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15 GUMS - A General User Modeling Shell 

Timothy W. Finin 

Abstract 

This chapter discusses the application of various kinds of default reasoning in system 
maintained models of users. In particular, we describe the general architecture of 
a domain independent system for building and maintaining long term models of 
individual users. The user modeling system is intended to provide a well defined 
set of services for an application system interacting with various users, and must 
build and maintain models of them. As the application system interacts with a user, 
it can acquire knowledge of him, and pass that knowledge on to the user model 
maintenance system for incorporation. We describe a prototype general user model
ing shell (hereafter called GUMS) that we have implemented in Prolog. This system 
possesses some of the desirable characteristics we discuss. 

1. Introduction - The Need for User Modeling

Systems that attempt to interact with people in an intelligent and cooperative man
ner need to know many things about the individuals with whom they are interacting. 
Such knowledge can be of several different varieties and can be represented and used 
in a number of different ways. Taken collectively, the information that a system 
has about its users is typically referred to as its user model. This is so even when it 
is distributed throughout many components of the system. 

Examples that we have been involved with include systems that attempt to pro
vide help and advice [FINl83, HOWE84, SHRA82], tutorial systems [SCHU86b], 
and natural language interfaces [WEBB84]. Each of these systems had to represent 
information about individual users. Most of the information was acquired incre
mentally through direct observation and/ or interaction. These systems also had to 
infer additional facts about their users based on the directly acquired information. 
For example, the WIZARD help system [FINl83, SHRA82] had to represent which 
VMS operating system objects (e.g. commands, command qualifiers, concepts, etc.) 
a user was familiar with, and had to infer which other objects he was likely to be 
familiar with. 

This chapter describes the general architecture for a domain independent system 
for building and maintaining long term models of individual users. The user mod
eling system is intended to provide a well defined set of services for an application 
system that interacts with various users, and needs to build and maintain models 
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of them. As the application system interacts with a user, it can acquire knowl
edge about him and pass that knowledge on to the user model maintenance system 
for incorporation. We describe a prototype general user modeling shell (hereafter 
called GUMS) implemented in Prolog. This system possesses some of the desirable 
characteristics we discuss. 

The next section will discuss some of the general· issues that arise in building 
user models. In particular, we will describe the range of possible issues that one 
might address in terms of four aspects: who is being modeled; what information is 
represented in the model; how the model is acquired and maintained, and how the 
model might be used. The third section provides an overview of the GUMS system 
and the kind of user modeling it supports. The fourth section describes the three 
kinds of default reasoning that GUMS employs: stereotypical reasoning, explicit 
default rules and failure as negation: Section five describes some of the details of 
the GUMS system, while the concluding section discusses some of the limitations 
of GUMS and avenues for future research. 

2. What Kind of User Model?

The concept of incorporating user models into interactive systems has become com
mon, but what has been meant by a user model has varied and is not always clear. 
In this section we will discuss, in general terms, what might be meant by the term 
user model. We will then characterize the approach to user modeling described in 
this work by answering the following questions: who is being modeled; what as
pects of the user are being modeled; how is the model to be initially acquired and 
maintained; and why the model is needed. 

The term "user model" has been used in many different contexts to describe 
knowledge that is used to support an interactive system. A survey of user modeling 
in support of natural language interfaces can be found in [KASS88b] and a discussion 
of user modeling for intelligent tutoring systems is provided by [KASS*]. In this 
section, we will look at a number of distinctions that will allow us to focus on an 
interesting and important class of "user models". 

An initial definition for "user model" might be the following: 

A user model is that knowledge about the user, either explicitly or implicitly 
encoded, which is used by the system to improve the interaction. 

The definition is too weak, since it endows every interactive system with some 
kind of user model, usually of the implicit variety. In this chapter, we will focus 
our attention on those models where the information about the user is explicitly 
encoded. In particular, we are interested in user models that are designed along the 
lines of "knowledge bases". By this we have in mind the kinds of distinctions that 
are usually drawn to distinguish a knowledge base from a data base. In the context 
of user models, five features are important: 

1. Separate Knowledge Base - Information about a user is collected in a separate
module rather then distributed throughout the system.
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2. Explicit Representation - The knowledge in the user model is encoded in a
sufficiently expressive representation language. Such a representation language
will typically provide a set of inferential services. That allows the knowledge of
a user to be implicit, but automatically inferred when needed.

3. Declarative rather than Procedural - The knowledge in the user model is, as
much as possible, encoded in a declarative rather than procedural manner.

4. Support for Abstraction - The modeling system provides ways to describe ab
stract as well as concrete entities. For example, the system might be able to
discuss classes of users and their general properties as well as individuals.

5. Multiple Use - Since the user model is explicitly represented as a separate mod
ule, it can be used in several different ways ( e. g. to support a dialog or to classify
a new user). This requires that the knowledge be represented in a more general
way that does not favor one use at the expense of another. It is highly desirable
to express the knowledge in a way that allows it to be reasoned about as well as
reasoned with. Similarly, the model ought to provide no barriers to its use by
several different applications.

User models having these features fit nicely into current work in the broader 
field of knowledge representation. In fact, we could paraphrase Brian Smith's knowl
edge representation hypothesis [SMIB82] to get something like: 

Any user model will be comprised of structural ingredients that a) we as exter
nal observers naturally take to represent a propositional account of the knowledge 
the system has of the user and b) independent of such external semantical attribu
tion, play a formal but causal and essential role in the behavior that manifests that 
knowledge. 

