
Robert Kass

en in a simple domain
Nevertheless, the un

or user modeling must

� is the recognition of
,istency on the part of
:l method for handling
:eeriis to have receivecr
:r inconsistencies must
r, communication, and
1d that a principled ap-
y benefit from such an

in intelligent tutoring
:ling researchers might
malyzing several intel
trs that a fundamental
s been due to the depth
o build deeper, psycho
g system. The progress
e the demands on user
cive systems attempt to
1ser will require deeper
s the lessons learned in
as well.

[BROW78], [BROW80],
[CLAN82], [CLAN83],
UOHN85], [KASS87a],

82], [OSHE82], [REIS85],
,], [SLEE82c], [SLEE82d],
b], [ZISS85]

15 GUMS - A General User Modeling Shell

Timothy W. Finin

Abstract

This chapter discusses the application of various kinds of default reasoning in system
maintained models of users. In particular, we describe the general architecture of
a domain independent system for building and maintaining long term models of
individual users. The user modeling system is intended to provide a well defined
set of services for an application system interacting with various users, and must
build and maintain models of them. As the application system interacts with a user,
it can acquire knowledge of him, and pass that knowledge on to the user model
maintenance system for incorporation. We describe a prototype general user model
ing shell (hereafter called GUMS) that we have implemented in Prolog. This system
possesses some of the desirable characteristics we discuss.

1. Introduction - The Need for User Modeling

Systems that attempt to interact with people in an intelligent and cooperative man
ner need to know many things about the individuals with whom they are interacting.
Such knowledge can be of several different varieties and can be represented and used
in a number of different ways. Taken collectively, the information that a system
has about its users is typically referred to as its user model. This is so even when it
is distributed throughout many components of the system.

Examples that we have been involved with include systems that attempt to pro
vide help and advice [FINl83, HOWE84, SHRA82], tutorial systems [SCHU86b],
and natural language interfaces [WEBB84]. Each of these systems had to represent
information about individual users. Most of the information was acquired incre
mentally through direct observation and/ or interaction. These systems also had to
infer additional facts about their users based on the directly acquired information.
For example, the WIZARD help system [FINl83, SHRA82] had to represent which
VMS operating system objects (e.g. commands, command qualifiers, concepts, etc.)
a user was familiar with, and had to infer which other objects he was likely to be
familiar with.

This chapter describes the general architecture for a domain independent system
for building and maintaining long term models of individual users. The user mod
eling system is intended to provide a well defined set of services for an application
system that interacts with various users, and needs to build and maintain models

412 Timothy W. Finin

of them. As the application system interacts with a user, it can acquire knowl
edge about him and pass that knowledge on to the user model maintenance system
for incorporation. We describe a prototype general user modeling shell (hereafter
called GUMS) implemented in Prolog. This system possesses some of the desirable
characteristics we discuss.

The next section will discuss some of the general· issues that arise in building
user models. In particular, we will describe the range of possible issues that one
might address in terms of four aspects: who is being modeled; what information is
represented in the model; how the model is acquired and maintained, and how the
model might be used. The third section provides an overview of the GUMS system
and the kind of user modeling it supports. The fourth section describes the three
kinds of default reasoning that GUMS employs: stereotypical reasoning, explicit
default rules and failure as negation: Section five describes some of the details of
the GUMS system, while the concluding section discusses some of the limitations
of GUMS and avenues for future research.

2. What Kind of User Model?

The concept of incorporating user models into interactive systems has become com
mon, but what has been meant by a user model has varied and is not always clear.
In this section we will discuss, in general terms, what might be meant by the term
user model. We will then characterize the approach to user modeling described in
this work by answering the following questions: who is being modeled; what as
pects of the user are being modeled; how is the model to be initially acquired and
maintained; and why the model is needed.

The term "user model" has been used in many different contexts to describe
knowledge that is used to support an interactive system. A survey of user modeling
in support of natural language interfaces can be found in [KASS88b] and a discussion
of user modeling for intelligent tutoring systems is provided by [KASS*]. In this
section, we will look at a number of distinctions that will allow us to focus on an
interesting and important class of "user models".

An initial definition for "user model" might be the following:

A user model is that knowledge about the user, either explicitly or implicitly
encoded, which is used by the system to improve the interaction.

The definition is too weak, since it endows every interactive system with some
kind of user model, usually of the implicit variety. In this chapter, we will focus
our attention on those models where the information about the user is explicitly
encoded. In particular, we are interested in user models that are designed along the
lines of "knowledge bases". By this we have in mind the kinds of distinctions that
are usually drawn to distinguish a knowledge base from a data base. In the context
of user models, five features are important:

1. Separate Knowledge Base - Information about a user is collected in a separate
module rather then distributed throughout the system.

15 GUMS - A General User Moc

2. Explicit Representation - 1
sufficiently expressive repres
will typically provide a set oJ
a user to be implicit, but aut,

3. Declarative rather than Proc
much as possible, encoded in

4. Support for Abstraction - 1
stract as well as concrete en
discuss classes of users and tb

5. Multiple Use - Since the use
ul�, it can be used in several d
a new user). This requires th.
way that does not favor one ·
to express the knowledge in ,
reasoned with. Similarly, the
several different applications.

User models having these fr
field of knowledge representation
edge �epresentation hypothesis [S

Any user model will be com
nal observers naturally take to 1

the system has of the user and b
tion, play a formal but causal a;
knowledge.

In the remainder of this secti
possibilities by addressing the wJ.
system will then be placed withi

2.1. Who Is Being Modeled

Two aspects of who is being mm
extent. The degree of specializa1
users o� individuals. Temporal c
encoded in tht! user model - d
does it form a long-term knowle

A user model can lie some
generic to individual. A generic
all individuals using the system
that they can be treated as the san
example, maintain a single gener
to recognize a user's misconcep1
A somewhat more individuatini
generic models to represent di£

Timothy W. Finin

th a user, it can acquire knowl
: user model maintenance system
-al user modeling shell {hereafter
n possesses some of the desirable

teral issues that arise in building
ange of possible issues that one
ig modeled; what information is
ed and maintained, and how the
1 overview of the GUMS system
,urth section describes the three
stere�typical reasoning, explicit
descnbes some of the details of
iscusses some of the limitations

active systems has become com
: varied and is not always clear.
at might be meant by the term
to user modeling described in

'ho is being modeled; what as
del to be initially acquired and

• different contexts to describe
em. A survey of user modeling
1 in [KASS88b] and a discussion
provided by [KASS*]. In this
Lt will allow us to focus on an

the following:

.
either �xplicitly or implicitly

mteractton.

interactive system with some
[n this chapter, we will focus
,n about the user is explicitly
�ls tha� are designed along the
the kmds of distinctions that
m a data base. In the context

11ser is collected in a separate
tern.

15 GUMS - A General User Modeling Shell 413

2. Explicit Representation - The knowledge in the user model is encoded in a
sufficiently expressive representation language. Such a representation language
will typically provide a set of inferential services. That allows the knowledge of
a user to be implicit, but automatically inferred when needed.

3. Declarative rather than Procedural - The knowledge in the user model is, as
much as possible, encoded in a declarative rather than procedural manner.

4. Support for Abstraction - The modeling system provides ways to describe ab
stract as well as concrete entities. For example, the system might be able to
discuss classes of users and their general properties as well as individuals.

