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aBSTRAí:T: This article discusses the application of various kinds of default 

reasoning in systems which must maintain a model 'Ôf its users. In particular, 
system for building

we describe a general architecture of a domain-independent 

and maintain iÃg long term models of individual wers . The user modelling system 

is intended to provide a well defined set of services for an application system 

which is interacting with various users and has a need to build and maintain 

models of them. e"s the application system interacts with a user, it can acquire 

on to the user model maintenanceknowledge of him ano paii that knowledge 
a prototype general wer modelling system

system fðr incorporation. we describe 

(írereafter caleã G1MS,) which we have implemented in Prolog. This system 

satisfres some of the desirable characteristics we discuss' 

KEYvuRDS: Default Reasoning, User Modelling' 

INTRODUCTION_THE NEED FOR USTR MODELLING 

Systems which attempt to interact with people in an intelligent and cooperative 

*urrr", need to knoï many things about the individuals with whom they are 

interacting. Such knowledge can bé of several different varieties and can be rep-

resented a-nd used in a numúer of different ways. Taken collectively' the information 

itu, u system has of its users is typically refered to as its user model' This is so 

*h"n it is distributed throughout many components of the system' 
"u"r,Examples that we have been involved with include systems which attempt to 

providehelpandâdvice,(11'1+,ao\futorialsystemsþg),andnaturallanguageinter-
iu""..(o*) Eaåh of thes" ,yrt"*, has a need to represent information about individual 

users. Most of the information is acquired incrementally through direct observation 

and/or interaction. These systems aiso needed to infer additional facts about their 

users based on the directly ácquired information. For example' the WIZARD help 
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slste¡1(r1'no) had to represent which vMS operating system objects (e.g., commands, 
command qualifiers, concepts, etc.) a user was familiar with and to infer which 
other objects he was likely to be familiar with. 

This article describes a general architecture for a domain-independent system
for building and maintaining long term models of individual users. The user mo-
delling system is intended to provide a well-defined set of services for an application 
system which is interacting with various users and has a need to build and maintain 
models of them. As the application system interacts with a user, it can acquire
knowledge of him and pass that knowledge on to the user model maintenãnce 
system for incorporation. We describe a prototype general user modelling system
(hereafter called GUMS) which we have implemented in prolog. ThiJ system 
satisfies some of the desirable characteristics we discuss. 

The next section will discuss some of the general issues that arise in building 
user models. In particular, we will describe the range of possible issues that one 
might address in terms of four aspects: who is being modeled; what information 
is represented in the model; how the model is acquired and maintained; and how 
the model might be used. The third section provides an overview of the GUMSI 
system and the kind of user modelling it supports. The fourth section describes the 
the three kinds of default reasoning that GIJMS, employs: stereotypical reasoning, 
explicit default rules and failure as negation. Section five describes some of the 
details of the GUMS1 system. The concluding section discusses some of the limi-
tations of GUMS, and avenues for future research. 

WHAT KIND OF USER MODET? 

The concept of encorporating user models into interactive systems has become 
common, but what has been meant by a user model has varied and is not always 
clear. In this section we will discuss, in general terms, what might be meant by the 
termuser model.Wewill then characterizethe approach to user modelling described 
in this work by answering the following questions: who is being modeled; what 
aspects of the user are being modeled; how is the.model to be initially acquired 
and maintained; and how will it be used. 

The term "user model" has been used in many different contexts to describe 
knowledge that is used to support a interactive system. A survey of user modelling
in support of natural language interfaces can be found in,(te) utro a discussion of 
user^modelling for intelligent tutoring systems is provided by.(") Kobsa and whals-
ter Qo) have edited a book which brings togethei a collectiän of papers discussing 
user modelling in the context of man-machine dialogue systems. In this section, 
we will look at a number of distinctions that will allow us to focus on an interesting 
and important class of "user models." 

An initial definition for "user model" might be the following: 

A user model is that knowledge about the user, either explicitly or implicitly
encoded, which is used by the system to improve the interãction. 

The definition is too weak, since it endows every interactive system with some kind 
of user model, usually of the implicit variety. In this paper, we will focus our 
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attention on those models in which the information about the user is explicitþ 
encoded. In particular, we are interested in user models that are designed along 

the lines of "knowledge bases." By this we have in mind the kinds of distinctions 

that are usually drawn to distinguish a knowledge base from a data bøse. In the 

context of user models, frve features are important: 

1. Separate Knowledge Base-Information about a user is collected in a separate module 

rather then distributed throughout the system. 

2. Explicit Representation-^îhe knowledge in the user model is encoded in a represen-

tation language which is sufficiently expressive. Such a representation language will typically 

provide a set of inferential services. This will allow some of the knowledge of a user to be 

impticit, but automatically inferred when needed. 

3. Declarative rather than Procedural-The knowledge in the user model is, as much as 

possible, encoded in a declarative rather than procedural manner. 

4. Support for Abstraction--"fhe modelling system provides ways to describe abstract as 

well as concrete entities. For example, the system might be able to discuss classes of users 

and their general properties as well as individuals. 

5. Mukiple Use-Since the user model is explicitly represented as a separate module, it 
can be used in several different ways (e.g., to support a dialogue or to classify a new user). 

This requires that the knowledge be represented in a more general way that does not favor 

one use at the expense of another. It is highly desirable to express the knowledge in a way 

that allows it to be reasoned about as well as reasoned with. Similarly, the model ought to 

provide no barriers to its use by several different applications. 

