
GUMS1 : A General User Modeling System

Tim Finin
Computer and Information Science

University of Pennsylvania
Philadelphia, PA

Abstract

This paper describes a general architecture of a domain independent
system for building and maintaining long term models of individual
users. The user modeling system is intended to provide a well
defined set of services for an application system which is interacting
with various users and has a need to build and maintain models of
them. As the application system interacts with a user, it can acquire
knowledge of him and pass that knowledge on to the user model
maintenance system for incorporation. We describe a prototype
general user modeling system (hereafter called GUMS1) which we
have implemented in Prolog. This system satisfies some of the
desirable characteristics we discuss.

Introduction - The Need for User Modeling

Systems which attempt to interact with people in an intelligent and
cooperative manner need to know many things about the individuals
with whom they are interacting. Such knowledge can be of several
different varieties and can be represented and used in a number of
different ways. Taken collectively, the information that a system has
of its users is typically refered to as its user model. This is so even
when it is distributed through out many components of the system.

Examples that we have been involved with include systems which
attempt to provide help and advice (4, 5, 15], tutorial systems (14],
and natural language interfaces (16] . Each of these systems has a
need to represent information about individual users. Most of the
information is acqu ired incrementaly through direct observation
and/or interaction. These systems also needed to infer additional
facts about their users based on the directly acquired information.
For example, the WIZARD help system (4, 15] had to represent
which VMS operating system objects (e.g. commands, command
qualifiers, concepts, etc) a user was familiar with and to infer which
other objects he was likely to be familiar with.

We are evolving the e design of a general user model maintenance
system which would support the modeling needs of the projects
mentioned above. The set of services which we envision the model
maintenance system performing includes:

• maintaining a data base of observed facts about the
user.

• infering additional true facts about the user based on the
observed facts.

• infering additional facts which are likely to be true based
on default facts and default rules.

• informing the application system when certain facts can
be infered to be true or assumed true.

• maintaining the consistency of the model by retract ing
default information when it is not consistent with the
observed facts.

24

David Drager
Arity Corporation

Concord, MA

providing a mechanism for building hierarchies of
stereotypes which can form initial, partial user models.

• recognizing when a set of observed facts about a user is
no longer consistent with a given stereotype and
suggesting alternative stereotypes which are consistent.

This paper describes a general architecture for a domain
independent system for building and maintaining long term models of
individual users. The user modeling system is intended to provide a
well defined set of services for an application system which is
interacting with various users and has a need to build and maintain
models of them. As the application system interacts with a user, it
can acquire knowledge of him and pass that knowledge on to the
user model maintenance system for incorporation. We describe a
prototype general user modeling system (hereafter called GUMS1)

which we have implemented in Prolog. This system satisfies some
of the desirable characteristics we discuss.

What is a User Model?

The concept of encorporating user models into interactive systems
has become common, but what has been meant by a user model
has varied and is not always clear. In trying to specify what is being
refered to as a user model, one has to answer a number of
questions: who is being modeled; what aspects of the user are being
modeled; how is the model to be initially acquired; how will it be
maintained; and how will it be used. In this section we will attempt to
characterize our own approach by answering these questions.

Who is being modeled?

The primary distinctions here are whether one is modeling individual
users or a class of users and whether one is attempting to construct
a short or long term model. We are interested in the aquisition and
use of long term models of individual users. We want to represent
the knowledge and beliefs of individuals and to do so in a way that
resu lts in a persistent record which can grow and change as
neccessary.

It will be neccessary, of course.to represent generic facts which are
true of large classes (even all) of users. In particular, such facts may
include inference rules which relate a person's belief, knowledge or
understanding of one thing to his belief, knowledge and
understanding of others. For example in the context of a timeshared
computer system we may want to include a rule like:

If a user U believes that machine M is running,
then U will believe that it is possible for him to log
onto M.

It is just this sort of rule which is required in order to support the
kinds of cooperative interactions studied in (6] and [7], such as the
following:

User: Is UPENN-LINC up?

System: Yes, but you can't log on now.
Preventative maintenance is being
done until 11:00am.

What is to be modeled?

Our current work is focused on building a general purpose, domain
independent model maintenance system. Exactly what information
is to be modeled is up to the application. For example, a natural
language system may need to know what language terms a user is
likely to be familiar with (16], a CAI system for second language
learning may need to model a user's knowledge of grammatical rules
(14], an inte lligent database query system may want to model which

fields of a data base relation a user is interested in (10], and an
expert system may need to model a user's domain goals (11).