5. Multiple Use - Since the user model is explicitly represented as a separate mod
ule, it can be used in several different ways (e. g. to support a dialog or to classify
a new user). This requires that the knowledge be represented in a more general
way that does not favor one use at the expense of another. It is highly desirable
to express the knowledge in a way that allows it to be reasoned about as well as
reasoned with. Similarly, the model ought to provide no barriers to its use by
several different applications.

User models having these features fit nicely into current work in the broader
field of knowledge representation. In fact, we could paraphrase Brian Smith's knowl
edge representation hypothesis [SMIB82] to get something like:

Any user model will be comprised of structural ingredients that a) we as exter
nal observers naturally take to represent a propositional account of the knowledge
the system has of the user and b) independent of such external semantical attribu
tion, play a formal but causal and essential role in the behavior that manifests that
knowledge.

In the remainder of this section we will explore the large space of user modeling
possibilities by addressing the who, what, how and why of user modeling. Our own
system will then be placed within this space.

2.1. Who Is Being Modeled?

Two aspects of who is being modeled are the degree of specialization and temporal
extent. The degree of specialization involves whether we are modeling classes of
users or individuals. Temporal extent refers to the persistence of the knowledge
encoded in the user model - does it expire at the end of the current session or
does it form a long-term knowledge base about the user.

A user model can lie somewhere on a specialization scale that ranges from
generic to individual. A generic user model assumes a homogeneous set of users -
all individuals using the system are similar enough with respect to the application
that they can be treated as the same type of user. Many natural language systems, for
example, maintain a single generic user model in order to infer the user's goals, or
to recognize a user's misconceptions [ALLE82b, CARB83, CARN83c, GERS81].
A somewhat more individuating point on this scale is to employ a set of fixed,
generic models to represent different subclasses of users. For example, the UC

414 Timothy W. Finin

system [WILE86, CHIN86, CHIN*] classifies a user as belonging to one of four
0 possible generic classes: novice, beginner, intermediate, or expert.

Modeling the very general beliefs held by large classes of users is extremely
important when building intelligent systems. For example, in modeling a person's
beliefs about a timeshared computer system we may want to include a rule like:

If a user U believes that machine M is running, then U will believe that it is
possible for him to log onto M.

This sort of rule is required to support the kinds of cooperative interactions
studied in UOSH84a, JOSH84b], such as the following:
User: Is linc.cis.upenn.edu up?
System: Yes, but you can't log on now.

Preventative maintenance is being done until 11:00am.
Individual user models, on the other hand, contain information specific to a

single user. A user modeling system that keeps individual models thus will have a
separate model for eac;h user of the system. A simple example of this kind of model
is the commonly used convention of customizing the behavior qf a utility such as
an editor or mail system by allowing each user to have a profile file that states his
preferences for various system parameters [RICH83].

A natural way to combine the system's knowledge about classes of users with
its knowledge of individuals is through the use of stereotypes - generic models with
specializations for individuals. A stereotype is a cluster of default facts about the
user that tend to be related to each other. One can model an individual as belonging
to a particular stereotype (e.g. novice Unix User) with a set of overriding facts (e.g.
knows how to use pipes). Examples of systems that have used stereotypes include
GRUNDY [RICH79b], and the Real-Estate Advisor [MORI85b].

2.2. What Is to Be Modeled?

The contents of a user model naturally vary from application to application. Fol
lowing Kass and Finin [KASS*], we will classify this knowledge into four categories:
goals and plans, capabilities, attitudes, and knowledge or belief.

A user's goals and plans are intimately related to one another. The user's goal is
a state of affairs he wishes to achieve, while a plan is a sequence of actions or events
that he expects to result in the realization of a goal. Furthermore, each step in a
plan has its own subgoal to achieve, which may be realized by yet another subplan.
One of the hallmarks of an intelligent, cooperative system is that it attempts to
help the user achieve his underlying goals, even when not explicitly stated. The
principle way for one agent to know another's underlying goal(s) is by recogniz
ing his observable actions as constituting a (possibly partial) plan for achieving a
domain-relevant goal. A great deal of work has been done on the problem of plan
recognition in support of cooperative interactions. Examples in the natural language
domain include Allen and Perrault [ALLE80] and Carberry [CARB83, CARB88,
CARB*]. Intelligent Tutoring Systems have introduced the idea of keeping a catalog
of "buggy" plans [BROW78, SLEE82a, JOHN84] as a means of recognizing mis-

15 GUMS - A General User Mc

conceptions or missing knowlt
the problem of providing help

A second category of kno
pabilities. Although some syst
capabilities, such as the ability 1

mend, i!_ is �!:e_!yp_icalJ�r a S)
such as theability to under�
--sr-s_tem. Examples of the latter o
as in Wallis and Shortliffe [WA
and Finin [WEBB84] have sun
about its user's capabilities to i

A third category of know
tudes. GRUNDY [RICH79b] v
of a user's preferences to reco
[1':fORI85b] and HAM-ANS [J
tned to model this. Swartout
effects of the user's perspective,
system.·

The final category of info1

Modeli�e �•s knowledge
general w�d knowledge, and
user elieves to be true about t
types of systems. In generatini
the user understands or is famil
corporating those concepts and
un�erstand. This is particularly
�hich must provide clear, uncle
mg definitions of data base iterr
a similar requirement to expres
user understands.

A final form of user knov
k�owledge about other agents.
will the system be building a rr
of the user, the user will also
ra�l [SIDN81_b] make the poim
will have an intended meaning
propositional content of uttera�
intended meaning, even though .
about what model the user has
this will affect what the system c
to understand by the user's sta
difficult representational proble
beliefs of other agents.
1 In the context of modeling oth.

tive truth and hence cannot reall
believed to be true. Thus the terr

Timothy W. Finin

longing to one of four
?xpert.
s of users is extremely
in modeling a person's
o include a rule like:
J will believe that it is

ooperative interactions

OOam.

formation specific to a
nodels thus will have a
le of this kind of model
vior of a utility such as
rofile file that states his

,ut classes of users with
- generic models with
default facts about the
individual as belonging
of overriding facts {e.g.
sed stereotypes include
.185b].

ion to application. Fol-
1ge into four categories:
!lief.
other. The user's goal is
nee of actions or events
1ermore, each step in a
by yet another subplan.
n is that it attempts to
t explicitly stated. The
; goal{s) is by recogniz
al) plan for achieving a
on the problem of plan
; in the natural language
y [CARB83, CARB88,
dea of keeping a catalog
ans of recognizing mis-

15 GUMS - A General User Modeling Shell 415

conceptions or missing knowledge. The use of plan recognition is also relevant to
the problem of providing help and advice, as in [FINl83, WILE86].

A second category of knowledge to be modeled has to do with the user's ca
pabilities. Although some systems might have to reason about a user's physical
capabilities, such as the ability to perform some action that the system may recom
mend, i!_ is more typicalfor a system to model and reason about mental ca abilitie�
such as theahility to understan a recommenoauon or explanation provided by the
--sy.:s_tem. xamples of the latter often arise when a system is generating an explanation,
as in Wallis and Shortliffe [WALL82] and Paris TAILOR system [PARl88]. Webber
and Finin [WEBB84] have surveyed ways that an interactive system might reason
about its user's capabilities to improve the interaction.

