
The Planes Interpreter and Compiler for Augmented Transition
Network Grammars 1

Timothy Wilking Finin2

CONTENTS

1.0

1.1

1.2

1.3

2.0

2.1

2.2

2.3

2.4

3.0

3.1

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.3

3.4

3.4.1

3.4.2

3.4.3

3.5

Introduction

The Planes Natural Language Query System ••••••••••••••••

An Overview of this Chapter •••••••••••••••••••••••••••••

Conven tions •••

Augmented Transition Networks •••••••••••••••••••••••••••••

Introduction ••

The ATN Formalism •••••••••••••••••••••••••••••••••••••••

Design Considerations •••••••••••••••••••••••••••••••••••

Implementation ••

The ATN Interpreter ••••••••••••••••••••••••••••••••••.•••••

Invoking the ATN Interpreter ••••••••••••••••••••••••••••

Arc Types ••••••• ~ •••••••••••••••••••.••••.•••••••••••••••

Arcs which Test the Current Word ••••••••• ~ ••••••••••••

Arcs which Modify the Flow of Control •••••••••••••••••

The Virtual Arc •••••••••••••••••••••••••••••••••••••••

Miscellaneous Arcs ••••••••••••••••••••••••••••••••••••

Defining ATN Networks and States ••••••••••••••••••••••••

Functions for Manipulating Registers ••••••••••••••••••••

Setting Registers •••••••••••••••••••••••••••••••••••••

Accessing Registers •••••••••••••••••••••••••••••••••••

Testing the Contents of a Register ••••••••••••••••••••

Flow of Control •••••••••••••••••••••••••••••••••.•••••••

3

3

5

5

6

6

7

9

10

11

11

12

13

15

18

18

19

21

22
23

24

24

This work was completed while the author was at the Coordinated
Science Laboratory of the University of Illinois in Urbana-Champaign.

2 Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19143 USA

L. Bloc (ed.), The Design of Interpreters, Compilers, and Editors for Augmented Transition Networks
© Springer-Verlag Berlin Heidelberg 1983

2

3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

3.6

3.6.1

3.6.2

3.6.3

3.7

3.8

4.0

4.1

4. 1 • 1

4.1 .2

4.1.3

4.2

4.2.1

4.2.2

4.2.3

5.0

5.1

5.2

5.3

5.4

6.0

6.1

6.2

7.0

7.1
7.2

7.3

7.4

7.5

8.0

Effecting State Transitions ••••••••.•.••••••.••••••.••

Invoking and Returning from Sub-computations •.••••••••

Controlling Backtracking and Failure

Suspending and Resuming Computations •••••••••.••••••••

The HOLD/VIRTUAL Facility •.•••.•••••.•.•••••••••••••••

Useful Actions .••.••••••••••.••..•••••••.••.••••••.•.•••

Actions which Test the Current Word .••••••••••..••.•••

Actions which Test Arbitrary Words •••••.•••.•..•..•••.

Miscellaneous Actions ••.•••••••.•...••••••..••.•.••••.

Tracing Facilities •••.••••.••••••••.•••.•••••..•..•••.••

Global Variables •.••••••••••.••.•..••••..•••••.•.••...••

The ATN Compi ler •..•••.•.•.•.•••..•.••.•.•.•.••••••.••••••

In troduction •.••••••.•••...•.••••••..•.•••...••...•.•.•.

Compilation of a State ••...•..•...•......•.•.•.•.•..••

Compilation of an Individual Arc ••••.•.•••••.••••..•••

Optimi z a tion ••.•.•...•...•.•••••..••••.•.••••..•.•.••.

Using the ATN Compiler••••••.••.•••••...•.•.•...•.

Compiling Networks into LISP Code •••.•••••••••••••..••

Compilation in the LISP Compiler .•••.•.•••.••.•...•.•.

Swi tches .•.•..••.•..••...•••..••.•••..•...•••....••.••

The Lexicon •.•.•...•.•.••.•••....•...•.•...••..••...•••••.

Introduction .•••.••..••••.•.•••.•...•.•••..••.........•.

The Dictionary Format •..•.••.••••..••••••.•.••..•.••.•••

The Dictionary Manager ••..•..••.••..•.•.•.•.•.....•.•.•.

Auxiliary Functions •..•..•...•..••...•..•.•••.•.•...••••

Auxiliary Functions .•...•.•.••...•...•......••••...•.....•

Interfacing with the LISP Editor .••.•••.•••.•.....•••.••

Displaying ATN Networks and States .••.•••••..•.•...•.••.

Examples •••.••..•....•.••.••••...•..•...•..•.••••..•..•..•

A Sample ATN Network ••...•...•.•....••••.•••••...•••.•.•

A Sample Dictionary ••.•••••••••••..••.••.••.•.••.••....•

Examples of Operation .••......•...••..•....•.•.•••.••••.

Examples of Tracing States .••••••..••.•.•••••....•.•.•••

Examples of Tracing Registers •...•...•••••..••.••••.••..

