
Default Reasoning and Stereotypes
in User Modelling

TIM FININ
lJnisys Corporation

aBSTRAí:T: This article discusses the application of various kinds of default

reasoning in systems which must maintain a model 'Ôf its users. In particular,
system for building

we describe a general architecture of a domain-independent

and maintain iÃg long term models of individual wers . The user modelling system

is intended to provide a well defined set of services for an application system

which is interacting with various users and has a need to build and maintain

models of them. e"s the application system interacts with a user, it can acquire

on to the user model maintenanceknowledge of him ano paii that knowledge
a prototype general wer modelling system

system fðr incorporation. we describe

(írereafter caleã G1MS,) which we have implemented in Prolog. This system

satisfres some of the desirable characteristics we discuss'

KEYvuRDS: Default Reasoning, User Modelling'

INTRODUCTION_THE NEED FOR USTR MODELLING

Systems which attempt to interact with people in an intelligent and cooperative

*urrr", need to knoï many things about the individuals with whom they are

interacting. Such knowledge can bé of several different varieties and can be rep-

resented a-nd used in a numúer of different ways. Taken collectively' the information

itu, u system has of its users is typically refered to as its user model' This is so

*h"n it is distributed throughout many components of the system'
"u"r,Examples that we have been involved with include systems which attempt to

providehelpandâdvice,(11'1+,ao\futorialsystemsþg),andnaturallanguageinter-
iu""..(o*) Eaåh of thes" ,yrt"*, has a need to represent information about individual

users. Most of the information is acquired incrementally through direct observation

and/or interaction. These systems aiso needed to infer additional facts about their

users based on the directly ácquired information. For example' the WIZARD help

Pp. 131-158.Volume L, Number 2, rssN 0894-9077
Internalianal fournøl of Expert Sysføms

All rights of reProduction in any form reserved.
Copyright O 1983 by JAI PRESS' INC.

132 T. Finin

slste¡1(r1'no) had to represent which vMS operating system objects (e.g., commands,
command qualifiers, concepts, etc.) a user was familiar with and to infer which
other objects he was likely to be familiar with.

This article describes a general architecture for a domain-independent system
for building and maintaining long term models of individual users. The user mo-
delling system is intended to provide a well-defined set of services for an application
system which is interacting with various users and has a need to build and maintain
models of them. As the application system interacts with a user, it can acquire
knowledge of him and pass that knowledge on to the user model maintenãnce
system for incorporation. We describe a prototype general user modelling system
(hereafter called GUMS) which we have implemented in prolog. ThiJ system
satisfies some of the desirable characteristics we discuss.

The next section will discuss some of the general issues that arise in building
user models. In particular, we will describe the range of possible issues that one
might address in terms of four aspects: who is being modeled; what information
is represented in the model; how the model is acquired and maintained; and how
the model might be used. The third section provides an overview of the GUMSI
system and the kind of user modelling it supports. The fourth section describes the
the three kinds of default reasoning that GIJMS, employs: stereotypical reasoning,
explicit default rules and failure as negation. Section five describes some of the
details of the GUMS1 system. The concluding section discusses some of the limi-
tations of GUMS, and avenues for future research.

WHAT KIND OF USER MODET?

The concept of encorporating user models into interactive systems has become
common, but what has been meant by a user model has varied and is not always
clear. In this section we will discuss, in general terms, what might be meant by the
termuser model.Wewill then characterizethe approach to user modelling described
in this work by answering the following questions: who is being modeled; what
aspects of the user are being modeled; how is the.model to be initially acquired
and maintained; and how will it be used.

The term "user model" has been used in many different contexts to describe
knowledge that is used to support a interactive system. A survey of user modelling
in support of natural language interfaces can be found in,(te) utro a discussion of
user^modelling for intelligent tutoring systems is provided by.(") Kobsa and whals-
ter Qo) have edited a book which brings togethei a collectiän of papers discussing
user modelling in the context of man-machine dialogue systems. In this section,
we will look at a number of distinctions that will allow us to focus on an interesting
and important class of "user models."

An initial definition for "user model" might be the following:

A user model is that knowledge about the user, either explicitly or implicitly
encoded, which is used by the system to improve the interãction.

The definition is too weak, since it endows every interactive system with some kind
of user model, usually of the implicit variety. In this paper, we will focus our

133 Default Reasoning and Stereotypes in User Modelling

attention on those models in which the information about the user is explicitþ
encoded. In particular, we are interested in user models that are designed along

the lines of "knowledge bases." By this we have in mind the kinds of distinctions

that are usually drawn to distinguish a knowledge base from a data bøse. In the

context of user models, frve features are important:

1. Separate Knowledge Base-Information about a user is collected in a separate module

rather then distributed throughout the system.

2. Explicit Representation-^îhe knowledge in the user model is encoded in a represen-

tation language which is sufficiently expressive. Such a representation language will typically

provide a set of inferential services. This will allow some of the knowledge of a user to be

impticit, but automatically inferred when needed.

3. Declarative rather than Procedural-The knowledge in the user model is, as much as

possible, encoded in a declarative rather than procedural manner.

4. Support for Abstraction--"fhe modelling system provides ways to describe abstract as

well as concrete entities. For example, the system might be able to discuss classes of users

and their general properties as well as individuals.

5. Mukiple Use-Since the user model is explicitly represented as a separate module, it
can be used in several different ways (e.g., to support a dialogue or to classify a new user).

This requires that the knowledge be represented in a more general way that does not favor

one use at the expense of another. It is highly desirable to express the knowledge in a way

that allows it to be reasoned about as well as reasoned with. Similarly, the model ought to

provide no barriers to its use by several different applications.

User models which have these features flt nicely into current work in the broader

freld of knowledge representation.In fact, we could paraphrase Brian Smith's knowl-
edge representation hypothesisØo) to get something like:

Any user model will be comprised of structural ingredienß that (a) we as external

obiervers naturøþ take to represent a propositional account of the knowledge
the system has oi the tner, and (b) independent of such external semantical
attribution, ptay à format but causal and essential role in the behavíor that man-
iþsts that knowledge.

In the remainder of this section we will explore the large space of user modelling
possibilities by addressing the who, what, how and why of user modelling. Our

own system will then be placed within this space.

Who is Being Modeled?

Two aspects of who is being modeled are the degree of specialization and tem-

poral extent. The degree of specialization involves whether we are modelling classes

òf ,rset. or individuals. Temporal extent refers to the persistence of the knowledge

encoded in the user model--does it expire at the end of the current session or does

it form a long-term knowledge base about the user.

A user model can lie somewhere on a specialization scale which ranges from
generic to individual. A generic user model assumes a homogeneous set of users-
ã11 ittdiuidrruls using the system are similar enough with respect to the application

't34 T. Finin

that they can be treated as the same type of user. Many natural language systems,
for example, maintain a single generic user model in order to infer the user's goals
or to recognize a user's misconceptions.(2'+'s'tz) ¡ somewhat more individuãting
point on this scale is to employ a set of fixed, generic models to represent different
subclasses of users. For example, the uc slster¡(ae'z) classifies a user as belonging
to one of four possible generic classes: novice, beginner, intermediate, ot expert.