A third category of knowledge represents a user's bias, preferences and atti
tudes. GRUNDY [RICH79b] was an early user modeling system that used a model
of a user's preferences to recommended books to read. The Real-Estate Advisor
[MORl85b] and HAM-ANS [HOEP83b, MORI*] are other systems which have
tried to model this. Swartout [SWAR83] and McKeown [MCKE85a] address the
effects of the user's perspective or point of view on the explanations generated by a
system.

The final category of information we will consider is knowledge and belief1
Modeling the �•s knowledge involves a variety of things: domain knowledge,
general �d knowledge, and knowledge about other agents. Knowing what the
user elieves to be true about the application domain is especially useful for many
types of systems. In generating responses, knowledge of the concepts and terms
the user understands or is familiar with allows the system to produce responses in
corporating those concepts and terms, while avoiding concepts the user might not
understand. This is particularly true for intelligent help systems [FINl83, WILE86],'
which must provide clear, understandable explanations to be truly helpful. Provid
ing definitions of data base items {such as the TEXT system does [MCKE85c]) has
a similar requirement to express the definition at a level of detail and in terms the
user understands.

A final form of user knowledge that is important for interactive systems is
knowledge about other agents. As an interaction with a user progresses, not only
will the system be building a model of the beliefs, goals, capabilities and attitudes
of the user, the user will also be building a model of the system. Sidner and Is
rael [SIDN81b] make the point that when individuals communicate, the speaker
will have an intended meaning, consisting of both a propositional attitude and the
propositional content of utterance. The speaker expects the hearer to recognize the
intended meaning, even though it is not explicitly stated. Thus a system must reason
about what model the user has of the system when making an utterance, because
this will affect what the system can conclude about what the user intends the system
to understand by the user's statement. Kobsa [KOBS84] has studied some of the
difficult representational problems involved with building recursive models of the
beliefs of other agents.

T 1 In the context of modeling other individuals, an agent does not have access to objec-
tive truth and hence cannot really distinguish whether a proposition is known or simply
believed to be true. Thus the terms knowledge and belief will be used interchangeably.

r
I

416 Timothy W. Finin

2.3. How Is the Model to Be Acquired and Maintained?

The acquisition and maintenance of the user model are closely related topics. By
acquisition, we mean the techniques for learning new facts about the user. Main
tenance involves incorporating this new information into the existing model and
squaring away any discrepancies or COQtradictions. We will briefly review some of
the possibilities for these two related problems.

The knowledge in a user model can be acquired either explicitly or implicitly.
Explicitly acquired knowledge might come directly from the system designer in the
form of built in knowledge of stereotypes, from the application system the user
model is serving, or from the user himself. GRUNDY, for example, begins with
a new user by interviewing him for certain information. From this initial data,
GRUNDY makes judgments about which stereotypes most accurately fit the user,
thus forming an opinion about the preferences of the user based on this initial list
of attributes. As another example, each time the UMFE system [SLEE85] needs to
know a new fact about its user, it simply asks.

Acquiring knowledge about the user implicitly is usually more difficult. Implicit
acquisition involves "eavesdropping" on the us�sxstem interaction in ordert_g oL
serve_ the-.user�s ... beh_ayior a_nd from it to infer1acts that go into the model. Various
a;pects of implicit acquisition have been explored, including the use of presup
positions [KAPS82], misconception recognition:[MCC085a, MCCO*], stereotype
selection [RICH79b, RICH*, MORI8Sb], and the use of default rules [PERR88,
KASS87a, KASS87b].

Maintenance involves incorporating new knowledge about an individual user
into an existing model. The new, incoming information might be consistent or rUl:.
consistent with the current model. If it is consistent, maintenance involves triggering
inferences to add additional facts to the model. If the new knowledge is inconsistent
with the current model, then the inconsistency must be resolved in some manner.
The possibilities depend on the underlying representation and reasoning systems on
which the modeling system is built. Two major approaches are evidential reasoning,
which allows e model to hold th�njgc;t..is-4:YeJvit�
be 1e , and dg ault reasoning [�,�idu:.er�in_faets�h�n d1e
� of evidence to the ontracy_,,

2.4. Why Is the Model There?

The knowledge about a user that a model provides can be used in a number of
ways in an intelligent, interactive system. The particular opportunities depend, of
course, on the application. Figure 1 presents a general taxonomy of possible uses.
At the top level, user models can be used to support (1) the task of recognizing and
interpreting the information seeking behavior of a user, (2) providing the user with
help and advice, (3) eliciting information from the user and (4) providing informa
tion to him. Situations where user models are used for many of these purposes can
be seen in the examples presented throughout this book.

The model can be accessed in two primary ways: facts can be add�; deleted or
updated from the model, and facts can be looked up or inferred. A forward chaining

15 GUMS - A General User Mode

User I\

Deciding
what to ask

Interpreting

Deciding
how to ask

responses
ResolvingAlnterpreting
ambiguity referring

expression

erstandin

user's

rmation-s

avior

Recognizing
user goals

Recognizing
user plans

I
M
re

Figure 1. Uses for knowledge of th

component, together with a trutl
default assumptions and keep the

3. A General User Mod

The previous section described a
ties in terms of four dimensions.
and give an overview of its majo1
might be described as User Model
one to construct models of indiv
can be asserted, retracted or quer
use of inference rules associated -..

Who is being modeled? The
models of individual users. We
individuals, and do so in a way t
and change as necessary. These 1

from which additional facts deriv
What is being modeled? O

user modeling tool. The content:

Timothy W. Finin

tained?

:losely related topics. By:ts about the user. Main) the existi�g model andJI briefly review some of
-r explicitly or implicitly.he system designer in the,lication system the user:or example, begins with
1. From this initial data st accurately fit the user:
: based on this initial list
vstem [SLEE85] needs to
ly more difficult. Implicit1teracti_on_i11__order to ob-into the model. Vario�1ding the use of presup-5a, MCCO*J, stereotype• default rules [PERR88,
about an individual user tight be consistent or rUl::.nance involves triggering:nowledge is inconsistent:solved in some manner.ind reasoning systems onare evidential reasoning,
..w-it�facts�b�d_in__the

be used in a number of>pportunities depend, ofonomy of possible uses.: task of recognizing andproviding the user with:l (4) providing informa-1y of these purposes can
can be addli,!l; deleted or-red. A fo�ard chaining

15 GUMS - A General User Modeling Shell

User Model Uses

Deciding
what to ask

Deciding
how to ask

Interpreting
responses

ResolvingAlnterpreting
ambiguity referring

expression

erstanding
user's
rmation-see
avior

Recognizing
user goals

Recognizing
user plans

Evaluating
relevance

Knowing
when to

. volunteer Handhng informationmisconceptions

�
Recognizing Correcting
misconceptions misconceptions

Deciding
what to say

�
Modeling Providing
relevance prerequisite

information

Deciding

�
Constructing Lexical
referring choice
expressions

Figure 1. Uses for knowledge of the user

417

component, together with a truth maintenance system, can be used to update the
default assumptions and keep the model consistent.

3. A General User Modeling System

The previous section described a large conceptual space of user modeling possibili
ties in terms of four dimensions. This section will place our own work in this space
and give an overview of its major characteristics. Our paradigm for user modeling
might be described as User Model as Deductive Database. The GUMS system allows
one to construct models of individuals that appear to be a collection of facts that
can be asserted, retracted or queried. Some of these facts are deduced through the
use of inference rules associated with stereotypes to which the user belongs.