User models which have these features flt nicely into current work in the broader 

freld of knowledge representation.In fact, we could paraphrase Brian Smith's knowl-
edge representation hypothesisØo) to get something like: 

Any user model will be comprised of structural ingredienß that (a) we as external 

obiervers naturøþ take to represent a propositional account of the knowledge 
the system has oi the tner, and (b) independent of such external semantical 
attribution, ptay à format but causal and essential role in the behavíor that man-
iþsts that knowledge. 

In the remainder of this section we will explore the large space of user modelling 
possibilities by addressing the who, what, how and why of user modelling. Our 

own system will then be placed within this space. 

Who is Being Modeled? 

Two aspects of who is being modeled are the degree of specialization and tem-

poral extent. The degree of specialization involves whether we are modelling classes 

òf ,rset. or individuals. Temporal extent refers to the persistence of the knowledge 

encoded in the user model--does it expire at the end of the current session or does 

it form a long-term knowledge base about the user. 

A user model can lie somewhere on a specialization scale which ranges from 
generic to individual. A generic user model assumes a homogeneous set of users-
ã11 ittdiuidrruls using the system are similar enough with respect to the application 
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that they can be treated as the same type of user. Many natural language systems, 
for example, maintain a single generic user model in order to infer the user's goals 
or to recognize a user's misconceptions.(2'+'s'tz) ¡ somewhat more individuãting 
point on this scale is to employ a set of fixed, generic models to represent different 
subclasses of users. For example, the uc slster¡(ae'z) classifies a user as belonging 
to one of four possible generic classes: novice, beginner, intermediate, ot expert. 

Modelling the very general beliefs held by large classes of users is extremely 
important to building intelligent systems. For example, in modelling a person's 
beliefs about a timeshared computer system we may want to include a rule like: 

If a user u believes that machine M ß running, then (I will believe that it is 
possible for him to log onto M. 

It is just this sort of rule which is required in order to support the kinds of coop-
erative interactions studied in,(r0) uttd (tÐ such as the following: 

User: Is linc.cis.upenn.edu up? 
System: Yes, but you can't log on now. Preventative maintenance is being 

done until 11:00¡,rvr. 

Individual user models, on the other hand, contain information specific to a 
single user. A user modelling system that keeps individual models thus will have 
a separate model for each user of the system. A simple example of this kind of 
model is the commonly used convention of customizing the behavior of a utility, 
such as an editor or mail system, by allowing each user to have a profiIe file which 
states his preferences for various system parameters. 

A natural way to combine the system's knowledge about classes of users with 
its knowledge of individuals is through the use of stereotypes-generic models with 
specializations for individuals. A stereotype is a cluster of default facts about the 
user that tend to be related to each other. One can model an individual as belonging 
to a particular stereotype (e.g., novice Unix user) with a set of overriding facts 
(e.g., knows how t9 ye pipes). Examples of systems that have used stereotypes 
include GRUNDY,(") and the Real-Estate Advisor.(3o) 

What is to be Modeled? 

The contents of a user model naturally varies from application to application. 
Following Kass and Finin,(zz) we will classify this knowledge into four õàtegories: 
goals and plans, capabilities, attitudes, and knowledge or belief. 

A user's goals and plans are intimately related to one another. The user's goal 
is a state of affairs he wishes to achieve, and a plan is a sequence of actions or 
events that he expects to result in the realization of a goal. Furthermore, each step 
in a plan has its own subgoal to achieve, which may be realized by yet anothei 
subplan. One of the hallmarks of an intelligent, cooperative system is that it at-
tempts to help the user achieve his underlying goals, even when not explicitly 
stated. The principle way for one agent to know another's underlying goal(s) is by 
recognizing his observable actions as constituting a (possibly partial) plan for achiev-
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ing a domain-relevant goal. A great deal of work has been done on the problem 

oiplan recognition in support of cooperative interactions. Examples in the natural 

langoage doäain includË Allen and Þerrault(t) and Carberry.(''t) Intelligent Tuto"r-

ing"sysî"-s have introduced the idea of keeping a catalog of "buggy" plans(:'+z'ts¡ 

uJu rn"unr of recognizing misconceptions or missing knowledge. The use of pþ1 
recognition is also ieleuaãt to the pioblem of providing help and advice' as in (tt) 

and (on). 

A second category of knowledge to be modeled has to do with the user's ca-

pabilities. Although some systems might have to reason about a user's physical 

ôapabilities, such as the ability to perform some action that the system may rec-

ommend, it is more typical for a system to model and reason about mental capa-

bilities, such as the ability to understand a recommendation or explanation provided 

by the system. Examples of the latter arise when a system is gen-erating an 
_o_ften 

as in Wailis and Shortliffe(o') and Paris's TAILOR slster¡.(3:) Webber 
"*plonoiion,uni Finitt,ot) have surveyed ways that an interactive system might reason about its 

user's capabilities to improve the interaction. 
A third category ofknõwledge represent's a user's bias, preferences and attitudes. 

GRUNDY(3t) was un early user modelling system which used a model of a user's 

preferences to recommenå books to read' Tire Real-Estate Advisor(3o) and HAM-
!¡5{r:,:r) are other systems which have tried to model this. Swartout(ot) and 

McKeown(2t) address the effects of the usef s perspective or point of view on the 

explanations generated by a system. 

ihe final of information we will consider is knowledge and beligf) 
"ãtegoryModelling the user'i knowledge involves a variety of things: domain knowledge, 

general world knowledge and knowledge of other agents. Knowing what the user 

úeheves to be true about the application domain is especially useful for many types 

of systems. In generating responses, knowledge of the concepts and terms the user 

undlrstands orls familiar with allows the system to produce responses incorporating 

those concepts and terms, while avoiding concepts.llr9.user might not understand' 

This is true for intelligent help systems,(1r'ae) which must provide clear, 
"tp"iiullyunderstaniable êxplanations to be truly helpful. Providing definitions of data base 

items (such as the TEXT system does(tn)) has a similar requirement to express the 

definition at a level of detail and in terms the user understands. 