Modelling the very general beliefs held by large classes of users is extremely
important to building intelligent systems. For example, in modelling a person's
beliefs about a timeshared computer system we may want to include a rule like:

If a user u believes that machine M ß running, then (I will believe that it is
possible for him to log onto M.

It is just this sort of rule which is required in order to support the kinds of coop-
erative interactions studied in,(r0) uttd (tÐ such as the following:

User: Is linc.cis.upenn.edu up?
System: Yes, but you can't log on now. Preventative maintenance is being

done until 11:00¡,rvr.

Individual user models, on the other hand, contain information specific to a
single user. A user modelling system that keeps individual models thus will have
a separate model for each user of the system. A simple example of this kind of
model is the commonly used convention of customizing the behavior of a utility,
such as an editor or mail system, by allowing each user to have a profiIe file which
states his preferences for various system parameters.

A natural way to combine the system's knowledge about classes of users with
its knowledge of individuals is through the use of stereotypes-generic models with
specializations for individuals. A stereotype is a cluster of default facts about the
user that tend to be related to each other. One can model an individual as belonging
to a particular stereotype (e.g., novice Unix user) with a set of overriding facts
(e.g., knows how t9 ye pipes). Examples of systems that have used stereotypes
include GRUNDY,(") and the Real-Estate Advisor.(3o)

What is to be Modeled?

The contents of a user model naturally varies from application to application.
Following Kass and Finin,(zz) we will classify this knowledge into four õàtegories:
goals and plans, capabilities, attitudes, and knowledge or belief.

A user's goals and plans are intimately related to one another. The user's goal
is a state of affairs he wishes to achieve, and a plan is a sequence of actions or
events that he expects to result in the realization of a goal. Furthermore, each step
in a plan has its own subgoal to achieve, which may be realized by yet anothei
subplan. One of the hallmarks of an intelligent, cooperative system is that it at-
tempts to help the user achieve his underlying goals, even when not explicitly
stated. The principle way for one agent to know another's underlying goal(s) is by
recognizing his observable actions as constituting a (possibly partial) plan for achiev-

135 Default Reasoning and Stereotypes in l-)ser Modelling

ing a domain-relevant goal. A great deal of work has been done on the problem

oiplan recognition in support of cooperative interactions. Examples in the natural

langoage doäain includË Allen and Þerrault(t) and Carberry.(''t) Intelligent Tuto"r-

ing"sysî"-s have introduced the idea of keeping a catalog of "buggy" plans(:'+z'ts¡

uJu rn"unr of recognizing misconceptions or missing knowledge. The use of pþ1
recognition is also ieleuaãt to the pioblem of providing help and advice' as in (tt)

and (on).

A second category of knowledge to be modeled has to do with the user's ca-

pabilities. Although some systems might have to reason about a user's physical

ôapabilities, such as the ability to perform some action that the system may rec-

ommend, it is more typical for a system to model and reason about mental capa-

bilities, such as the ability to understand a recommendation or explanation provided

by the system. Examples of the latter arise when a system is gen-erating an
_o_ften

as in Wailis and Shortliffe(o') and Paris's TAILOR slster¡.(3:) Webber
"*plonoiion,uni Finitt,ot) have surveyed ways that an interactive system might reason about its

user's capabilities to improve the interaction.
A third category ofknõwledge represent's a user's bias, preferences and attitudes.

GRUNDY(3t) was un early user modelling system which used a model of a user's

preferences to recommenå books to read' Tire Real-Estate Advisor(3o) and HAM-
!¡5{r:,:r) are other systems which have tried to model this. Swartout(ot) and

McKeown(2t) address the effects of the usef s perspective or point of view on the

explanations generated by a system.

ihe final of information we will consider is knowledge and beligf)
"ãtegoryModelling the user'i knowledge involves a variety of things: domain knowledge,

general world knowledge and knowledge of other agents. Knowing what the user

úeheves to be true about the application domain is especially useful for many types

of systems. In generating responses, knowledge of the concepts and terms the user

undlrstands orls familiar with allows the system to produce responses incorporating

those concepts and terms, while avoiding concepts.llr9.user might not understand'

This is true for intelligent help systems,(1r'ae) which must provide clear,
"tp"iiullyunderstaniable êxplanations to be truly helpful. Providing definitions of data base

items (such as the TEXT system does(tn)) has a similar requirement to express the

definition at a level of detail and in terms the user understands.

A final form of user knowledge that is important for interactive systems is knowl-

edge about other agents. As an interaction with a user progresses, not only will
thJ system be building a model of the beliefs, goals, capabilities and attitudes of

the user, the user will-also be building a model ãt ttt" syitem. Sidner and Israel(4l)

make the point that when individuals communicate, the speaker will have an in-

tended meàning, consisting of both a propositional attitude and the propositional

content of the utterance. The speaker expects the hearer to recognize the intended

meaning, even though it is not explicitly stated. Thus a system must reason about

what mòdel the user has of the system when making an utterance, because this

will affect what the system can conclude about what the user intends the system

to understand by the user's statement. Kobsa(") has studied some of the difficult
representationai problems involved with building recursive models of the beliefs

of other agents.

136 T. Finin

How is the Model to be Acquired and Maintained?
The acquisition and maintenance of the user model are closely related topics.

By acquisition, we mean the techniques for learning new facts about the user.
Maintenance involves encorporating this new information into the existing model
and squaring away any discrepancies or contradictions. We will briefly review some
of the possibilities for these two related problems.

The knowledge in a user model can be acquired either explicitly or implicitly.
Explicitly acquired knowledge might come directly from the system designer in the
form of built in knowledge of stereotypes, from the application system the user
model is serving or from the user himself. GRUNDY, for example, began with a
new user by interviewing him for certain information. From this initial data,
GRUNDY makes judgments about which stereotypes most accurately fit the user,
and thus forms an opinion about the preferences of the user based on this initial
list of attributes. As another example, each time the UMFE slste¡¡(a:) needs to
know a new fact about its user, it simply asks.

Acquiring knowledge about the user implicitly is usually more difficult. This
usually involves "eavesdropping" on the user-system interaction in order to observe
the user's behavior, and from it to infer facts which go into the model. various
aspects of implicit acquisition have been explored, including the use of presup-
positions,(t8) misconception recognition,(z0,zz) .tereotype seleðtion,(.t':s':ol in¿ ,¡"
use of default rules.(34'20'21)

Maintenance involves encorporating new knowledge about an individual user
into an existing model. The new, incoming information might be consistent or
inconsistent with the current model. If it is consistent, maintenance involves trig-
gering inferences which add additional facts to the model. If the new knowledge
is inconsistent with the current model then the inconsistency must be resolved in
some manner. The possibilities depend on the underlying representations and rea-
soning systems on which the modelling system is built. The two major approaches
are evidentiøl reasoning, which allows the model to hold that a certain fact is true
with a certain degree of belief, and deføult reasoning,Q6) in which certain facts can
be held in the absence of evidence to the contrary.