Who is being modeled? The GUMS system is designed for building long term
models of individual users. We want to represent the knowledge and beliefs of
indiv-iduals, and do so in a ... way that results in a persistent record which can grow
and change as necessary. These users are associated with one or more stereotypes
from which additional facts derive.

What is being modeled? Our interest is in providing a domain-independent
user modeling tool. The contents of the user model will vary greatly from appli-

418 Timothy W. Finin

cation to application and is left for the model builder to decide. For example, a
natural language system may need to know what language terms a user is likely to
be familiar with [WEBB84], a CAI system for second language learning may need to
model a user's knowledge of grammatical rules [SCHU86b], an intelligent database
query system may want to model which fields of a data base relation a user is
interested in [MOTR86], and an expert system may need to model a user's domain
goals [POLL85]. However, our paradigm of user model as deductive database makes
modeling certain things much easier than others. It is easy to construct models that
are expressed as a set of relations. In particular, we do not provide any general
facilities for building deep models of an agent's reasoning strategies or procedural
knowledge.

How is the model acquired and maintained? Our approach in GUMS is to
let the application be responsible for acquisition and to provide a set of services
for maintenance. The application must select the initial stereotypes for the user
and add new facts about the user as it learns them. How the application discovers
these facts (i.e. explicitly or implicitly) is up to the application. Maintaining the
model involves incorporating these new facts, checking that.__they are consistent
with previously learned or inferred facts, and resolving any discrepancies and con
tradictions. This can be accomplished by undoing contradictory default assumptions
and/ or shifting the user to a new stereotype. The details of how this is done will
be described later.

Why is the model there? Given our goal of producing a general purpose,
domain independent use modeling facility, the uses to which the knowledge in the
model is put are outside of our design. We will, however, give a more syntactic
account of how the model is to be used in terms of how the application interacts
with GUMS.

3. 1. The System Organization

Our goal is to provide a general user modeling utility organized along the lines
shown in Figure 2. The user modeling system provides a service to an application
program that interacts directly with a user. Note that the user modeling system does
not have access to the interaction between the application and the user. Everything
it learns about the user must come directly from the application. The GUMS system
has a separate knowledge base for each application it serves. Each knowledge base
consists of two parts: (1) a collection of stereotypes organized into a taxonomy, and
(2) a collection of models for the individuals. The individual models are installed
in the stereotype hierarchy as leaves. Figure 3 shows such a hierarchy. As will be
seen later, a stereotype is a collection of facts and rules that are applicable for any
person who is seen as belonging to that stereotype. These facts and rules can be
either definite or default, allowing for an individual to vary from the stereotypic
norm.

The application program gathers information about the user through its inter
action, choosing to store some of this information in the user modeL Thus, one
service the user modeling facility provides is accepting (and storing) new informa-

15 GUMS - A General User Modeli1

Figure 2. A general architecture
for a user modeling utility

tion about the user. This informati,
have a number of outcomes:

• The user modeling system may
cation

• The user model may infer a n
causing some action (e.g. infon

• The user model may need to up<
about the user.

Another kind of service the user rr
the application. The application m
about its current user.

Timothy W. Finin

, decide. For example, a
: terms a user is likely to
age learning may need to
>], an intelligent database
a base relation a user is
:o model a user's domain
foductive database makes
to construct models that
not provide any general
; strategies or procedural
approach in GUMS is to
provide a set of services
stereotypes for the user
the application discovers
lication. Maintaining the
that they are consistent
1y discrepancies and con
:tory default assumptions
of how this is done will
ucing a general purpose,
ich the knowledge in the
�r, give a more syntactic
the application interacts

)rganized along the lines
service to an application

1ser modeling system does
and the user. Everything
ation. The GUMS system
res. Each knowledge base
zed into a taxonomy, and
.dual models are installed
h a hierarchy. As will be
iat are applicable for any
:se facts and rules can be
•ary from the stereotypic
:he user through its inter-
1e user modeL ·Thus, one
nd storing) new informa-

15 GUMS - A General User Modeling Shell

Figure 2. A general architecture
for a user modeling utility

419

Figure 3. A hierarchy of stereotypes
and individuals

tion about the user. This information may trigger an inferential process which could
have a number of outcomes:
• Th� user modeling system may detect an inconsistency and so inform the appli-.JJ

cation -; ' �· , � Jf £
• The user model may infer a new fact about the user which triggers a demon

causing some action (e.g. informing the application).
• The user model may need to update some previously inferred default information

about the user.
Another kind of service the user model must provide is answering queries posed by
the application. The application may need to look up or deduce certain information
about its current user.

420

3.2. Default Reasoning in GUMS

Timothy W. Finin

User modeling is most useful in situations in which a system must draw a number
of plausible conclusions about a user from a small base of definite knowledge about
him. Thus, default reasoning of some kind or another is at the heart of most user
modeling systems. Our approach in the GUMS system is to use several forms of de
fault reasoning techniques: stereotypes, explicit default rules, and failure as negation.
These three types of default reasoning are closely related and, in general, formal
izable in terms of a single type of default reasoning. We have found it convenient,
however, to separate the default reasoning in GUMS for several reasons.

In the GUMS system the different kinds of default reasoning are used to cap
ture generalizations of different grain size and form a hierarchy with respect to the
strength of their conclusions. Stereotypes are used to capture generalizations of large
classes of users. Within a stereotype, explicit default rules are used to express the
stereotypic norms which are allowed to vary across individuals. Failure as negation
is used as a general technique for gathering weak evidence for beliefs about a user
when no stronger evidence exists.

3.2.1. Stereotypes and Individuals

In GUMS, a stereotype consists of a set of facts and rules that are believed to apply
to a class of users. Thus a stereotype gives us a form of default reasoning in which
each rule and fact in the stereotype is taken to hold in the absence of evidence that
the user does not belong in the stereotype.

Stereotypes can be organized in hierarchies in which one stereotype subsumes
another if it can be thought to be more general. A stereotype S1 is said to be more
general than a stereotype S2 if everything which is true about S1 is necessarily true
about S2. Looking at this from another vantage point, a stereotype inherits all the
facts and rules from every stereotype that it is subsumed by. For example, in the
context of a programmer's apprentice application, we might have stereotypes cor
responding to different classes of programmer, as is suggested by the hierarchy in
Figure 4.

Figure 4. A hierarchy
of stereotypes

15 GUMS -A General User Mo,

In general, we will want a
cestors, allowing us to compost
the context of a programmers ,
a particular user as a Symbolics'
the stereotype system should fo.
constrains the system to a tree.

A stereotype is comprised of
Each stereotype can have a singL
of subsumed stereotypes and a s
believed to_ be modeled by the stc
ever, consists of two databases oJ
The definite facts and rules const
they determine what is necessaril
type. If our knowledge of an indi
be a member of this stereotype
facts and rules, on the other ha1
who is classified in this stereotyp
that we later learn about the ind
collection of meta-knowledge ab,
knowledge bases. This informatic
is described later.