A final form of user knowledge that is important for interactive systems is knowl-

edge about other agents. As an interaction with a user progresses, not only will 
thJ system be building a model of the beliefs, goals, capabilities and attitudes of 

the user, the user will-also be building a model ãt ttt" syitem. Sidner and Israel(4l) 

make the point that when individuals communicate, the speaker will have an in-

tended meàning, consisting of both a propositional attitude and the propositional 

content of the utterance. The speaker expects the hearer to recognize the intended 

meaning, even though it is not explicitly stated. Thus a system must reason about 

what mòdel the user has of the system when making an utterance, because this 

will affect what the system can conclude about what the user intends the system 

to understand by the user's statement. Kobsa(") has studied some of the difficult 
representationai problems involved with building recursive models of the beliefs 

of other agents. 
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How is the Model to be Acquired and Maintained? 
The acquisition and maintenance of the user model are closely related topics.

By acquisition, we mean the techniques for learning new facts about the user. 
Maintenance involves encorporating this new information into the existing model 
and squaring away any discrepancies or contradictions. We will briefly review some 
of the possibilities for these two related problems. 

The knowledge in a user model can be acquired either explicitly or implicitly.
Explicitly acquired knowledge might come directly from the system designer in the 
form of built in knowledge of stereotypes, from the application system the user 
model is serving or from the user himself. GRUNDY, for example, began with a 
new user by interviewing him for certain information. From this initial data, 
GRUNDY makes judgments about which stereotypes most accurately fit the user, 
and thus forms an opinion about the preferences of the user based on this initial 
list of attributes. As another example, each time the UMFE slste¡¡(a:) needs to 
know a new fact about its user, it simply asks. 

Acquiring knowledge about the user implicitly is usually more difficult. This 
usually involves "eavesdropping" on the user-system interaction in order to observe 
the user's behavior, and from it to infer facts which go into the model. various 
aspects of implicit acquisition have been explored, including the use of presup-
positions,(t8) misconception recognition,(z0,zz) .tereotype seleðtion,(.t':s':ol in¿ ,¡" 
use of default rules.(34'20'21) 

Maintenance involves encorporating new knowledge about an individual user 
into an existing model. The new, incoming information might be consistent or 
inconsistent with the current model. If it is consistent, maintenance involves trig-
gering inferences which add additional facts to the model. If the new knowledge 
is inconsistent with the current model then the inconsistency must be resolved in 
some manner. The possibilities depend on the underlying representations and rea-
soning systems on which the modelling system is built. The two major approaches 
are evidentiøl reasoning, which allows the model to hold that a certain fact is true 
with a certain degree of belief, and deføult reasoning,Q6) in which certain facts can 
be held in the absence of evidence to the contrary. 

How is the Model to be Used? 

The knowledge about a user that a model provides can be used in a number of 
ways in an intelligent, interactive system. The particular opportunities depend,
of course, on the application. Figure 1 presents a general taxonomy of possible 
USES. 

At the top level, user models can be used to support (1) the task of recognizing 
and interpreting the information seeking behavior of a user, (2) providing the user 
with help and advice, (3) eliciting information from the user, and (4) providing 
information to him. Situations where user models are used for many of thesè 
purposes can be seen in the examples presented throughout this paper. 

The model can be accessed in two primary ways: facts can be added, deleted or 
updated from the model, and facts can be looked up or inferred. A forward chaining 
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component together with a truth maintenance system can be used to update the 
default assumptions and keep the model consistent. 

A GENERAT USER MODETLING SYSTEMS 

The previous section described a large conceptual space of user modelling possi-
bilities in terms of four dimensions. This section will place our own work in this 
space and give an overview of its major characteristics. Our paradigm for user 
modelling might be described as User Model as Deductive Døtabase. The GUMS, 
system allows one to construct models of individuals which appear to be a collection 
offacts which can be asserted, retracted or queried. Some ofthese facts are deduced 
through the use of inference rules associated with stereotypes to which the user 
belongs. 

Who is is being modelled? GUMS. is designed for building long term models of 
individual users. We want to represent the knowledge and beliefs of individuals 
and to do so in a way that results in a persistent record which can grow and change 
as necessary. These users are associated with a stereotype from which additional 
facts derive. 

What is being modelled? Our interest is in providing a domain-independent user 
modelling tool. The content of the user model will vary greatly from application 
to application and is left for the model builder to decide. For example, a natural 
language system may need to know what language terms a user is likely to be 
familiar rilith,(48) a CAI system for second language learning may need to model a 
user's knowledge of grammatical rüles,(3e) an intelligent database query system may 
want to model which fields of a data base relation a user is interested in,(:z) und 
an expert system may need to model a user's domain goals.(") However, our 
paradigm of user model as deductive database makes modelling certain things much 
easier than others. It is easy to construct models which can be expressed as a set 
of relations. In particular, we do not provide any general facilities for building deep 
models of an agent's reasoning strategies or procedural knowledge. 

