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Abstract—The Internet of Battlefield Things (IoBT) connects
autonomous, uncrewed air and ground vehicles with wireless
networks. It is a promising technology that has the potential
to significantly enhance the operational effectiveness of military
units by providing them with real-time information about the bat-
tlefield and enhancing their situational awareness. Autonomous
assets such as drones and sensors can gather data from various
sources and transmit it back to the command center, where it can
be used to make informed decisions. However, the trustworthiness
of the data provided by these autonomous assets depends on the
systems’ security and resilience to adversary attacks. Adversaries
can potentially exploit vulnerabilities in the system to disrupt or
manipulate the data. For example, adversaries can potentially
hijack drones or disrupt the network bandwidth, causing Denial
of Service (DoS) attacks or injecting fake data. In this paper,
we demonstrate one such attack by showing how certain drone
systems can be compromised by sniffing unencrypted wireless
network channels to extract key information, create packets with
chosen payloads, and send it to an unsuspecting host to affect
its behavior. Specifically, we demonstrate that the initial steps
of the MouseJack attack can be combined with packet reverse
engineering to take control of Crazyflie drones.

Index Terms—Internet of Battlefield Things, Security, Cyber-
attack, Drones

I. INTRODUCTION

With the evolving capabilities of the Internet of Things
(IoT), multiple sectors [1]–[6] have begun incorporating these
innovative technologies into their infrastructure, allowing for
enhanced capabilities that create smart infrastructure systems
such as smart homes, smart cars, and smart grids. These
advances have not only gained traction in civilian applications
but have also started to impact military applications. Military
planners are envisioning the future as one where soldiers
and (semi)autonomous unmanned aerial and ground vehicles
collaborate to carry out the mission objectives. Such systems
that promote situational awareness and operational efficiency
by integrating military assets with IoT are being called the
Internet of Battlefield Things (IoBT) [7]. The IoBT allows a
network of sensors, actuators, and uncrewed aerial and ground
vehicles to gather operational data by continuously monitoring
the battlespace and sharing information with the commander
in control to make tactical decisions. For example, military
personnel can remotely control uncrewed aerial vehicles such
as drones for tactical reconnaissance. Moreover, the pervasive
connectivity among the multitude of sensors associated with
military combat equipment and soldiers enables data collec-

tion, information fusion, and sharing that provides supporting
inferences for strategic decisions.

Several battlefield use cases, such as identifying enemy
locations [8], responding to emergencies [9], and changing
environmental conditions, indicate the potential of the IoBT
network. However, IoBT networks are also vulnerable to
cyberattacks similar to the IoT domain due to their weaker se-
curity design. In the past decade, numerous cyberattacks have
been attempted against IoT infrastructures. The most prevalent
attacks include the Stuxnet attack [10], the Mirai Botnet attack
[11], and the DynDNS attack [12]. These attacks allowed
attackers to gain unauthorized access to disrupt operations,
steal data, or cause physical damage to the IoT infrastructures.
IoT devices often provide large attack surfaces for attackers to
exploit, where a couple of compromised sensors in the network
can cause widespread damage to the entire network.

On the battlefield, adversaries may launch attacks to hijack
drones, disrupt network bandwidth, cause Denial of Service
(DoS) attacks [13], or inject fake data. The recent Russian
attack on Ukraine [14] is another warfare example, where the
Russians initially launched cyberattacks to disrupt or damage
the infrastructure and services of the Ukrainian networks.
These attacks can have severe consequences for the military
unit relying on this information, as it could lead to incorrect
decision-making or even loss of lives. In addition, adversaries
could use such attacks to disrupt the operations of the military
unit, potentially gaining an advantage in a conflict situation.
Therefore, ensuring the security of the IoBT system should be
of utmost importance.

In this paper, we show how to compromise small aerial
drone systems often envisioned in drone swarm or reconnais-
sance tasks. Specifically, we show how the Crazyflie drone
can be hijacked by combining well documented flaws in their
RF system (by adapting the MouseJack attack [15]) and some
packet level reverse engineering. First, we extract essential in-
formation and create packets with chosen payloads by sniffing
unencrypted wireless network channels. Second, we control
the operations of the Crazyflie drones as an adversary by
utilizing packet reverse engineering technique in combination
with MouseJack attack. For example, the Crazyflie drones fly
over the intended area controlled by military personnel to share
video feeds. However, we take control of the Crazyflie drone
by preventing them from flying and disrupting the intended
surveillance. Alternatively, the adversaries may transmit fake
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video feeds to the commander in control.
Similarly, several existing attack techniques [16], [17] show

how to target other autonomous assets on the battlefield.
Though the IoBT technology has the potential to enhance
the capabilities of military units significantly, it is essential
to carefully consider the security implications of using such
systems. The results of this work indicate the need to develop
effective security measures and robustness in the IoBT to
prevent attacks and protect against potential vulnerabilities.