In the remainder of this section we will explore the large space of user modeling 
possibilities by addressing the who, what, how and why of user modeling. Our own 
system will then be placed within this space. 

2.1. Who Is Being Modeled? 

Two aspects of who is being modeled are the degree of specialization and temporal 
extent. The degree of specialization involves whether we are modeling classes of 
users or individuals. Temporal extent refers to the persistence of the knowledge 
encoded in the user model - does it expire at the end of the current session or 
does it form a long-term knowledge base about the user. 

A user model can lie somewhere on a specialization scale that ranges from 
generic to individual. A generic user model assumes a homogeneous set of users -
all individuals using the system are similar enough with respect to the application 
that they can be treated as the same type of user. Many natural language systems, for 
example, maintain a single generic user model in order to infer the user's goals, or 
to recognize a user's misconceptions [ALLE82b, CARB83, CARN83c, GERS81]. 
A somewhat more individuating point on this scale is to employ a set of fixed, 
generic models to represent different subclasses of users. For example, the UC 



414 Timothy W. Finin

system [WILE86, CHIN86, CHIN*] classifies a user as belonging to one of four
0 possible generic classes: novice, beginner, intermediate, or expert.

Modeling the very general beliefs held by large classes of users is extremely
important when building intelligent systems. For example, in modeling a person's
beliefs about a timeshared computer system we may want to include a rule like:

If a user U believes that machine M is running, then U will believe that it is 
possible for him to log onto M. 

This sort of rule is required to support the kinds of cooperative interactions
studied in UOSH84a, JOSH84b], such as the following:
User: Is linc.cis.upenn.edu up?
System: Yes, but you can't log on now.

Preventative maintenance is being done until 11:00am.
Individual user models, on the other hand, contain information specific to a

single user. A user modeling system that keeps individual models thus will have a
separate model for eac;h user of the system. A simple example of this kind of model
is the commonly used convention of customizing the behavior qf a utility such as
an editor or mail system by allowing each user to have a profile file that states his
preferences for various system parameters [RICH83].

A natural way to combine the system's knowledge about classes of users with
its knowledge of individuals is through the use of stereotypes - generic models with
specializations for individuals. A stereotype is a cluster of default facts about the
user that tend to be related to each other. One can model an individual as belonging
to a particular stereotype (e.g. novice Unix User) with a set of overriding facts (e.g.
knows how to use pipes). Examples of systems that have used stereotypes include
GRUNDY [RICH79b], and the Real-Estate Advisor [MORI85b].

2.2. What Is to Be Modeled? 

The contents of a user model naturally vary from application to application. Fol
lowing Kass and Finin [KASS*], we will classify this knowledge into four categories:
goals and plans, capabilities, attitudes, and knowledge or belief.

A user's goals and plans are intimately related to one another. The user's goal is
a state of affairs he wishes to achieve, while a plan is a sequence of actions or events
that he expects to result in the realization of a goal. Furthermore, each step in a
plan has its own subgoal to achieve, which may be realized by yet another subplan.
One of the hallmarks of an intelligent, cooperative system is that it attempts to
help the user achieve his underlying goals, even when not explicitly stated. The
principle way for one agent to know another's underlying goal(s) is by recogniz
ing his observable actions as constituting a (possibly partial) plan for achieving a
domain-relevant goal. A great deal of work has been done on the problem of plan
recognition in support of cooperative interactions. Examples in the natural language
domain include Allen and Perrault [ALLE80] and Carberry [CARB83, CARB88,
CARB*]. Intelligent Tutoring Systems have introduced the idea of keeping a catalog
of "buggy" plans [BROW78, SLEE82a, JOHN84] as a means of recognizing mis-

15 GUMS - A General User Mc

conceptions or missing knowlt
the problem of providing help

A second category of kno
pabilities. Although some syst
capabilities, such as the ability 1 

mend, i!_ is �!:e_!yp_icalJ�r a S)
such as theability to under�
--sr-s_tem. Examples of the latter o
as in Wallis and Shortliffe [WA
and Finin [WEBB84] have sun
about its user's capabilities to i 

A third category of know
tudes. GRUNDY [RICH79b] v
of a user's preferences to reco
[1':fORI85b] and HAM-ANS [J 
tned to model this. Swartout
effects of the user's perspective,
system.·

The final category of info1 

Modeli�e �•s knowledge
general w�d knowledge, and
user elieves to be true about t
types of systems. In generatini
the user understands or is famil
corporating those concepts and
un�erstand. This is particularly
�hich must provide clear, uncle
mg definitions of data base iterr
a similar requirement to expres
user understands.

A final form of user knov
k�owledge about other agents.
will the system be building a rr
of the user, the user will also
ra�l [SIDN81_b] make the poim
will have an intended meaning 
propositional content of uttera�
intended meaning, even though .
about what model the user has
this will affect what the system c
to understand by the user's sta
difficult representational proble
beliefs of other agents.
1 In the context of modeling oth.

tive truth and hence cannot reall
believed to be true. Thus the terr



Timothy W. Finin 

longing to one of four 
?xpert. 
s of users is extremely 
in modeling a person's 
o include a rule like:
J will believe that it is 

ooperative interactions 

OOam. 

formation specific to a 
nodels thus will have a 
le of this kind of model 
vior of a utility such as 
rofile file that states his 

,ut classes of users with 
- generic models with
default facts about the
individual as belonging
of overriding facts {e.g.
sed stereotypes include
.185b].

ion to application. Fol-
1ge into four categories: 
!lief. 
other. The user's goal is 
nee of actions or events 
1ermore, each step in a 
by yet another subplan. 
n is that it attempts to 
t explicitly stated. The 
; goal{s) is by recogniz
al) plan for achieving a 
on the problem of plan 
; in the natural language 
y [CARB83, CARB88, 
dea of keeping a catalog 
ans of recognizing mis-

15 GUMS - A General User Modeling Shell 415 

conceptions or missing knowledge. The use of plan recognition is also relevant to 
the problem of providing help and advice, as in [FINl83, WILE86]. 