How is the model acquired and maintained? Our approach in GUMS, is to let 
the application be responsible for acquisition, and to provide a set of services for 
maintenance. The application must select the initial stereotype for the user and 
add new facts about the user as it learns them. How the application discovers these 
facts (i.e., explicitly or implicitly) is up to the application. Maintaining the model 
involves encorporating these new facts, checking that they are consistent with 
previously learned or inferred facts, and resolving any discrepancies and contra-
dictions. This can be accomplished by undoing contradictory default assumptions 
and/or shifting the user to a new stereotype. The details of how this is done will 
be described later. 

Why is the model there? Given our goal of producing a general purpose, domain-
independent user modelling facility, the uses to which the knowledge in the model 
is put is outside of our design. We will, however, give a more syntactic account of 
how the model is to be used in terms of how the application interacts with GUMS,. 
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The System Organization 

Our goal is to provide a general user modelling utility organized along the lines 

shown i"n Figure ). fn" usei modelling system provides a service to an application 

program whlch interacts directly with a user. Note that the user modelling system 

àoei not have access to the interaction between the application and the user' 

Everything it learns of the user must come directly from the application' The 

GUIIS, Tf*t"- has a separate knowledge base for each application it serves. An 

appticaiion knowledge base consists of two parts: (L) a collection o1 stereotypes 

organized into a taxõnomy and (2) a collection of models for the individuals' The 

inãividual models are instã[ed in the stereotype hierarchy as leaves' Figure 3 shows 

such a hierarchy. As will be seen later, a stereotype is a collection of facts and 

rules which are ãppHcable for any person who is seen as belonging to that stereotype' 

These facts and rules can be either definite or default' allowing for an individual 

to vary from the stereotypical norm. 
The application progiam gathers information about the user through its inter-

action añd choses to siore some of this information in the user model' Thus' one 

service the user model provides is accepting (and storing!) new information about 

the user. This information may trigger an inferential process which could have a 

number of outcomes: 

o The user modeling system may detect an inconsistency and so inform the application. 

o The user model may infer a new fact about the user which triggers a demon causing 

some action (e.g., informing the application). 
o The user model may need to update some previously inferred default information about 

the user. 

Another kind of service the user model must provide is answering queries posed 

by the application. The application may need to look up or deduce certain infor-

mation about its current user. 

StereotYPes 

A user model is most useful in a situation where the application does not have 

complete information about the knowledge and beliefs of its users. This leaves us 

with the problem of how to model a user, given we have only a limited amount of 

knowledge about him. Our approach involves using several forms of default rea-

soning techniques: stereotypei, explicit default rules, and failure as negation' we 
urrorri" that the GUMSt.ytt"- wiil be used in an application which incrementally 

gains knowledge about iti users throughout the interaction. But the mere ability 

io gain knowleãge about the user is not enough. \Me cannot wait until we have full 

knõwledge aboui a user to reason about him. Fortunately we can very often make 

u g"n"rllirution about users or classes of users. We call a such a generalization a 

stereotyPe. 
A stereotype consists of a set of facts and rules that are believed to apply to a 

class of orerr. Th.rs a stereotype gives us a form of default reasoning in which each 

rule and fact in the stereotypé itiukett to hold in the absence of evidence that the 

user does not belong in the stereotype. 
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Figure 3: A Hierarchy of Stereotypes and lndividuals 

Stereotypes can be organized in hierarchies in which one stereotype subsumes 

another if it can be thought to be more general. A stereotype 51 is said to be more 

general than a stereotype S, if everything which is true about S, is necessarily true 

ãbout Sr. Looking at this from another vantage point, a stereotype inherits all the 

facts and rules from every stereotype that it is subsumed by. For example, in the 

context of" a programmer's apprentice application, we might have stereotypes cor-

responding to different classes of programmer, as is suggested by the hierarchy in 

Figure 4. 
In general, we will want a stereotype to have any number of immediate ancestors, 

allowing us to compose a new stereotype out of several existing ones. In the context 

of a prògrammer's apprentice, for example, we may wish to describe a particular 

user as a Symbolics Wizard and a UnixNovice and a ScribeUser. Thus, the stereotype 

system should form a general lattice. Our current system, however, constrains the 

system to a tree. 
A stereotype is comprised of several kinds of knowledge, as depicted in Figure 

5. Each stereotype can have a single subsuming stereotype, a set (possibly empty) 

of subsumed stereotypes, and a set (again, possibly empty) of individuals currently 
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believed to be modeled by the stereotype. The real contents of the stereotype, 

however, consists of two databases of facts and rules, one definite and the other 

default. The definite facts and rules constitúe a definition of sorts for the stereotype 

in that they determine what is necessarily true of any individual classified under 

this stereotype. If our knowledge of an individual contradicts this information, then 

he cannot be a member of this stereotype or any of its descendant stereotypes. 

The default facts and rules, on the one hand, deflne our initial beliefs about any 

individual who is classified in this stereotype. They can be overridden by specific 

information that we later learn about the individual. The final component of a 

stereotype is a collection of meta-knowledge about the predicates used in the 

definité ãnd default knowledge bases. This information is used in the processing 

of negative queries and is described later. 
As an example, consider modelling the knowledge a programmer might have. 

We can be sure that a programmer will know what a file is, but we can only guess 

that a programmer will know what afile directory is. If we have categorized a given 

.rr"t ottd"i the programmer stereotype and discoverz that he is not familiar with 
the concept of. a fiIe, then we can conclude that we had improperly chosen a 

stereotype and must choose a new one. But if we got the information that he did 

not know what a file directory was, _this would not rule out the possibility of his 

being a programmer. 

lndividuals 

The knowledge structure for an individual is simpler than that for a stereotype. 

An individual has exactly one stereotype with which it is currently associated and 

a collection of definite ground facts which are true, as is shown in Figure 6. 

