
I How to Serve Knowledge

Notes on the Design of a
Knowledge Base Server

Tim Finin

Rich Fritzson

PRC-LBS-8906

March 1989

Paoli Research Center

P.O. Box 517

Paoli, PA 19301

How to Serve Knowledge

Notes on the Design of a Knowledge Base Server *

Tim Finin
Unisys Paoli Research Center

P.O. Box 517
Paoli, PA 19301

215-648-7446
finin@prc. uni sys.com

Richard Fri tzson
Unisys Paoli Research Center

P.O. Box 517
Paoli, PA 19301

215-648-1328
fri tzson@prc. uni sys. com

December 1988
revised February 1989

Abstract

This note describes work on the design of a Knowledge
Base Server - a distributed architecture for delivering
knowledge representation and reasoning services to ap­
plications. The idea is simple: knowledge bases are like
databases and their services should be provided in a sim­
ilar manner - in a client-server relationship. This paper
motivates the idea, discusses some of the design issues,
and briefly describes our current approach.

1 Introduction

Knowledge bases are best viewed as being akin to
databases; they are global resources to be shared by users
and application programs. A knowledge representation
and reasoning (J(R€1R) system should offer its services
to programs in the same way that a database does: as an
independent process exchanging information via network
streams or interprocess communication pipes. Figure 1
shows a knowledge base server attached to a local area
network.

The two traditional approaches to providing KR&R
service to an application require either that the appli­
cation be written in the language and environment of the
AI system, or that the AI system be provided in the lan­
guage and environment of the application. Often, neither
of these alternatives is acceptable because the application
can not be moved from its environment and because the
AI systems available in that environment are inadequate.

A knowledge base server provides a third alternative
for embedding AI in an application. When a knowledge

•A version of this paper appeared in the AAAI 1989 Spring Sym­
posium on Knowledge System Development Tools and Languages,
Palo Alto, March HJSD.

1

representation and reasoning system is structured as an
independent server process, it offers several advantages:

• Applications can be smaller. The application no
longer needs to contain the general KR&R routines,
but only the application-specific representation and
inference procedures.

• Access to the knowledge base is language in­
dependent. There is no need to program in, or
even be aware of the language in which the knowl­
edge base is implemented. This allows both the ap­
plication and the KR&R system to be implemented
in the most appropriate language.

• Persistent and sharable knowledge bases are
easier to manage. Having a single server for multi­
ple users makes dealing with concurrency and locking
easier.

• The knowledge server can offer a uniform
front-end to conventional database manage­
ment systems. If the knowledge representation sys­
tem is appropriately designed, it can also serve as a
front end for database management systems that are
attached to the network. (See Figure 2.)

Knowledge Server Goals

The primary goal for a knowledge server is to provide full
support for an application's KR&R requirements, even
though the knowledge server is executing on a separate
machine. If we meet this goal, we can expect to reap the
advantages described above. However, a good knowledge
server will be designed to address several other goals as
well. In particular,

• A good knowledge server will be designed to reduce
the overhead of the communications links as much as

LOCAL AREA NETWORK

CLIENT

APPLICATIONS

KNOWLEDGE

SERVER

KNOWLEDGE BASES

DBMS

DATABASES

Figure 1: Physical Design of Server Architecture

possible, and will encourage taking advantage of the
parallelism inherent in a cooperating process design.

While communication links are generally quite fast, a
good design will attempt to reduce traffic on it by:

- eliminating redundant transfer of information,
- using a compact encoding of information,
- allowing the user to augment the knowledge

server with custom reasoning routines which ex­

ecute on the server's host.

Allowing the user to augment the reasoning processes of
the knowledge server will make the system significantly
more useful as well as allowing for efficiency improve­
ments.

• The knowledge server should be extensible.

It should allow the user to extend the reasoning proce­
dures either by writing code for the knowledge server (to
be executed on the knowledge server's host), or by writ­
ing application code (to be executed on the application's
host) which can supplement the reasoning procedures of
the knowledge server.

