuggers, cross referencers,

profilers, and flow tracers, all of can be used on the black boards generated by BBC. The

implementation of BBC uses naming conventions designed to make these utilities easy to

use, especially debuggers.

Extended Abstract 3-31

-4-

3. Implementation

These ideas were tested by building a prototype black board generator with the

described architecture. This generator, also called BBC, runs on a VAX 785 under Ultrix

L.2 (a derivative of 4 BSD). It is designed to be portable to any UNIX system, as is the

code it produces.T This implementation is being used to build a black board to monitor

UNIX systems, a prototype version of which has been completed.

BBC's input language is fairly simple. Types of objects placed on the black board

are specified by C structures. A routine to control the black board is named. (It can

either be written by the user, or one of the defaults can be specified.) Lastly, knowledge

sources are described in ways similar to the description of C structures. Each knowledge

source has four possible slots: one to specify a C routine to be called to determine if the

knowledge source should fire; one to specify a routine to call if the knowledge source is

fired; one to specify a routine to be called to initialize the knowledge source before it is

ever fired; and one to specify a routine to cleanup after the last firing of the knowledge

sorrce.

BBC automatically produces three types of routines for the programmer to use in

developing black board systems. These are designed to be the interface between the

black board, and the knowledge sources which use it. The most basic routines are the

add, delete, change, and read routines, which provide black board data access. Next are

the searching routines. These return objects from the black board if they meet certain cri-

teria. Several of these routines are created, some are very general, and can be used to

specify arbitrary searches, while others are specific, and designed to implement common

searches. Finally, routines are created to integrate the black board's knowledge sources

T Two exceptions: the debugger assumes that sizeof(int) == sizeof(int*) and the search by regular
expression routines use code specific to BSD systems, and will not rûn on Bell UNIXs.

Extended Abstract 3-31

-5-

and its control routine.

BBC provides other services as well. A history list is kept on the black board. This

list can be used for debugging, to see what has been done recently; to help the control

routine determine which knowledge sources are overdue for use; or to allow the

knowledge sources to reason about themselves. There is also a built in debugger which

allows black board developers to print the contents of the black board, check the history

list, "single step" through the black board's operation, etc. Finally, sample control rou-

tines are distributed with BBC. These can either be used 'as is' or be the starting point

for developing customized controllers.

4. Conclusions and Future Work

The architecture of a black board building tool shapes the black boards it creates

and their possible uses. This work has shown the viability of a compiler and C based

architecture for black board generators. The black boards created by a prototype system

have most of the advantages of being C programs, but do not require the amount of work

required to write a black board from scratch in C. These black board systems are espe-

cially appropriate where speed, portability, or ease of integration with C tools are

required.

Several interesting lines of research are open. One involves RPC, Sun

Microsystem's remote procedure call system. RPC provides a general framework for C

progr¿Ims on one machine to call C routines on other machines. It could provide an easy

way to distribute the black boards qeated by BBC. Another lies in making the black

board a more powerful data structure. It is currently a collection of typed objects, but

more powerful representations could be implemented. A frame based black board might

be especially useful and interesting. Finally, other black board generators have means of

grouping the black board objects and the knowledge sources which use them. This could

Extended Abstract 3-31

5. References

This paper was influenced by two very different schools of thought, previous work

on black board generators, and previous work on UNIX tools. The following black board

works are lisæd by influence, most influential first.

tNiil
H. Penny Nii,'William C. White, Nelleke Aiello; Joy of AGE-ing: An Introductíon
to the AGE-I System, Heuristic Programming Project, Stanford, 1981.

[Hayes-Roth]
Barbara Hayes-Roth, BBI: An architecture for blackboard system"s that contol,
explaín, and learn about theír own behavior, Stanford, IIPP-84-16 or STAN-CS-
84-t034,1984.

[Balzer]
Robert Balze4 Lee Erman, Philip London, Chuck Williams; Hearsay-IIl: A
Domain-Independent Frameworkfor Expert Systems, Proceedings of AAAI, 1980.

The following work refers to UNIX tools. [K&P] is a practical inroduction both to

creating programs in IINIX, and to the philosophy they embody. IYACC] and [TRC] are

specific tools which generate C code as output, and finally, [RPC] is an example of a

library of useful routines which could be especially useful to a black board builder.

trRcl
Daniel D. Kary, The TRC Reference Manual, Computer Science Department, North
Dakota State University: 1986. This article and source code for TRC was posted to
mod.sources, an ARPAnet bulletin board.

tK&Pl
Brian W. Kernighan and Rob Pike, The UNIX Programming Bnvironment,
Prentice-Hall, Englewood Cliffs: 1984.

tRPCI
Remote Procedure Call Programming Guide, Sun Microsystems: 1986. Source
code and documentation for RPC was posted to mod.sources.

IYACC]
S. C. Johnson,YACC: Yet Another Compíler Compiler, Computing Science Techni-
cal Report #3Z,BeIl Laboratories, Murray Hill, NJ, 1978.

Extended Abstract 3-31

-6-

be experimented with as a method of reducing programming mistakes.

Extended Abstract 3-31