How is the Model to be Used?

The knowledge about a user that a model provides can be used in a number of
ways in an intelligent, interactive system. The particular opportunities depend,
of course, on the application. Figure 1 presents a general taxonomy of possible
USES.

At the top level, user models can be used to support (1) the task of recognizing
and interpreting the information seeking behavior of a user, (2) providing the user
with help and advice, (3) eliciting information from the user, and (4) providing
information to him. Situations where user models are used for many of thesè
purposes can be seen in the examples presented throughout this paper.

The model can be accessed in two primary ways: facts can be added, deleted or
updated from the model, and facts can be looked up or inferred. A forward chaining

U
se

r
M

od
el

 U
se

s

P
ro

vi
di

G
et

tin
g

in
P

ut

ad
fr

om
 t

he
 u

se

E
va

lu
at

in
g

D
ec

id
in

g
D

ec
id

in
g

re
le

va
nc

e
w

ha
t

to
 a

sk

ho
w

 t
o

as
k

H
an

dl
in

g
ln

te
rP

re
tin

g
m

is
co

re
so

on
se

s

(¡ \
ne

so
tv

i n
g'

A
l

nt
e

rP
re

tin
g

am
bi

gu
ity

 r
ef

er
rin

g
R

ec
og

ni
zi

ng

ex
P

re
ss

io
n

m
is

co
nc

ep
tio

ns

nd
er

st
an

di
ng

ng
 h

el
p

vi
ce

qe
 o

K
no

w
in

g
w

he
n

to

C
vo

lu
nt

ee
r

o
in

fo
rm

at
io

n
ns

^
C

or
re

ct
in

g
f_

o

m
is

co
nc

ep
tio

ns

ûa
 o o C

o

tn
g

ho
w

¡r

th
e

us
er

's

P
ro

vi
di

ng
 o

ut
P

ut

in
fo

rm
at

io
n-

se
ek

in
g

th
e

us
er

be

ha
vi

or

D
ec

id
in

g
w

ha
t

sa
y

R
ec

og
ni

zi
ng

R

ec
og

ni
zi

ng

us
er

 g
oa

ls

us
er

 p
la

ns

M
od

el
lin

g
P

ro
vi

di
ng

C

on
st

ru
ct

in
g

Le
xi

ca
l

re
le

va
nc

e
pr

er
eq

ui
si

te

re
fe

rr
rin

g
ch

oi
ce

in

fo
rm

at
io

n
ex

pr
es

si
on

s

Ò

138 T. Finin

component together with a truth maintenance system can be used to update the
default assumptions and keep the model consistent.

A GENERAT USER MODETLING SYSTEMS

The previous section described a large conceptual space of user modelling possi-
bilities in terms of four dimensions. This section will place our own work in this
space and give an overview of its major characteristics. Our paradigm for user
modelling might be described as User Model as Deductive Døtabase. The GUMS,
system allows one to construct models of individuals which appear to be a collection
offacts which can be asserted, retracted or queried. Some ofthese facts are deduced
through the use of inference rules associated with stereotypes to which the user
belongs.

Who is is being modelled? GUMS. is designed for building long term models of
individual users. We want to represent the knowledge and beliefs of individuals
and to do so in a way that results in a persistent record which can grow and change
as necessary. These users are associated with a stereotype from which additional
facts derive.

What is being modelled? Our interest is in providing a domain-independent user
modelling tool. The content of the user model will vary greatly from application
to application and is left for the model builder to decide. For example, a natural
language system may need to know what language terms a user is likely to be
familiar rilith,(48) a CAI system for second language learning may need to model a
user's knowledge of grammatical rüles,(3e) an intelligent database query system may
want to model which fields of a data base relation a user is interested in,(:z) und
an expert system may need to model a user's domain goals.(") However, our
paradigm of user model as deductive database makes modelling certain things much
easier than others. It is easy to construct models which can be expressed as a set
of relations. In particular, we do not provide any general facilities for building deep
models of an agent's reasoning strategies or procedural knowledge.

How is the model acquired and maintained? Our approach in GUMS, is to let
the application be responsible for acquisition, and to provide a set of services for
maintenance. The application must select the initial stereotype for the user and
add new facts about the user as it learns them. How the application discovers these
facts (i.e., explicitly or implicitly) is up to the application. Maintaining the model
involves encorporating these new facts, checking that they are consistent with
previously learned or inferred facts, and resolving any discrepancies and contra-
dictions. This can be accomplished by undoing contradictory default assumptions
and/or shifting the user to a new stereotype. The details of how this is done will
be described later.

Why is the model there? Given our goal of producing a general purpose, domain-
independent user modelling facility, the uses to which the knowledge in the model
is put is outside of our design. We will, however, give a more syntactic account of
how the model is to be used in terms of how the application interacts with GUMS,.

139 Default Reasoning and Stereotypes in lJser Modelling

The System Organization

Our goal is to provide a general user modelling utility organized along the lines

shown i"n Figure). fn" usei modelling system provides a service to an application

program whlch interacts directly with a user. Note that the user modelling system

àoei not have access to the interaction between the application and the user'

Everything it learns of the user must come directly from the application' The

GUIIS, Tf*t"- has a separate knowledge base for each application it serves. An

appticaiion knowledge base consists of two parts: (L) a collection o1 stereotypes

organized into a taxõnomy and (2) a collection of models for the individuals' The

inãividual models are instã[ed in the stereotype hierarchy as leaves' Figure 3 shows

such a hierarchy. As will be seen later, a stereotype is a collection of facts and

rules which are ãppHcable for any person who is seen as belonging to that stereotype'

These facts and rules can be either definite or default' allowing for an individual

to vary from the stereotypical norm.
The application progiam gathers information about the user through its inter-

action añd choses to siore some of this information in the user model' Thus' one

service the user model provides is accepting (and storing!) new information about

the user. This information may trigger an inferential process which could have a

number of outcomes:

o The user modeling system may detect an inconsistency and so inform the application.

o The user model may infer a new fact about the user which triggers a demon causing

some action (e.g., informing the application).
o The user model may need to update some previously inferred default information about

the user.

Another kind of service the user model must provide is answering queries posed

by the application. The application may need to look up or deduce certain infor-

mation about its current user.

StereotYPes

A user model is most useful in a situation where the application does not have

complete information about the knowledge and beliefs of its users. This leaves us

with the problem of how to model a user, given we have only a limited amount of

knowledge about him. Our approach involves using several forms of default rea-

soning techniques: stereotypei, explicit default rules, and failure as negation' we
urrorri" that the GUMSt.ytt"- wiil be used in an application which incrementally

gains knowledge about iti users throughout the interaction. But the mere ability

io gain knowleãge about the user is not enough. \Me cannot wait until we have full

knõwledge aboui a user to reason about him. Fortunately we can very often make

u g"n"rllirution about users or classes of users. We call a such a generalization a

stereotyPe.
A stereotype consists of a set of facts and rules that are believed to apply to a

class of orerr. Th.rs a stereotype gives us a form of default reasoning in which each

rule and fact in the stereotypé itiukett to hold in the absence of evidence that the

user does not belong in the stereotype.