Knowledge Server Size

In order to produce a flexible and useful knowledge server,
there are several goals which should be kept in mind. The
first is that we should be trying to provide a big system
which supports a rich variety of knowledge representation
structures and inferential procedures. The second goal is
to provide a system which can also be small, that is, one
which can be configured so that only the modules which
are needed by an application are actually loaded, making
delivery on modest machines possible.

There are two senses to the notion of size in knowledge­
based systems - the size of the knowledge bases that can

2

be effectively managed and and the size of basic KR&R

system itself. In fact, it is reasonable to consider these to
be independent dimensions along which a particular KB
system (or a requirement for one) can vary.

Figure 3 shows the two-dimensional space defined by
these two notions of size and places some sample points
on them. The Kandor system [8,7) is an example of a KR
system that was explicitly designed to offer a small, well
defined set of representation capabilities with a simple,
functional interface. The Kandor system did not, how­
ever, address any of the issues which arise in managing
very large knowledge bases. Postgress [9] is an exam­
ple of a system which attempts to offer efficient access
to very large knowledge bases by extending and enrich­
ing the traditional database technologies to include some
support for knowledge-based operations such as inference
rules. These extensions result in an extremely simple and
rudimentary knowledge representation system, however.

The KEE system [5) is a good example of a very large,
rich KR&R system which has no special considerations
for supporting very large knowledge bases. The very fact
that the representation and reasoning system is large and
complex makes systems like KEE poor performers on very
large knowledge-bases. The general correlation between
the simplicity of the knowledge representation system and
the size of the knowledge-base that it can support is re­
flected by our placement of the NIKL [4] system in this
space. NIKL lies somewhere between Kandor and KEE
with respect to the complexity of the representational
constructs and inferential services it offers. It also is posi­
tioned between Kandor and KEE with respect to the size
of the knowledge bases that it can practically support.
The last sample point in the figure is CYC [6) which is
somewhat unique in its goals. CYC employs a very com­
plex and large knowledge representation system but is
also explicitly targeted toward supporting extremely large
knowledge bases. It's success at combining both aspects

LOCAL AREA NETWORK

CLIENT

APPLICATION

KNOWLEDGE

BASES

KNOWLEDGE SERVER

DBMS

DATABASES

Figure 2: Logical Design of Server Architecture

Large KBs

Small KBs

POSTGRES

KANDOR

NIKL

Small KR
systems

CYC

KEE

Large KR
systems

Figure 3: Size of a KBMS system

3

of bigness has not yet been tested.
Our goal is to provide a KBS system that can be both

large and small in both of these dimensions. We would
like to provide a system that can be large in that it sup­
ports a full range of standard knowledge representation
structures and procedures which can operate efficiently
on knowledge bases of significant size. Both frame-based
and rule-based representations, with forward and back­
ward chaining inference mechanisms, and some form of
truth maintenance, should all be available to application
programs. In addition there should be modules that sup­
ply other functions on knowledge bases, such as an edi­
tor, a knowledge base browser, classifier, consistency ver­
ifier, etc. The system should also be large in the sense
of being able to manage large knowledge bases, including
knowledge bases which are stored, in part, on external
databases. Running on a fast "server system" host, it
should be capable of supporting the development of large
AI projects.

The second goal is to provide a system which can also
be small, that is, one which can be delivered. It should be
possible to configure the system so that only the modules
which are needed by an application are actually loaded.
It should also be possible to execute the knowledge base
server on the same host as the application program. In
such a configuration, the penalty for the server architec­
ture should be minimized.1

Feasibility

There are several objections that can be raised against
the knowledge server architecture.

• It will be too slow. Transferring the data over the
network will reduce performance to unacceptable lev­
els.

This is not likely to be true. Since the reasoning com­
ponent of the system is on the same side as the knowl­
edge, the amount of information transferred between the
application and the server should not be that great. In
fact, less information should pass between the knowledge
server and the application than would usually pass be­
tween a conventional application and a database. These
conventional applications do not find the network connec­
tion to be a bottleneck.