The rest of the paper is organized as follows. Section II
describes the related work. In Section III, we provide details
of the Crazyflie drones and explain the experimental setup.
The steps for attacking the Crazyflie drone are mentioned in
Section IV. Finally, we conclude in Section V.

II. RELATED WORK

As military units and soldiers adopt more sophisticated and
interconnected systems for their operations on the battlefield
[18], they are increasingly relying on the Internet of Things
(IoT) to facilitate communication and data sharing among
various sensors and devices. While this has the potential
to improve strategic decision-making and operational effi-
ciency, it also creates new vulnerabilities and opportunities
for cyberattacks. Recently, there has been a sharp uptick in
cyberattacks targeting internet-connected devices [19]. These
attacks can take many forms, including data breaches [20], that
expose sensitive information, denial of service attacks [13],
[21] that disrupt communication and operation, and website
defacement [22] undermining the credibility and reputation of
the organizations. Advanced and sophisticated attacks, such
as advanced persistent threats (APTs) [23] to infiltrate and
compromise a system’s security over an extended period are
another form of attack. In order to effectively defend against
these types of attacks, military units must implement robust
cybersecurity measures and continuously monitor and adapt to
evolving threats.

These attacks have the potential to cause significant eco-
nomic and societal impacts. An example is the Colonial
Pipeline cyberattack that occurred in May 2021 against Colo-
nial Pipeline [24]. This company operates a pipeline system
that transports gasoline, diesel, and other refined petroleum
products across the eastern United States. The attack was
carried out by a criminal group known as DarkSide, which
is believed to operate out of Eastern Europe. The group used
ransomware to encrypt the company’s systems and demanded
a ransom in exchange for the decryption key. As a result
of the attack, Colonial Pipeline was forced to shut down
its operations, leading to fuel shortages and price spikes in
parts of the southeastern United States. The attack also had
broader implications, as it highlighted the vulnerability of
critical infrastructure to cyberattacks. A second example is
the Ukraine power grid, [25] which was targeted in a series
of cyberattacks that disrupted the power supply to hundreds
of thousands of people in 2015. The attacks targeted the
Industrial Control Systems (ICS) of the power grid, causing
power outages and damaging equipment. The attacks were the

Fig. 1. Overview of our attack design.

first known instance of a cyberattack being used to disrupt a
power grid on a large scale.

Similarly, a network bandwidth attack that could potentially
disrupt communication and operations, as shown in our previ-
ous work [26], prevents the information flow captured to the
commander in control. This could have severe consequences
for the effectiveness and safety of military operations and
the security and safety of the soldiers and civilians involved.
Therefore, we developed a context-aware policy-driven frame-
work that demonstrates resilience by sharing information as
much as possible, even when the network bandwidth drops.
Moreover, an adversary can gain access to multiple assets by
compromising a few devices as the battlefield interconnects
various types of sensors, devices, and systems that commu-
nicate with each other and share data over a wider area. For
example, an attack on a military command and control system
could potentially allow an adversary to access and exfiltrate
sensitive information.

Attackers have previously utilized MouseJack attacks on
wireless devices to steal information. For example, a frame-
work named KeyJack was introduced by Fournier et al. [27] to
eavesdrop on wireless devices for retrieving data and further
performing injection attacks. In this paper, we perform a
MouseJack attack on Crazyflie drones to disrupt the flying
operations of the drone.

III. DESIGN & EXPERIMENTAL SETUP

The network-connected assets on the battlefield are often
critical to the success of military operations, making them
attractive targets for adversaries seeking to gain an advantage.
Our work illustrates how an adversary targets the autonomous
assets present on the battlefield by either causing physical
damage or manipulating the transmitted data. Fig 1 illustrates
the overall design of the attack scenario. In this section,
we explain the main components of Crazyflie, the security
vulnerability chosen to perform the attack on Crazyflie drones,
and the attack vectors and their specifics.