A second category of knowledge to be modeled has to do with the user's ca
pabilities. Although some systems might have to reason about a user's physical 
capabilities, such as the ability to perform some action that the system may recom
mend, i!_ is more typicalfor a system to model and reason about mental ca abilitie� 
such as theahility to understan a recommenoauon or explanation provided by the 
--sy.:s_tem. xamples of the latter often arise when a system is generating an explanation, 
as in Wallis and Shortliffe [WALL82] and Paris TAILOR system [PARl88]. Webber 
and Finin [WEBB84] have surveyed ways that an interactive system might reason 
about its user's capabilities to improve the interaction. 

A third category of knowledge represents a user's bias, preferences and atti
tudes. GRUNDY [RICH79b] was an early user modeling system that used a model 
of a user's preferences to recommended books to read. The Real-Estate Advisor 
[MORl85b] and HAM-ANS [HOEP83b, MORI*] are other systems which have 
tried to model this. Swartout [SWAR83] and McKeown [MCKE85a] address the 
effects of the user's perspective or point of view on the explanations generated by a 
system. 

The final category of information we will consider is knowledge and belief1 
Modeling the �•s knowledge involves a variety of things: domain knowledge, 
general �d knowledge, and knowledge about other agents. Knowing what the 
user elieves to be true about the application domain is especially useful for many 
types of systems. In generating responses, knowledge of the concepts and terms 
the user understands or is familiar with allows the system to produce responses in
corporating those concepts and terms, while avoiding concepts the user might not 
understand. This is particularly true for intelligent help systems [FINl83, WILE86],' 
which must provide clear, understandable explanations to be truly helpful. Provid
ing definitions of data base items {such as the TEXT system does [MCKE85c]) has 
a similar requirement to express the definition at a level of detail and in terms the 
user understands. 

A final form of user knowledge that is important for interactive systems is 
knowledge about other agents. As an interaction with a user progresses, not only 
will the system be building a model of the beliefs, goals, capabilities and attitudes 
of the user, the user will also be building a model of the system. Sidner and Is
rael [SIDN81b] make the point that when individuals communicate, the speaker 
will have an intended meaning, consisting of both a propositional attitude and the 
propositional content of utterance. The speaker expects the hearer to recognize the 
intended meaning, even though it is not explicitly stated. Thus a system must reason 
about what model the user has of the system when making an utterance, because 
this will affect what the system can conclude about what the user intends the system 
to understand by the user's statement. Kobsa [KOBS84] has studied some of the 
difficult representational problems involved with building recursive models of the 
beliefs of other agents. 

T 1 In the context of modeling other individuals, an agent does not have access to objec-
tive truth and hence cannot really distinguish whether a proposition is known or simply 
believed to be true. Thus the terms knowledge and belief will be used interchangeably. 

r 
I 
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2.3. How Is the Model to Be Acquired and Maintained? 

The acquisition and maintenance of the user model are closely related topics. By 
acquisition, we mean the techniques for learning new facts about the user. Main
tenance involves incorporating this new information into the existing model and 
squaring away any discrepancies or COQtradictions. We will briefly review some of 
the possibilities for these two related problems. 

The knowledge in a user model can be acquired either explicitly or implicitly.
Explicitly acquired knowledge might come directly from the system designer in the 
form of built in knowledge of stereotypes, from the application system the user 
model is serving, or from the user himself. GRUNDY, for example, begins with 
a new user by interviewing him for certain information. From this initial data, 
GRUNDY makes judgments about which stereotypes most accurately fit the user, 
thus forming an opinion about the preferences of the user based on this initial list 
of attributes. As another example, each time the UMFE system [SLEE85] needs to 
know a new fact about its user, it simply asks. 

Acquiring knowledge about the user implicitly is usually more difficult. Implicit 
acquisition involves "eavesdropping" on the us�sxstem interaction in ordert_g oL 
serve_ the-.user�s ... beh_ayior a_nd from it to infer1acts that go into the model. Various 
a;pects of implicit acquisition have been explored, including the use of presup
positions [KAPS82], misconception recognition:[MCC085a, MCCO*], stereotype 
selection [RICH79b, RICH*, MORI8Sb], and the use of default rules [PERR88, 
KASS87a, KASS87b]. 

Maintenance involves incorporating new knowledge about an individual user 
into an existing model. The new, incoming information might be consistent or rUl:.
consistent with the current model. If it is consistent, maintenance involves triggering 
inferences to add additional facts to the model. If the new knowledge is inconsistent 
with the current model, then the inconsistency must be resolved in some manner. 
The possibilities depend on the underlying representation and reasoning systems on 
which the modeling system is built. Two major approaches are evidential reasoning,
which allows e model to hold th�njgc;t..is-4:YeJvit� 
be 1e , and dg ault reasoning [�,�idu:.er�in_faets�h�n .... d1e 
� of evidence to the ontracy_,, 

2.4. Why Is the Model There? 

The knowledge about a user that a model provides can be used in a number of 
ways in an intelligent, interactive system. The particular opportunities depend, of 
course, on the application. Figure 1 presents a general taxonomy of possible uses. 
At the top level, user models can be used to support (1) the task of recognizing and 
interpreting the information seeking behavior of a user, (2) providing the user with 
help and advice, (3) eliciting information from the user and (4) providing informa
tion to him. Situations where user models are used for many of these purposes can 
be seen in the examples presented throughout this book. 