Figure 2: A Ceneral Architecture for a User Modelling Utility

o.
o.

E
¡¡J
U'
Ð(t,

v, o Ø
()
(do

(t:J

"t40

Default Reasoning and Stereotypes in lJser Modelling 14'l

Figure 3: A Hierarchy of Stereotypes and lndividuals

Stereotypes can be organized in hierarchies in which one stereotype subsumes

another if it can be thought to be more general. A stereotype 51 is said to be more

general than a stereotype S, if everything which is true about S, is necessarily true

ãbout Sr. Looking at this from another vantage point, a stereotype inherits all the

facts and rules from every stereotype that it is subsumed by. For example, in the

context of" a programmer's apprentice application, we might have stereotypes cor-

responding to different classes of programmer, as is suggested by the hierarchy in

Figure 4.
In general, we will want a stereotype to have any number of immediate ancestors,

allowing us to compose a new stereotype out of several existing ones. In the context

of a prògrammer's apprentice, for example, we may wish to describe a particular

user as a Symbolics Wizard and a UnixNovice and a ScribeUser. Thus, the stereotype

system should form a general lattice. Our current system, however, constrains the

system to a tree.
A stereotype is comprised of several kinds of knowledge, as depicted in Figure

5. Each stereotype can have a single subsuming stereotype, a set (possibly empty)

of subsumed stereotypes, and a set (again, possibly empty) of individuals currently

P
ro

gr
am

m
i

W
iz

ar
d

À

¡\
)

ac
ke

r

S
ym

bo
lic

s
W

iz
ar

d

ra
m

m
er

ì1

oq
ov

ic
e

.D å
ra

m
m

er

T

õ'

Þ
 ô-

p
M

ac
hi

ne

W
iz

ar
d

(n

o a o o á ! o

X
er

ox
 W

iz
ar

d

143 Default Reasoníng and Stereotypes in lJser Modelling

believed to be modeled by the stereotype. The real contents of the stereotype,

however, consists of two databases of facts and rules, one definite and the other

default. The definite facts and rules constitúe a definition of sorts for the stereotype

in that they determine what is necessarily true of any individual classified under

this stereotype. If our knowledge of an individual contradicts this information, then

he cannot be a member of this stereotype or any of its descendant stereotypes.

The default facts and rules, on the one hand, deflne our initial beliefs about any

individual who is classified in this stereotype. They can be overridden by specific

information that we later learn about the individual. The final component of a

stereotype is a collection of meta-knowledge about the predicates used in the

definité ãnd default knowledge bases. This information is used in the processing

of negative queries and is described later.
As an example, consider modelling the knowledge a programmer might have.

We can be sure that a programmer will know what a file is, but we can only guess

that a programmer will know what afile directory is. If we have categorized a given

.rr"t ottd"i the programmer stereotype and discoverz that he is not familiar with
the concept of. a fiIe, then we can conclude that we had improperly chosen a

stereotype and must choose a new one. But if we got the information that he did

not know what a file directory was, _this would not rule out the possibility of his

being a programmer.

lndividuals

The knowledge structure for an individual is simpler than that for a stereotype.

An individual has exactly one stereotype with which it is currently associated and

a collection of definite ground facts which are true, as is shown in Figure 6.

The facts known about an individual override any default facts known or de-

ducible from the stereotype associated with the individual' They must, however,

be consistent with the stereotype's definite knowldge base. If a contradiction arises,

then the individual must be reclassified as belonging to another stereotype.

Default Reasoning with Rules

ln GtlMSt we use the certain/l predicate to introduce a definite fact or rule and

the defaulll predicate to indicate a default fact or rule, as in:

certain(P). a definite fact: P is true.
certain(P if Q). a definite rule: P is true if Q is definitely true and P is

assumed to be true if Q is only assumed to be true.

default(P). a default fact: P is assumed to be true unless it is known
to be false.

defautt(P if Q). a default rule: P is assumed to be true if Q is true or
assumed to be true and there is no definite evidence to
the contrary.

As an example, consider a situation in which we need to model a person's

familiarity with certain terms. This is a common situation in systems which need

144 T. Finin

Figure 5: A Stereotype

Subsuming
Stereotypes

ffiffi

Subsumed lndividuals
Stereotypes

to produce text as explanations or in response to queries and in which there is a
wide variation in the users' familiarity with the domain. We might use the following
rules and facts:

(a) default(understands Term(ram)), û
(b) default(understands Term(rom) if understands Term(ram)),
(c) certain(understands Term(pc) if understands Term(ibmpc)),
(d) certain(-understands Term(cpu)),

to represent these assertions,'all of which are considered as pertaining to a particular
user with respect to the stereotype containing the rules:

(a) Assume the user understands the term røm unless we know otherwise.
(b) Assume the user understands the term rom 1f we know or believe he understands the

tefm ran unless we know otherwise.
(c) This user understands the term pc if he understands the term ibmpc.
(d) This user does not understand the term cpu.

GUMS1 also treats negation as failure, and in some cases as a default rule. In
general, logic is interpreted using an open world assumption. That is, the failure
to be able to prove a proposition is not taken as evidence that it is not true. Many
logic programming languages, such a Prolog, encourage the interpretation of un-

145 Default Reasoning and Stereotypes in L.lser Modelling

Figure 6: An lndividual

Subsuming
reotype

provability as logical negation. Two approaches have been forwarded to justify the

negation ãs failure rule. One approach is the closed world assumption.(e) In this

case we assume that anything not inferable from the database is by necessity false.

One problem with this assumption is that this is a metalevel assumption and we

do not know what the equivalent object level assumptions are. A second approach

originated by Clark is básed upon the concept of a completed database.(t) A com-
pleted database is the database constructed by rewriting the set of clauses defining

each predicate to an if and only if definition that is called the completion of the
predicate. The purpose of the completed definition is to indicate that the clauses

that define a predicate defrne øvery possible instance of that predicate.

