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Abstract—In an era where wearables, particularly those in
non-hospital settings, collect and transmit sensitive personal data,
it is imperative to implement stringent privacy safeguards. The
National Institute of Standards and Technology (NIST) Internal
Report 8228 provides regulations for securing Internet of Things
(IoT) devices, data, and the privacy of individuals. We have
developed a novel framework for examining the privacy policies
governing the data and information utilized by wearable devices
to ensure that these IoT devices work in adherence to the
NIST controls. Our approach entails constructing an ontology of
the pertinent NIST regulations, extracting key regulation terms,
establishing clear annotation guidelines, and reasoning over the
developed ontology. Our primary contribution is developing a
novel method to accurately retrieve the expectations, privacy risk
mitigation areas, and the associated regulations using Natural
Language Processing and Semantic Web concepts. Ultimately,
vendors and users can use our publicly available ontology to
semi-automate the privacy compliance process for wearables,
ensuring that the data collected and transmitted through the
devices are secure, thereby protecting both the devices and the
individuals who use them.

Index Terms—Wearables, Wearable Devices, IoT, Semantic
Web, Ontology, Privacy, Compliance, Microservices

I. INTRODUCTION

The widespread usage and data transmission, as well as
the heightened privacy risks associated with microservices of
wearable devices, indicate an apparent need for compliance
with existing regulations. For example, an investigation by [1]
revealed that many partner applications compatible with the
Fitbit fitness tracker transmit personal information, such as
geolocation and email addresses, to unintended third parties.
This group comprises social networks, analytic and advertis-
ing services, and weather-related Application Programming
Interfaces. This finding suggests that wearable devices may
incorporate microservices that are primarily focused on Per-
sonally Identifiable Information (PII), with a real-time collec-
tion of sensitive PII, including precise location coordinates
and health-specific data [2] [3] [4]. The health and fitness
metrics tracked by wearable devices are interconnected with
some microservices. Among these services are monitoring of
sleep patterns, frequency of standing, movement or walking

speed as a measure of physical fitness, heart rate, stress
levels, nutritional intake, medication adherence, respiratory
rate, glucose levels, menstrual cycle, and mental health [2] [5]
[6] [7]. Predominantly, health data is derived from wearables
operated outside hospital settings, evading regulations such
as the Health Insurance Portability and Accountability Act
(HIPAA). According to [8], wearable device manufacturers
circumvent HIPAA’s “business associate” provisions by not
advocating that device users share their personal health infor-
mation with medical professionals. While our study primarily
focuses on privacy policies, the reference to microservices
highlights the complexity and granularity of wearable device
data management. The intricate data management involved
with wearable devices can have implications for privacy poli-
cies, particularly concerning the handling and protecting of PII
[9] [10].

Wearable devices are widely available for purchase and
are used by individuals daily. The fundamental components
that drive the business cases for wearable microservices are
the PII. Therefore, for users to benefit from or utilize these
microservices optimally, they must divulge their PII, posing
privacy risks. Such information is frequently transmitted across
cloud service meshes, dispersed across numerous networks,
many of which are public and where cybersecurity and privacy
breaches are prevalent. Unfortunately, users are often uncon-
cerned about the amount of data and information collected by
these devices and how the wearable vendors have utilized them
without their notice or knowledge. To check this problem,
the National Institute of Standards and Technology (NIST)
Internal Report (IR) 8228 [11] provides standards to ensure
IoT device, data, and individuals’ privacy. Often, wearable
device manufacturers overlook these guidelines that protect
the IoT devices, the data they collect, and the individuals that
use them. Therefore, many individuals report privacy concerns
after using wearable devices.

We have developed a novel framework for examining the
privacy policies that control the data and information utilized
on wearables to determine if they conform to the rules outlined
in NIST regulation. Because the datasets are available to the



public, this study concentrates on wearable devices in non-
hospital settings. Our authority document for verification is
NISTIR 8228. It has stipulated considerations and mitigation
for protecting the data that pass through the IoT devices.
Our essential contribution is the novel approach to semi-
automatically extract the expectations, mitigation rules, and
associated regulations using relevant strategies from Natural
Language Processing and Semantic Web technologies. Our
framework is useful for both the vendors, who manufacture
these wearables, and the users, who wear these devices, to
become aware of the binding IoT regulations. Ultimately, it
gives them confidence that the personal data passed through
the devices are secure.