Subsumed
Stereotypes

Figure 5. A stereotype

Subsur
Stereo

Individuals

As an example, consider mod
We can be sure that a programmer
that a programmer will know wl
given user under the programmer

Timothy W. Finin

·stem must draw a number
f definite knowledge about
s at the heart of most user
to use several forms of de-

les, and failure as negation.
:d and, in general, formal
have found it convenient

• several reasons.
'

reasoning are used to cap
?rarchy with respect to the
ure generalizations of large
les are used to express the
,iduals. Failure as negation
ce for beliefs about a user

that are believed to apply
iefault reasoning in which
.e absence of evidence that

1 one stereotype subsumes
•type S1 is said to be more
bout S1 is necessarily true
stereotype inherits all the
:l by. For example, in the
ight have stereotypes cor
;ested by the hierarchy in

A hierarchy
'pes

15 GUMS - A General User Modeling Shell 421

In general, we will want a stereotype to have any number of immediate an
cestors, allowing us to compose a new stereotype out of several existing ones. In
the context of a programmers apprentice, for example, we may wish to describe
a particular user as a SymbolicsWizard and a UnixNovice and a ScribeUser. Thus,
the stereotype system should form a general lattice. Our current system, however,
constrains the system to a tree.

A stereotype is comprised of several kinds of knowledge, as depicted in Figure 5.
Each stereotype can have a single subsuming stereotype, and a set (possibly empty)
of subsumed stereotypes and a set (again, possibly empty) of individuals currently
believed to be modeled by the stereotype. The real contents of the stereotype, how
ever, consists of two databases of facts and rules, one _definite and the other default.
The definite facts and rules constitute a definition of sorts for the stereotype, in that
they determine what is necessarily true of any individual classified under this stereo
type. If our knowledge of an individual contradicts this information, then he cannot
be a member of this stereotype or any of its descendent stereotypes. The default
facts and rules, on the other hand, define our initial beliefs about any individual
who is classified in this stereotype. They can be overridden by specific information
that we later learn about the individual. The final component of a stereotype is a
collection of meta-knowledge about the predicates used in the definite and default
knowledge bases. This information is used in the processing of negative queries and
is described later.

Subsuming
Stereotypes

Subsumed Individuals
Stereotypes

Subsuming
Stereotype

Figure 5. A stereotype Figure 6. An individual

As an example, consider,.. modeling the knowledge a programmer might have.
We can be sure that a programmer will know what a file is, but we can only guess
that a programmer will know what a file directory is. If we have categorized a
given user under the programmer stereotype and discover (perhaps through direct

422 Timothy W. Finin
I

interaction with him) that he is not familiar with the concept of a file then we can
conclude that we had improperly chosen a stereotype and must choose a new one.
But if we got the information that he did not know what a file directory was, this
would not rule out the possibility of his being a programmer.

The knowledge structure for an individual is simpler than that for a stereotype.
An individual has exactly one stereotype (in the current version) with which he
is currently associated, and a collection of definite, ground facts which are true, as
is shown in Figure 6. The facts kn9wn about an individual override any default
facts known or deducible from the stereotype associated with the individual. They
must, however, be consistent with the stereotype's definite knowledge base. ,If a
contradiction arises, then the individual must be reclassified as belonging to another
stereotype.

There are a number of ways we might go about trying to reclassify an individual
when it is discovered that the current stereotype is no longer valid. In general, we
can distinguish domain independent and domain dependent techniques. Domain
dependent techniques are particularly useful when we have some understanding
of the reasons why a user might be mis-classified. Fo11 example, the user may be
learning new domain knowledge while he is using the system and this new knowl
edge may cause him to "grow out of" the current stereotype. In such a situation,
we may wish to directly encode a "growth path" of stereotypes. Another domain
dependent technique is to treat certain user attributes as triggers which, when true,
evoke particular stereotypes associated with them [RICH*].

Domain independent techniques for selecting a new stereotype in the face of
conflicting information involve (conc;eptually) two stages: generating candidates for
the new stereotype and selecting from among them. A very general and powerful
technique would be to use a classification strategy similar to that used in the KL
ONE family of representation languages [BRAC85]. Such a strategy would consider
all of the possible stereotypes and find the set of most specific subsuming stereotypes.

In the GUMS system, we have used a very simple domain independent strategy
for finding a new stereotype when the known facts about an individual contradict
some facts associated with the user's current stereotype. The ancestors of the current
stereotype are searched in order of specificity until one is found in which there is
no contradiction. Thus, we are guaranteed to find a stereotype which subsumes the
user, although it will in general not be the most specific one possible.

Although we have adopted this strategy because of its relative simplicity, both
in terms of complexity and inherent computational costs, it does correspond to some
of our intuitions on how people adopt new stereotypes. The intuition is that the
more we learn about an individual, the less we depend on stereotypic reasoning to
fill in our beliefs about him. This is mirrored in the GUMS system in its stereotype
shifting strategy. As the system learns more about a user, it will discover contradic
tions with its current stereotype model. When faced with a contradiction, it moves
up the hierarchy until it finds a stereotype in which the contradiction is resolved.
Moving up the hierarchy corresponds to a lessening of stereotypic reasoning, since
the higher models are necessarily less complete.

/

15 GUMS - A General User Moc

3.2.2. Default Reasoning witl:

fa.ithin a stereotype, we need to
with respect to (properly classif
edge as default information. Thi
absence of contradictory inform,
stereotype is either definite (i.e. r
is used to introduce a definite fa<
default fact or rule, as in:
certain. (P). a definite fact: l
certain (P if Q). a definite rule:

to be true if Q
default (P). a default fact:]

false.
default (P if Q).a default rule: I

be true and the1

Figure 7 depicts graphically 1

with default information.

certain(P)

default(P)

• �
!certain(P if Q) I

default(P if Q)
certain P if Q

As an example, consider a s
familiarity with certain terms. Tb
text as explanations or in respons1
users' familiarity with the domair
(a) default(understandsTerm(rar
(b) default(understandsTerm(roi
(c) certain(understands Term(pc:
(d) certain(-understandsTerm (<
to represent the following assertic
particular user with respect to the
(a) Assume the user understand

Timothy W. Finin

!pt of a file then we can
must choose a new one.
a file directory was, this
1er.
an that for a stereotype.
version) with which he
facts which are true, as

1al override any default
ith the individual. They
te knowledge base. If a
as belonging to another

o reclassify an individual
ger valid. In general, we
mt techniques. Domain
1ve some understanding
ample, the user may be
em and this new knowl
ype. In such a situation,
)types. Another domain
iggers which, when true,
].
,tereotype in the face of
�enerating candidates for
ry general and powerful
to that used in the KL-

. strategy would consider
c subsuming stereotypes.
ain independent strategy
an individual contradict

e ancestors of the current
found in which there is

,ype which subsumes the
,ne possible.
relative simplicity, both
does correspond to some
The intuition is that the
stereotypic reasoning to

S' system in its stereotype
t will discover contradic
a contradiction, it moves
:ontradiction is resolved.
:reotypic reasoning, since

15 GUMS - A General User Modeling Shell 423

3.2.2. Default Reasoning with Rules

Within a stereotype, we need to describe some knowledge as being necessarily true
with respect to (properly classified) members of the stereotype and other knowl
edge as default information. This default information is to be taken as true in the
absence of contradictory information. In the GUMS system, each rule or fact in the
stereotype is either definite (i.e. necessarily true) or default. The certain/1 predicate
is used to introduce a definite fact or rule and the default/1 predicate to indicate a
default fact or rule, as in:

certain (P). a definite fact: P is true.
certain (P if Q). a definite rule: P is true if Q is' definitely true, and P is assumed

to be true if Q is only assumed to be true.
default (P). a default fact: P is assumed to be true unless it is known to be

false.
default (P if Q).a default rule: Pis assumed to be true if Q is true or assumed to

be true and there is no definite evidence to the contrary.