Any approach to negation as failure requires that a negated goal be ground

before execution. (Actually a slightly less restrictive rule could allow a partially
instantiated negated goal to run but would produce the wrong answer if any variable

was bound.) Thus we must have some way of insuring that every negated literal
will be bound. ln GUMSrwe have used a simple variable typing scheme to achieve

this, as will be discussed later.
We have used a variant of the completed database approach to show that a

predicate within the scope of a negation is closed. A predicate is closed if and only
if it is defined by an if and only l/ statement and every other predicate in the
definition of this predicate is closed. We allow a metalevel statement completed(P)
that is used to signify that by predicate P we really intend the if and only z/definition
associated with P. This same technique was used by Kowalski(") to indicate com-
pletion. We assume that a predicate is not completed unless it is declared to be

so. So if P is not explicitly closed, not P is decided by default.
Thus in GUMS. we have the ability to express that a default should be taken

"146 T. Finin

from the lack of certain information (i.e., negation as failure) as well as from the
presence of certain information (i.e., default rules). For example, we can have a
default rule for the programmer stereotype that can conclude knowledge about
linkers from knowledge about compilers, as in:

default(knows(linkers) if knows(compilérs))

We can also have a rule that will take the lack of knowledge about compilers as

an indication that the user probably knows about interpreters, as in:

certain(knows(interpreters) if - knows (compilers))

This system also allows explicit negative facts and default facts. When negation is
proved in reference to a negative fact then negation is not considered a default
case. Similarly negation as failure is not considered a default when the predicate
being negated is closed. Such distinctions are possible because the GUMS, inter-
preter is based on a four value logic.

The distinction between truth or falsity by default (i.e., assumption), and truth
or falsity by logical implication is an important one to this system. The central
predicate of the system is the two argument predicate show, which relates a goal
G expressed as a literal to a truth value. Thus show(Goøl,Vøl) returns in the variable
Val the "strongest" belief in the literal Goal. The variable Val can be instantiated
to true, false, assume(true), or assume(false). The meanings of these values are as
follows:

true definitely true according to the current database.
assume(true) true by assumption (i.e., true by default)
assume(false) false by assumption
false definitely not true.

These values represent truth values for a given user with respect to a given ster-
eotype. If the stereotype is not appropriate, then even definite values may have
to change.

Having a four value logic allows us to distinguish conclusions made from purely
logical information from those dependent on default information. Four value logic
also allows a simple type of introspective reasoning that may be useful for modelling
the beliefs of the user. We currently use a default rule to represent an uncertain
belief about what the user knows or believes, but we could imagine a situation
where we would like to model uncertainties that the user has in his beliefs or
knowledge. One such predicate is an embedded show predicate. The embedded
show relation holds between a goal G and a truth value T if the strongest truth
value that can be derived for G is T.

As an example, consider a situation in which we need to express the fact that a
user will use a operating system command that he believe might erase a file only
if he is certain that he knows how to use that command. We might encode this
using the show predicate as follows:

147
Default Reasoning and Stereotypes in lJser Modetting

certain (okay-to-use (Command) if
can-erase-files (Command)'
show (know (Command),true))'

The embedded show predicate forces the know(Command) goal to be a definite

fact in order for the conclusion to hold.

Another predicate assumed(Pred) willevaluate the tnÍh of Pred and " strengthen"

the result. The strengthen opetationmaps assumed values into definite values (e'g'
'

assume(true) becomes true, assume(false) becomes false, and true and false remain

unchanged). The assumed predicate is used to express a certain belief from an

uncert;n Énowledge or beli,ef. For example, we might want to express a rule that

a user will always want to use a screen editor if he believes one may be available'

certain (willUse (screenEditor) if
assumed (available (screenEditor))).

The interpreter that GUMS. is based on is a metalevel interpreter written in
prolog. The interpreter must génerate and compare many possible answers to each

,rrUqrr?ry, because of the mul;iple value logic and the presence of explicit negative

information. Strong answers to ã query (i.e., true andfalse) are sought first' followed

by weak answers (i.e., ottu*e(true) and assume(false)). Because strong answers

hâve precedence over weak ones, it is not necessary to remove weak information

that contradicts strong information.
Another feature otlhis system is that we can specify the types of arguments to

predicates. This type information is uses to allow the system to handle non-ground

goals. ln our system, a type provides a way to enumerate a complete set of possible

íalues subsumed Uy ttraitypå. When the top-levelshow predicate is given a partially

instantiated goal to sotvé, it uses the type information to generate a stream of

consistent, fully instantiated goals. These ground goals are then tried sequentially'

T'nut gout, -nrt be fully inlantiated foilòws from the fact that negation as failure

is built into the evaluation algorithm. Complex terms will be instantiated to every

pattern allowed by the datatyle given the full power of unification. To specify the

iype information, one must ipecity argument types for a predicate, subtype infor-

Inätion and type instance informátion. For example, the following says that the

ir"Oi"ut" ranges over instances of person and programmingLanguage,
""nP"og""- is a sub-type of programmingLanguage, and thatthat thJtype^functionalLlnguog"
the valuoicheme is an instance of the type functionalLanguage;

declare (canProgram (person,programminglanguage))'

subtype (programminglanguage, functionallanguage)'

inst (functionallanguage, scheme)'

To see why this is necessary, consider the following problem. we would like to

model a programmer's knowledge of tools available on a system' This might be

I

148 T. Finin

done in order to support an intelligent help system, for example. we might want
to encode the following general rules:

. C programmers tend to use all of the relevant tools that are available to them,
o If. a C programmer does not use some relevant tool, than this is probably because he

is not aware of it,
o A person is probably a c programmer if they have ever used the c compiler,
o Every C tool is relevant to a C programmer,
o We have complete knowledge of every tool a user has used,
o Lint is a C tool,

which could be expressed in GUMS, as follows:

default (knows (Tool) if relevant (Tool), cprogrammer)
default (-knows (Tool) if -used (Tool), relevant(Tool)
default (cprogrammer if used (cc)
certain (relevant (Tool) if cTool (Tool), cprogrammer
closed (used)
ctool (lint).

Suppose we want to discover a tool of which an individual user is not aware. To
answer this, we would like to pose the query -knows(x) where x is an uninstan-
tiated variable. Let's assume that this is to be done with respect to an individual
knowledge base that includes the following definite facts:

used (cc)
used (emacs)
used (ls)

The normal interpretation of variables in Prolog goals is that they are existentially
quantifled. The normal interpretation of negated goals is failure as negation, i.e.,
unprovability. When these two are combined, as in the goal -used(x), the result
is that the negation "flips" the quantifier, resulting in a goal which is the equivalent
of vx not(used(r)). Moreover, satisfying a negated goal will n"u"r ,"..rit in any
variables in the goal being instantiated. Thus, in the example above, we would bê
unable to discover any tools which this user did not know about since the negated
goal -used(X) must fail because it is possible to prove used(emacs)

It is possible to "fix" this particular example by reordering the subgoals in the
second rule, to get:

default (-knows (Tool) if relevant (Tool), -used (Tool))

This will ensure that the variable TooI is instantiated before the negated subgoal
is reached. This solution, and the more general one of delaying the evaluation of
a negated goal until it is ground, will not always work. Our strategy is to force all
goals to be completely ground and thereby avoid this problem.3 Þosing the goal
-knows(x) to GUMST results in the attempt to satisfy a stream of gõah *ñi"n
includes the ground goal -knows(lint).