For applications which do need to transfer large
amounts of data between a client application and the
knowledge server, the data transfer rates of current tech­
nology networks is approaching the transfer rates of large
hard disks. Even information intensive applications such

1 This is not an unreasonable expectation. The X Window Sys­
tem is designed in just this way. It is designed to work across a

network, but it is most frequently executed on the same host as the
application code which uses it.

4

as the X Window System can operate acceptably over a
network. So the speed of the network link is not likely to
be a bottleneck for the application.

In fact, a well designed application could actually run
faster with a knowledge server because of the opportunity
for parallelism that the architecture introduces.

• Applications are too tightly coupled with the knowl­
edge representation and reasoning components to be
divided by a low bandwidth connection.

This objection is more serious. However, the knowledge
server design doesn't try to separate general purpose rea­
soning from knowledge representation; that would be too
difficult and would be likely to fail. On the other hand,
most real applications utilize a mixture of general pur­

pose reasoning and special purpose reasoning. The latter
can be simple or complex; it may only be called once or
it might have to be available as a subroutine to be called
by the general purpose reasoner, or it might have to be
available as a coroutine, maintaining an internal state and
swapping control back and forth between the knowledge
server and itself. There are several ways to deal with this
requirement, some of which we discuss in the next section.

2 Design Issues

A functional interface to a knowledge representation sys­
tem has to provide access to the services provided by the
system, such as its frame representation or its backward
chaining reasoning mechanism. But when the interface
is going to be provided via an interprocess stream to an
independent process, rather than via procedure calls to
code within the same process, new issues arise. Among
these are:

• Can the server process handle more than one user
simultaneously?

• Can the server process handle more than one knowl­
edge base?

• What communication protocol will be used between
client and server?

• How will data be passed from the server to the
client's programming language?

• How can the client supplement the server's inference
processes? Will it be possible to use the client's pro­
gramming language to do this?

Multiple Users & Knowledge Bases

While it is important that multiple users be able to make
use of the knowledge server, whether it can support mul­
tiple users simultaneously is often simply a matter of
the operating system it runs under, e.g. does it sup­
port shared code? However, whether a single instance

of the knowledge server code can share multiple users,
or whether multiple instances are needed, isn't really the
important point. The important questions are:

• Can the knowledge server support more than one
knowledge base? That is, are the procedures and
the knowledge base itself distinct?

• Can two users access the same knowledge base si­
multaneously? If so, then how are updating conflicts
handled?

• Can a user combine two knowledge bases? That is,
can a user have access to two or more knowledge
bases simultaneously?

The last item is probably the most difficult to answer.
A collection of modular knowledge bases which can be
combined with one another would be a useful resource.
But a procedure for combining two arbitrary knowledge
bases may be impossible to devise.

Communication Protocol

The proposed server/client communication channel is an
interprocess communication channel (IPC). This will typ­
ically be implemented via a TCP /IP stream, but might
also be a UNIX domain IPC if the server and client are
executing on the same host.

When knowledge representation systems and applica­
tions share the same address space, a reference to a unit
in the knowledge base is usually just a pointer within
the shared address space. When there is no shared ad­
dress space, as in the proposed architecture, an alterna­
tive must be developed.

A simple solution is to rely on symbolic identifiers.
While this is easy to design and implement, it is not par­
ticularly efficient since the server has to maintain and use
a symbol-to-address mapping for each request from the
client. Also, symbolic identifiers are typically larger than
numeric identifiers (i.e. that is, they are composed of
more bytes).

Another solution is to continue to pass pointers to the
data structure, using the address space of the knowledge
server, and arrange for a client to locate a particular unit
using a naming or indexing scheme.

Extensi b iii ty

This is the most difficult design issue that has to be ad­
dressed when constructing a knowledge server. While a
powerful general purpose reasoner is an important part
of an expert system, it is nearly always not enough. Real
applications always have a need for special purpose addi­
tions to the reasoning routines. In a frame-based repre­
sentation system, these typically take the form of attached

5

procedures written directly in the host language and exe­
cuted in specified circumstances (e.g. upon the addition
or removal of a slot value). A similar situation arises
when one wants to directly link the KR&R state to the
application state, such as reflecting a slot's value in the
appearance of a graphic icon.