How is the model to be aquired and maintained?

We are exploring a system in which an initial model of the user will
be se lected from a set of stereotypical user models (13]. Selecting
the most appropriate stereotype from the set can be accomplished
by a number of techniques, from letting the user select one to
surveying the user and having an expert system select one. Once
an initial model has been selected, it will be updated and maintained
as direct knowledge about the user is aquired from the interaction.
Since the use of stereotypical user models is a kind of default
reasoning (12], we will use truth maintenance techniques [9] for
maintaining a consistent model.

In particular, if we learn something which contradicts a fact in the our
current model of the user than we need to update the model.
Updating the model may lead to an inconsistency which must be
squared away. If the model can be made consistent by changing any
of the default facts in the model, then this should be done. If there is
a choice of which defaults to alter, then a mechanism must be
provided to do this (e.g. through further dialogue with the user). If
there are no defaults which can be altered to make the model
consistent then the stereotype must be abandoned and a new one
sought.

How is the model to be used?

The model can be accessed in two primary ways: facts can be
added, de leted or updated from the model and facts can be looked
up or infered. A forward chaining component together with a truth
maintenance system can be used to update the default assumptions
and keep the model consistent.

Architectures for User Modeling Systems

Our goal is to provide a general user modeling utility organized along
the lines shown in figures 1 and 2. The user modeling system
provides a service to an application program which interacts directly
with a user. This application program gathers information about the
user through this interaction and choses to store some of this
information in the user model. Thus, one service the user model
provides is accepting (and storing!) new information about the user.
This information may trigger an inferential process which could have
a number of outcomes:

• The user modeling system may detect an inconsistency
and so inform the application.

• The user model may infer a new fact about the user
which triggers a demon causing some action (e.g.
informing the application).

25

A: an Application
GUMS: General User Modeling System

GUMS(A): Modeling System for Application A
GUMS(A,U): Model for User U in Application A

Figure 1: A General Architecture for a User Modeling Utility

A
U3 Sl

~
S2 S3 S4

I\ /\ I
S5 S6 U2 S7 S8

I
Ul

NULL: the Empty Stereotype
Si: Stereotype i
Ui: User i

Figure 2: A User Modeling System for an Application

• The user model may need to update some previously
infered default information about the user

Another kind of service the user model must provide is answering
queries posed by the application. The application may need to look
up or deduce certain information about its current user.

We are currently experimenting with some of these ideas in a system
called GUMS1. This system is implemented in prolog and used a
simple default logic together with a backward chaining interpreter
rather than a truth maintenance system and a forward chaining
engine. The next section describes GUMS1 and its use of default
logic.

Default Logic and User Modeling

A user model Is most useful In a situation where the application does
not have complete information about the knowledge and beliefs of its
users. This leaves us with the problem of how to model a user given
we have only a limited amount of knowledge about him. Our
approach involves using several forms of default reasoning
techniques: stereotypes, explicit default rules, and failure as
negation.

We assume that the GUMS1 system will be used In an application
which incrementaly gains new knowledge about its users throughout
the interaction. But the mere ability to gain new knowledge about the
user is not enough. We can not wait until we have full knowledge
about a user to reason about him. Fortunately we can very often
make generalizat ion about users or classes of users. We call a such
a generalization a stereotype. A stereotype consists of a set of facts
and rules that are believed to applied to a class of users. Thus a
stereotype gives us a form of default reasoning.

Stereotypes can be organized In hierarchies in which one stereotype
subsumes another if it can be thought to be more general. A
stereotype S1 Is said to be more general than a stereotype S2 If
everything which Is true about S1 Is neccessarily true about S2.
Looking at this from another vantage point, a stereotype Inherits all
the facts and rules from every stereotype that it is subsumed by. For
example, in the context of a programmer's apprentice application, we
might have stereotypes corresponding to different classes of
programmer, as Is suggested by the the hierarchy in figure 2.

In general, we will want a stereotype to have any number of
immediate ancestors, allowing us to compose a new stereotype out
of several existing ones. In the context of a programmers
apprentice, gor example, we may wish to describe a particular user
as a SymbolicsWizard and a UnixNovice and a ScribeUser. Thus,
the stereotype system shou ld form a general lattice. Our current
system constrains the system to a tree.