References

24
25

25

26

27

30

30

32

32

33

35

37

37

38

40

42

44

47

47

48

49

49

49

51

53

56

56

57

58

58

60

61

63

65

67

1.0 INTRODUCTION

1.1 The PLANES Natural Language Query System

This chapter discusses the design and implementation of the ATN inter

preter and compiler used in the PLANES system ([Walt75], [Walt76] and

[Walt78]). This system, developed at the University of Illinois in the

mid 70's, is an interactive question answering system which answers

questions concerning a large data base of aircraft maintenance informa

tion. The intended scope of the PLANES system is to answer such ques

tions as:

How many Skyhawks required engine repairs in 1973?

Did any of these log more than 200 hours in March?

Show me the tail numbers of planes which were NOR during May.

What kinds of aircraft are in the data base?

The processing of a user's request is divided into three main phases:

parsing, interpretation, and evaluation (see figure 1 - The PLANES Sys

tem) •

The first phase, the parsing, is driven by a large ATN grammar. This

ATN grammar defines a "semantic grammar" [Brow76] which maps the users

request into an internal representation, the Paraphrase Language. The

grammar is "semantic" in that it incorporates semantic and pragmatic

knowledge as well as syntactic.

The Paraphrase Language representation o~ the user's request is trans

lated by the second stage into a 'program' to generate the data to ans

wer the request. This stage contains detailed knowledge about the data

bases. It must know, for example, which sub-parts of the data base con

tain certain relations and the particular codes used to represent cer

tain facts. The program is constructed out of primitives provided by

the Query Language.

Finally, the Query Language evaluates the 'program' and passes the re

sulting data to the Response Generator. This module can display the ans

wer in one of three forms: as a simple number or list, as a graph, or as

a table. The choice of output form can be determined by the user thru a
\

direct request (e.g. "Draw a graph of ••• ") or by a set of heuristics

which attempt to find the most "natural" form. A graph, for example,

will be generated only if the data consists of a set of tuples which

4

User's Request

t
Accept New
Sentence

t
J Semantic ~ ATN ~ I Parser Lexicon

Network r+- Interpreter ~
I

VI
Internal Representation Q.l

Vi r (Paraph'rase Language)
0'1
Q.l

0:: Translator -x (Interpreter) Q) -c
0 Query Language Program u

T
Query Language f""'" 1. Data Base

Evaluator

t Data I Graph I
Drawer

Reply Generator

+ py Re I
Table J I Constructor

FP-5041

Fig.: 1 The PLANES System

5

can be interpreted as a function of two variables. Furthermore, the num

ber of tuples must lie within certain bounds.

At each stage of the process, the results are sent to the History Keeper

which manages a set of stacks of relevant information. These stacks con

tain the results of each stage (e.g. users request, paraphrase, etc.),

syntactic components (e.g. subject, object, etc.), and semantic/contex

tual information (e.g~ time specifications, plane specifications, etc.).

This information is made available for resolving anaphoric reference,

supplying phrases deleted thru ellipsis, and generating responses.

The entire process can be aborted by any of the major stages. If this

is done, a suitable error message is generated and the user is invited

to reform his request.

1.2 An Overview of this Chapter

This chapter describes the design and use of the PLANES ATN system. An

earlier version ([Fini77a]) in fact, also served as a user's manual.

Section 2 gives a brief description of ATN's and discusses some of the

high level design considerations. Section 3 describes the interpreter

and the auxiliary functions available to the user in some detail. Sec

tion 4 presents the compiler which can translate ATN networks into LISP

code or machine language instructions. Section 5 describes the diction

ary format expected by the interpreter. Also discussed are the various

functions provided for creating and maintaining dictionaries. Section 6

documents several packages of auxiliary functions provided for inter

facing the ATN system with the LISP editor and Pretty-printer. The chap

ter closes with examples of a very simple English grammar, a dictionary,

and traces of the application of this grammar and dictionary to parsing

some simple sentences.

1.3 Conventions

This chapter documents many LISP functions and "function-like" construc

tions. As part of the description for a function, a "syntax frame" will

be given which specifies the number of arguments and whether or not they

are evaluated. A "syntax frame" will look like a typical call to the

function, i.e. it will be a list whose first element is the name of the

function and whose remaining elements are the arguments. Arguments in

the "syntax frame" will typically be enclosed in angle-brackets «,».

6

For example, the syntax frame for the LISP function LESSP might be:

(LESSP <number> <number»

which states that LESSP takes two arguments, both of which are evaluated.

If a quote-sign (') precedes an argument, then that argument is not eva

luated by the function. For example, the following describes the func

tion DEFPROP:

(DEFPROP '<atom> '<value> '<property»

If a function takes one or more optional arguments, then several "syn

tax frames" will be given. For example, the MacLISP function CATCH would

be described as:

(CATCH <expression> '<tag»

(CATCH <expression»

Two conventions will be used to exhibit functions which take an inde

finite number of arguments. In one, the arguments are simply partially

enumerated with the elliptical " , as in:

(PLUS <number1> <number2> ..• <number n»

The second form has the last argument to the function preceded by the

"dotted pair" dot, as in:

(DEFUN '<name> '<argument list> • '<function body»

The last argument then stands for an indefinite number of final argu

ments. Example calls to a function will usually be given with the "syn

tax frame" to clarify its usage. These will be preceded by an "eg:" in

dicator.