When the knowledge representation and reasoning
components are available as subroutines, it is easy to
modify them, or to take advantage of designer provided
hooks to add in special purpose procedures. However,
when the reasoning routines are located remotely, and
may be written in an unknown or inappropriate language,
it is more difficult. The questions to be answered in a de­
sign are:

• Can the application augment the reasoning pro­
cess with procedures written in the language of the
server?

• Can the application augment the reasoning process
with procedures written in the language of the appli­
cation?

If a user is willing to write special purpose reason­
ing routines in the same programming language that the
server is written in, then there are several traditional tech­
niques techniques for doing this. Most knowledge repre­
sentation and reasoning tools provide escapes to the im­
plementation programming language specifically to sup­
port this need. However, if we assume that the exten­
sions to the reasoning procedures will not be written in
the server's programming language, and in fact, can not
be executed on the same host that the server is executing
on, then other techniques must be devised.

One possible solution is to store the code for the spe­
cial purpose reasoning routines in the knowledge base and
have them returned to the application program at appro­
priate times to be executed. For some languages, such
as Lisp, this may be a reasonable approach, though it is
likely to be inefficient. For other languages, it may be
difficult or impossible.

A more efficient solution is to have the application im­
plement a remote procedure call (RPC) service for the
server. The rules of the knowledge representation server
can provide the same type of escape to this remote proce­
dure call mechanism that it usually provides for escaping
to its native language.

Implementing an RPC service is not necessarily a dif­
ficult task. In its simplest form it is just a matter of re­
ceiving encoded requests from the Knowledge Server and
dispatching them to the appropriate routines for process­
ing. If the application language has the necessary multi­
processing facilities (as do many Lisp systems (e.g. Franz
Common Lisp)), an RPC server could be implemented as
a separate process using a separate communication chan­
nel. Alternatively, it could use the same process and

channel as the application program, along with a com- purpose and the application specific code, is executed on
munication protocol which is prepared to handle know}- the server while the application machine simply takes care
edge server queries after each command to the knowledge of the display of output and the low-level handling of in­
server. This latter design provides an adequate degree of put. PC-Host is more like a single process AI application
flexibility, but it may be too slow for intensive use, and it relying on a networked windowing system such as the X
puts a burden on the designer of the application language Window System, or NeWS, for its low-level user interface.
interface to support this RPC service.

Programming Language Interface

Techniques for accessing the knowledge base server from
several languages need to be investigated. For conven­
tional languages, a library of procedure calls will prob­
ably suffice. For AI languages like Lisp and Prolog,
such libraries will be a good starting point, but when
tighter integration with the language is desirable, alter­
native strategies for accessing the knowledge base can be
investigated.

For example, the knowledge base might be accessed
as an extension of the Prolog database, or, in Common
Lisp, it might return and support a stream datatype to
the calling program.

3 Related Work

Although there has been considerable work that is related
to the knowledge server idea, none is quite identical with
it.

There is a body of work on designing formal interfaces
to databases which presupposes a formal database model
(the relational model). No such common model exists for
knowledge representation. There is work in progress un­
derway to extend formal database models to incorporate
more of what we would consider to be the standard set of
KR&R services [l].

The MCC CYC system [6] is configured with a cen­
tral knowledge base which many independent CYC pro­
cesses can access. However, the CYC model assumes that
the server and all of the client processes are in Lisp and
that each client process loads a copy of the entire CYC
knowledge base and the entire CYCL representation and
reasoning engine into its image. Thus, the server is used
only to provide a central agent to manage the persistence
and sharability of the knowledge base and not to actually
provide KR&R services.