The model can be accessed in two primary ways: facts can be add�; deleted or 
updated from the model, and facts can be looked up or inferred. A forward chaining 
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component, together with a truth maintenance system, can be used to update the
default assumptions and keep the model consistent.

3. A General User Modeling System

The previous section described a large conceptual space of user modeling possibili
ties in terms of four dimensions. This section will place our own work in this space
and give an overview of its major characteristics. Our paradigm for user modeling
might be described as User Model as Deductive Database. The GUMS system allows
one to construct models of individuals that appear to be a collection of facts that
can be asserted, retracted or queried. Some of these facts are deduced through the
use of inference rules associated with stereotypes to which the user belongs.

Who is being modeled? The GUMS system is designed for building long term
models of individual users. We want to represent the knowledge and beliefs of
indiv-iduals, and do so in a ... way that results in a persistent record which can grow
and change as necessary. These users are associated with one or more stereotypes
from which additional facts derive. 

What is being modeled? Our interest is in providing a domain-independent
user modeling tool. The contents of the user model will vary greatly from appli-
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cation to application and is left for the model builder to decide. For example, a 
natural language system may need to know what language terms a user is likely to 
be familiar with [WEBB84], a CAI system for second language learning may need to 
model a user's knowledge of grammatical rules [SCHU86b], an intelligent database 
query system may want to model which fields of a data base relation a user is 
interested in [MOTR86], and an expert system may need to model a user's domain 
goals [POLL85]. However, our paradigm of user model as deductive database makes 
modeling certain things much easier than others. It is easy to construct models that 
are expressed as a set of relations. In particular, we do not provide any general 
facilities for building deep models of an agent's reasoning strategies or procedural 
knowledge. 

How is the model acquired and maintained? Our approach in GUMS is to 
let the application be responsible for acquisition and to provide a set of services 
for maintenance. The application must select the initial stereotypes for the user 
and add new facts about the user as it learns them. How the application discovers 
these facts (i.e. explicitly or implicitly) is up to the application. Maintaining the 
model involves incorporating these new facts, checking that.__they are consistent 
with previously learned or inferred facts, and resolving any discrepancies and con
tradictions. This can be accomplished by undoing contradictory default assumptions 
and/ or shifting the user to a new stereotype. The details of how this is done will 
be described later. 

Why is the model there? Given our goal of producing a general purpose, 
domain independent use modeling facility, the uses to which the knowledge in the 
model is put are outside of our design. We will, however, give a more syntactic 
account of how the model is to be used in terms of how the application interacts 
with GUMS.

3. 1. The System Organization

Our goal is to provide a general user modeling utility organized along the lines 
shown in Figure 2. The user modeling system provides a service to an application 
program that interacts directly with a user. Note that the user modeling system does 
not have access to the interaction between the application and the user. Everything 
it learns about the user must come directly from the application. The GUMS system 
has a separate knowledge base for each application it serves. Each knowledge base 
consists of two parts: (1) a collection of stereotypes organized into a taxonomy, and 
(2) a collection of models for the individuals. The individual models are installed
in the stereotype hierarchy as leaves. Figure 3 shows such a hierarchy. As will be
seen later, a stereotype is a collection of facts and rules that are applicable for any
person who is seen as belonging to that stereotype. These facts and rules can be
either definite or default, allowing for an individual to vary from the stereotypic
norm.

The application program gathers information about the user through its inter
action, choosing to store some of this information in the user modeL Thus, one 
service the user modeling facility provides is accepting (and storing) new informa-
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Figure 3. A hierarchy of stereotypes 
and individuals 

tion about the user. This information may trigger an inferential process which could
have a number of outcomes: 
• Th� user modeling system may detect an inconsistency and so inform the appli-.JJ

cation -; ' �· , � Jf £ 
• The user model may infer a new fact about the user which triggers a demon

causing some action (e.g. informing the application). 
• The user model may need to update some previously inferred default information

about the user. 
Another kind of service the user model must provide is answering queries posed by
the application. The application may need to look up or deduce certain information
about its current user. 
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3.2. Default Reasoning in GUMS 

Timothy W. Finin 

User modeling is most useful in situations in which a system must draw a number 
of plausible conclusions about a user from a small base of definite knowledge about 
him. Thus, default reasoning of some kind or another is at the heart of most user 
modeling systems. Our approach in the GUMS system is to use several forms of de
fault reasoning techniques: stereotypes, explicit default rules, and failure as negation. 
These three types of default reasoning are closely related and, in general, formal
izable in terms of a single type of default reasoning. We have found it convenient, 
however, to separate the default reasoning in GUMS for several reasons. 

In the GUMS system the different kinds of default reasoning are used to cap
ture generalizations of different grain size and form a hierarchy with respect to the 
strength of their conclusions. Stereotypes are used to capture generalizations of large 
classes of users. Within a stereotype, explicit default rules are used to express the 
stereotypic norms which are allowed to vary across individuals. Failure as negation 
is used as a general technique for gathering weak evidence for beliefs about a user 
when no stronger evidence exists. 