2.0 AUGMENTED TRANSITION NETWORKS

2.1 Introduction

The ATN formalism has been well received by the computational linguis

tics community in the past decade. A number of people were working with

similar models in the late 60's (see [Thor68] and [Bobr69]), but the

idea was crystallized and popularized by the work of William Woods in

the early 70's [Wood71]. The ATN model has been heavily used to repre

sent grammars for question answering systems, speech processing systems,

language generation systems, modeling learning and even for processing

visual information [Loza77]. This section will provide a brief intro

duction to the ATN formalism. An excellent introduction to the theory

and use of ATN grammars can be found in [Bate79].

2.2 The ATN Formalism

7

The ATN formalism is usually described in a evolutionary manner, showing

how one can start with the notion of a simple finite state machine (FSM)

and modify and embellish it to arrive at an Augmented Finite State Tran
sition Network (ASFTN).

The FSM is the basis for ATN's --- --- -- --- ----- ---

We start with a garden variety deterministic FSM consisting of a set of

labeled states, a set of arcs between states, an initial state, and a

set of distinguished final or accepting states. The first step might be

to extend the formalism to allow for non-determinism. A simple grammar

for English might be represented by the graph in figure 2 (A Simple

Grammar for English). As a model for natural language processing this

is inadequate. The most serious deficit is the lack of any mechanism to

handle embedding of constituents to arbitrary depth. The next extension,

then, is to provide a "push down" mechanism whereby one can suspend the

processing of a constituent at one level while using the same network

to process an embedded one.

Adding recursion extends the power of an FSM

We can represent this by labeling an arc from one state to another with

the name of a third state. When such an arc is encountered, processing

is suspended and the network restarted in the specified state. If an

accepting state is eventually reached, the suspended processing is re

sumed. SuQ9 a capability not only allows one to achieve the power to

parse a context free language, but also simplifies the representation

of a grammar. One can collect common network fragments and specify them

in one place, much as one can substitute a subroutine call for common

program sequences in a ~rogramming language. Our simplistic English

grammar might now be represented by the graph in figure J (A Better

Grammar for English). Note that this grammar now accepts conjOined sen
tences and sentences embedded as relative clauses.

AUgmentation realizes the power of ATN's

8

Fig. 2: A Simple Grammar for English

Fig. 3: A Better Grammar for English

9

Whether or not recursive transition networks provide a theoretically

adaquate mechanism for parsing natural languages is an open question.

It is clear, however, that from a practical viewpoint, the RTN forma

lism is not as powerful as one would like it to be. To further extend

the power of our formalism we will allow arcs to be augmented with con

ditions and actions. Each arc can be augmented with:

1. An arbitrary condition which must be met before the arc

may be taken.

2. A set of arbitrary actions which will be performed if the

arc is taken. These can have side effects thru the setting

of registers whose contents can later be accessed in other
parts of the grammar.

This augmentation (among others) gives an ATN the computational power

of a Turing machine. The final result is a powerful formalism which re

tains much of the elegance of the simple FSM.

2.3 Design Considerations

Since ATN's are based on non-deterministic FSM's, an implementation must

be able to simulate all possible paths thru the network. We have chosen

to implement a depth-first backtracking version for several reasons.

Firstly, it is our belief that natural language processing may be most

suited to this approach. At least, evidence suggests that our only ex

ample of competent natural language processors (i.e. humans) do not use

highly parallel methods. Secondly, we believe that whatever gains might

be made thru a parallel approach would be more than offset by the addi

tional cost of processing. The phenomenon of natural language is such

that it encompasses an extraordinarily large number of patterns and con

structions. Most of these, however, are relatively rare, the greatest

part of most language being drawn from a few common constructions. A

non-parallel approach can easily take advantage of this fact in the or

dering of its attempts to find a path thru the ATN network.

To simulate the non-deterministic nature of an ATN processor (or a FSM

for that matter) one needs to maintain an encoding of the current con

figuration (i.e. state, input word, register environment, etc.) as well
as a stack of past configurations which represent the path so far. In

our ATN system, we have chosen a recursive implementation in which this

information is stored on LISP'S internal stack. The alternative is to

10

maintain an explicit configuration stack built from CONS cells from the

general pool. The advantages of a recursive implementation include:

o Simplicity of design

Backing up to a previous configuration is achieved by

"returning" to the environment of that configuration.

The undoing of side-effects is automatic.

o Efficiency

Previous configurations are stored on LISP's internal

stack and thus do not consume CONS cells from the general

pool. This reduces the amount of LIST space required and,

more importantly, results in fewer and shorter garbage

collections.

The chief disadvantage of a recursive implementation is that we give up

the possibility of giving the user complete control over processing.

Earlier configurations are inaccessible to the user as well as to the

system itself (*). This problem is alleviated by the inclusion of seve

ral flow-of-control modifiers thru which one can directly fail back to

a specified configuration.