One commercial knowledge representation product,
KEE, is available in a network based model [3). The PC
Host product offers an expert system shell (KEE) run­
ning on a central server machine, supporting users who
are running applications on PC class machines attached
to the server via a network. However, the division of labor
between the KEE server machine and the client machine
is significantly different than what we propose. With PC­
Host, all of the code for the application, both the general

6

4 Conclusion

This note describes some preliminary work on the design
of a Knowledge Base Server - an architecture for deliv­
ering knowledge representation and reasoning services to
applications. The primary advantages of this approach is
the decoupling of the application's general computational
needs from it's knowledge-based computation needs. A
small application running on a small workstation written
in a conventional programming language (e.g. Ada) can
access a large Al knowledge base.

Status

We currently have a very simple prototype running and
will be implementing a more substantial prototype in the
coming year. The current prototype (and future one) uses
the Protem system [2] as the knowledge representation
and reasoning engine.

Protem is a rule-based knowledge representation sys­
tem extended by a closely linked frame-based system. As
a rule-based system, it offers both forward and back­
ward chaining based on Horn clauses, an integrated
justification-based truth maintenance system, and a lim­
ited abductive reasoning facility. The frame-based com­
ponent provides a semantic network which is simple but
sophisticated. While it offers the standard class and in­
stance frames, with superclass relations among the frames,
it also provides a metaclass level for describing the class
level. That is, it views classes as instances of other classes.

Protem's strong point is its integration of the two com­
ponents: its rule-based half and its frame-based half. Nei­
ther can operate independently of the other. In particu­
lar:

• All assertions and rules are about frames. They ei­
ther assign values to the attributes of a frame, or
assert relations among frames.

• The class/subclass hierarchy of the frame system
provides types for the variables of the rule system.
This typing is fast and is directly utilized by the uni­
fication algorithm.

• Rules and assertions about typed variables are inher­
ited via the subclass links in the frame system in a
well defined way. This inheritance is supported by
the truth maintenance system which treats them as
default values.

Protem is implemented in Common Lisp (supported by [9]
the portable implementation of the Common Lisp Object
System) and has been run on a variety of machines.

Plans

In the coming year, we plan to implement a more seri­
ous prototype knowledge server. We will also implement
knowledge server interfaces for Lisp, Prolog and a more
conventional language such as Ada or C. In addition, we
will be using the knowledge server to provide access to
relational databases using a cache-management scheme
designed to efficiently connect an knowledge representa­
tion system to a conventional database.

References

[1] Michael Brodie. Future intelligent information sys­
tems: Al and database technologies working together.
In Readings in Artificial Intelligence and Databases,
Morgan kaufman, San Mateo, 1988.

[2] Rich Fritzson and Tim Finin. Protem - An Integrated
Expert SystemsTool. Technical Report LBS Technical
Memo Number 84, Unisys Paoli Research Center, May
1988.

(3] Intellicorp. KEE Core Reference Manual. Intellicorp,
1986.

[4] Thomas S. Kaczmarek, Raymond Bates, and Gabriel
Robins. Recent developments in NIKL. In Proceed­
ings of the 5th National Conference on Artificial In­
telligence, pages 978-985, AAAI, August 1986.

(5) Tom Kehler and D. G. Clemenson. An application
development system for expert systems. Systems &
Software, January 1984.

[6] D. Lenat, M. Prakash, and M. Shepherd. CYC: us­
ing common sense knowledge to overcome brittleness
and knowledge acquistion bottlenecks. AI Magazine,

6:65-84, 1986.

[7] Peter F. Patel-Schneider. Small can be beautiful
in knowledge representation. In IEEE Workshop on
Prncip/es of Knowledge-Based Systems, pages 11-16,
1984.

[8] Peter F. Patel-Schneider, Ronald J. Brachman, and
Hector J. Levesque. ARGON: knowledge represen­
tation meets information retrieval. In Proceedings of
the First Conference on A rtificia/ Intelligence Appli­
cations., pages 280-286, 1984.

7

Michael Stonebraker and Larry Rowe. The design of
POSTGRESS. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 340-355, Washington, D.C., May 1986.