3.2.1. Stereotypes and Individuals 

In GUMS, a stereotype consists of a set of facts and rules that are believed to apply 
to a class of users. Thus a stereotype gives us a form of default reasoning in which 
each rule and fact in the stereotype is taken to hold in the absence of evidence that 
the user does not belong in the stereotype. 

Stereotypes can be organized in hierarchies in which one stereotype subsumes 
another if it can be thought to be more general. A stereotype S1 is said to be more 
general than a stereotype S2 if everything which is true about S1 is necessarily true 
about S2. Looking at this from another vantage point, a stereotype inherits all the 
facts and rules from every stereotype that it is subsumed by. For example, in the 
context of a programmer's apprentice application, we might have stereotypes cor
responding to different classes of programmer, as is suggested by the hierarchy in 
Figure 4. 

Figure 4. A hierarchy 
of stereotypes 
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In general, we will want a stereotype to have any number of immediate an
cestors, allowing us to compose a new stereotype out of several existing ones. In 
the context of a programmers apprentice, for example, we may wish to describe 
a particular user as a SymbolicsWizard and a UnixNovice and a ScribeUser. Thus, 
the stereotype system should form a general lattice. Our current system, however, 
constrains the system to a tree. 

A stereotype is comprised of several kinds of knowledge, as depicted in Figure 5. 
Each stereotype can have a single subsuming stereotype, and a set (possibly empty) 
of subsumed stereotypes and a set (again, possibly empty) of individuals currently 
believed to be modeled by the stereotype. The real contents of the stereotype, how
ever, consists of two databases of facts and rules, one _definite and the other default. 
The definite facts and rules constitute a definition of sorts for the stereotype, in that 
they determine what is necessarily true of any individual classified under this stereo
type. If our knowledge of an individual contradicts this information, then he cannot 
be a member of this stereotype or any of its descendent stereotypes. The default 
facts and rules, on the other hand, define our initial beliefs about any individual 
who is classified in this stereotype. They can be overridden by specific information 
that we later learn about the individual. The final component of a stereotype is a 
collection of meta-knowledge about the predicates used in the definite and default 
knowledge bases. This information is used in the processing of negative queries and 
is described later. 

Subsuming 
Stereotypes 

Subsumed Individuals 
Stereotypes 

Subsuming 
Stereotype 

Figure 5. A stereotype Figure 6. An individual 

As an example, consider,.. modeling the knowledge a programmer might have. 
We can be sure that a programmer will know what a file is, but we can only guess 
that a programmer will know what a file directory is. If we have categorized a 
given user under the programmer stereotype and discover (perhaps through direct 
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interaction with him) that he is not familiar with the concept of a file then we can
conclude that we had improperly chosen a stereotype and must choose a new one.
But if we got the information that he did not know what a file directory was, this
would not rule out the possibility of his being a programmer.

The knowledge structure for an individual is simpler than that for a stereotype.
An individual has exactly one stereotype (in the current version) with which he
is currently associated, and a collection of definite, ground facts which are true, as
is shown in Figure 6. The facts kn9wn about an individual override any default
facts known or deducible from the stereotype associated with the individual. They
must, however, be consistent with the stereotype's definite knowledge base. ,If a
contradiction arises, then the individual must be reclassified as belonging to another
stereotype.

There are a number of ways we might go about trying to reclassify an individual
when it is discovered that the current stereotype is no longer valid. In general, we
can distinguish domain independent and domain dependent techniques. Domain
dependent techniques are particularly useful when we have some understanding
of the reasons why a user might be mis-classified. Fo11 example, the user may be
learning new domain knowledge while he is using the system and this new knowl
edge may cause him to "grow out of" the current stereotype. In such a situation,
we may wish to directly encode a "growth path" of stereotypes. Another domain
dependent technique is to treat certain user attributes as triggers which, when true,
evoke particular stereotypes associated with them [RICH*].

Domain independent techniques for selecting a new stereotype in the face of
conflicting information involve (conc;eptually) two stages: generating candidates for
the new stereotype and selecting from among them. A very general and powerful
technique would be to use a classification strategy similar to that used in the KL
ONE family of representation languages [BRAC85]. Such a strategy would consider
all of the possible stereotypes and find the set of most specific subsuming stereotypes.

In the GUMS system, we have used a very simple domain independent strategy
for finding a new stereotype when the known facts about an individual contradict
some facts associated with the user's current stereotype. The ancestors of the current
stereotype are searched in order of specificity until one is found in which there is
no contradiction. Thus, we are guaranteed to find a stereotype which subsumes the
user, although it will in general not be the most specific one possible.

Although we have adopted this strategy because of its relative simplicity, both
in terms of complexity and inherent computational costs, it does correspond to some
of our intuitions on how people adopt new stereotypes. The intuition is that the
more we learn about an individual, the less we depend on stereotypic reasoning to
fill in our beliefs about him. This is mirrored in the GUMS system in its stereotype
shifting strategy. As the system learns more about a user, it will discover contradic
tions with its current stereotype model. When faced with a contradiction, it moves
up the hierarchy until it finds a stereotype in which the contradiction is resolved.
Moving up the hierarchy corresponds to a lessening of stereotypic reasoning, since
the higher models are necessarily less complete.