The facts known about an individual override any default facts known or de-

ducible from the stereotype associated with the individual' They must, however, 

be consistent with the stereotype's definite knowldge base. If a contradiction arises, 

then the individual must be reclassified as belonging to another stereotype. 

Default Reasoning with Rules 

ln GtlMSt we use the certain/l predicate to introduce a definite fact or rule and 

the defaulll predicate to indicate a default fact or rule, as in: 

certain(P). a definite fact: P is true. 
certain(P if Q). a definite rule: P is true if Q is definitely true and P is 

assumed to be true if Q is only assumed to be true. 

default(P). a default fact: P is assumed to be true unless it is known 
to be false. 

defautt(P if Q). a default rule: P is assumed to be true if Q is true or 
assumed to be true and there is no definite evidence to 
the contrary. 

As an example, consider a situation in which we need to model a person's 

familiarity with certain terms. This is a common situation in systems which need 
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Figure 5: A Stereotype 

Subsuming 
Stereotypes 

ffiffi 

Subsumed lndividuals 
Stereotypes 

to produce text as explanations or in response to queries and in which there is a 
wide variation in the users' familiarity with the domain. We might use the following 
rules and facts: 

(a) default(understands Term(ram)), û
(b) default(understands Term(rom) if understands Term(ram)), 
(c) certain(understands Term(pc) if understands Term(ibmpc)), 
(d) certain(-understands Term(cpu)), 

to represent these assertions,'all of which are considered as pertaining to a particular 
user with respect to the stereotype containing the rules: 

(a) Assume the user understands the term røm unless we know otherwise. 
(b) Assume the user understands the term rom 1f we know or believe he understands the 

tefm ran unless we know otherwise. 
(c) This user understands the term pc if he understands the term ibmpc. 
(d) This user does not understand the term cpu. 

GUMS1 also treats negation as failure, and in some cases as a default rule. In 
general, logic is interpreted using an open world assumption. That is, the failure 
to be able to prove a proposition is not taken as evidence that it is not true. Many 
logic programming languages, such a Prolog, encourage the interpretation of un-
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Figure 6: An lndividual 

Subsuming 
reotype 

provability as logical negation. Two approaches have been forwarded to justify the 

negation ãs failure rule. One approach is the closed world assumption.(e) In this 

case we assume that anything not inferable from the database is by necessity false. 

One problem with this assumption is that this is a metalevel assumption and we 

do not know what the equivalent object level assumptions are. A second approach 

originated by Clark is básed upon the concept of a completed database.(t) A com-
pleted database is the database constructed by rewriting the set of clauses defining 

each predicate to an if and only if definition that is called the completion of the 
predicate. The purpose of the completed definition is to indicate that the clauses 

that define a predicate defrne øvery possible instance of that predicate. 

Any approach to negation as failure requires that a negated goal be ground 

before execution. (Actually a slightly less restrictive rule could allow a partially 
instantiated negated goal to run but would produce the wrong answer if any variable 

was bound.) Thus we must have some way of insuring that every negated literal 
will be bound. ln GUMSrwe have used a simple variable typing scheme to achieve 

this, as will be discussed later. 
We have used a variant of the completed database approach to show that a 

predicate within the scope of a negation is closed. A predicate is closed if and only 
if it is defined by an if and only l/ statement and every other predicate in the 
definition of this predicate is closed. We allow a metalevel statement completed(P) 
that is used to signify that by predicate P we really intend the if and only z/definition 
associated with P. This same technique was used by Kowalski(") to indicate com-
pletion. We assume that a predicate is not completed unless it is declared to be 

so. So if P is not explicitly closed, not P is decided by default. 
Thus in GUMS. we have the ability to express that a default should be taken 
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from the lack of certain information (i.e., negation as failure) as well as from the 
presence of certain information (i.e., default rules). For example, we can have a 
default rule for the programmer stereotype that can conclude knowledge about 
linkers from knowledge about compilers, as in: 

default(knows(linkers) if knows(compilérs)) 

We can also have a rule that will take the lack of knowledge about compilers as 

an indication that the user probably knows about interpreters, as in: 

certain(knows(interpreters) if - knows (compilers)) 

This system also allows explicit negative facts and default facts. When negation is 
proved in reference to a negative fact then negation is not considered a default 
case. Similarly negation as failure is not considered a default when the predicate 
being negated is closed. Such distinctions are possible because the GUMS, inter-
preter is based on a four value logic. 

The distinction between truth or falsity by default (i.e., assumption), and truth 
or falsity by logical implication is an important one to this system. The central 
predicate of the system is the two argument predicate show, which relates a goal 
G expressed as a literal to a truth value. Thus show(Goøl,Vøl) returns in the variable 
Val the "strongest" belief in the literal Goal. The variable Val can be instantiated 
to true, false, assume(true), or assume(false). The meanings of these values are as 
follows: 

true definitely true according to the current database. 
assume(true) true by assumption (i.e., true by default) 
assume(false) false by assumption
false definitely not true. 

These values represent truth values for a given user with respect to a given ster-
eotype. If the stereotype is not appropriate, then even definite values may have 
to change. 

Having a four value logic allows us to distinguish conclusions made from purely 
logical information from those dependent on default information. Four value logic 
also allows a simple type of introspective reasoning that may be useful for modelling 
the beliefs of the user. We currently use a default rule to represent an uncertain 
belief about what the user knows or believes, but we could imagine a situation 
where we would like to model uncertainties that the user has in his beliefs or 
knowledge. One such predicate is an embedded show predicate. The embedded 
show relation holds between a goal G and a truth value T if the strongest truth 
value that can be derived for G is T. 