II. BACKGROUND

A. WEARABLES - THE MICROSERVICES AND PRIVACY
RISKS

IoT platforms originally used monolithic approaches for
system design and implementation and for the delivery of IoT
services [12]. Microservices are small, independent software
components that provide specific functionality to wearable IoT
devices in the context of wearables. They are designed to
be lightweight and modular and can be combined to create
complex applications for wearable devices. Microservices can
collect data from sensors on the device, process data, provide
user interfaces, and communicate with other devices or ser-
vices, among other tasks. Microservices for wearables may be
deployed on the wearable device or on a cloud-based plat-
form. They can improve wearable applications’ performance,
flexibility, and scalability, allowing developers to create more
customized and individualized user experiences [12]. In recent
years, there has been a rapid increase in the number of
intelligent wearable products adapted for various applications.
Smartwatches, wristbands, eyewear, headsets, earbuds, body
straps, foot and hand-worn devices, and smart jewelry are
the wearables developed for various applications [13]. This
has resulted in a significant rise in the adoption of wearable
technology, particularly in the healthcare industry, where in-
corporating intelligent personal assistants for patients offers
ever-increasing potential benefits as a solution for healthcare
services [14]. Other application areas include the entertainment
industry, industrial logistics, and sports. Nevertheless, the
healthcare industry is considered a leader in the widespread
adoption of wearable technology due to its ability to improve
patient health and healthcare procedures [14]. Microservices
have enabled wearables to offer a diverse range of functional-
ities and features, leading to their widespread acceptance and
integration into everyday life.

Due to its practicability, microservices architecture has
emerged as the preferred approach for distributed computing in
the context of the IoT. IoT systems face numerous obstacles,
including interoperability, scalability, data volume, mobility,
security and privacy, implementation, and competence. Among
these obstacles, the security and privacy of the captured data
require considerable attention, necessitating the establishment
of suitable standards and practices [15]. With the integration of

IoT platforms and the resolution of various issues such as data
ownership, data sharing policies, privacy and safety concerns,
the full potential of wearable IoT devices can be realized
[13]. Due to the uncontrolled dissemination and sharing of
data, relying solely on technological solutions to ensure data
security is no longer sufficient. This scenario yields two
concerns. First, the data collection entity should be responsible
for its security. Second, there has been an increase in the
use of wearable devices in the healthcare industry, which
may contribute to the development of health-related products
subject to stringent industry regulations and associated legal
and regulatory challenges [16]. The NIST has published a
report addressing these privacy risks.

B. NISTIR 8228

The National Institute of Standards and Technology in
the United States publishes several special publications and
interagency reports to assist the government and private sector
in meeting legal and regulatory requirements. Notably, two
NIST publications, NIST Special Publication (SP) 800-53
Revision 5 [17] and NISTIR 8228, are significant for two
reasons. First, NIST 800-53 provides an extensive array of
privacy and security controls, but addresses cybersecurity risks
in a manner that is insufficiently specific to addressing privacy
risks of wearables. Second, NISTIR 8228 is specifically de-
signed for the IoT, a rapidly expanding and evolving network
of technologies that interact with the physical world and
is characterized by rapid growth and change [18]. In this
paper, our reference regulations document is NISTIR 8228,
which directly applies to wearables, and the ontology we
have constructed has a representative NIST 800-53 class that
captures the Revision 5 controls associated with the specific
challenges faced by IoT devices. See Fig.3 for the high-level
classes of our NIST ontology. The heterogeneous nature of
these devices is reflected in the variability of their generated
data, as well as their interoperability (or lack thereof), which
presents peculiar efficiency and utilization challenges that
can be addressed using the Semantic Web, which includes
knowledge graphs as one of the potential solutions to obtain
and communicate domain knowledge.

C. SEMANTIC WEB

The semantic web represents the World Wide Web that pro-
vides standards for expressing relationships between web in-
formation and focuses primarily on data rather than doc-
uments. It allows data to be annotated with machine-
understandable meta-data, automating their retrieval and use in
inappropriate contexts [19] [20]. Semantic Web technologies
include languages such as Resource Description Framework
(RDF) and Web Ontology Language (OWL) for defining
ontologies and describing meta-data using these ontologies,
as well as reasoning tools for analyzing these descriptions.
These technologies can be used to provide standard semantics
of privacy information and policies, allowing all agents who
understand fundamental Semantic Web technologies to effec-
tively communicate and utilize each other’s data and services



[21] [22] [23]. For reasoning over our OWL ontology, we will
use SPARQL [24] [25] queries.