149 Default Reasoning and Stereotypes in User Modelling

THE CURRENT GUM& SYSTEM

TÌtte GuMsrsystem is currently implemented in cProlog. At the heart of the system

is a backwárd chaining metainterpreter which implements the default reasoning

engine. This metainterpreter is shown in the Appendix'
Óur current system hãs several limitations. One problem is that it does not extract

all of the availãble information from a new fact learned of the user. If we assert

that a predicate is closed, we are saying that the set of (certain) rules for the

predicate form a definition, i.e., a necessary and sufficient description. In our

system, however, the information still only flows in one direction! For
"rr.r"ntexample, suppose that we would like to encode the rule that a user knows about

ItO re¿¡iectton if and only if they know about files and about pipes. Further, let's

suppose that the default ìs that a person in this stereotype does not know about

files or pipes. This can be expresses as:

certain (knows (io--redirection) if

knows (pipes),

knows (files))

default (-knows (piPes))

default (-knows (files))

closed (knows (io-redirection))

If we learn that a particular tser does know about IIO redirection then it should

follow that he necessarily knows about bothf les and pipes. Adding the assertion

certain (knows (io---redirection))

however, will make no additional changes in the data base' The values of

knows(pípes) and knows(files) will not change! A sample run after this change might

be:

?- show (knows (io---redirection), Val).
Val : true

?- show (knows (pipes), Val).
Val : assume (false)

?- show (knows (files), Val).
Val : assume (false)

The reason for this problem is that the current interpreter was designed to be able

to incorporate new information without actually using a full truth maintenance

system. before a fact F with truth value V is to be added to the data base, GUMSI

Jhecks to see if an inconsistent truth value V' can be derived for F If one can be,

150 T. Finin

then a new stereotype is sought in which the contradiction goes away. New knowl-
edge that does not force an obvious inconsistency within the databáse is added as
is. Neither redundant information or existing default information effect the cor-
rectness of the interpreter. Subtler inconsistencies are possible, of course.

Another limitation of the current system its inefficiency. The use of default rules
requires us to continue to search for solutions for a goal until a strong one is found,
or until all solutions have been checked. These two limitations may be addressable
by redesigning the system to be based on a forward chaining truth maintenance
system. The question is whether the relative efficiency of forward chaining will
offset the relative inefficiency of .truth maintenance. The use of an assumption
based truth maintenance system(lO) is another alternative that we will investigate.

lhe GUMS, Command Language

Our current implementation provides the following commands to the application.

show(Query,vøl) succeeds with val as the strongest truth value for the goal euery
A Query is a partially or fully instantiated positive or negative literal. Vøl is returnéd

.

and is the value of the current belief state. lf Query is partially instantiated then
it will return more answers upon backtracking, if possible. In general, one answer
will be provided for every legal ground substitution that agrees with current type
declarations.

add(Fact,Status) sets belief in Fact to true. If Føct or any legal instance of it con-
tradicts the current belief state then the user model adopts successively higher
stereotypes in the hierarchy until one is found in which all of the added factJ are
consistent. If no stereotype is successful then no stereotype is used, all answers
will be based entirely on added facts. Fact must be partially or fully instantiated
and can be either a positive or negative literal. Status must be uninstantiated and
will be bound to a message describing the result of the addition (e.g., one of several
error messages, ok, the name of a new stereotype, etc.).

create-user(UserNømerStereotype,Fíle,status) 1t
stores the current user if necessary

and creates a new user who then is the current tser. IlserNane is instantiated tó
the desired name. stereotype is the logical name of the stereotype that the system
should assume to hold. File is the name of the file in which infoimation pertáining
to the user will be stored. Status is instantiated by the system and returns erroi
messages. A user must be created in order for the system to be able to answer
queries.

store-current (Sturus) stores the current users information and clears the work-
space for a new user. status is instantiated by the system on an error.

restore'user(UserrStatus) restores a previous user after saving the current user if
necessary. User is the name of the user. Status is instantiated by the system to pass
error messages.

15.1 Default Reasoning and Stereotypes in User Modelling

done stores the system state of the user modelling system, saving the current user

if necessary. This command should be the last command issued and needs to be

issued at the end of every session.

coNcLUsloNs
Many interactive systems have a strong need to maintain models of individual

,6"ti. We have presented a simple architecture for a general user modelling utility
which is based on the ideas of a default logic. This approach provides a simple

system which can maintain a database of known information about users as well

ui ,6" rules and facts which are associated with a stereotype which is believed to

be appropriate for this user. The stereotype can contain definite facts and define

rutes ôt iñference as well as default information and rules. The rules can be used

to derive new information, both definite and assumed, from the currently believed

information about the user.
We believe that this kind of system will prove useful to a wide range of appli-

cations. We have implemented an initial version in Prolog and are planning to use

it to support the modelling needs of several projects. We are also exploring a more

powerful approach to user modelling based on the notion of a truth maintenance

system.

NOTES

1 . In the context of modelling other individuals, an agent does not have access to objective

truth and hence cannot really distinguish whether a proposition is known or simply

believed to be true. Thus the terms knowledge and belief will be used interchangeably.

2. perhaps through direct interaction with him
:. ttris ii similar to the treatment of negation used by Walker.(*)

RETERENCES

(1) Allen, James F., & C. Raymond Perrault. "Analyzing Intention in Utterances.",4r-
tificial Intelligence (1980) 15: t43-t78.

(2) Allen, James F., Frisch, Alan M., & Diane J. Litman. "ARGOT: The Rochester

Dialogue System." Proceedings of the 2nd Nøtional Conference on Arfficial Intelligence

(te82), pp.66-70.
(3) Brown, J.S., & R.R. Burton. "Diagnostic Models for Procedural Bugs in Basic Math-

ematical Skills." Cognitive Scþnce (L978) 2: t55-192.
(4) Carberry, Sandra. "Tracking User Goals in an Information Seeking Environment."' '

Proceeãings of the 3rd National conference on Artificial Intelligence (1983), pp. 59-63.

(5) Carberry, Sandra. "Modeling the User's Plans and Goals." Computational Linguistics

Special Issue on User Modelling (1988).

(6) carbonell, Jaime G., Boggs, W. Mark, Mauldin, Michael L., & Peter G. Anick. "The

XCALIBUR Project: A Natural Language Interface to Expert Systems." \th Inter-

national Conference on Arfficiøl Intelligence (1983), pp' 653-656.

(7) Chin, David. "User Modelling in UC, the Unix Consultant." Proceedings of the CHI-
86 Conference (Boston, April 1986), pp- 24-28-

152 T. Finin

(8) clark, Keith L. "Negation as Failure." rn Logic and Databases, edited by J. Minker
and H. Gallaire (New York: Plenum Press, 1978).

(9) Reiter, R. "closed world Databases." In Logic and Døtabases, edited by J. Minker
and H. Gallaire (New York: Plenum press, 1978), pp. 149-177.

(10) DeKleer, J. "An Assumption Based rruth Maintenance System." proceedings of
IICAI-&í, IICAI (Auglst 1985).

(11) Finin, T.W. "Help and Advice in Task Oriented Systems." Proc. 7th Int'1. Joint Conf.
on Art. Intelligence, IICAI (Auglst 1982).