As an example, consider a situation in which we need to express the fact that a 
user will use a operating system command that he believe might erase a file only 
if he is certain that he knows how to use that command. We might encode this 
using the show predicate as follows: 
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certain (okay-to-use (Command) if 
can-erase-files (Command)' 
show (know (Command),true))' 

The embedded show predicate forces the know(Command) goal to be a definite 

fact in order for the conclusion to hold. 

Another predicate assumed(Pred) willevaluate the tnÍh of Pred and " strengthen" 

the result. The strengthen opetationmaps assumed values into definite values (e'g' 
' 

assume(true) becomes true, assume(false) becomes false, and true and false remain 

unchanged). The assumed predicate is used to express a certain belief from an 

uncert;n Énowledge or beli,ef. For example, we might want to express a rule that 

a user will always want to use a screen editor if he believes one may be available' 

certain (willUse (screenEditor) if 
assumed (available (screenEditor))). 

The interpreter that GUMS. is based on is a metalevel interpreter written in 
prolog. The interpreter must génerate and compare many possible answers to each 

,rrUqrr?ry, because of the mul;iple value logic and the presence of explicit negative 

information. Strong answers to ã query (i.e., true andfalse) are sought first' followed 

by weak answers (i.e., ottu*e(true) and assume(false)). Because strong answers 

hâve precedence over weak ones, it is not necessary to remove weak information 

that contradicts strong information. 
Another feature otlhis system is that we can specify the types of arguments to 

predicates. This type information is uses to allow the system to handle non-ground 

goals. ln our system, a type provides a way to enumerate a complete set of possible 

íalues subsumed Uy ttraitypå. When the top-levelshow predicate is given a partially 

instantiated goal to sotvé, it uses the type information to generate a stream of 

consistent, fully instantiated goals. These ground goals are then tried sequentially' 

T'nut gout, -nrt be fully inlantiated foilòws from the fact that negation as failure 

is built into the evaluation algorithm. Complex terms will be instantiated to every 

pattern allowed by the datatyle given the full power of unification. To specify the 

iype information, one must ipecity argument types for a predicate, subtype infor-

Inätion and type instance informátion. For example, the following says that the 

ir"Oi"ut" ranges over instances of person and programmingLanguage, 
""nP"og""- is a sub-type of programmingLanguage, and thatthat thJtype^functionalLlnguog" 
the valuoicheme is an instance of the type functionalLanguage; 

declare (canProgram (person,programminglanguage))' 

subtype (programminglanguage, functionallanguage)' 

inst (functionallanguage, scheme)' 

To see why this is necessary, consider the following problem. we would like to 

model a programmer's knowledge of tools available on a system' This might be 

I 
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done in order to support an intelligent help system, for example. we might want 
to encode the following general rules: 

. C programmers tend to use all of the relevant tools that are available to them, 
o If. a C programmer does not use some relevant tool, than this is probably because he 

is not aware of it, 
o A person is probably a c programmer if they have ever used the c compiler, 
o Every C tool is relevant to a C programmer, 
o We have complete knowledge of every tool a user has used, 
o Lint is a C tool, 

which could be expressed in GUMS, as follows: 

default (knows (Tool) if relevant (Tool), cprogrammer) 
default (-knows (Tool) if -used (Tool), relevant(Tool) 
default (cprogrammer if used (cc) 
certain (relevant (Tool) if cTool (Tool), cprogrammer 
closed (used) 
ctool (lint). 

Suppose we want to discover a tool of which an individual user is not aware. To 
answer this, we would like to pose the query -knows(x) where x is an uninstan-
tiated variable. Let's assume that this is to be done with respect to an individual 
knowledge base that includes the following definite facts: 

used (cc) 
used (emacs) 
used (ls) 

The normal interpretation of variables in Prolog goals is that they are existentially
quantifled. The normal interpretation of negated goals is failure as negation, i.e.,
unprovability. When these two are combined, as in the goal -used(x), the result 
is that the negation "flips" the quantifier, resulting in a goal which is the equivalent
of vx not(used(r)). Moreover, satisfying a negated goal will n"u"r ,"..rit in any
variables in the goal being instantiated. Thus, in the example above, we would bê 
unable to discover any tools which this user did not know about since the negated
goal -used(X) must fail because it is possible to prove used(emacs)

It is possible to "fix" this particular example by reordering the subgoals in the 
second rule, to get: 

default (-knows (Tool) if relevant (Tool), -used (Tool)) 

This will ensure that the variable TooI is instantiated before the negated subgoal
is reached. This solution, and the more general one of delaying the evaluation of 
a negated goal until it is ground, will not always work. Our strategy is to force all 
goals to be completely ground and thereby avoid this problem.3 Þosing the goal 
-knows(x) to GUMST results in the attempt to satisfy a stream of gõah *ñi"n 
includes the ground goal -knows(lint). 
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THE CURRENT GUM& SYSTEM 

TÌtte GuMsrsystem is currently implemented in cProlog. At the heart of the system 

is a backwárd chaining metainterpreter which implements the default reasoning 

engine. This metainterpreter is shown in the Appendix' 
Óur current system hãs several limitations. One problem is that it does not extract 

all of the availãble information from a new fact learned of the user. If we assert 

that a predicate is closed, we are saying that the set of (certain) rules for the 

predicate form a definition, i.e., a necessary and sufficient description. In our 

system, however, the information still only flows in one direction! For 
"rr.r"ntexample, suppose that we would like to encode the rule that a user knows about 