D. ONTOLOGY

An ontology is a formal definition of concepts and their
relationships within a particular domain, ranging from simple
vocabularies to complex logic-based formalisms. The term
is closely related to the schema of the knowledge graph,
which can be described using an ontology in the context
of knowledge graphs. Ontologies can be created by defining
concepts and relationships through domain analysis or by
analyzing available data. Ontology, schema, and knowledge
graphs can be used interchangeably in a controlled setting
[26] [27]. Ontologies provide an automated process (known
as reasoning) for retrieving axioms not explicitly included
in the knowledge graph. Ontologies can be categorized as
general or core ontology and domain ontology based on their
conceptualizations [28] [29]. Domain ontology refers to the
knowledge of a particular domain, and we will develop an
IoT domain ontology for the NISTIR 8228 publication.

III. RELATED WORK

Data privacy enforcement in wearable IoT devices has
garnered considerable interest in recent IoT research. [30]
proposed a clustering-based k-anonymity method to preserve
the privacy of wearable IoT device data while ensuring the
usability of collected data. This method offers a practical
solution for maintaining user privacy in data-sharing proce-
dures. Privacy and security have been major concerns in this
field; [31] proposed using blockchain to securely manage and
analyze healthcare big data to address the IoT’s privacy con-
cerns. [32] conducted a systematic literature review to examine
the security of IoT devices and provided mobile computing
countermeasures. [33] proposed a lightweight model, IoT-
Stream, to semantically annotate streams, offering a simple
yet effective approach for knowledge sharing and inference
in IoT. [34] also presented a security context ontology for
analyzing the security vulnerabilities of a power system in an
IoT-Cloud environment. Their work highlighted the semantic
web’s and ontology’s significance in IoT even further. Com-
pliance with pertinent regulations and security standards is
another essential aspect of Internet of Things adoption. [35]
comprehensively analyzed the requirements of the smart grid’s
applicable security standards and guidelines. They proposed a
model to map requirements from arbitrary standards, policies,
and regulations, accelerating the readiness for cross-standard
compliance. This paper builds upon these works by developing
a semantically rich knowledge graph to represent NISTIR 8228
regulations, thereby aiding wearable IoT vendors in real-time
compliance with these rules.

IV. METHODOLOGY

We advance our analysis using a multifaceted methodology
based on the preceding theoretical background. On the one
hand, we developed a novel ontology of the regulations
document that guided our analysis of the existing privacy

risk variables that wearables may encounter; on the other, we
empirically analyzed the respective privacy policy documents.
Fig. 1 shows the architecture flow of our work. In this paper,
we randomly selected and analyzed the privacy policies of six
prominent manufacturers of wearable devices. Based on their
product market positions, we anticipate their privacy policies
will be more comprehensive, covering the most anticipated
Risk Mitigation Areas. They are Apple [36] [37], Samsung
[38] [39], Fitbit [40], Garmin [41], Withings [42], and Hex-
oskin [43]. This list is not exhaustive, but the following
methods span the entire wearable IoT device industry. While
initially based on a select number of devices, the approach
is scalable and adaptable to the more extensive wearable
IoT industry by providing standard semantics of privacy
information and policies. As new devices, technologies, and
standards emerge, we can expand and update the ontology to
accommodate recent changes, ensuring its continued relevance
and applicability. The pertinent IoT privacy risks regulations
document, for which we have created an integrated knowledge
graph, is the National Institute of Standards and Technology
publication, NISTIR 8228 Considerations for Managing Inter-
net of Things Cybersecurity and Privacy Risks [11].

Fig. 1: Architecture Flow

A. ONTOLOGY DEVELOPMENT

Protégé, an open-source framework for building intelligent
systems and ontologies, is the primary tool used for our
ontology development [44]. We selected it due to its com-
prehensive support for OWL and its wide adoption in the
semantic web research community. In consideration of privacy
risks for wearables, NISTIR 8228 is our reference regulations
document. This regulation emphasizes that IoT devices (to
which wearables belong) affect privacy risks differently than
traditional information technology devices. Refer to Fig. 2 to
view our unified ontology of this NIST publication as a Unified
Modeling Language class diagram. Finally, as a component
of our ongoing work, we are consolidating this integrated
knowledge graph with existing publicly available technologies.

Privacy and security are interdependent yet distinct concepts
within IoT and wearable technologies. These concepts are
intertwined in protecting personal information and preventing
unauthorized data access, where security measures are the
bulwark of privacy [45] [46]. Privacy concerns typically arise
when security measures fail, or data is collected without the



Fig. 2: High-level Ontology describing the regulations for managing privacy risks of wearables

user’s consent. At the same time, security revolves around
safeguarding this data against theft, loss, or corruption [47].