Within a stereotype we can have default information as well. For
instance, we can be sure that a programmer will know what a file is,
but we can only guess that a programmer will know what a file
directory is. If we have categorized a given user under the
programmer stereotype and discover1 that he is not familiar with the
concept of a file then we can concludethat we had improperly chosen
a stereotype and must choose a new one. But if we got the
information that he did not know what a file directory was, this would
not rule out the possibility of him being a programmer. Thus GUMS1

1 perhaps through direct interaction with her

26

Programmer
I\ ...

I
ProgrammingWizard

I \
I \

LispMachineWizard
I \

UnixHacker
I\

I \
SymbolicsWizard XeroxWizard

Figure 3: A Hierachy of Stereotypes

allows rules and facts within a stereotype to be either definitely true
or true by default (i.e. in the absence of information to the contrary.)

In GUMS1 we use the certalnl1 predicate to introduce a definite fact
or rule and the defaultl1 predicate to indicate a default fact or ru le,
as in:

certaln(P).

certaln(P If Q).

default(P).

default(P If Q).

a definite fact: P is true.

a definite rule : P is true if Q is
definitely true and P Is assumed to be
true If a is only assumed to be true.

a default fact : P is assumed to be true
unless it is known to be false .

a default rule: Pis assumed to be true
if a Is true or assumed to be true and
there is no definite evidence to the
contrary.

As an example, consider a situation in which we need to model a
persons familiarity with certain terms. This is a common situation in
systems which need to produce text as explanations or in response
to queries and In which there Is a wide variation in the users'
familiarity with the domain. We might use the following rules

(a) default(understandsTerm(ram)).

(b) default(understandsTerm(rom)
if understandsTerm(ram)).

(c) certain(understandsTerm(pc)
if understandsTerm(ibmpc)).

(d) certain(~understandsTerm(cpu)).
to represent these assertions, all of which are considered as
pertaining to a particular user with respect to the stereotype
containing the rules :

(a) Assume the user understands the term ram unless we
know otherwise.

(b) Assume the user understands the term rom if we know
or believe he understands the term ram unless we
know otherwise.

(c) This user understands the term pc if he understands
the term ibmpc.

(d) This user does understand the term cpu.

GUMS1 also treats negation as failure in some cases as a default
rule. In general, logic is interpreted using an open world assumption.
That is, the fai lure to be able to prove a proposition is not taken as
evidence that it is not true. Many logic programming languages, such
a prolog, encourage the interpretation of unprovability as logical
negation. Two approaches have been forwarded to justify the

negation as failure rule. One approach is the closed world
assumption [2]. In this case we assume that anything not inferable
from the database is by necessity false. One problem with this
assumption is that this is a metalevel assumption and we do not
know what the equ ivalent object level assumptions are. A second
approach originated by Clark is based upon the concept of a
completed database [1]. A completed database is the database
constructed by rewriting the set of clauses defining each pred icate to
an if and only if definition that is called the completion of the
predicate. The purpose of the completed definition is to indicate that
the clauses that define a predicate define every possible instance of
that predicate.

Any approach to negation as failure requires that a negated goal be
ground before execution, (actually a slightly less restrictive ru le cou ld
allow a partially instantiated negated goal to run but would produce
·the wrong answer if any variable was bound.) Thus we must have
some way of insuring that every negated literal will be bound. In
GUMS

1
we have used a simple variable typing scheme to achieve

this, as will be discussed later.

We have used a variant of the completed database approach to
show that a predicate within the scope of a negation is closed. A
predicate is closed if and only if it is defined by an iff statement and
every other predicate in the definition of this predicate is closed. We
allow a metalevel statement completed(P) that is used to signify that
by predicate P we rea lly intend the ill definition _associat~d _with
P. This same technique was used by Kowalski [8] to 1nd1cate
completion. By default we be lieve competed(P) where not indicated.
So if Pis not explicitly closed not Pis decided by default.