ItO re¿¡iectton if and only if they know about files and about pipes. Further, let's 

suppose that the default ìs that a person in this stereotype does not know about 

files or pipes. This can be expresses as: 

certain (knows (io--redirection) if 

knows (pipes), 

knows (files)) 

default (-knows (piPes)) 

default (-knows (files)) 

closed (knows (io-redirection)) 

If we learn that a particular tser does know about IIO redirection then it should 

follow that he necessarily knows about bothf les and pipes. Adding the assertion 

certain (knows (io---redirection)) 

however, will make no additional changes in the data base' The values of 

knows(pípes) and knows(files) will not change! A sample run after this change might 

be: 

?- show (knows (io---redirection), Val). 
Val : true 

?- show (knows (pipes), Val). 
Val : assume (false) 

?- show (knows (files), Val). 
Val : assume (false) 

The reason for this problem is that the current interpreter was designed to be able 

to incorporate new information without actually using a full truth maintenance 

system. before a fact F with truth value V is to be added to the data base, GUMSI 

Jhecks to see if an inconsistent truth value V' can be derived for F If one can be, 
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then a new stereotype is sought in which the contradiction goes away. New knowl-
edge that does not force an obvious inconsistency within the databáse is added as 
is. Neither redundant information or existing default information effect the cor-
rectness of the interpreter. Subtler inconsistencies are possible, of course. 

Another limitation of the current system its inefficiency. The use of default rules 
requires us to continue to search for solutions for a goal until a strong one is found, 
or until all solutions have been checked. These two limitations may be addressable 
by redesigning the system to be based on a forward chaining truth maintenance 
system. The question is whether the relative efficiency of forward chaining will 
offset the relative inefficiency of .truth maintenance. The use of an assumption 
based truth maintenance system(lO) is another alternative that we will investigate. 

lhe GUMS, Command Language 

Our current implementation provides the following commands to the application. 

show(Query,vøl) succeeds with val as the strongest truth value for the goal euery
A Query is a partially or fully instantiated positive or negative literal. Vøl is returnéd

. 

and is the value of the current belief state. lf Query is partially instantiated then 
it will return more answers upon backtracking, if possible. In general, one answer 
will be provided for every legal ground substitution that agrees with current type 
declarations. 

add(Fact,Status) sets belief in Fact to true. If Føct or any legal instance of it con-
tradicts the current belief state then the user model adopts successively higher 
stereotypes in the hierarchy until one is found in which all of the added factJ are 
consistent. If no stereotype is successful then no stereotype is used, all answers 
will be based entirely on added facts. Fact must be partially or fully instantiated 
and can be either a positive or negative literal. Status must be uninstantiated and 
will be bound to a message describing the result of the addition (e.g., one of several 
error messages, ok, the name of a new stereotype, etc.). 

create-user(UserNømerStereotype,Fíle,status) 1t 
stores the current user if necessary 

and creates a new user who then is the current tser. IlserNane is instantiated tó 
the desired name. stereotype is the logical name of the stereotype that the system 
should assume to hold. File is the name of the file in which infoimation pertáining 
to the user will be stored. Status is instantiated by the system and returns erroi 
messages. A user must be created in order for the system to be able to answer 
queries. 

store-current (Sturus) stores the current users information and clears the work-
space for a new user. status is instantiated by the system on an error. 

restore'user(UserrStatus) restores a previous user after saving the current user if 
necessary. User is the name of the user. Status is instantiated by the system to pass 
error messages. 
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done stores the system state of the user modelling system, saving the current user 

if necessary. This command should be the last command issued and needs to be 

issued at the end of every session. 

coNcLUsloNs 
Many interactive systems have a strong need to maintain models of individual 

,6"ti. We have presented a simple architecture for a general user modelling utility 
which is based on the ideas of a default logic. This approach provides a simple 

system which can maintain a database of known information about users as well 

ui ,6" rules and facts which are associated with a stereotype which is believed to 

be appropriate for this user. The stereotype can contain definite facts and define 

rutes ôt iñference as well as default information and rules. The rules can be used 

to derive new information, both definite and assumed, from the currently believed 

information about the user. 
We believe that this kind of system will prove useful to a wide range of appli-

cations. We have implemented an initial version in Prolog and are planning to use 

it to support the modelling needs of several projects. We are also exploring a more 

powerful approach to user modelling based on the notion of a truth maintenance 

system. 

NOTES 

1 . In the context of modelling other individuals, an agent does not have access to objective 

truth and hence cannot really distinguish whether a proposition is known or simply 

believed to be true. Thus the terms knowledge and belief will be used interchangeably. 

2. perhaps through direct interaction with him 
:. ttris ii similar to the treatment of negation used by Walker.(*) 
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APPENDIX-THE DEMO PREDICATE 

This appendix defines the demo predicate which implements the heart of the GUMS 
interpreter. The relation 

show (Goal, Value) 

holds if the truth value of propositionGoal canbe shown tobeValuelor a particular 
ground instance of Goal. The show predicate first makes sure that Goal is a ground 
instance via a call to the bindVars predicate and then invokes the meta-evaluator 
demo. The relation 

demo (Goal, Value, Level) 

requires that Goal be a fully instantiated term and Level be an integer that rep-
resents the level of recursion within the demo predicate. The relation holds if the 
"strongest" truth value for Goøl is Value. 

:- op(950,fy,'-'). 
:- op(1150,xfy,'if') 

Vo show that the truth-value of P is V by (1) binding any variables 
Vo in P and (2) invoking the demo metainterpreter 
show(P,V) :- bindVars(P), demo(P,V,O). 