Figure 7 depicts graphically the relationships between clauses with certain and
with default information.

certaln(P)

default(P)

!certain(P if Q) I
certain(Q)

Figure 7. The relationship
between certain and default

• clauses

As an example, consider a situation in which we need to model a person's
familiarity with certain terms. This is a common situation in systems that produce
text as explanations or in response to queries where there is a wide variation in the
users' familiarity with the domain. For example, we might use the rules and facts:

(a) default(understandsTerm(ram)).
(b) default(understandsTerm(rom) if understandsTerm(ram)).
(c) certain(understandsTerm(pc) if understandsTerm(ibmpc)).
(d) certain(-understandsTerm (cpuJ).

to represent the followi�g assertions, all of which are considered as pertaining to a
particular user with respect to the stereotype containing the rules:

(a) Assume the user understands the term ram unless we know otherwise.

424 Timothy W. Finin

(b) Assume the user understands the term rom if we know or believe he under
stands the term ram, unless we know otherwise.

(c) This user understands the term pc if he understands the term ibmpc.
(d) This user does not understand the term cpu.

3.2.3. Negation As Failure

GUMS also treats negation as failure in some cases as a default rule. In general,
logical deduction is performed using an open world assumption. That is, the failure
to prove a proposition is not taken as evidence that it is not true. Many logic pro
gramming languages, such a Prolog, encourage the interpretation of unprovability
as logical negation. Two approaches have been put forward to justify the negation as
failure rule - making the closed world assumption and completing the database. In
the closed world approach [REIT78], we assume that anything not inferable from
the database is by necessity false. Making this meta-level assumption introduces a
potential problem in that we do not know what 1 the corresponding object-level
assumptions are. The second approach is based upon the concept of a completed
database [CLKL78]. A completed database is the database constructed by rewriting
the set of clauses defining each predicate to an if and only if definition that is
called the completion of the predicate. The purpose of the completed definition is
to indicate that the clauses that define a predicate define every possible instance of
that predicate.

Any approach to negation as failure requires that a negated goal be ground (i.e.
contain no uninstantiated variables) before execution.2 Thus we must have some
way of insuring that every negated literal will be bound. In GUMS we have used a
simple variable typing scheme to achieve this, as will be discussed later.

We have used a variant of the completed database approach to show that a
predicate within the scope of a negation is closed. Making the meta-level assertion
declare (closed(P)) signifies that the definition of the predicate P is actually an if

and only if definition. This same technique was used by Kowalski [KOWA79] to
indicate completion. We further assume that a predicate is not completed unless it
is declared closed. For example, consider the following clauses:

declare(closed(p)).
p if q
r if q

Since the predicate p is complete, proving that q is false allows us to deduce that p
is false. Since the predicate r is not complete, proving that q is false does not allow
us to conclude that r is false, although it does provide weak evidence that r may be
false.

Thus in GUMS we have the ability to express that a default should be taken
from the lack of certain information (i.e. negation as failure), as well as from the
presence of certain information (i.e. default rules). For example, we can have a

2 A slightly less restrictive rule could allow a partially instantiated negated goal to run but
would produce the wrong answer if any variable was bound.

/

15 GUMS - A General User Mc

default rule for the programrr
linkers fro,m knowledge about

default(knows(linkers) if l!

We can also have a rule that wi
indication that the user probab

certain(knows(interpreters

This system also allows ex1
negation is proved in reference
a default case. Similarly, negat
predicate being negated is close
interpreter is based on a four v

The distinction between tr
or falsity by logical implicatio
predicate of the system is the
expressed as a literal to a truth
Val the "strongest" belief in tb
to true, false, assume (true), or
follows:

true

assume (true)

assume (false)

false

definitely t
true by ass
false by ass
definitely r

These values represent tru
stereotype. If the stereotype is
to change.

The relative strength of th
in Figure 8. Evidence that a fac1
any evidence that the fact is ,
"optimistic" in that it takes di1
stronger than evidence that a fa
to reflect the fact that, in our
sition is weak evidence that it
than those based on the notion

Having a four value logic al
logical information from those
logic also allows a simple typt
modeling the beliefs of the us,
uncertain belief about what d
situation where we would like
or knowledge. One such predi,
show relation holds between a
value that can be derived for C

Timothy W. Finin

, or believe he under-

� term ibmpc.

fault rule. In general,
on. That is, the failure
true. Many logic pro-
1tion of unprovability
justify the negation as
,feting the database. In
ng not inferable from
;umption introduces a
esponding object-level
mcept of a completed
nstructed by rewriting
y if definition that is
:ompleted definition is
ry possible instance of

ed goal be ground (i.e.
1s we must have some
GUMS we have used a
ussed later.
,roach to show that a
he meta-level assertion '
:ate P is actually an if
owalski [KOWA79] to
1ot completed unless it
,es:

ws us to deduce that p
is false does not allow

evidence that r may be

efault should be taken
e), as well as from the
ample, we ca� have a

i negated goal to run but

15 GUMS - A General User Modeling Shell 425

default rule for the programmer stereotype that can conclude knowledge about
linkers from knowledge about compilers, as in:

default(knows(linkers) if knows(compilers))

We can also have a rule that will take the lack of knowledge about compilers as an
indication that the user probably knows about interpreters, as in:

certain(knows(interpreters) if ~ knows(compilers))

This system also allows explicit negative facts, both definite and default. When
negation is proved in reference to a negative fact then negation is not considered
a default case. Similarly, negation as failure is not considered a default when the
predicate being negated is closed. Such distinctions are possible because the GUMS
interpreter is based on a four value logic.

The distinction between truth or falsity by default (i.e. assumption) and truth
or falsity by logical implication is an important one to this system. The central
predicate of the system is the two argument predicate show, which relates a goal
expressed as a literal to a truth value. Thus show (Goal, Val) returns in the variable
Val the "strongest" belief in the literal Goal. The variable Val can be instantiated
to true, false, assume (true), or assume (false). The meanings of these values are as
follows:

true

assume (true)

assume (false)

false

definitely true according to the current database.
true by assumption (i.e. true by default)
false by assumption
definitely not true according to the current database.

These values represent truth values for a given user with respect to a given
stereotype. If the stereotype is not appropriate, then even definite values may have
to change.

The relative strength of the four truth values is sho�n by the partial ordering
in Figure 8. Evidence that a fact is either true or false is the strongest and outweighs
any evidence that the fact is assumed to be true or false. The GUMS system is
"optimistic" in that it takes direct evidence that a fact il! assumed to be true to be
stronger than evidence that a fact is assumed to be false. This choice has been made
to reflect the fact that, in our current applications, the unprovability of a propo
sition is weak evidence that it is false. Note that this multi-valued logic is simpler
than those based on the notion of a bilattice discussed by Ginsberg [GINS86].