2.4 Implementation

The PLANES ATN interpreter, Dictionary Manager, and ATN compiler are

written in the LISP dialect MacLisp, which runs on a variety of machines

and operating systems (**). PDP-10 TOPS10 timesharing system. The fol

lowing gives approximate values for memory requirements:

Interpreter

Dictionary Manager

Compiler

LIST space

5100

1200

2500

BPS space

4000

1000

1500

In this table, LIST space refers to the number of memory cells used to

(*) This makes certain kinds of parallel processing regimes difficult,
if not impossible, to implement.

(**) Versions of MacLisp exist for PDP-10s under the TOPS-aO, TOPS-20,
ITS, and WAIT operating systems and for MULTICS. Two other Lisp
dialects are sufficiently close to MacLisp to allow the PLANES ATN
system to run with minor modifications: FranzLisp (for a PDP11/780
Vax) and Lisp Machine Lisp.

11

store lists, atoms, etc. and BPS space refers to 'Binary Program Space',

the number of memory cells used to store compiled code.

3.0 THE ATN INTERPRETER

This section describes the principal functions in the PLANES ATN inter

preter.

3.1 Invoking the ATN Interpreter

PARSE and PARSE1 invoke the interpreter

PARSE and PARSE1 are the main functions used to invoke the ATN interpre

ter on an input string. The function PARSE is intended to be used at

LISP's toplevel and PARSE1 used by other programs.

(PARSE '<string> '<initial state> '<number of parses»

eg: (PARSE (which skyhawks required repairs) s:start 3)

The function PARSE starts the ATN interpreter in state <initial state>

with the input string <string>. It takes from 0 to 3 arguments, none of

which is evaluated. If any argument is omitted or is NIL, it is defaul
ted as specified below.

The first argument specifies the input string to be parsed. If it is a

list of atoms, then that list is used as the input string. If it is an .

atom which has a value, then the value of the atom is used as the input

string. If it is omitted or is NIL, then the function READTEXT is called

which reads the input string from the terminal. The second argument to

PARSE specifies the initial state of an ATN network. If it is omitted or

NIL, it defaults to the value of the global variable @INITIALSTATE. The

third argument determines how many parses are produced. If it is omitted

or NIL, it defaults to one. If it is a positive number, then the inter

preter will attempt to produce that many parses. If it is the atom ALL,

then all possible parses will be produced.

The function PARSE always returns the value u*u, so it is run for its

side-effects. The principle side-effect is that it sets the variable
PARSE to:

o The atom FAIL if the ATN was unable to reach a final state.

12

o The value POPped by the ATN if <number of parses> is 1.

o A list of the values POPped if <number of parses> is
greater than one or the atom ALL.

In addition, this value is "pretty printed" on the terminal and the atom

AGAIN is set to the input string.

(PARSE 1 <string> <initial state> <number of parses»

eg: (PARSE 1 '(show me the list) 's:start 'all)

The function PARSE1 requires all three arguments, each of which is eva

luated. It returns the value(s) POPped by the ATN from the final state(s).

PARSE 1 has the side-effect of binding the global variable AGAIN to <in

put string>.

(READTEXT)

If the first argument to PARSE is omitted or NIL, the function READTEXT

is called to read the input string from the TTY. This function reads a

string of characters from the TTY until a carriage-return is typed and

returns it in the form of a list of atoms. Characters which have a "spe-

cial" meaning to LISP (e.g.

(i.e. taken literally).

• I , , etc.) are automatically "slashified"

The function incorporates three special features:

1. If the null string is entered by typing only a carriage-return,

then READTEXT returns the last input string given to PARSE (i.e.

the value of AGAIN).

2. If the first character on the line is a "(" then READTEXT reads

a LISP s-expression, evaluates it, and prints the resulting

value. It then waits for a string of characters to be typed as

the input string.

3. Whenever a line-feed is typed, READTEXT takes the next charac

ter of the input string from the last input string (AGAIN again).

Subsequent line-feeds produce subsequent characters from the

old input string.

3.2 Arc Types

The PLANES ATN interpreter provides a total of 13 varieties of arcs.

These can be broken down into the following categories:

1. Flow of Control (PUSH, POP, TO, JUMP, FAIL)

These are arcs which effect transitions from one state to an

other or invoke or return from sub-computations.

2. Testing the Current Word (CAT, WRD, ROOT, PHRASE)

13

These arcs are taken only when the current word meets a speci

fied condition.

3. Virtual Arc (VIR)

This arc provides a natural mechanism for handling constituents

which are parsed "out of place" in the input string.

4. Miscellaneous Arcs (TST, DO, AND)

These three arcs provide a mechanism for miscellaneous computa

tion.

All of the arcs except the AND arc have the basic form:

«type> <head> <test> <action1> ••• <actionn»

where <type> is one of the arc types (PUSH, CAT, TST, etc.), <head> is

an argument for that arc type, <test> is an arbitrary condition which

must be met before the arc can be taken, and the <actions>'s are arbi

trary lisp expressions which are evaluated if the arc is taken. Typi

cally the last action will specify destination - the next state to go

to.

3.2.1 Arcs which Test the Current Word

The WRD ~ compares the current word

(WRD '<word(s» <test> ••• <actions> ••• <destination»

eg: (WRD (the a) T (SETR det *) (TO np:det»

(WRD please t (SETR polite t) (TO s:start»

The WRD arc compares the current word against <word(s», which can be

an atom or a list of atoms. If the current word matches, then <test> is

evaluated and, if true, the actions,are evaluated from left to right.