7¿ truth values 
demo(P,P,-) :- truthValue(P),!. 

Vo reflection. . . 

demo(demo(P,V1),V,D) :-
!, 
nonvar(Vl), 
demo (P,Vl,D) -> V:true; V:false. 

% disjunction ... 
demo ((P,Q),V,D) :- !, 

demo(P,VL,D), 
demo(Q,V2,D), 
upperbound(Vl,V2,V) 
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7o conjunction ... 
demo((P,Q),V,D):- !, 

demo(P,Vl,D), 
demo(Q,V2,D), 
lowerbound(Vl,V2,V). 

Vo negation ... 
demo(-P,V,D) :- !, 

demo(P,Vl,D), 
negate(Vl,V,P). 

7a assumPtion ... 
demo(assumed(P),V,D) :- !, 

demo(P,V1,D), 
strengthen(Vl,V). 

Vo call demol with deeper depth and then cut 

demo(P,V,DePth) :-

Deeper is DePth+1' 
demoLfP,V,DeePer), 
retractall(temP(,DeePer)), 
I 

Vo defrnite facts. . . 

demol(P,true,-) :- certain(P). 

demol(P,false,-) :- certain(-P). 

Vo f,nd a definite rule that yields TRUE or FALSE' 

demol(P,V,D) :-
forsome(certain P if Q),(demo(Q,V,D),demoNote(V,D))) 

demol(P,V,D):-
forsome(certain(-P if Q)' 

(demo(Q,Vl,D), 
negate(Vl,V,P), 
demoNote(V,D))). 

Vo stop if the best so far was ASSUME(TRUE) 

demol(P,assume(true),D) :-

retract(temp(assume(true),D) ). 

Vo default positive facts. 

demo(P,assume(true),-) :- default(P) 

Vo try delault rules until one gives a positive value' 



156 T. Finin 

demol(P,assume(true),D) :-
forsome(default(P if Q),(demo(e,V,D),positive(V))) 

Vo defatlt negative facts. 
demo(P,assume(false),_) :- default(-p). 

Vo default negative rules. 
demol(P,assume(false),D) :-

forsome(default(-P if Q),(demo(e,V,D),positive(V) )) 

% if P is closed, then its false. 
demo1.(P,false,-) :- closed (P),! 

Vo the default answer. 
demol.(P,assume(false), ). 

7o demoNote(X,D) succeeds if X is TRUE or FALSE, 
Vo otherwise it fails after updating temp(A, ) 
Vo to be the strongest value known so far. 

demoNote(V,-) :- known(V). 
demoNote(V,D):-

not(temp(-,D)), 
!, 
assert(temp(V,D)), 
fail. 

demoNote(assume(true),D) :-
retract(temp(-,D)), 
!, 
assert(temp(assume(true),D) ),
fail. 

% Relations on Truth Values 
positive(X) :- X : true ; X : assume(true). 

known(X) :- X : true ; X : false. 

higher(true, ). 
higher(assume(true), assume(false) )
higher( ,false). 

upperbound(X,Y,Z) :- higher(X,y) -> Z:X ; Z:y 

lowerbound(X,Y ,Z) :- higher(X,Y) -> Z:y ; Z:X. 
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strengthen(assume(X),X). 
strengthen(true,true) . 

strengthen(false,false). 

Eo rlegatioî is relative to a predicate' 

negate (true,f alse,-). 
negate(assume(true), assume(false),-)' 
negate(assume(false),assume(true),-)' 
negate(false,true,P) :- closed(P)' 

nelate(false,assume(true),P) :- not(ctosed(P))' 

truthValue(true). 
truthValue(false)' 

:- truthValue(X)'truthValue(assume(X)) 

% The TYPe SYstem 

% isSubtype(Tt,Tl) iff type T1 has an ancestor fypeT2' 

isSubtype(Tl,T2) :- subtype(T1'T2)' 

isSubtype(T1,T2) :-

subtype(T1,T), 
isSubtYPe(T,T2). 

7o fiue if instance I is descendant from type T' 

islnstance(I,T) :- inst(t,T). 
islnstance(I,T) :-

isSubtyPe(Tl ,T) ' 
islnstance(I,T1). 

7o fite if T is a tYPe. 

isType(T) :- inst( ,T). 
isType(T) :- subtYPe(T, ). 
isType(T) :- subtYPe( ,T). 

"/o Grounding Terms 

% bindVars(P) ensures that all variables in P are bound or it fails' 

bindVars(P) :- var(P),!,fail. 
bindVars(P) :- atomic(P),!. 

bindVars(P) :-

schema(P,PS), 
p :.. [_tArgs],
pS :.. [_tTypes], 
bindArgs(Args,TYPes). 
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bindArgs([ ],[ ]). 
bindArgs([ArgtArgs], [TypetTypes]) : -

bindArg(Arg,Type), 
bindArgs(Args,Types). 

bindArg(Arg,Type) :-
var(Arg), 
islnstance(Arg,Type). 

bindArg(Arg,-) :- bindVars(Arg). 

7o scheme(P,S) is true if S is the schema for p, eg 
Vo schema(gtrvefi ohn,X,Y),give(person,person,thing) ) 

Vo frnd, a declared schema. 
schema(P,S) :-

functor(P,F,N), 
functor(S,F,N), 
declare(S), 
!. 

Vo use the default schema F(thing,thing, . . . ).
schema(P,S) :-

functor(P,F,N), 
functor(S,F,N), 
for(I, 1.,N,arg(I,S,thing) ), 
I 
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