Thus in GUMS1 we have the ability to express that a default shou ld
be taken from the lack of certain information (i.e . negation as failure)
as well as from the presence of certain information (i.e. defau lt
ru les). For example, we can have a default rule for the programmer
stereotype that can conclude knowledge about linkers from
knowledge about compilers, as in:

default(knows(linkers) if knows(compilers))

We can also have a rule that will take the lack of knowledge about
compilers as an indication that the user probably knows about
interpreters, as in:

certain(knows(interpreters)
if~ knows(compilers))

This system also allows explicit negative facts and _defau lt facts.
When negation is proved in reference to a negative fact then
negation is not considered a default case. Si~ilarly ~egation as
fai lure is not considered a default when the predicate being negated
is closed. Such distinctions are possible because the GUMS1
interpreter is based on a four value logic.

The distinction between truth or falsity by default (i.e. assumption)
and truth or falsity by logical implication is an important one to this
system. The central predicate of the system is the two _argument
predicate show which re lates a goal G expressed as a literal to a
truth value. Thus show(Goal,Val) returns in the variable Val the
current belief in the literal Goal. The variable Val can be instantiated
to true, false, assume(true), or assume(false). The meanings of
these values are as follows :

true definitely true accord ing to the current
database.

assume(true) true by assumption (i.e . true by default)

assume(false) false by assumption

27

false definite ly not true.

These values represent truth values for a given user with respect to
a given stereotype. If the stereotype is not appropriate, then even
definte values may have to change.

Having a four value logic allows us to distinguish conclusions made
from purely logical information from those dependent on default
information. Four value logic also allows a simple type of
introspective reasoning that may be useful for modeling the beliefs of
the user. We currently use a defau lt ru le to represent an uncertain
belief about what the user knows or believes, but we could imagine a
situation where we would like to model uncertainties that the user
has in his beliefs or knowledge. One such predicate is an embeded
show predicate. For example we might have a ru le that a user will
use a operating system command that he believe might erase a file
only if he is certain that he knows how to use that command. This
might encode as:

certain(okay to use(Command) if
can-erase files(Command),

show(kno;(Command),true)).

Another predicate assumed(Pred) wi ll evaluate the truth of Pred and
"strengthen" the resu lt. That is

demo(assumed(P),V) :-
demo (P, V2),
strengthen(V2,V).

where the strengthen relation maps assumed values into definite
values (e.g. assume(true) becomes true, assume(false) becomes
false and true and false remain unchanged). The assumed
predicate is used to express a certain belief from an uncertain
knowledge or belief. For example we might want to express a ru le
that a user will always want to use a screen editor if he believes one
may be available.

certain(willUse(screenEditor) if
assumed(available(screenEditor))).

The interpreter that GUMS1 is base on is a metalevel interpreter
written in Prolog. The interpreter must generate and compare many
possible answers to each subquery, because of the multiple value
logic and the presence of explicit negative information. Strong
answers to a query (i.e. true and false) are sought first, fo llowed by
weak answers (i.e. assume(true) and assume(false)). Because
strong answers have precedence over weak ones, it is not necessary
to remove weak information that contradicts strong information.

Another feature of th is system is that we can specify the h'.Q!!§. of
arguments to predicates. This type Information can be used to allow
the system to handle non-ground goals. In our system, a type
provides a way to enumerate a complete set of possible values
subsumed by that type. When the top- level show predicate is given
a partially instantiated goal to solve, it uses the type information to
generate a stream of consistent fu lly instantiated goals. These
ground goals are tried sequentially.

That goals must be fu lly intantiated fo llows from the fact that
negation as failure is built into the evaluation algorithm. Complex
terms will be instantiated to every pattern allowed by the datatype
given the fu ll power of unificat ion. To specify the type information,
one should specify argument types for a predicate, subtype
information and type instance information. For example, the fo llowing
says that the canProgram predicate ranges over instances of the
type person and programmlnglanguage, that the type
functionallanguage is a sub-type of programmlnglanguage and

that the value scheme is an instance of the type
functionallanguage:

declare(canProgram(person,
programmingLanguage)).

subtype (programmingLanguage,
functionalLanguage) .

inst(functionalLanguage,scheme) .

Limitations of the Present System

Our current system has several limitations. One problem is that it
does not extract all of the available information from a new fact
learned of the user. If we assert that a predicate is closed, we are
saying that the set of (certain) rules for the predicate form a
definition, i.e. a neccessary and sufficient description. In our current
system, however, the information st ill only flows direction! For
example, suppose that we would like to encode the rule that a user
knows about 1/0 redirection if and only of they know about files and
about pipes. Further, let's suppose that the default is that a person
in this stereotype does not know about files or pipes. This can be
expresses as:

certain(knows(io_redirection) if
knows (pipes) ,
knows(files)) .

default(-knows(pipes)).

default(-knows(files))

closed(knows(io_redirection)).