A. Overview of Crazy Real Time Protocol (CRTP)

Crazyflie drones and clients communicate over CRTP
(Crazy Real Time Protocol) [28], where the protocol constructs
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the data packets such that they are routed easily to the various
subsystems on the drone. The CRTP packet structure has three
parameters, i.e. a port that ranges from 0-15 (4 bits), a channel
that ranges from 0-3 (2 bits), and a payload that is a data
buffer ranging up to 31 bytes in size. The protocol ensures
that packets sent to a particular port are always in order,
whereas reordering can take place while sending packets to
different ports. Packets with the lowest port number have the
highest priority in being routed to the subsystems. However,
the communication protocol does not encrypt data which is
a significant drawback. Moreover, CRTP is a connectionless
protocol; except for a few subsystems in Crazyflie, like the
log subsystem and radio link, the remaining are stateless. As
a result, they are easily susceptible to eavesdropping, and the
attacker can access the transmitted data between the controller
and the drone.

B. Crazyradio PA 2.4 GHz Packet Analysis

In this section, we describe the packet analysis of the
Crazyflie PA radio [29], which is based on a 2.4 GHz radio
USB dongle and operates on a 2.4 GHz network. The packet
analysis process involves analyzing data transmitted over the
network to understand how it is utilized. We used various tools
to perform packet analysis. These include packet capture tools
to capture and record packets transmitted over the network
for later analysis; protocol analyzers to decode and display
the contents of packets in a more human-readable format; and
network monitoring tools for real-time visibility into network
traffic. The CRTP sniffer and Wireshark which we describe
below, play a vital role in the analysis packets of Crazyflie
drones.

1) Bitcraze GUI console & CRTP Sniffer: In order to
control the Crazyflie drone, we utilize the Bitcraze GUI
console, which provides information about the telemetry and
thrust value at each rotor. The Bitcraze GUI also offers a
tool to view incoming and outgoing messages between the
Bitcraze GUI client and the Crazyflie drone. Fig 2 displays
the direction, port/channel, and data of the CRTP packet in
chronological order. To capture the CRTP packets related to
the drone’s motion, we used the GUI controls to have the drone
take off, navigate, and land. Simultaneously, we analyzed the
CRTP sniffer tool logs and captured the flight control data to
replicate it during our attack process. In Fig 3, we can see
the outgoing packets responsible for the drone’s landing. In
addition, we also identify that the data values in Fig 2 for
takeoff and Fig 3 for landing differ from each other.

Fig. 2. Outgoing packets captured by the CRTP sniffer tool during drone
takeoff.

2) Wireshark: A shortcoming of the CRTP Sniffer tool
described in Section III-B1 is that the data shown by the tool

Fig. 3. Outgoing packets captured by the CRTP sniffer tool during the landing.

is in a human-readable form. We specifically want the data in
the form of byte packets as it would be easy to manipulate
the packets and transmit them over the wireless channels to
perform injection attacks. To overcome this problem, we use
Wireshark [30] to capture the incoming and outgoing messages
transmitted over the Universal Serial Bus (USB) to which the
Crazyradio PA dongle was connected. To perform this, we
enable the ”usbmon” Linux module to permit Wireshark to
monitor the packets over the USB bus. We repeat the same
drone exercise of take off, flying around, and landing, and
capture the data packets on Wireshark instead of the CRTP
sniffer tool. The packet data transmitted for the land command,
as shown in Fig 4, correlates to the data seen in the CRTP
sniffer in Fig 3. Once we have an actual message packet for
flight command in byte format, we reconstruct the packets and
transmit them using MouseJack as described in Section III-D1
and JackIt described in Section III-D2 tools.

Fig. 4. Wireshark captures drone’s land command packet data.