Proactively, the NIST controls engage in privacy and secu-
rity preservation by clearly defining Risk Mitigation Goals.
They are the specific objectives set to reduce or eliminate
risks in the Risk Mitigation Areas where vendors must take
measures to minimize the impact of risks. They can achieve
these goals by addressing the potential challenges identified
in the corresponding Risk Mitigation Areas. There are three
goals, namely:
Goal1: This goal focuses on ensuring the security of the IoT
device itself (from threats and vulnerabilities).
Goal2: This goal emphasizes the protection of data that the IoT
device stores, processes, and transmits. It involves addressing
potential challenges that could lead to unauthorized access,
tampering, or loss of data.
Goal3: This goal aims to protect individuals’ privacy by
mitigating privacy risks arising from authorized PII processing.
The goals (Goal1, Goal2, and Goal3) outlined for managing
IoT cybersecurity and privacy risks correspond to Protect
Device Security, Protect Data Security, and Protect Indi-
viduals’ Security respectively. It is essential to recognize
that absolute privacy is unattainable without comprehensive
security measures. Meeting each goal involves addressing a
set of Risk Mitigation Areas, which concisely describe the
significant cybersecurity and privacy risk mitigation aspects
associated with IoT devices most affected by the Risk Con-
siderations. Regarding wearables, Goal2 and Goal3 primarily
address the most critical privacy Risk Mitigation Areas for
services utilizing Personally Identifiable Information (PII).
Risk Mitigation Areas “Asset Management” and “Vulnerability
Management” straddle the privacy and security domains, as
they are concerned with preserving device-related information
and mitigating risks. The Risk Considerations provide insight
into how IoT devices affect the management of privacy risks.

Similarly, achieving each goal may present difficulties
(referring to the Potential Challenges). For example, these
wearables may challenge how organizations expect the devices
to help mitigate privacy risks for Risk Mitigation Areas
and Goals (otherwise referred to as the Expectations). Each
Potential Challenge is characterized by the individual device
challenges, the affected draft NIST SP 800-53 Revision 5
Controls, and the implications for the user (in this case).

B. ANNOTATION

There were challenges in selecting the appropriate manual
annotation tool for our collaborative annotation task. An effec-
tive annotation tool should be available, web-based, installable,
workable, and schematic [48]. We chose the Doccano Anno-
tation tool [49] for the efficient and accurate annotation of the
privacy policies text data based on these requirements, as well
as its user-friendly interface and scalability in handling large-
scale annotation tasks.. Doccano is an open-source, web-based
collaborative platform that allows users to upload, annotate,
and visualize text data for various annotation tasks such as
text and image classification, intent detection and slot filling,
sequence labeling, image captioning, relation extraction, object
detection, and more. Other manual annotation tools include
Prodigy, Brat, LightTag, Labelbox, and many others.
The definitive objectives articulated in NIST IR 8228 guided

the extraction of the 11 key regulation terms against which
we performed annotations. Adherence to these fundamental
regulatory objectives is critical in ensuring maximum privacy
protection for IoT devices, the data they collect, and the
people who use them. Our analysis of the privacy policy
text corpora used a semi-automated approach centered on
the regulation terms extracted via collaborative semantic an-
notation. These terms represent the key areas that vendors
of wearable devices are expected to address in their privacy
policies. The manual review phase of the extraction process
considers the diverse nature of the information that may be



Fig. 3: NIST 8228 ontology main classes

present in policy documents, accounting for specialized text
or characters that may prove difficult for NLP techniques. As
a result, this method ensures comprehensive and precise term
extraction. The following term definitions, which are excerpts
from the NIST regulations document, served as our annotation
guidelines to foster consistency:

“Asset Management: Maintain a current, accurate inventory
of all IoT devices and their relevant characteristics throughout
their lifecycles to use that information for cybersecurity and
privacy risk management purposes.
Vulnerability Management: Identify and eliminate known vul-
nerabilities in IoT device software and firmware in order to
reduce the likelihood and ease of exploitation and compromise.
Access Management: Prevent unauthorized and improper phys-
ical and logical access to, usage of, and administration of IoT
devices by people, processes, and other computing devices.
Device Security Incident Detection: Monitor and analyze IoT
device activity for signs of incidents involving device security.
Data Protection: Prevent access to and tampering with data
at rest or in transit that might expose sensitive information or
allow manipulation or disruption of IoT device operations.
Data Security Incident Detection: Monitor and analyze IoT
device activity for signs of incidents involving data security.
Information Flow Management: Maintain a current, accurate
mapping of the information lifecycle of PII, including the type
of data action, the elements of PII being processed by the
data action, the party doing the processing, and any additional
relevant contextual factors about the processing to use for
privacy risk management purposes.
PII Processing Permissions Management: Maintain permis-
sions for PII processing to prevent unpermitted PII processing.
Informed Decision Making: Enable individuals to understand
the effects of PII processing and interactions with the device,
participate in decision-making about the PII processing or
interactions, and resolve problems.
Disassociated Data Management: Identify authorized PII pro-
cessing and determine how PII may be minimized or disasso-
ciated from individuals and IoT devices.