/ 
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3.2.2. Default Reasoning with Rules 

Within a stereotype, we need to describe some knowledge as being necessarily true 
with respect to (properly classified) members of the stereotype and other knowl
edge as default information. This default information is to be taken as true in the 
absence of contradictory information. In the GUMS system, each rule or fact in the 
stereotype is either definite (i.e. necessarily true) or default. The certain/1 predicate 
is used to introduce a definite fact or rule and the default/1 predicate to indicate a 
default fact or rule, as in: 

certain (P). a definite fact: P is true. 
certain (P if Q). a definite rule: P is true if Q is' definitely true, and P is assumed 

to be true if Q is only assumed to be true. 
default (P). a default fact: P is assumed to be true unless it is known to be 

false. 
default (P if Q).a default rule: Pis assumed to be true if Q is true or assumed to 

be true and there is no definite evidence to the contrary. 

Figure 7 depicts graphically the relationships between clauses with certain and 
with default information. 

certaln(P) 

default(P) 

!certain(P if Q) I
certain(Q) 

Figure 7. The relationship 
between certain and default 

• clauses

As an example, consider a situation in which we need to model a person's 
familiarity with certain terms. This is a common situation in systems that produce 
text as explanations or in response to queries where there is a wide variation in the 
users' familiarity with the domain. For example, we might use the rules and facts: 

(a) default(understandsTerm(ram)).
(b) default(understandsTerm(rom) if understandsTerm(ram)).
(c) certain(understandsTerm(pc) if understandsTerm(ibmpc)).
(d) certain(-understandsTerm (cpuJ).

to represent the followi�g assertions, all of which are considered as pertaining to a 
particular user with respect to the stereotype containing the rules: 

(a) Assume the user understands the term ram unless we know otherwise.
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(b) Assume the user understands the term rom if we know or believe he under
stands the term ram, unless we know otherwise.

(c) This user understands the term pc if he understands the term ibmpc.
( d) This user does not understand the term cpu.

3.2.3. Negation As Failure 

GUMS also treats negation as failure in some cases as a default rule. In general, 
logical deduction is performed using an open world assumption. That is, the failure 
to prove a proposition is not taken as evidence that it is not true. Many logic pro
gramming languages, such a Prolog, encourage the interpretation of unprovability 
as logical negation. Two approaches have been put forward to justify the negation as 
failure rule - making the closed world assumption and completing the database. In 
the closed world approach [REIT78], we assume that anything not inferable from 
the database is by necessity false. Making this meta-level assumption introduces a 
potential problem in that we do not know what 1 the corresponding object-level 
assumptions are. The second approach is based upon the concept of a completed 
database [CLKL78]. A completed database is the database constructed by rewriting 
the set of clauses defining each predicate to an if and only if definition that is 
called the completion of the predicate. The purpose of the completed definition is 
to indicate that the clauses that define a predicate define every possible instance of 
that predicate. 

Any approach to negation as failure requires that a negated goal be ground (i.e. 
contain no uninstantiated variables) before execution.2 Thus we must have some
way of insuring that every negated literal will be bound. In GUMS we have used a 
simple variable typing scheme to achieve this, as will be discussed later. 

We have used a variant of the completed database approach to show that a 
predicate within the scope of a negation is closed. Making the meta-level assertion 
declare (closed(P)) signifies that the definition of the predicate P is actually an if

and only if definition. This same technique was used by Kowalski [KOWA79] to 
indicate completion. We further assume that a predicate is not completed unless it 
is declared closed. For example, consider the following clauses: 

declare( closed(p)). 
p if q 
r if q 

Since the predicate p is complete, proving that q is false allows us to deduce that p
is false. Since the predicate r is not complete, proving that q is false does not allow 
us to conclude that r is false, although it does provide weak evidence that r may be 
false. 

Thus in GUMS we have the ability to express that a default should be taken 
from the lack of certain information (i.e. negation as failure), as well as from the 
presence of certain information (i.e. default rules). For example, we can have a 

2 A slightly less restrictive rule could allow a partially instantiated negated goal to run but
would produce the wrong answer if any variable was bound. 
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default rule for the programmer stereotype that can conclude knowledge about 
linkers from knowledge about compilers, as in: 

default(knows(linkers) if knows(compilers)) 

We can also have a rule that will take the lack of knowledge about compilers as an 
indication that the user probably knows about interpreters, as in: 

certain(knows(interpreters) if ~ knows(compilers)) 

This system also allows explicit negative facts, both definite and default. When 
negation is proved in reference to a negative fact then negation is not considered 
a default case. Similarly, negation as failure is not considered a default when the 
predicate being negated is closed. Such distinctions are possible because the GUMS 
interpreter is based on a four value logic. 

The distinction between truth or falsity by default (i.e. assumption) and truth 
or falsity by logical implication is an important one to this system. The central 
predicate of the system is the two argument predicate show, which relates a goal 
expressed as a literal to a truth value. Thus show (Goal, Val) returns in the variable 
Val the "strongest" belief in the literal Goal. The variable Val can be instantiated 
to true, false, assume (true), or assume (false). The meanings of these values are as 
follows: 

true 

assume (true) 

assume (false) 

false 

definitely true according to the current database. 
true by assumption (i.e. true by default) 
false by assumption 
definitely not true according to the current database. 

These values represent truth values for a given user with respect to a given 
stereotype. If the stereotype is not appropriate, then even definite values may have 
to change. 