(12) Gershman, A. "Finding out what the user wants-Steps Toward an Automated
Yellow Pages Assistant." 7th International Conference on Artificial Intelligence (1981),
pp.423-425.

(13) Hoeppner, wolfgang, christaller, Thomas, Marburger, Heinz, Morik, Katharina, Ne-
bel, Bernhard, o'Leary, Mike, and wolfgang vy'ahlster. "Beyond Domain Independ-
ence: Experience with the Development of a German Language Access system to
Highly Diverse Background Systems." \th Internationøl Conference on Artificial In-
telligence (1983), pp. 588-594.

(14) Howe, A. and T. Finin. "Using Spreading Activation to Identify Relevant Help."
Proceeding of the 1984 Canadiøn Society for Computational Studies of Intefiigeice,
cscsl (1984). Also available as Technical Report MS-cIS-s4-01, computer und In-
formation Science, U. of Pennsylvania.

(15) Johnson, W. Lewis, and Elliot Soloway. "Intension-Based Diagnosis of Programming
Errors." Proceedings of the 4th National Conference on Artificial Intelligence (1934),
pp.162-168.

(16) Joshi, A., webber, 8., & R. vy'eischedel. "preventing False Inferences.,, proceedings
of COLING-84 (Stanford CA, July 1984).

(17) Joshi, 4., webber, 8., & R. weischedel. "Living up to Expectations: computing
Expert Responses." Proceedings of AAAI-84 (Austin TX, August 19g4).

(18) Kaplan, S.J. "Cooperative Responses from a Portable Natural Language Database
Query System" . Artificial Intelligence (l9BZ) 19, 2: 165-1gg.

(19) Kass, Robert, and rim Finin. "Modelling the user in Natural Language systems."
computøtional Linguistics, specíal Issue on user Modelling (in press, 19gg).

(20) Kass,Robert."ImplicitAcquisitionofUserModelsinCooperativeAdvisorySystems."
MS-CIS-87-05, Department of Computer and Information Science, University of Penn-
sylvania,1987.

(21) Kass, Robert, and Tim Finin. "Rules for the Implicit Acquisition of Knowledge About
the User." Proceedings of the 6th National Conference on Artificial Intelligence (1987).
Also available as technical report number Ms-cIS-s7-10, from the Department of
Computer Science, University of Pennsylvania.

(22) Kass, Robert. "The Role of User Modelling in Intelligent Tutoring Systems." In (Jser
Models in Dialog systems, editedby Alfred Kobsa and wolfgang wahlster (New york:
Springer-Verlag, 1988).

(23) Kobsa, Alfred. "Three Steps in Constructing Mutual Belief Models from User Asser-
tions." Proceedings of the 6th European Conference on Artificial Intelligence (1984),
pp. 423-427.

(24) Kobsa, Alfred, and rüolfgang wahlster. user Models in Dialog systems. (New york:
Springer-Verlag, 1988).

(25) Kowalski, Robert. Logic for Problem solving. (New york: North-Hollan d, lgTg).
(26) Mccoy, Kathleen F. "correcting object-Related Misconceptions." MS-cIS-g5-57,

Department of Computer and Information Science, University of Pennsylvania, 1985.
(27) Mccoy, Kathleen F. "Reasoning on a user Model to Respond to Misconceptions."

153 Default Reasoning and Stereotypes in lJser Modelling

unpublished paper from uM86, the International workshop on user Modelling, Maria

Laach, Vy'est GermanY.
(28) McKeown, Kathleen R. "Dir"ootte strategies for Generating Natural-Language Text'"

Artificinl Intelligence (1981 n : 1r-4l'
(29) McKeown, Kathleen i. "Tailoring Explanations for the [Jser." 9th International Con'

ference on Artificint Intelligence (1985), pp' 794-798'

(30) Morik, Katharina, and claus-Rainer Rollinger. "The Re¿fF"state Agent-Modeling

Users by Uncertain Reasoning." AI Magazine (1985) 6: 44-52'

(31) Morik, katharina, "Modeling the user's wants." unpublished paper from uM86, the

International workshop on user Modelling, Maria Laach, west Germany.

(32) Motro, A. "Query Genèrahzation: A Method for interpreting Null Answers." ln Expert

Database systems,edited by Larry Kerschberg (Menlo Park, cA: Benjamin/cummings,

1e8s).
(33) Paris, cecile L. "Tailoring object Descriptions." computational Linguistics Special

Issue on User Modelling (1988).

(34) perrault, C. Raymon¿. ';Rn Application of Default Logic to Speech Act Theory'"
on Artificial Intelligence (1987).Proceedings of ihe 6th National conference

(35) Pollack, lù. "information Sought and Information Provided." Proceedings of CHI'85'

Assoc. for computing Machinery (ACM) (San Francisco, cA, April 1985), pp. 155-

160.
(36) Reiter, Ray. "A Logic for Default Reasoning." Arfficinl Intelligence (1980) 13' 1: 81-

132.
(37) Rich, Elaine. "User Modelling Via Stereotypes." Cognitive Scienc.e (1979) 3:329-354'

i¡sj Ri"tt, Elaine. "stereotypes uttd us"t Modelling." ln user Mole\ in Díalog, Systems,
'

edited by Alfred Kobså and wolfgang wahlster (New York, Springer-verlag, L988)'

(39) Schuster, E., and T. Finin. "vP2: The Role of user Modelling in correcting Errors

in Second Language Learning." Proc. Conference on Arfficial Intelligence and the

Simulation of Behavior, AISB (1985)'

(40) Shrager, J., ând T. Finin. "An Expert System that Volunteers Advice." Proc' Second

Annual National Conference in Artificial Intelligence, AAAI (August 1982).

(41) Sidner, C.L., and D.i. Israel. "Recognizing Intended Meaning and Speakers'Plans."

Proc. 7-IJCAI (Vancouver B.C., Canada, August 1981), pp' 203-208'

(42) Sleeman, D. "Àssessing Aspects of competence in Basic Ín Intelligent Tu-
_Algebra."

toring systems, edited by D. Sleeman and J.S. Brown (New York: Academic Press,

1982), PP. 185-200.
(+3) Sleeman, D.H. "UMFE: A User Modelling Front End Subsystem." International

Iournal of Man-Machine Studies (1985) 23: 71-88'

(44) Smith, Biian. Reflection and Semantics ín a Procedural Language. Ph.D. Thesis' MIT'
' '

cambridge, MA, 1982. Also available as Technical Report MIT/LCS/TR-272.

(45) Swartoutl wiuiam R. "XPLAIN: A System for creating and Explaining Expert con-

sulting Programs." Arfficial Intelligence (1983) 21': 785-325'

(a6) wakãr, Aãrian. Knowledge systems and prolog. (Reading, MA: Addison-wesley,

1e87).
(47) Wallis, J.W., and E.H. Shortliffe. "Explanatory Power for Medical Reasoning Expert
'

Systems: Studies in the Representation of Causal Relationships for Clinical Consul-

tations." sTAN-cs-82-923, Depafiment of computer Science, Stanford university,

t982.
(48) Webber, 8., and T. Finin. In "Response: Next Steps in Natural Language Interaction'"

In Artificial Intelligence Apptications for Business, edited by vy'. Reitman (Norwood,

NJ: Ablex Publ. Co., 1984).