C. Crazyflie Python Library (cflib)

While the Crazyflie drone was airborne, an additional con-
troller client using the Python library was needed to take
over the drone and access the drone’s address and channel
information. The cflib 1 library is responsible for the motion of
the Crazyflie drone, having classes such as MotionCommander
and Commander. MotionCommander is the class that abstracts
the calculation of telemetrics such as yaw, velocity, and
coordinates in 3D space and provides the functions takeoff,
land, forward, backward, left, and right, as shown in Fig 5.
Another necessary functionality of the MotionCommander is

1https://github.com/bitcraze/crazyflie-lib-python
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Fig. 5. Bitcraze GUI to control Crazyflie drone.

to keep track of the state of the Crazyflie, i.e. the position in 3D
space. MotionCommander class takes the Crazyflie instance as
an attribute and maintains other attributes like is flying flag
and a SetPointThread. Since this class is a context manager,
the setup, trigger of threads, and resetting of the position
estimator happens when the context is created through the

enter method. The SetPointThread has an infinite running
while loop, and a queue into which the velocity coordinates
and yaw rate are pushed whenever a user interacts with the
functions such as take off, move forward by 0.3 meters. In
addition, MotionCommander class also calculates the velocity
along each axis in x, y, and z directions and the yaw rate to
push into the SetPointThread.
The Commander class has various methods which convert
parameters like velocity set points, yaw rate, roll, pitch, and
thrust into CRTP packets and send them to the Crazyflie drone.
In order to take over an already flying Crazyflie, there is
a requirement to create a modified version of the Motion-
Commander class, remove the context manager functionality,
execute the SetPointThread in the init method and set the
is flying flag to True. Since the cflib library has GNU General
Public License, we were able to modify the source code of
classes responsible for the flight control of drones. We could
leverage existing code and use the available motion control
methods to take control of the Crazyflie drone. However, the
drone’s address and channel are unavailable in a real-world
scenario. To retrieve these details, we utilized the MouseJack
with JackIt. Furthermore, developing a simple Python GUI
client by integrating both modules to gather the address and
channel number will help control the drone after hacking.

D. Overview of MouseJack and JackIt

1) MouseJack: In 2016, Bastille announced an open vul-
nerability called MouseJack [15], which still affects millions
of devices, especially wireless mice and keyboards from most
popular manufacturers like Amazon, Logitech, and Microsoft,

which run on Radio Frequency (RF) channels. Bastille’s team
devised a way to sniff the network by sweeping a list of chan-
nels and decoding the enhanced ShockBurst packets picked
up by the dongle. One of the affected dongles is the one that
uses nRF24L transceivers. The nRF24L transceivers use a star
network configuration where each node can simultaneously
transmit and receive a maximum of six RF addresses. As a
result, the dongle communicates with multiple wireless devices
simultaneously. However, nRF24L chips do not officially
support packet sniffing. In 2011, a pseudo-promiscuous mode
[31] documented by Travis Goodspeed made it possible to
sniff a subset of packets transmitted by other devices.

Our work identified that the Crazyradio PA, an amplified
nRF24L-based USB dongle which controls the open-source
Crazyflie drone, is vulnerable to the MouseJack exploit. The
MouseJack2 codebase has GNU General Public License v3.0,
where the team provided research tools in Python scripts
for scanning and firmware flashing of various RF dongles,
one of which is the Crazyradio PA dongle. We utilize the
firmware flash script provided by the Crazyflie team to flash
the firmware of the Crazyradio PA dongle to enable wireless
packet sniffing and injection, along with python scripts to
sniff and scan the wireless channels around us. The modi-
fication of the Crazyradio PA firmware to add support for
pseudo-promiscuous mode aids in packet sniffing and injection
functionality. Therefore with the modified firmware of the
Crazyradio PA dongle, we can get the functionality to scan
the network, discover vulnerable devices, and communicate
with the Crazyflie drone by flashing the dongle firmware.

2) JackIt: JackIt 3 is a partial implementation of MouseJack
by Phikshun and Infamy. Here, the MouseJack scans and
detects wireless devices, develops code to parse ducky scripts,
converts them into keystrokes according to each keyboard

2https://github.com/BastilleResearch/mousejack
3https://github.com/insecurityofthings/JackIt
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manufacturer, and performs keystroke injection. For our work,
we utilize JackIt for wireless keystroke injection for keyboards
from Logitech, Microsoft, and Amazon once the dongles are
exploited, using MouseJack to detect the devices. We altered
the code to work for drones in order to perform packet
injection, and Denial of Service (DoS) attacks by channel
flooding, and further integrate it with the Crazyflie Python
library described in III-C to perform the attack instead of the
keystroke injection.

E. Attack Vectors

1) Packet Injection: Our goal is to capture packets re-
sponsible for the motion control of the drone, as we plan
to replay the captured packets to the drone to observe its
actions, construct message packets similar to the ones we have
captured, and send them to the drone from the attack system
using a flashed Crazyradio PA dongle. However, we did not
notice any discrepancies in the drone’s flight. Therefore, we
change our attack vector and attempt to perform a DoS attack
by flooding the channels with messages to distort the network
bandwidth and hinder the regular operation of the drone, but
this did not affect the drone.