Privacy Breach Detection: Monitor and analyze IoT device
activity for signs of breaches involving individuals’ privacy.”
[11]

We used the predefined key regulation terms as labels
to meticulously annotate the entities in the privacy policy
corpora, which are wearables’ privacy Risk Mitigation Areas.
Our semantic annotation was performed at the phrase/sentence
linguistic component level, identifying phrases and sentences
that express the same concept as the key term. For instance, we
assigned the entity label “Asset Management” to the concept
represented by the key term “Asset Management.” We refer
to the identified entities as relevant text chunks. This process
was repeated for each of the six consumer class privacy policy
documents, annotating relevant text chunks correspondingly.

To provide a more transparent illustration of the annotation
process, we highlight some specific text chunks extracted and
annotated from the privacy policies of different vendors. In
the Fitbit privacy policy, examples include “We may share
non-personal information that is aggregated or de-identified
so that it cannot reasonably be used to identify an individual,”
annotated as Disassociated Data Management, and “We use
your information when needed to send you Service notifica-
tions and to respond to you when you contact us” annotated
as Information Flow Management. Another example is from
Garmin, where the text chunk “If you enable two-factor
authentication, Garmin processes your phone number or email
address to send the security code via SMS or email” was
annotated with the Data Security Incident Detection label.
Furthermore, in Samsung’s privacy policy, a Data Protection
annotation was made for the statement, “We maintain safe-
guards to protect personal information we obtain through the
Services.” Lastly, an annotation for Privacy Breach Detection
in Apple’s privacy policy was made for the statement, “If we
learn that a child’s personal data was collected without appro-
priate authorization, it will be deleted as soon as possible.”
These examples illustrate the application of annotation labels
to specific text chunks in accordance with the outlined key
regulation terms.

The process of manual annotation is subjective. Therefore,
to minimize subjectivity, a team of three individuals carried
out the manual annotation process—the authors of this pa-
per—each with a Master’s degree or higher. More so, we used
the inter-annotator agreement metric to ensure consistency and
precision in the annotation process. This method ensured that
we addressed any discrepancies in interpretations, boosting
the reliability of our annotations even further. Fig. 4 depicts
the average span distribution count of entity labels for Fitbit.
Fig. 5 depicts the same information for the entire corpus of
the privacy policy text. On the average, a total of 476 relevant
text chunks were annotated.

For reliability evaluation purposes, we used Krippendorff’s
alpha score [50] to empirically determine the level of agree-
ment between the annotators regarding the classification of
the relevant text chunks in each vendor’s privacy policy text
corpus. We seek to evaluate compliance; consequently, a high
level of agreement was the desired outcome.



Fig. 4: Average frequency distribution of annotations: Fitbit
privacy policy

Fig. 5: Average frequency distribution of annotations: 6-
vendor-combined privacy policy

TABLE I: Annotation count
Key Terms Person1 Person2 Person3
Access Management 24 17 19
Vulnerability Management 6 3 6
Asset Management 23 15 10
Device Security Incident Management 4 7 4
Data Protection 128 90 97
Data Security Incident Detection 35 34 24
Information Flow Management 37 75 62
PII Processing Permissions Management 103 65 72
Informed Decision Making 78 80 70
Dissociated Data Management 39 39 30
Privacy Breach Detection 64 30 38
Total 541 455 432

The computation was performed using an open-source
Python implementation of Krippendorff [51], and we utilized
the same code environment to perform other NLP tasks. We
utilized the ordinal Krippendorff’s Alpha because it considers
the class hierarchy, improving the accuracy of the reliability
estimate. We expand this Goal class hierarchical knowledge
conceptualization in the Knowledge Extraction section. We
achieved a Krippendorff’s Alpha score of 0.9123. This score
is acceptable, as it demonstrates a high level of agreement
between the three annotators, attributed to their cognitive
abilities and the well-defined and precise NIST annotation
guidelines [52]. If the task required some sentiment analysis,
annotation scores could have been as low as 0.5261 on average
[53]. This preliminary work is exploratory; as such, we did not
perform any modeling.

C. FEATURE ENGINEERING

We used several feature engineering and Natural Language
Processing (NLP) techniques to preprocess and analyze pri-
vacy policies in the proposed framework. We initially tok-
enized the text into individual words or tokens. Then, using
the NLTK [54] library, we eliminated common English words
or NLP stopwords, punctuations, and stopwords that were
unique to our research context. For instance, we added the
situationally generic term “data” and the vendor names (such
as “Apple,” “Withings,” etc.) to our custom list of stopwords.
Also, we converted the text to lowercase for consistency.