The relative strength of the four truth values is sho�n by the partial ordering 
in Figure 8. Evidence that a fact is either true or false is the strongest and outweighs 
any evidence that the fact is assumed to be true or false. The GUMS system is 
"optimistic" in that it takes direct evidence that a fact il! assumed to be true to be 
stronger than evidence that a fact is assumed to be false. This choice has been made 
to reflect the fact that, in our current applications, the unprovability of a propo
sition is weak evidence that it is false. Note that this multi-valued logic is simpler 
than those based on the notion of a bilattice discussed by Ginsberg [GINS86]. 

Having a four value logic allows us to distinguish conclusions made from purely 
logical information from those dependent on default information. The four value 
logic also allows a simple type of introspective reasoning that may be useful for 
modeling the beliefs of the user. We currently use a default rule to represent an 
uncertain belief about what the user knows or ,believes, but we could imagine a 
situation where we would like to model uncertainties that the user has in his beliefs 
or knowledge. One such predicate is an embedded show predicate. The embedded 
sho.w relation holds between a goal G and a truth value X if the strongest truth 
value that can be derived for G is X. 
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true false 

assume(true) 
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assume(false) Figure 8. The relative strength of the four truth values 

As an example, consider a situation in which we need to express the fact 'that a 
user will use a operating system command that he believes might erase a file only if 
he is certain that he knows how to use that command. We might encode this using 
the show predicate as follows: 

certain(okay _to_use(Command) if 
can_eraseJiles(Command), 
show(know(Command), true)). 

The embedded show predicate forces the know (Command) goal to be a definite 
fact in order for the conclusion to hold. 

Another predicate, assumed {Pred), will evaluate the truth of Pred and "strength• 
en" the result. The strengthen operation maps assumed values into definite values 
(e.g. assume(true) becomes true, assume(false) becomes false and true and false
remain unchanged). The assumed predicate is used to express a certain belief from 
an uncertain knowledge or belief. For example we might want to express a rule that 
a user will always want to use a screen editor if he believes one may be available. 

certain (willUse(screenEditor) if 
assumed(available(screenEditor))). 

The interpreter that GUMS is based on is a metalevel interpreter written in 
Prolog. The interpreter must generate and compare many possible answers to each 
subquery, because of the multiple value logic and the presence of explicit negative 
information. Strong answers to a query (i.e. true and false) are sought first, followed 
by weak answers (i.e. assume(true) and assume(false)). Because strong answers have 
precedence over weak ones, it is not necessary to remove weak information that 
contradicts strong information. 

Another feature of this system is that we can specify the types of arguments to 
predicates. This type information is used to allow the system to handle non-ground 
goals. In our system, a type provides a way to enumerate a complete set of possible 
values subsumed by that type. When the top-level show predicate is given a par
tially instantiated goal to solve, it uses the type information to generate a stream of 
consistent, fully instantiated goals. These ground goals are then tried sequentially. 

That goals must be fully instantiated follows from the fact that negation as fail
ure is built into the evaluation algorithm. Complex terms are instantiated to every 
pattern allowed by the datatype given the full power of unification. To specify the 
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type information, one must declare the data types, the subtype relations between 
the types, the instances of these types and, for each predicate, the required type 
of each argument. For example, the following assertions declare that the canPro
gram predicate ranges over instances of person and programmingLanguage, that 
the type functionalLanguage is a sub-type of programmingLanguage and that the 
value scheme is an instance of the type functionalLanguage: 

declare(schema( canProgramm(person,programmingLanguage )) ) . 
declare(subtype(programmingLanguage,functionalLanguage )). 
declare(instance(functionalLanguage,scheme)). 

To see why it is necessary to fully instantiate goals, consider the following 
problem. We would like to model a programmer:s knowledge of tools available on 
a system. This might be done in order to support an intelligent help system, for 
example. We might want to encode the following general rules: 

C Programmers tend to use all of the relevant tools that are available to them. 
If a C programmer does not use some relevant tooi, then this is probably because 
he is not aware of it. 
A person is probably a C programmer if they have ever used the C compiler. 
Every C tool is relevant to a C programmer. 
We have complete knowledge of every tool a user has used. 
Lint is a C tool. 

which could be expressed in GUMS as follows 

default(knows(Tool) if relevant(Tool), cprogrammer). 
default(-knows(Tool) if -used(Tool), relevant(Tool)). 
default(cprogrammer if used(cc)). 
certain(relevant(Tool) if cTool(Tool), cprogrammer). 
declare( closed(used)). 
ctool(lint). 

Suppose we want to discover a tool of which an individual user is no't aware. To 
answer this, we would like to pose the query -knows(X) where X is an uninstan
tiated variable. Let's assume that this is to be done with respect to an individual 
knowledge base that- includes the following definite facts: 

used(cc). 
used(emacs). 
used(ls). 

The normal interpretation of variables in Prolog goals is that they are existentially 
quantified. The normal interpretation of negated goals is failure as negation, i.e. 
unprovability. When these two are combined, as in the goal -used(X), the result is 
that the negation "flips" the quantifier, resulting in a goal which is the equivalent 
of 't/x not(used(x)). Moreover, satisfying a negated goal will never result in any 
variables in the goal being instantiated. Thus, in the example above, we would be 
unable to discover any tools which this user did not know about since the negated 
goal -used(X) must fail because it is possible to prove used(emacs). 
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. It is possible to "fix" this particular example by reordering the subgoals in the 
second rule, to get: 

default(-knows(Tool) if relevant(Tool), -used(Tool)). 