2) Denial of Service (DoS) Attack: After performing packet
injection and not observing any response from the drone,
we plan to perform a DoS attack by flooding the channels
with CRTP packets and preventing communication between
the drone and the controller. To achieve our goal, we modify
the JackIt attack methods to flood the discovered channels
repeatedly with CRTP message packets. However, we found
no noticeable difference in the drone’s movement; we could
still control it from the original controller.

3) Takeover of Crazyflie drone: As discussed about cflib in
Section III-C, we utilize the Python library to create scripts
and connect to the Crazyflie drone. To connect to the drone, we
need the URI to have Crazyflie’s drone address, radio channel
number, and transmission bit rate, as seen in Fig 6.

Fig. 6. Details of Crazyflie for URI construction.

But by using the original library, we cannot connect to a
Crazyflie drone which is already airborne due to concurrency
and locks on conditional variables. Hence, we modify the
MotionCommander class from the library by removing the
context managing ability, changing the flying flag to True,
and executing the SetPointThread during initialization. The
details we see in Fig 6 show how we obtain the address
and channel number by executing the JackIt Python script.
Once we identify the device to be attacked, we create a
Crazyflie instance using the new URI generated from the
address and channel number obtained and use the modified
Motion Commander to take control of the drone.

IV. ATTACK DEMONSTRATION ON CRAZYFLIE DRONES

In this section, we mention the steps involved in disrupting
the operations of the Crazyflie drones from an adversary’s
perspective. Following the experimental setup described in
Section III, we list the following steps to perform the attack.

1) We use the Crazyradio PA dongle flashed with NRF
Research firmware and a modified version of JackIt
Python script for scanning the wireless channels to de-
tect activity and find the addresses of devices vulnerable
to wireless packet injection. As shown in Fig 7, we
detect the address and channel number of the flying
Crazyflie drone, which has the same values as Fig 6.

Fig. 7. Detected address and channel number of the Crazyflie.

2) Once we identify the address and channel of the
Crazyflie drone using the JackIt Python script, we pro-
ceed to the next phase, where we attack and take over the
drone. To start the attack, we need to select the device
number from the list of seen devices, as shown in Fig
8.

Fig. 8. GUI console indicating an option to select one of the detected Crazyflie
devices

3) After the detection phase, we use the cflib library, a
native open-source Python library described in Section
III-C provided by Bitcraze, to connect with the Crazyflie
drones programmatically.

4) In particular, we use the asynchronous mode of the cflib
where the Crazyflie Python instance connects to a stock
Crazyradio PA dongle. In addition, the device address
and RF channel discovered in the detection phase aids
in URI construction.

5) Further, we utilize the modified version of the Motion-
Commander class from the cflib library and remove the
synchronous connection features, bypass the connection
setup, and initialize calibration to control the Crazyflie
instance.

6) Now, we select a target device to attack, and a URI is
automatically created behind the scenes. A Python GUI
pops up on the screen. Using this, we can hijack and
take control of the drone, as shown in Fig 9.
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Fig. 9. Python GUI to control the hacked Crazyflie drone.

V. CONCLUSION

The Internet of Battlefield Things (IoBT) integrates the
Internet of Things with military assets to support various
military operations. These interconnected devices play an
essential role in achieving mission-critical objectives by aiding
the commander in control to continuously monitor various
events on the battlefield and take necessary action. However,
an adversary can potentially compromise these devices, which
are prone to attacks, and gain access to sensitive information.
Therefore, in this paper, we illustrate how devices like drones
connected to the internet to provide real-time information
are susceptible to attacks. In particular, we demonstrate the
MouseJack attack by compromising the Crazyflie drones. We
take control of Crazyflie drones by utilizing packet reverse
engineering to analyze the data transmitted and perform a
MouseJack attack to disrupt the intended operations. This
involves sniffing unencrypted wireless network channels to
extract essential information and create packets with chosen
payloads that can affect the behavior of an unsuspecting host.
Through this demonstration, we highlight the importance of
ensuring the security and resilience of the IoBT system to
prevent such attacks and maintain the trustworthiness of the
data provided by these systems.
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