TABLE II: Top five annotated words for Dissociated Data
Management - Hexoskin and Fitbit

Word Frequency
Information 5

Keep 2
Products 2

De-identified 2
Personal 2

Hexoskin

Word Frequency
Information 5

Delete 3
Days 2

Privacy 2
Shield 2

Fitbit

TABLE III: Top five annotated words for Informed Decision
Making - Apple and Garmin

Word Frequency
Consent 14
Personal 10
Privacy 9

Informed 8
Use 6

Apple

Word Frequency
Consent 11

Information 10
Provide 5

Marketing 5
Process 4

Garmin

TABLE IV: Top five annotated words for PII Processing
Permissions Management - Withings and Samsung

Word Frequency
Personal 16
Health 8

Account 6
Information 5

Privacy 5
Withings

Word Frequency
Information 18

Personal 9
Services 6

Use 5
Contact 4

Samsung

Subsequently, we determined the frequency distribution of the
words in the text and extracted the most frequent words to
understand the privacy policies’ main topics. Unlike many
NLP pipelines, we chose not to perform lemmatization to pre-
serve the original context of the words in the privacy policies.
This decision was based on our observation that lemmatization
could potentially alter the meaning and interpretation of the
policy statements. These steps guided us in reducing the
data’s dimensionality, focusing on key terms, and preparing
the data for a more nuanced analysis - creating a function that
returns the five highest-occurring words from the collection of
annotated text chunks for each extracted key regulation term.

V. RESULT AND DISCUSSION

A. KNOWLEDGE EXTRACTION

Our primary contribution is the knowledge architecture
derived from the essential NIST publication for wearable IoT
devices. It was constructed primarily with RDF triples, and
interested parties can access the information using SPARQL
queries as it is available in the public domain. For reason-
ing over our OWL ontology, we used the HermiT reasoner.
Also, the featured wearable vendors have been added to the
knowledge base as consumers. Using our integrated ontology
hosted on the Apache Jena server [55], we investigate some of
the binding regulations by examining the following use case
listings (assuming a prior definition of the necessary prefixes
in each case):

Listing 1: The privacy risk mitigation goals, the goal descrip-
tions, and the associated risk mitigation areas



SELECT DISTINCT ? Goal ? G o a l D e s c r i p t i o n ?
R i s k M i t i g a t i o n A r e a s

WHERE {
? G o a l D e s c r i p t i o n r d f s : s u b C l a s s O f + :

R i s k M i t i g a t i o n G o a l s ;
ˆ r d f : t y p e ? Goal .

? Goal : a d d r e s s e s r i s k m i t i g a t i o n a r e a ?
R i s k M i t i g a t i o n A r e a s .

}
ORDER BY ? Goal

Fig. 6: SPARQL Query result for Listing 1

We extracted the three regulation Goals using SPARQL.
Refer to Listing 1. We used the recursive path query because
each goal builds on the previous goal and does not supplant
or negate its requirement. As a result, addressing a set of risk
mitigation areas is required to achieve each risk mitigation
goal. This concept explains the hierarchical structure of the
Goal classes discussed in the prior section. The Goal classes
form a hierarchy in which each class subsumes the one before.
Fig. 6 shows the results of the preceding query.

Each risk mitigation area specifies an aspect of privacy
risk mitigation that is believed to be most significantly or
surprisingly impacted by privacy risk considerations for IoT.

Listing 2: The privacy risk considerations
SELECT ? P r i v a c y R i s k C o n s i d e r a t i o n s
WHERE {

? P r i v a c y R i s k C o n s i d e r a t i o n s r d f s : s u b C l a s s O f
: P r i v a c y R i s k C o n s i d e r a t i o n s

}

These three privacy and cybersecurity risk variables ex-
tracted through the query in Listing 2, potentially influence
the management of privacy and security risks for wearable/IoT
devices. Therefore, vendors of wearables should ensure that
they consider the risk factors listed in Fig. 7 throughout the
lifecycle of their IoT devices.

Listing 3: Expectations that may be met with one or more
challenges posed by IoT devies
SELECT DISTINCT ? Goal ? G o a l D e s c r i p t i o n ?

R i s k M i t i g a t i o n A r e a ?
Af fec t ed NIST 800 53 Con t ro l s

WHERE {
? E x p e c t a t i o n a : E x p e c t a t i o n 2 1 ;

Fig. 7: SPARQL Query result for Listing 2

Fig. 8: SPARQL Query result for Listing 3

: h a s r i s k m i t i g a t i o n a r e a ?
R i s k M i t i g a t i o n A r e a .