Having a four value logic allows us to distinguish conclusions made from purely
logical information from those dependent on default information. The four value
logic also allows a simple type of introspective reasoning that may be useful for
modeling the beliefs of the user. We currently use a default rule to represent an
uncertain belief about what the user knows or ,believes, but we could imagine a
situation where we would like to model uncertainties that the user has in his beliefs
or knowledge. One such predicate is an embedded show predicate. The embedded
sho.w relation holds between a goal G and a truth value X if the strongest truth
value that can be derived for G is X.

426

true false

assume(true)

Timothy W. Finin

assume(false) Figure 8. The relative strength of the four truth values

As an example, consider a situation in which we need to express the fact 'that a
user will use a operating system command that he believes might erase a file only if
he is certain that he knows how to use that command. We might encode this using
the show predicate as follows:

certain(okay _to_use(Command) if
can_eraseJiles(Command),
show(know(Command), true)).

The embedded show predicate forces the know (Command) goal to be a definite
fact in order for the conclusion to hold.

Another predicate, assumed {Pred), will evaluate the truth of Pred and "strength•
en" the result. The strengthen operation maps assumed values into definite values
(e.g. assume(true) becomes true, assume(false) becomes false and true and false
remain unchanged). The assumed predicate is used to express a certain belief from
an uncertain knowledge or belief. For example we might want to express a rule that
a user will always want to use a screen editor if he believes one may be available.

certain (willUse(screenEditor) if
assumed(available(screenEditor))).

The interpreter that GUMS is based on is a metalevel interpreter written in
Prolog. The interpreter must generate and compare many possible answers to each
subquery, because of the multiple value logic and the presence of explicit negative
information. Strong answers to a query (i.e. true and false) are sought first, followed
by weak answers (i.e. assume(true) and assume(false)). Because strong answers have
precedence over weak ones, it is not necessary to remove weak information that
contradicts strong information.

Another feature of this system is that we can specify the types of arguments to
predicates. This type information is used to allow the system to handle non-ground
goals. In our system, a type provides a way to enumerate a complete set of possible
values subsumed by that type. When the top-level show predicate is given a par
tially instantiated goal to solve, it uses the type information to generate a stream of
consistent, fully instantiated goals. These ground goals are then tried sequentially.

That goals must be fully instantiated follows from the fact that negation as fail
ure is built into the evaluation algorithm. Complex terms are instantiated to every
pattern allowed by the datatype given the full power of unification. To specify the

15 GUMS - A General User Mi

type information, one must d,
the types, the instances of tht
of each argument. For exampl
gram predicate ranges over ir
the type functionalLanguage i:
value scheme is an instance of t

declare(schema(canProgra1
declare(subtype(programrn
declare(instance(functiona:

To see why it is necessari
problem. We would like to m�
a system. This might be done
example. We might want to en

C Programmers tend to use
If a C programmer does not
he is not aware of it.
A person is probably a C pr
Every C tool is relevant to ,
We have complete knowledE
Lint is a C tool.

which could be expressed in Gi

default(knows(Tool) if rele,
default(~ knows(Tool) if ~u.
default(cprogrammer if USE
certain(relevant(Tool) if cTc
declare(closed(used)).
ctool(lint).

Suppose we want to discover a
answer this, we would like to f
tiated variable. Let's assume th
knowledge base that includes tb

used(cc).
used(emacs).
used(ls).

The normal interpretation of va
quantified. The normal interpn
unprovability. When these two
that the negation "flips" the qu
of 'i/x not(used(x)). Moreover,
variables in the goal being insta

' unable to discover any tools wh
goal ~used(X) must fail because

Timothy W. Finin

f the four truth values

to express the fact that a
might erase a file only if
might encode this using

and) goal to be a definite

1th of Pred and "strength-
1lues into definite values
false and true and false
·ess a certain belief from
ant to express a rule that
s one may be available.

!l interpreter written in
possible answers to each
ence of explicit negative
ire sought first, followed
.use strong answers have
i weak information that

1e types of arguments to
m to handle non-ground
complete set of possible
predicate is given a par-
1 to generate a stream of
then tried seque11tially.
fact that negation as fail
are instantiated to every
1ification. To specify the

15 GUMS - A General User Modeling Shell 427

type information, one must declare the data types, the subtype relations between
the types, the instances of these types and, for each predicate, the required type
of each argument. For example, the following assertions declare that the canPro
gram predicate ranges over instances of person and programmingLanguage, that
the type functionalLanguage is a sub-type of programmingLanguage and that the
value scheme is an instance of the type functionalLanguage:

declare(schema(canProgramm(person,programmingLanguage))) .
declare(subtype(programmingLanguage,functionalLanguage)).
declare(instance(functionalLanguage,scheme)).

To see why it is necessary to fully instantiate goals, consider the following
problem. We would like to model a programmer:s knowledge of tools available on
a system. This might be done in order to support an intelligent help system, for
example. We might want to encode the following general rules:

C Programmers tend to use all of the relevant tools that are available to them.
If a C programmer does not use some relevant tooi, then this is probably because
he is not aware of it.
A person is probably a C programmer if they have ever used the C compiler.
Every C tool is relevant to a C programmer.
We have complete knowledge of every tool a user has used.
Lint is a C tool.

which could be expressed in GUMS as follows

default(knows(Tool) if relevant(Tool), cprogrammer).
default(-knows(Tool) if -used(Tool), relevant(Tool)).
default(cprogrammer if used(cc)).
certain(relevant(Tool) if cTool(Tool), cprogrammer).
declare(closed(used)).
ctool(lint).

Suppose we want to discover a tool of which an individual user is no't aware. To
answer this, we would like to pose the query -knows(X) where X is an uninstan
tiated variable. Let's assume that this is to be done with respect to an individual
knowledge base that- includes the following definite facts:

used(cc).
used(emacs).
used(ls).

The normal interpretation of variables in Prolog goals is that they are existentially
quantified. The normal interpretation of negated goals is failure as negation, i.e.
unprovability. When these two are combined, as in the goal -used(X), the result is
that the negation "flips" the quantifier, resulting in a goal which is the equivalent
of 't/x not(used(x)). Moreover, satisfying a negated goal will never result in any
variables in the goal being instantiated. Thus, in the example above, we would be
unable to discover any tools which this user did not know about since the negated
goal -used(X) must fail because it is possible to prove used(emacs).

428 Timothy W. Finin

. It is possible to "fix" this particular example by reordering the subgoals in the
second rule, to get:

default(-knows(Tool) if relevant(Tool), -used(Tool)).

This will ensure that the variable Tool is instantiated before the negated subgoal
is reached. This solution, and· the more general one of delaying the evaluation of
a negated goal until it is ground, will not always work. Our strategy is to force
all goals to be completely ground and thereby avoid this problem. 3 Posing the
goal ~knows(X) to GUMS results in the attempt to satisfy a stream of goals �hich
includes the ground goal ~knows(lint).

4. The Current GUMS System

The GUMS system is currently implemented in CProiog. At the heart of the sys
tem is a backward chaining meta-interpreter that implements the default reasoning
engme.