The CAT ~ checks for a lexical category

14

(CAT '<head> <test> •.• <actions> ••. <destination»

eg: (CAT adj T (ADDR adj *) (TO np:adj»

(CAT (n npr) t (SETR n *) (TO np:n»

A CAT arc is taken if the current word has a lexical entry under the ca

tegory <head> (if it is an atom) or any of the categories <head> if a

list. Within the CAT arc, the variable * is bound to the root form of

the current word. For example, if the current word is CRASHING, then the

following arc would set the register VERB to CRASH:

(CAT V T (SETR verb *) (TO s:verb»

Note that this arc may generate several possibilities if the current

word has more than one dictionary entry under the specified category.

For example, the word SAW might have the dictionary entry:

(SAW V (SEE (tns past»

(SAW (tns present) (untensed»)

In this case the CAT arc above will first try parsing SAW as the past

tense of SEE and, if that fails, will try parsing SAW as the present/

untensed form of the verb SAW.

The ROOT arc checks the root form --- ---- ---- ----

(ROOT '<root(s» <test> •.. <actions> .•• <destination»

eg: (ROOT BE T (SETR v *) (to S:BE»

(ROOT (have be) (NULLR aux) (SETR aux *) (TO s:aux»

A ROOT arc compares the root form of the current word to <root(s».

Again, <root(s» can be an atom or a list of atoms. The arc is taken

if the current word matches one of the forms in <root(s» • As with the

CAT arc, the variable * is bound to the root form of the current word

within the ROOT arc.

The PHRASE arc checks the next several words

(PHRASE '<phrase> <test> ••. <actions> ..• <destination»

eg: (PHRASE (more or less) T (SETR fuzzy T) (TO quant:end»

(PHRASE (please (give show tell) (me {}» T (TO s:imperative»

The PHRASE arc is used to compare the next several words in the input

string to <phrase>, which should be a list. Successive elements of

<phrase> are matched against successive words from the input string.

15

The possibilities for phrase elements, and what they represent are given

below:

o A simple word (e.g. MORE)

The given word must match the corresponding word in the input

stream exactly.

o A root form (e.g. {eat})

A word between ,,{n and "}" specifies a root form match. The root

form of the corresponding word in the input must match the given

root. If the input word has several different root forms (corres

ponding to several lexical categories) then the given root may

match anyone of them.

o A lexical category {e.g. {.prep})

A word between "{." and "}" indicates a lexical category to com

pare the next input word to. If the input word is a member of the

specified category, then the phrase match continues.

o A list of Phrase elements (e.g. {{give} {show} {tell}»

An element which is a list enumerates several possibilities for

the corresponding word in the input string. If anyone of them

matches the next input word, then the match continues.

The phrase arc is taken if and only if each element of <phrase> is suc

cessfully matched against the input string.

3.2.2 Arcs which Modify the Flow of Control

These arc types can be further divided into arcs which involve sub-com

putations (PUSH, POP, POP!), arcs effecting state transitions (TO, JUMP)

and an arc which controls backtracking (FAIL).

The PUSH ~ invokes ~ sub-computation

(Push '<state> <test> ••• <actions> ••• <destination»

eg: {PUSH np t (SENDR goal 'subj) (SETR subj *) (TO s:subj»

The PUSH arc is used to invoke a sub-computation. If the expression

<test> is true, then the ATN interpreter is recursively called, start

ing in state <state>. All registers at the current level are saved and

made invisible to the lower level. Before actually invoking the lower

level, the list of actions is scanned for "preactions", i.e. those which

16

should be evaluated before the PUSH is made. These "preactions" are

SENOR's or any action which begins with a "!" (e.g. (! (OR (EQ SV 'be)

(SENOR v»). The SENOR actions, and any previously done, are typically

used to set register values in the lower computation.

If the sUb-computation fails, i.e. does not reach a state which can take

a POP arc, then the PUSH fails. If a POP from the lower level is taken,

then control is returned to the PUSH arc. The variable * is then set to

the value POPped by tile lower network, the values of any LIFTRed regis

ters set, and the "post-actions" evaluated. These "post-actions" are

just the actions on the arc minus the "pre-actions".

The POP arc returns from ~ sub-computation

(POP <value> <test> • <actions»

The POP arc returns from a sub-computation. If <test> is true, the <ac

tions> are evaluated from left to right and then <value> is computed and

returned to the most recent PUSH arc or PUSHATN action. Both <test> and

<actions> can be omitted. If the <test> argument is omitted, it defaults

to T.

Two conditions affect the taking of a POP arc. If any items were on the
HOLO list at this level and have not yet been used, then the POP arc can

not be taken (see section 2.5.5). In addition, a POP arc will not be ta

ken if it would be returning to the "top-level" and words remain to be

parsed (i.e. STRING is non-NIL). This last condition can be turned off

if the global variable USE-ALL-WORDS? is set to NIL.