? Goal : a d d r e s s e s r i s k m i t i g a t i o n a r e a
? R i s k M i t i g a t i o n A r e a .

? Goal r d f : t y p e ? G o a l D e s c r i p t i o n .
? Af fec t ed NIST 800 53 Con t ro l s :

h a s e x p e c t a t i o n ? E x p e c t a t i o n .
}

Using the query in Listing 3, we examined a specific expecta-
tion (such as Expectation 21: “Device Prevents Unauthorized
Access to Any Sensitive Data Sent from it Across Networks”),
and then we identified the corresponding Risk Mitigation
Goal and its description, the corresponding NIST 800-53
Revision 5 Control, and the corresponding Risk Mitigation
Area. Fig. 8 displays the result showing the Affected NIST
800-53 Revision 5 Controls.

There are recommended approaches for organizations to
solve the challenges of privacy risk mitigation. Risk mitigation
may be impacted by privacy risk considerations. “Data Pro-
tection” is the first area of risk mitigation for attaining Goal2:
Protect Data Security, and the fifth overall. We detailed all
its linked Expectations using the SPARQL query in Listing 4.
The result is shown in Fig. 9.

Listing 4: Expectations that may be met with one or more
challenges posed by IoT devies
SELECT ? Expec ta t ion Number ? E x p e c t a t i o n ?

D a t a P r o t e c t i o n C h a l l e n g e s f o r I o T s
WHERE {

: D a t a P r o t e c t i o n : e x p e c t s ? E x p e c t a t i o n .
? D a t a P r o t e c t i o n C h a l l e n g e s f o r I o T s :

h a s e x p e c t a t i o n ? E x p e c t a t i o n .
? E x p e c t a t i o n r d f : t y p e ? Expec ta t ion Number
f i l t e r n o t e x i s t s {?

D a t a P r o t e c t i o n C h a l l e n g e s f o r I o T s :
h a s c h a l l e n g e ? p}

}
ORDER BY ? Expec ta t ion Number



Fig. 9: SPARQL Query result for Listing 4

Fig. 10: Average annotation frequency for regulation terms

B. DISCUSSION AND COMPARATIVE ANALYSIS

In a broad sense, the Data Protection label had more anno-
tated entities (as shown in Fig. 10), even though IoT privacy
encompasses other aspects besides preventing access to and
tampering with data at rest or in transit that might expose
sensitive information or allow manipulation or disruption of
IoT device operations (as defined in the NIST regulation).
This observation implies that Data Protection has been the
primary privacy focus of vendors. However, the concept of IoT
privacy compliance goes beyond this, as outlined by NIST’s
Risk Mitigation Areas.

TABLE V: Average annotation count by vendor
Key Regulation Terms Apple Samsung Fitbit Withings Garmin Hexoskin
Access Management 2 1 1 9 4 3
Vulnerability Management 1 0 0 2 2 0
Asset Management 2 0 2 6 5 1
Device Security Incident Management 0 0 1 2 1 1
Data Protection 20 14 20 30 16 5
Data Security Incident Detection 9 3 4 10 4 1
Information Flow Management 9 13 14 10 7 5
PII Processing Permissions Management 15 15 19 14 9 8
Informed Decision Making 17 15 13 7 18 6
Dissociated Data Management 7 3 5 10 5 6
Privacy Breach Detection 11 6 8 8 6 5

A comparative analysis of the privacy policies of the sam-
pled wearable devices shows a significant variation in the
number of annotations for the key regulation terms across
the different companies. Apple, for instance, had the highest
number of annotations for Data Protection, Information Flow
Management, and Informed Decision Making, indicating that
its privacy policies comprehensively cover these aspects. On

the other hand, Withings had the most annotations for Asset
Management, Access Management, and Data Security Incident
Detection, suggesting a strong emphasis on meeting Goal1,
Protect Device Security. Samsung and Fitbit had a balanced
distribution of annotations across the key regulation terms,
with a notable emphasis on PII Processing Permission Man-
agement. However, Hexoskin had the fewest annotations for
most of the regulation terms, indicating a potential improve-
ment area in their privacy policy.