't54 T. Finin

(49) Wilensky, R., Mayfield, J., Albert, 4., Chin, D.N., Cox, C., Luria, M., Martin J.,
and D. Wu. "UC-A Progress Report." UCB/CSD 871303, Department of EECS,
University of California, Berkeley, 1986.

APPENDIX-THE DEMO PREDICATE

This appendix defines the demo predicate which implements the heart of the GUMS
interpreter. The relation

show (Goal, Value)

holds if the truth value of propositionGoal canbe shown tobeValuelor a particular
ground instance of Goal. The show predicate first makes sure that Goal is a ground
instance via a call to the bindVars predicate and then invokes the meta-evaluator
demo. The relation

demo (Goal, Value, Level)

requires that Goal be a fully instantiated term and Level be an integer that rep-
resents the level of recursion within the demo predicate. The relation holds if the
"strongest" truth value for Goøl is Value.

:- op(950,fy,'-').
:- op(1150,xfy,'if')

Vo show that the truth-value of P is V by (1) binding any variables
Vo in P and (2) invoking the demo metainterpreter
show(P,V) :- bindVars(P), demo(P,V,O).

7¿ truth values
demo(P,P,-) :- truthValue(P),!.

Vo reflection. . .

demo(demo(P,V1),V,D) :-
!,
nonvar(Vl),
demo (P,Vl,D) -> V:true; V:false.

% disjunction ...
demo ((P,Q),V,D) :- !,

demo(P,VL,D),
demo(Q,V2,D),
upperbound(Vl,V2,V)

155
Default Reasoning and Stereotypes in L|ser Modelling

7o conjunction ...
demo((P,Q),V,D):- !,

demo(P,Vl,D),
demo(Q,V2,D),
lowerbound(Vl,V2,V).

Vo negation ...
demo(-P,V,D) :- !,

demo(P,Vl,D),
negate(Vl,V,P).

7a assumPtion ...
demo(assumed(P),V,D) :- !,

demo(P,V1,D),
strengthen(Vl,V).

Vo call demol with deeper depth and then cut

demo(P,V,DePth) :-

Deeper is DePth+1'
demoLfP,V,DeePer),
retractall(temP(,DeePer)),
I

Vo defrnite facts. . .

demol(P,true,-) :- certain(P).

demol(P,false,-) :- certain(-P).

Vo f,nd a definite rule that yields TRUE or FALSE'

demol(P,V,D) :-
forsome(certain P if Q),(demo(Q,V,D),demoNote(V,D)))

demol(P,V,D):-
forsome(certain(-P if Q)'

(demo(Q,Vl,D),
negate(Vl,V,P),
demoNote(V,D))).

Vo stop if the best so far was ASSUME(TRUE)

demol(P,assume(true),D) :-

retract(temp(assume(true),D)).

Vo default positive facts.

demo(P,assume(true),-) :- default(P)

Vo try delault rules until one gives a positive value'

156 T. Finin

demol(P,assume(true),D) :-
forsome(default(P if Q),(demo(e,V,D),positive(V)))

Vo defatlt negative facts.
demo(P,assume(false),_) :- default(-p).

Vo default negative rules.
demol(P,assume(false),D) :-

forsome(default(-P if Q),(demo(e,V,D),positive(V)))

% if P is closed, then its false.
demo1.(P,false,-) :- closed (P),!

Vo the default answer.
demol.(P,assume(false),).

7o demoNote(X,D) succeeds if X is TRUE or FALSE,
Vo otherwise it fails after updating temp(A,)
Vo to be the strongest value known so far.

demoNote(V,-) :- known(V).
demoNote(V,D):-

not(temp(-,D)),
!,
assert(temp(V,D)),
fail.

demoNote(assume(true),D) :-
retract(temp(-,D)),
!,
assert(temp(assume(true),D)),
fail.

% Relations on Truth Values
positive(X) :- X : true ; X : assume(true).

known(X) :- X : true ; X : false.

higher(true,).
higher(assume(true), assume(false))
higher(,false).

upperbound(X,Y,Z) :- higher(X,y) -> Z:X ; Z:y

lowerbound(X,Y ,Z) :- higher(X,Y) -> Z:y ; Z:X.

157
Default Reasoning and Stereotyps in lJser Modelling

strengthen(assume(X),X).
strengthen(true,true) .

strengthen(false,false).

Eo rlegatioî is relative to a predicate'

negate (true,f alse,-).
negate(assume(true), assume(false),-)'
negate(assume(false),assume(true),-)'
negate(false,true,P) :- closed(P)'

nelate(false,assume(true),P) :- not(ctosed(P))'

truthValue(true).
truthValue(false)'

:- truthValue(X)'truthValue(assume(X))

% The TYPe SYstem

% isSubtype(Tt,Tl) iff type T1 has an ancestor fypeT2'

isSubtype(Tl,T2) :- subtype(T1'T2)'

isSubtype(T1,T2) :-

subtype(T1,T),
isSubtYPe(T,T2).

7o fiue if instance I is descendant from type T'

islnstance(I,T) :- inst(t,T).
islnstance(I,T) :-

isSubtyPe(Tl ,T) '
islnstance(I,T1).

7o fite if T is a tYPe.

isType(T) :- inst(,T).
isType(T) :- subtYPe(T,).
isType(T) :- subtYPe(,T).

"/o Grounding Terms

% bindVars(P) ensures that all variables in P are bound or it fails'

bindVars(P) :- var(P),!,fail.
bindVars(P) :- atomic(P),!.

bindVars(P) :-

schema(P,PS),
p :.. [_tArgs],
pS :.. [_tTypes],
bindArgs(Args,TYPes).

158 T. Finin

bindArgs([],[]).
bindArgs([ArgtArgs], [TypetTypes]) : -

bindArg(Arg,Type),
bindArgs(Args,Types).

bindArg(Arg,Type) :-
var(Arg),
islnstance(Arg,Type).

bindArg(Arg,-) :- bindVars(Arg).

7o scheme(P,S) is true if S is the schema for p, eg
Vo schema(gtrvefi ohn,X,Y),give(person,person,thing))

Vo frnd, a declared schema.
schema(P,S) :-

functor(P,F,N),
functor(S,F,N),
declare(S),
!.

Vo use the default schema F(thing,thing, . . .).
schema(P,S) :-

functor(P,F,N),
functor(S,F,N),
for(I, 1.,N,arg(I,S,thing)),
I

Manuscript received September 1986; Revised July 1987; Accepted July 1987,

Address correspondence to Timothy W. Finin, Paoli Research Center, [Jnßys Corporation, p.O. Box
517, Paoli, PA. 19301.