Some examples of POP arcs are:

(POP (build-np) T (LIFTR head-noun $noun»

(POP (BUILDQ (pp + +) prep np»

The POP! ~ really returns

(POP! <value> <test> • <actions»

The POP! arc is almost identical to the POP arc except for one important

difference: one can not back-up into the sub-computation after leaving

it via a POP! arc. Under our implementation of the ATN interpreter, a

POP! arc does a RETURN to the environment of the most recent PUSH arc

or call to the PUSHATN action. If failure later backs up to this point,

the entire sub-computation will, in effect, be backed up over as well.

17

The grammar writer ma~ find this a useful arc in that it gives him greater

control over the automatic backtracking done by the ATN interpreter.

The TO and JUMP ~ effect state transitions

(TO '<state> <test> • <actions»

(JUMP '<state> <test> • <actions»

As a convenience, special arcs are provided which duplicate the TO and

JUMP actions. Both arc types cause the ATN interpreter to advance to the

state specified by their first "argument". The TO arc causes the current

word to be advanced and the JUMP arc does not. In each case, the <test>
argument and the <actions> arguments are optional. If the <test> is omit

ted, it defaults to T. Some examples are:

(JUMP s:end (out-of-words?»

(JUMP np:det)

(TO np:det t (ADDR ignored-words *»

The FAIL ~ controls backtracking

(FAIL '<where> <test> • <actions»

The FAIL arc can be used to gain some control over backtracking. If the

<test> is true, then this arc will evaluate the <actions> and cause fail

ure to propagate backwards to a point specified by <where>. Again, the

<test> and <actions> arguments may be omitted.

The <where> argument may specify that the ATN interpreter fail from the

current arc, the current state, the current sub-computation, an arbi

trary named state, or to the initial top-level call. The precise options

for the <where> argument are:

STATE

PUSH

<state>

TOP

fail from the current state

fail from the current subcomputation
(i.e. from the mest recent PUSH)

fail from the named state

fail altogether

Note that the setting of reqisters in the <actions> will have no effect

since their side effects will be immediately undone by the failure. Some
examples of FAIL arcs are:

(FAIL state)

(FAIL np:adj (CAT v»

(FAIL push (NOT (CAT prep»)

18

3.2.3 The Virtual Arc

(VIR '<cat> <test> .•• <actions> ..• <destination»

(VIR' «cat> <level» <test> ••• <actions> ••. <destination»

The VIR or virtual arc is taken if a constituent is found on the HOLD

list indexed under the category <cat>. Again, the <test> argument must

evaluate to non-NIL.

Note that two syntax frames are given for this arc. In the first, the

"head" of a VIR arc is an atomic 'category name. In the second, it is a

tuple whoes first element is a category name and whose second is a num

ber which specifies the level at which the constituent is to be found

on the HOLD list. See section 3.5.5 for details.

If the VIR arc can be taken, * is bound to the constituent found on the

HOLD list and FEATURES is bound to the (optional) feature list associa

ted with that constituent.

3.2.4 Miscellaneous Arcs

The TST ~ applies an arbitrary test

(TST '<label> <test> •.• <actions> .•. <destination»

The TST arc is taken if the arbitrary LISP expression <test> evaluates

to non-NIL. The <label> argument is not evaluated and is not used in any

way by the ATN interpreter. Typically it is used for a mnemonic label

describing the function of the arc. Some examples are:

(TST end-of-sent? (AND (NULL *) (NULL string» (JUMP s:end»

(TST t (MEMQ cuss-words) (TO s:complain»

The DO arc has no destination ------
(DO '<label> <test> . <actions»

The ATN interpreter handles the DO arc in an identical manner to the

TST arc. If the <test> is true, the <actions> are evaluated. Its inten

ded use, however, is somewhat different. The TST arc is intended to have

a "destination action" as its final action (Le. a call to TO or JUMP).

The DO arc is intended to be used without a "destination action". Thus,

the DO arc might be used to initialize a set of registers. Some sample

DO arcs are given below:

19

(DO initialize t (SETR type 'dcl) (SETR context NIL)

(DO warn verbose? (print' IThat is not very grammatical! I)

The AND arc conjoins other ~

(AND <arc1> <arc2> .•. <arcn»

The AND arc is the only one which does not fit the general arc syntax.

The AND arc takes an indefinite number of arguments, each of which can

be any of the legal arc types (including another AND arc). The effect

of an AND arc is to evaluate each of the "sub-arcs" from left to right

until one of them fails or the last one is reached. Consequently, none

of the "sub-arcs" should contain a "destination action" except the last

one, which should have a "destination" as its last action.

Note that after evaluating each of the "sub-arcs", the current word is

always advanced. This arc is useful in eliminating many states which

contain only a single arc. This can greatly increase the readability of

a network by keeping together arcs which form a single path. For example,

to handle two-word comparative adjective, one might use the following

arc:

(AND (WRD more t)

(CAT adj t (SETR adj (BUILDQ (adj: * comparative»)

(TO np:adj»)

3.3 Defining ATN Networks and States

The PLANES ATN system provides functions for defining ATN networks,

states, individual arcs and special word-triggered interrupt functions.