This will ensure that the variable Tool is instantiated before the negated subgoal 
is reached. This solution, and· the more general one of delaying the evaluation of 
a negated goal until it is ground, will not always work. Our strategy is to force 
all goals to be completely ground and thereby avoid this problem. 3 Posing the 
goal ~knows(X) to GUMS results in the attempt to satisfy a stream of goals �hich 
includes the ground goal ~knows(lint). 

4. The Current GUMS System

The GUMS system is currently implemented in CProiog. At the heart of the sys
tem is a backward chaining meta-interpreter that implements the default reasoning 
engme. 

Our current system has several limitations. One problem is that it does not 
extract all of the available information from a new fact learned about the user. 
If we assert that a predicate is closed, we are saying that the set of ( certain) rules 
for the predicate forms a definition, i.e. a necessary and sufficient description. In 
our current system, however, the information still only flows in one direction. For 
example, suppose that we would like to encode the rule that a user knows about 
I/0 redirection if and only if they know about files and about pipes. Further, let's 
suppose that the default is that a person in this stereotype does not know about 
files or pipes. This can be expressed as: 

certain(knows(io_redirection) if 
knows(pipes), 
knows(files)). 

default( -knows(pipes)). 
default( -knows(files)) 
declare(closed(knows(io_redirecticin))). 

If we learn that a particular user does know about //0 redirection then it should 
follow that he necessarily knows about both files and pipes. Adding the assertio� 

certain(knows(io_redirection)) 

however, will make no additional changes in the data base. The values of knows(pipes) 
and knows(files) will not change. A sample run after this change might be: 

?- show(knows(io_redirection),Val). 
Val = true 

?- show(knows(pipes),Val). 
Val = assume(false) 

3 This is similar to the treatment of negation used by Walker [WALK87]. 
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?- show(knows(files),Val). 
Val = assume(false). 

The reason for this problem is that the current interpreter was designed to be 
able to incorporate new information without actually using a full truth mainte
nance system. Before a fact F with truth value V is to be added to the data base, 
GUMS checks to see if an inconsistent truth value V' can be derived for F. If one 
can be, then a new stereotype is sought in which the contradiction goes away. 
New knowledge that does not force an obvious inconsistency within the database is 
added as is. Neither redundant information nor existing default information affect 
the correctness of the interpreter. Subtler inconsistencies are possible, of course. 

Another limitation of the current system its inefficiency. The use of default 
rules requires us to continue to search for solutions for a goal until a strong one is 
found or all solutions have been checked. These two limitations may be addressable 
by redesigning the system to be based on a forward chaining truth maintenance sys
tem. The question is whether the relative efficiency of forward chaining will offset 
the relative inefficiency of truth maintenance. The use of an assumption based truth 
maintenance system [DEKL86] is another alternative that we will investigate. 

5. The GUMS Command Language

Our current implementation provides the following commands to the application: 
show(Query,Val) succeeds with Val as the strongest truth value for the goal 

Query. A Query is a partially or fully instantiated positive or negative literal. Val is 
returned and is the value of the current belief state. If Query is partially instantiated 
then it will return more answers upon backtracking if possible. In general, one 
answer will be provided for every legal ground substitution that agrees with current 
t);'pe declarations. 

add(Fact,Status) sets belief in Fact to true if it is consistent with the current 
set of beliefs abo'1t the user. As described earlier, consistency is checked by trying 
to deduce the negation of the Fact. If Fact, or any legal instance of it, is found to 
be contradictory, GUMS adopts successively higher stereotypes until one is found 
in which all of the added facts are consistent. If no stereotype is successful then no 
stereotype is used arid all answers will be based entirely on added facts. Fact must be 
partially or fully instantiated and can be either a positive or negative literal. Status 
must be uninstantiated and will be bound to a message describing the result of the 
addition (e.g. one of several error messages, ok, the name of a new stereotype, etc.). 

create_user(UserName,Stereotype,File,Status) stores the current user model 
if necessary and creates a new model representing the user who then becomes the 
current user. UserName is instantiated to the desired name. Stereotype is the logical 
riame of the stereotype that the system should assume to hold. File is the name of the 
file in which information pertaining to the user will be stored. Status is instantiated 
by the system and retu�ns error messag�s. A user must be created in order for the 
system to be able to answer queries. 

store_current(Status) stores the current user's information and clears the work
space for a new user. Status is instantiated by the system when an error occurs. 
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restore_user(User,Status) restores a previous user after saving the current user 
if necessary. User is the name of the user. Status is instantiated by the system to 
pass error messages. 

done stores the system state of the user modeling system, saving the current 
user if necessary. This command should be the last command issued and needs to 
be issued at the end of every session. 

6. Conclusions

Many interactive systems have a strong necessity to maintain models of individual 
users. We have presented a simple architecture for a general user modeling utility 
based on the ideas of default logic. This approach provides a simple system that can 
maintain a database of known information about users as well as use rules and facts 
associated with a stereotype which is believed to be appropriate for this user. The 
stereotype can contain definite facts and rules of inference as well as default infqr
matioQ an ru es. The rules can be used to derive new information, both definite 
and .(ssumed, �the current y elieved infor�ion about theuser. 

We believe that this kin of system will prov1 us�ful to a wide range of applica
tions. We have implemented an initial version in PCQWg and are beginning to use it 
to support the modeling needs of several projects. There are a number of interesting 
issues that need to be explored in extending the GUMS system, including the use of 
different reasoning systems such as assumption based TMS's and the development 
of better strategies for assigning or re-assigning an individual to a stereotype. 
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