Moving forward, we looked closely at the returned result
containing the most frequent words from the annotated rel-
evant text chunks. The frequency of specific words in the
annotated text chunks for the key regulation terms offered
additional insight into the privacy policies of each vendor.
Again, there are parallels and distinctions in the top words
associated with each regulation term among the vendors, pro-
viding insights into how each vendor approaches compliance
with applicable NIST regulations. For Asset Management,
the top word for Withings and Fitbit policies is “device,”
whereas Garmin includes “customer” and “service,” and Sam-
sung includes “profile.” These disparities suggest that each
vendor may prioritize compliance with the Asset Management
aspect of the regulations differently. Garmin and Withings
emphasized “account” and “research” in the context of Dis-
associated Data Management, whereas Fitbit and Hexoskin
emphasized “information,” indicating that diverse approaches
to managing disassociated data exist. Fitbit used ”information”
and “account” most frequently for PII Processing Permissions
Management. In contrast, Samsung and Withings emphasized
“information” and “personal,” demonstrating a shared empha-
sis on managing personal information and user accounts. In
the area of Informed Decision Making, Samsung, Apple, and
Garmin emphasized “information,” “consent,” and “provide,”
respectively, proposing distinct strategies to ensure that users
make informed decisions. Fitbit and Apple prioritized “infor-
mation” and “personal” for Privacy Breach Detection, whereas
Hexoskin prioritizes “users,” suggesting various methods for
detecting and managing privacy violations.

Exploring the overlapping words, we observed a pattern
where “information” is a top word for multiple vendors across
the regulation terms; this indicates that privacy risks are a



prominent concern for all vendors, signaling a shared emphasis
on data and information management. Considered together,
the terms “personal” and “information” were prevalent in
the vendor privacy policies for PII Processing Permissions
Management and Informed Decision Making. The featured
wearable vendors placed a minor emphasis on Device Secu-
rity Incident Detection and Vulnerability Management (See
Fig.10).

While there were commonalities among the privacy policies
of wearable devices, each company had areas of emphasis that
reflected its approach to privacy and data management.

C. METHOD VALIDATION

For validation purposes, we merged the five most frequent
annotated words (as partly shown earlier) for each vendor’s
key regulation terms into a set. We used NLP techniques
to determine the total frequency of these words in each
vendor privacy policy corpora. Then, we plotted a bar graph
featuring each of the six vendor privacy policies, with the
height of the bars representing the magnitude of the frequency
of the combined word set. Refer to Fig. 11. We eventually
populated the our ontology with these terms as instances of
their respective classes. Using the semi-automated privacy
policy reasoning mechanisms in conjunction with our publicly
available ontology, ensuring privacy policy agreement com-
pliance of wearables with IoT regulations can be expedited.
Finally, we recommend that vendors of wearables include
specific language or sections in their privacy policy agreements
for each Risk Mitigation Area, which would further help
mitigate the rigor of compliance checking and address the
issues of user explainability.

Fig. 11: Frequency distribution of top annotated words

VI. LIMITATIONS

We recognize that our methodology has certain limitations.
For instance, while our approach is effective at extracting and
analyzing privacy policies, it may only capture some of the
subtleties and complexities of legal language, primarily due
to the subjectivity of the annotation procedure. In addition,
our methodology relies on the precision and exhaustiveness
of the privacy policies provided by manufacturers of wearable
devices, which may vary in quality and extensive detail.
Although the manufacturing of wearable devices is beyond the
scope of this paper, the proposed framework can serve as the
basis for future work that could include a mechanism to verify
the implementation of privacy policies in wearable devices.

This implementation could be accomplished by creating a set
of compliance tests or checks based on the extracted rules
from the regulation ontology. Regarding anticipated revisions
to the featured authority document, we propose a mechanism
to update the knowledge graph following the modifications
to the regulations, necessitating a rerun of the extraction and
graph creation process whenever standards are updated.

VII. CONCLUSION

We developed a semantically rich knowledge graph to
depict NISTIR 8228 regulations by extracting key terms,
establishing clear annotation guidelines, and reasoning over
our developed ontology. Due to the textual nature of these
regulatory standards, it is challenging for wearable IoT ven-
dors to comply with the rules outlined in these documents
in real time. Using Natural Language Processing, Semantic
Web concepts, and textual document conversion into a graph-
based ontology, our novel framework can accurately extract
the expectations, privacy risk mitigation areas, and associated
regulations. This approach also helped us map and populate
our ontology instances with rules occurring in multiple IoT pri-
vacy policy agreements for wearable vendors. Our knowledge
graph, available in the public domain, is helpful for reasoning
and notifying wearable device vendors of rule violations. Our
ontology is semi-automated based on annotations extracted
from the privacy policies of numerous wearable IoT device
vendors. We intend to automate and populate our ontology in
future work fully. We are also developing a custom predictive
modeling approach for an easy-to-use graphical interface that
will enable IoT vendors to query and reason over the knowl-
edge graph and take swift action.
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