DEFATN defines an ATN network

(DEFATN '<name> '<default-arcs> '<default-registers>

'«state> ..• <state»)

The function DEFATN takes from 2 to 4 arguments and defines an ATN net

work. The first argument is the name of the ATN network and the last

argument is a list of the states in the network. Intervening arguments

are optional and, if included, can specify initial values for registers

and special "default arcs" which are assumed to be the initial arcs of

each state in the network.

20

If a register default argument is supplied, its form should be:

("default-register" «register name> <value»

«register name> <value»

. .. »
This argument causes the named registers to be set to the specified ini

tial values whenever a state in the network is PUSHed to.

If a "default-arc" argument is given to DEFATN, its form shou,ld be:

(" defaul t-arc" <arc 1 > <arc2> ••• <arcn»

where an arc has one of the forms:

<arc name>

«arc type> <head> ••••)

If the arc is an atom, it is assumed to be the name of separately de

fined arc (see DEFARC). If it is a list, then it should be in the form

of a legally defined arc. The eftect of this argument is to cause the

specified arcs to be added at the beginning of each state in the net

work.

DEFSTATE defines ~ individual state

(DEFSTATE '<name> • '<arcs»

Individual ATN states can be defined with the function DEFSTATE. This

function takes an indefinite number of arguments, the first of which is

the name of the state. The remaining arguments specify the arcs leading

from the state. Again, an arc can be represented either by an atomic
name" or by a complete list. An example is:

(DEFSTATE np:start

(CAT det (SETR det *) (TO np:det»

(CAT pro (SETR noun *) (TO np:end»

(JUMP np:det»

DEFARC defines ~ individual arc

(DEFARC '<name> '<arc»

An individual arc can be defined with the function DEFARC. Arcs defined

in this way can be of two types: Regular arcs which have a destination

21

(i.e. a call to TO or JUMP) as their last action and degenerate arcs

which do not have a destination as their last action. When a degenerate

arc is inserted into an ATN state, a destination is supplied which causes

the ATN to loop back to that state. For example:

(DEFARC timephrase (PUSH timepp T (SETR time *»)

is an arc which will attempt to parse a time phrase and then reenter the

current state.

Word interrupts ~ created ~ DEFINTERUPT

The PLANES ATN syst~ provides a mechanism whereby certain computations

can be performed whenever a certain word is encountered in the input

string. The function DEFINTERUPT associates an interrupt function with

a word.

(DEFINTERUPT '<word(s» '<function»

eg: (DEFINTERUPT please cdr)

(DEFINTERUPT (in on before)

(lambda (x) (parse-time-pp (car x) (cdr x»»

The first argument to DEFINTERUPT should be a word or a list of words.

The second should be a function of one argument, expressed as either

the atomic name of the function or as a lambda expression. Whenever one

of the specified words is encountered in the input string, the associa

ted interrupt function is called with the input string as its argument.

Its return value is used as the new input string. Thus the first example

would cause the word PLEASE to be ignored (since it returns the CDR of

the input string). The second example would call the function PARSE

TIME-PP whenever the words IN, ON, or BEFORE are discovered in the in

put string.

3.4 Functions for Manipulating Registers

A register in an ATN grammar plays the role of a variable in a higher

level programming system. The interpreter provides functions for assign

ing a register a value (SETR, SENDR, LIFTR) , accessing the value of a

register (GETR,¢), and testing the contents of a register (NULLR). Re

gisters need not be declared and are "created" when they are assigned

a value for the first time. The contents of a register which has never

been aSSigned a value is defined to be NIL.

22

3.4.1 Setting Registers

Registers can be set at the current level (SETR) in the next lower level

(SENDR) or in any of the higher levels (LIFTR).

SETR sets ~ register at the current level

(SETR '<register name> <value»

eg: (SETR verb 'be)

The function SETR assigns a value to a register at the current level.

SETR assigns the register <register name> the value <value>.

SENDR sets ~ register at ~ lower level

(SENDR '<register name> <value»

(SENDR '<register name»

SENDR is used to set the contents of a register at a lower level, typi

cally just before a PUSH action. Whenever a SENDR is evaluated, the re

gister name and value are stored on the SENDLIST. When a PUSH occurs,

the SENDLIST is used to initialize the registers to the specified values.

If the second argument is omitted, it defaults to the current contents

of the register named by the first argument. Thus (SENDR noun) is the

equivalent to (SENDR noun (GETR noun».

LIFTR sets a register at a higher level

The function LIFTR is used to set the contents of a register at a higher

level. It takes from one to three arguments, the syntax being:

(LIFTR '<register name> <value> <level»

(LIFTR '<register name> <value»

(LIFTR '<register name»

If all three arguments are given, LIFTR assigns <register name> the value

<value> <level> levels above the current one. For example, (LIFTR stype

'q 1) would set the register STYPE to Q in the next higher level. If the

<level> argument is the atom TOP, then it refers to the highest level.

If the <level> argument is omitted, it defaults to 1 (i.e. the next

higher level).

The second argument, <value>, specifies the value to be assigned to the

register. If it is omitted, the current contents of the register are

used. Thus (LIFTR noun) is equivalent to (LIFTR noun (GETR noun».