If we learn that a particular user does know about 110 redirection
then it should follow that she neccessarily knows about both files and
pipes. Adding the assertion

certain(knows(io_redirection))

however, will make no additional changes in the data base. The
values of knows(pipes) and knows(files) will not change! A sample
run after this change might be :

?- show(knows(io redirection),Val).
Val= tr"iie

?- show(knows(pipes),Val).
Val = assume(false)

?- show(knows(files),Val).
Val= assume (false).

The reason for this problem is that the current interpreter was
designed to be able to incorporate new information without actually
using a full truth maintenance system. Before a fact F with truth
value Vis to be added to the data base, GUMS1 checks to see if an
inconsistent truth value V'can be deriv.ed for F. If one can be, then a
new stereotype is sought in which the contradiction goes away. New
knowledge that does not force an obvious inconsistency within the
database is added as is. Neither redundant information or existing
default information effect the correctness of the interpreter. Subtler
inconsistencies are possible, of course.

Another limitation of the current system its inefficiency. The use of
default rules requires us to continue to search for solutions for a goal
until a strong one is found or all solutions have been checked. These
two limitations may be addressable by redesigning the system to be
based on a forward chaining truth maintenance system. The

28

question is whether the relative efficiency of forward chaining will
offset the relative inefficiency of truth maintenance. The use of an
assumption based truth maintenance system [3) is another
alternative that we will investigate.

The GUMS1 Command Language

Our current experimental implementation provides the following
commands to the application.

show(Query,Val) succeeds with Val as the strongest truth value for
the gaol Query. A Query is a partially or fully instantiated positive or
negative literal. Val is return and is the value the current belief state.
If Query is partially instantiated then it will return more answers upon
backtracking if possible. In general one answer will be provided for
every legal ground substitution that agrees with current type
declarations.

add(Fact,Status) sets belief in Fact to true. If Fact or any legal
instance of it contradicts the current belief state then the user model
adopts successively higher stereotypes in the hierarchy until one is
found in which all of the added facts are consistent. If no stereotype
is successful then no stereotype is used, all answers will be based
entirely on added facts. Fact must be partially or fully instantiated
and can be either a positive or negative literal. Status must be
uninstantiated and will be bound to a message describing the result
of the addition (e.g. one of several error messages, ok, the name of
a new stereotype, etc.).

create_user(UserName,Stereotype,File,Status) stores the current
user if necessary and creates a new user who then is the current
user. UserName is instantiated to the desired name. Stereotype is
the logical name of the stereotype that the system should assume to
hold. File is the name of the file that information pertaining to the
user will be stored. Status is instantiated by the system and returns
error messages. A user must be created in order for the system to be
able to answer queries.

store_current(Status) stores the current users information and
clears the workspace for a new user. Status is instantiated by the
system on an error.

restore_user(User,Status) restores a previous user after saving the
current user if necessary. User is the name of the user. Status is
instantiated by the system to pass error messages.

done stores the system state of the user modeling system, saving
the current user if necessary. This command should be the last
command issued and needs to be issued at the end of every
session.

Conclusions

Many interactive systems have a strong need to maintain models of
individual users. We have presented a simple architecture for a
general user modeling utility which is based on the ideas of a default
logic. This approach provides a simple system which can maintain a
database of known information about users as well as use rules and
facts which are associated with a stereotype which is believed to be
appropriate for this user. The stereotype can contain definite facts
and define rules of inference as well as default information and rules.
The rules can be used to derive new information, both definite and
assumed, from the currently believed information about the user.

We believe that this kind of system will prove useful to a wide range
of applications. We have implemented an initial version in Prolog
and are planning to use it to support the modeling needs of several
projects. We are also exploring a more powerful approach to user
modeling based on the notion of a truth maintenance system.

Bibliography

1. Clark, Keith L. Negation as Failu re. In Logic and Databases,
J. Minker and H. Gallaire, Ed., Plenum Press, New York, 1978.

2. Reiter, R. Closed World Databases. In Logic and Databases,
H. Gallaire & J. Minker, Ed., Plenum Press, 1978, pp. 149-177.