Our current system has several limitations. One problem is that it does not
extract all of the available information from a new fact learned about the user.
If we assert that a predicate is closed, we are saying that the set of (certain) rules
for the predicate forms a definition, i.e. a necessary and sufficient description. In
our current system, however, the information still only flows in one direction. For
example, suppose that we would like to encode the rule that a user knows about
I/0 redirection if and only if they know about files and about pipes. Further, let's
suppose that the default is that a person in this stereotype does not know about
files or pipes. This can be expressed as:

certain(knows(io_redirection) if
knows(pipes),
knows(files)).

default(-knows(pipes)).
default(-knows(files))
declare(closed(knows(io_redirecticin))).

If we learn that a particular user does know about //0 redirection then it should
follow that he necessarily knows about both files and pipes. Adding the assertio�

certain(knows(io_redirection))

however, will make no additional changes in the data base. The values of knows(pipes)
and knows(files) will not change. A sample run after this change might be:

?- show(knows(io_redirection),Val).
Val = true

?- show(knows(pipes),Val).
Val = assume(false)

3 This is similar to the treatment of negation used by Walker [WALK87].

/

15 GUMS - A General User Mo

?- show(knows(files),Val).
Val = assume(fals,

The reason for this probler
able to incorporate new inforr
nance system. Before a fact F v
GUMS checks to see if an inco1
can be, then a new stereotype
New knowledge that does not fc
added as is. Neither redundant i
the correctness of the interprete

Another limitation of the ,
rules requires us to continue to
found or all solutions have been
by redesigning the system to be I
tern. The question is whether th
the relative inefficiency of truth 1
maintenance system [DEKL86] i

5. The GUMS Comma

Our current implementation pre
show(Query,Val) succeeds i

Query. A Query is a partially or
returned and is the value of the c1
then it will return more answe1
answer will be provided for every
type declarations.

add(Fact,Status) sets belief i
set of beliefs about the user. As <
to deduce the negation of the Fa
be contradictory, GUMS adopts
in which all of the added facts an
stereotype is used and all answers
partially or fully instantiated and
must be uninstantiated and will �
addition (e.g. one of several error

create_user(UserName,Stere
if necessary and creates a new m<
current user. UserName is instant
name of the stereotype that the syi
file in which information pertaini1
by the system and returns error r
system to be able to answer queri

store_current(Status) stores t
space for a new user. Status is ins1

Timothy W. Finin

rdering the subgoals in the

before the negated subgoal
delaying the evaluation of
:. Our strategy is to force
this problem. 3 Posing the
fy a stream of goals which

�- At the heart of the sys
.ents the default reasoning

oblem is that it does not
t learned about the user.
: the set of (certain) ;ules
I sufficient description. In
ows in one direction. For
that a user knows about

about pipes. Further, let's
-pe does not know about

·edirection then it should
?s. Adding the assertion

'he values of knows(pipes)

change might be:

VALK87].

15 GUMS - A General User Modeling Shell 429

?- show(knows(files),Val).
Val = assume(false).

The reason for this problem is that the current interpreter was designed to be
able to incorporate new information without actually using a full truth mainte
nance system. Before a fact F with truth value V is to be added to the data base,
GUMS checks to see if an inconsistent truth value V' can be derived for F. If one
can be, then a new stereotype is sought in which the contradiction goes away.
New knowledge that does not force an obvious inconsistency within the database is
added as is. Neither redundant information nor existing default information affect
the correctness of the interpreter. Subtler inconsistencies are possible, of course.

Another limitation of the current system its inefficiency. The use of default
rules requires us to continue to search for solutions for a goal until a strong one is
found or all solutions have been checked. These two limitations may be addressable
by redesigning the system to be based on a forward chaining truth maintenance sys
tem. The question is whether the relative efficiency of forward chaining will offset
the relative inefficiency of truth maintenance. The use of an assumption based truth
maintenance system [DEKL86] is another alternative that we will investigate.

5. The GUMS Command Language

Our current implementation provides the following commands to the application:
show(Query,Val) succeeds with Val as the strongest truth value for the goal

Query. A Query is a partially or fully instantiated positive or negative literal. Val is
returned and is the value of the current belief state. If Query is partially instantiated
then it will return more answers upon backtracking if possible. In general, one
answer will be provided for every legal ground substitution that agrees with current
t);'pe declarations.

add(Fact,Status) sets belief in Fact to true if it is consistent with the current
set of beliefs abo'1t the user. As described earlier, consistency is checked by trying
to deduce the negation of the Fact. If Fact, or any legal instance of it, is found to
be contradictory, GUMS adopts successively higher stereotypes until one is found
in which all of the added facts are consistent. If no stereotype is successful then no
stereotype is used arid all answers will be based entirely on added facts. Fact must be
partially or fully instantiated and can be either a positive or negative literal. Status
must be uninstantiated and will be bound to a message describing the result of the
addition (e.g. one of several error messages, ok, the name of a new stereotype, etc.).

create_user(UserName,Stereotype,File,Status) stores the current user model
if necessary and creates a new model representing the user who then becomes the
current user. UserName is instantiated to the desired name. Stereotype is the logical
riame of the stereotype that the system should assume to hold. File is the name of the
file in which information pertaining to the user will be stored. Status is instantiated
by the system and retu�ns error messag�s. A user must be created in order for the
system to be able to answer queries.

store_current(Status) stores the current user's information and clears the work
space for a new user. Status is instantiated by the system when an error occurs.

430 Timothy W. Finin

restore_user(User,Status) restores a previous user after saving the current user
if necessary. User is the name of the user. Status is instantiated by the system to
pass error messages.

done stores the system state of the user modeling system, saving the current
user if necessary. This command should be the last command issued and needs to
be issued at the end of every session.

6. Conclusions

Many interactive systems have a strong necessity to maintain models of individual
users. We have presented a simple architecture for a general user modeling utility
based on the ideas of default logic. This approach provides a simple system that can
maintain a database of known information about users as well as use rules and facts
associated with a stereotype which is believed to be appropriate for this user. The
stereotype can contain definite facts and rules of inference as well as default infqr
matioQ an ru es. The rules can be used to derive new information, both definite
and .(ssumed, �the current y elieved infor�ion about theuser.

We believe that this kin of system will prov1 us�ful to a wide range of applica
tions. We have implemented an initial version in PCQWg and are beginning to use it
to support the modeling needs of several projects. There are a number of interesting
issues that need to be explored in extending the GUMS system, including the use of
different reasoning systems such as assumption based TMS's and the development
of better strategies for assigning or re-assigning an individual to a stereotype.

7. References

[ALLES0], [ALLE82b], [BRAC85], [BROW78], [CARB83], [CARB88], [CARB*], [CARN83c],
[CHIN86], [CHIN*], [CLKL78], [DEKL86], [FINl83], [GERS81], [GINS86], [HOEP83b],
[HOWE84], UOHN84], UOSH84a], UOSH84b], [KAPS82], [KASS87a], [KASS87b],
[KASS88b], [KASS*], [KOBS84], [KOWA79], [MCCO85a], [MCCO*], [MCKE85a],
[MCKE85c], [MORI85b], [MORI*], [MOTR86], [PARI88], [PERR88], [POLL85], [REIT78],
[REITS0], [RICH79b], [RICH83], [RICH*], [SCHU86b], [SHRA82], [SIDN81b], [SLEE82a],
[SLEE85], [SMIB82], [SWAR83], [WALK87], [WALL82], [WEBB84], [WILE86]

/

	odd.pdf
	p1.pdf
	p2.pdf

	even.pdf
	e1.pdf
	e2.pdf
	e3.pdf