3. DeKleer, J. An Assumption Based Truth Maintenance System.
Proceedings of IJCAl-85, IJCAI, August, 1985.

4. Finin, T.W. Help and Advice in Task Oriented Systems. Proc.
7th lnt'I. Joint Cont . on Art. Intelligence, IJCAI, August, 1982.

5. Howe, A. and T. Finin . Using Spreading Activat ion to Identify
Relevant Help. Proceeding of the 1984 Canadian Society for
Computat ional Studies of Intelligence, CSCSI, 1984. also available
as Technical Report MS-CIS-84-01 , Computer and Information
Science, U. of Pennsylvania.

6. Joshi, A. , Webber, B. & Weischedel, R. Preventing False
Inferences. Proceedings of COLING-84, Stanford CA, July, 1984.

7. Joshi, A., Webber, B. & Weischedel, R. Living Up to
Expectations: Computing Expert Responses. Proceedings of
AAAl-84, Aust in TX, August, 1984.

8. Kowalski, Robert. Logic for Problem Solving. North-Holland,
New York, 1979.

9. McDermott, D and J. Doyle. "Non-Monotonic Logic I". Artificial
Intelligence 13, 1-2 (1980), 41 - 72.

10. Matro, A. Query Generalization : A Method for interpreting Null
Answers. In Larry Kerschberg, Ed., Expert Database Systems,
Benjamin/Cummings, Menlo Park CA, 1985.

11. Pollack, M. Informat ion Sought and Information Provided.
Proceedings of CH l'85, Assoc. for Computing Machinery (ACM), San
Francisco CA, April , 1985, pp. 155-160.

12. Reiter, Ray. "A Logic for Default Reasoning". Artificial
Intelligence 13, 1 (1980), 81-132.

13. Rich, Elaine. "User Modeling via Stereotypes". Cognitive
Science 3 (1979), 329-354.

14. Schuster, E. and T. Finin. VP2: The Role of User Modelling in
Correct ing Errors in Second Language Learning . Proc. Conference
on Artificial Intelligence and the Simulation of Behavior, AISB, 1985.

15. Shrager, J. and T. Finin. An Expert System that Volunteers
Advice. Proc. Second Annual National Conference in Artificial
Intelligence, AAAI , August, 1982.

16. Webber, B. and T. Finin. In Response: Next Steps in Natural
Language Interaction. In Artificial Intelligence Applications for
Business, W. Reitman, Ed., Ablex Publ. Co., Norwood NJ, 1984.

29

Appendix - The Demo Predicate

This appendix defines the demo predicate which implements the
heart of the GUMS1 interpreter. The relation

show (Goal ,Val ue)

holds if the truth va lue of proposition Goal can be shown to be Value
for a particular ground instance of Goal. The show predicate first
makes sure that Goa/ is a ground instance via a call to the bindVars
predicate and then invokes the meta-evaluator demo. The relation

demo(Goal,Va lue ,Le v e l)

requires that Goal be a fully instantiated term and Level be an
integer that represents the level of recurs ion within the demo
predicate. The re lation holds if the "strongest" truth value for Goal is
Value.

: - op (950,fy,'- ') .
:- op (11 50 , xfy,'if').

show (P,V) :- bindVa r s (P) , demo (P ,V,0) .

% tru t h values
demo (P, P , _) :- tru t h Val u e (P), ! .

% ref l ect i on ...
demo (demo (P , Vl) ,V,D) :-

! ,
nonvar (Vl) ,
demo (P , Vl,D) -> V=tru e;V=fal se.

% disj unction ...
demo ((P ;Q), V, D) :- ! ,

demo (P, Vl, D),
demo (Q,V2,D),
upperbou nd (Vl,V2,V) .

% con j unction . . .
demo ((P , Q) ,V,D) :- !,

demo (P ,Vl,D),
demo (Q,V2 , D),
l owerb o und (Vl,V2 , V) .

% negation ...
demo (-P , V, D) :- ! ,

demo (P, Vl, D),
negate (Vl , V, P) .

% assumpt i o n .. .
demo (assumed (P) ,V ,D) ! ,

d e mo (P , Vl, D),
st r e ngth en (Vl, V) .

% call demol with deepe r dep t h a n d t h e n c u t .
demo (P , V,Depth) :-

Deeper is Depth+l ,
demo l(P , V,Deeper) ,
retractall (temp (,Deeper)) ,
! • -

% definite facts ...
demo l (P , tru e,) : - certain (P) .
demo l(P , false~_) :- certa i n (-P) .

% f i nd a definite r ul e that yie l ds TRUE or FALSE .
demo l(P , V,D) :-

forsome (certain (P if Q) , (demo (Q, V, D) , demo Note (V, D))).

demol (P , V, D) :-
forsome (certai n (-P if Q),

(demo (Q,Vl,D),
n egate (Vl, V,P) ,
demoNo t e (V, D))) .

% stop if the best so far was ASSUME (TRUE) .
demol (P, assume (true) , D) : -

retract (temp (assume (true) ,D)) .

% default positive facts.
demo (P , assume (tru e) ,) :- default (P) .

% try default r ules ' til one gives a pos i tive value.
demol (P , assume (true), D) : -

forsome (defau l t (P if Q) , (demo (Q, V, D), positive (V))) .

% default negative facts.
demo (P,assume (fa l se), _) :- default (-P) .

% default n egative rules.

I

demol(P,assume(false),D) : -
forsome(default(-P if Q) , (demo (Q,V, D) ,positive (V))) .

% if Pis closed, then its false.
demol(P,false, _) : - closed(P),!.

% the default answer.
demol (P,assume(false),) .

% demoNote(X,D) succeeds if Xis TRUE or FALSE,
% otherwise it fails after updating temp(A,)
% to be the strongest value known so far. -

demoNote(V,) : - known(V).
demoNote (V,U) : -

~ot (temp(_,D)) ,

~;sert(temp (V,D)),
fail.

demoNote (assume(true) ,D) :
retract (temp (, D)) ,
!, -
assert(temp (assume (true) ,D)) ,
fail.

% Relations on Truth Values

positive (X) : - X -- true; X assume (true) .

known(X) : - X -- true; X -- false.

higher (true,) .
higher(assume(true) ,assume(false)) .
higher(_ ,false).

upperbound(X,Y,Z) higher (X,Y) - > z- x z - Y.

lowerbound(X,Y,Z) :- higher (X,Y) -> Z- Y z-x.

strengthen (assume (X) ,X) .
strengthen (true,true) .
strengthen (false,false) .

% negation is relative to a predicate.
negate (true,false ,) .
negate (assume(trueT , assume (false) ,) .
negate (assume (false), assume (true) , -) .
negate(false , true,P) : - closed (P) .
negate(false,assume (true) , P) : - not (closed (P)) .

truthValue(true) .
truthValue (false) .
truthValue (assume (X))

% The Type System

truthValue (X) .

% isSubtype (Tl,T2) iff type Tl has an
% ancestor type T2 .
isSubtype (Tl,T2) :- subtype (Tl , T2) .
isSubtype (Tl , T2) :-

subtype (Tl, T) ,
isSubtype (T,T2) .

% true if instance I is descendant from type T.
is!nstance (I,T) :- inst (I,T) .
is!nstance (I,T) :-

isSubtype (Tl, T) ,
is!nstance (I , Tl) .

% true if
isType (T)
isType (T)
isType (T)

Tis a type.
inst (,T) .
subtype (T,) .

: - subtype (_ , T) .

% Grounding Terms

% bindVars (P) ensures that all variables
% in Pare bound or it fails.
bindVars (P) : - var (P) , ! , fail ,
bindVars (P) :- atomic (P) , ! .
bindVars (P) : -

schema(P,PS) ,
P - . . [IArgs] ,
PS - .. T ITypes] ,
bindArgsTArgs,Types) .

bindArgs ([] , [l) ,
bindArgs ([Arg lArgs], [Type lTypes])

bindArg (Arg,Type) ,
bindArgs (Args,Types) .

bindArg (Arg,Type) :-

30

var (Arg) ,
isinstance (Arg,Type) .

bindArg (Arg, _) :- bindVar s(Arg).

t scheme(P,S) is true if Sis the schema fo r P, e g
% schema(give(john,X,Y),give(person,person,thing)).

% find a declared schema.
schema (P, S) : -

functor(P,F,N),
functor (S,F,N) ,
declare (S),
! .

% use the default schema F (thing,thing, ...) .
schema (P, S) : -

functor (P,F,N) ,
functor (S,F,N) ,
f~r (I , l,N,arg (I,S,thing)) ,