23

When a LIFTR action is evaluated, it adds the complete three tuple «re

gister n~e><value><level» to the special register LIFTLIST. When a POP

action is taken, the LIFTLIST is processed by setting those registers

associated with a <level> of 1 and "re-lifting" the rest of the elements

with a decremented <level>. Thus, the effect of a LIFTR is only seen

once we have POPped to the appropriate level.

3.4.2 Accessing 'Registers

GETR gets the contents of a register

The function GETR is used to access the contents of a register at the

current level or, if an optional argument is supplied, at any higher

level. The syntax is:

(GETR '<register name»

(GETR '<register name> <level»

(GETR '<register name> 'nearest <test»

If only one argument is supplied, GETR retrieves the contents of that

register at the current level. An optional second argument instructs

GETR to get the contents of the register at a higher level. In addition,

if <level> evaluates to the atom NEAREST, then GETR will return the con

tents of the register at the lowest level in which it has a value. If

<level> is NEAREST, an optional third argument, <test>, can specify an

arbitrary test which must be met by the candidate register value. While

evaluating <test>, the variable * is bound to the contents of the can

didate register. For example, the expression:

(GETR verb 'nearest '(TRANSITIVE *»

would search upwards thru the chain of levels until it found a VERB re

gister which contained a transitive verb (assuming that TRANSITIVE is

a user-defined predicate which is true of transitive verbs only).

The character ! acts as prefix operator

The character $ (Le. dollar sign) is defined to be a "read macro cha

racter" which acts as a prefix operator identical to GETR. Thus $noun

is the equivalent to the function call (GETR noun). This feature can be

turned on or off with the function DOLLARMACRO. Evaluating (DOLLARMACRO

NIL) will turn it off causing the dollar sign to lose its special sig

nificance. Similarly, (DOLLARMACRO T) will turn the feature back on.

24

3.4.3 Testing the Contents of a Register

NULLR tests the value of a register

Since the value of a register which has never been set is defined to be

NIL, there is no way to tell whether or not a register has been set to
the value NIL or has never been set. To provide the user with this ca

pability, the function NULLR will return T if and only if a register has

been explicitly set to NIL. The syntax is simply:

(NULLR '<register name»

3.5 Flow of Control

Six function are provided which modify the flow of control. Five of them

are analogous to arcs PUSH, POP, TO, JUMP and FAIL. The sixth provides a

special facility by which one can save the state of a subcomputation

just before returning via a POP and later resume it with the same re

gister environment.

3.5.1 Effecting State Transitions

These are typically found as the last action at the end of an arc, as

in:

(CAT v t (SETR v *) (TO s:verb»

(TST T (out-of-words) (JUMP s:end»

They can, however, be called at any point by the user and embedded in

arbitrary LISP expressions. For example, the destination of the follow
ing arc is determined at run-time:

(CAT v t (setr v *) (cond ((transitive ~v) (TO s:verb-trans»

((TO s:verb-interans»»

(TO '<state name»

eg: (TO s:verb)

The TO function effects a transition to the named state and causes the

current word to be advanced.

(JUMP '<state name»

eg: (JUMP s:end)

25

The JUMP function also causes the ATN interpreter to enter the speci

fied state but does not advance the input word. The next state will find

the current word unchanged.

3.5.2 Invoking and Returning from Sub-computations

PUSHATN simulates ~ PUSH

(PUSHATN <state»

eg: (PUSHATN np:start)

The effect of a call to the function PUSHATN is similar to that of a

PUSH arc. It recursively applies the ATN network to the input string

starting in state <state>. The value returned by this function is the

value POPed by the sub-computation or the atom FAIL if the sub-computa

tion does not reach a final state. Additional side-effects are:

o The variable * is bound to the value POPped.

o The variable LEX is bound to the new current word.

o The variable STRING is bound to the rest of the input string.

POPATN simulates a POP

(POPATN <value»

eg: (POPATN (buildquestion»

The POPATN function is similar to the POP arc. It causes control to re

turn to the most recent PUSH arc or PUSHATN function call. As with the

POP arc, the POP will only succeed if nothing has been placed on the

HOLD list at the current level.

3.5.3 Controlling Backtracking and Failure

FAIL controls backtracking

(FAIL <where»

The FAIL function is almost identical to the FAIL arc. It causes the

ATN interpreter to backtrack to a pOint specified by the argument

<where>. The options for this argument are:

26

ARC fail from the current arc

* fail from the current state

PUSH

TOP

<state>

fail from current level (1.e. to most recent PUSH)

fail from entire network (1.e. give up

fail back to the state named <state>

3.5.4 Suspending and Resuming Computations

Suppose that we wanted to parse a sentence like:

completely)

How many plane~w~r~._there which required no repairs in April?

In this sentence, the relative clause "which required no repairs in

April" has been extraposed to the'right (or the head "how many planes"

extraposed to the left, if you like). We would like to be able to parse

these two sub-strings as if they occurred together, as is usually the

case:

••• planes which required no maintenance in April •••

Using RESUME and RESUMETAG, one can "remember" where one stopped parsing

a noun phrase (e.g. in "How many planes") and, at some later point in

the input string, resume parsing the same noun phrase in the same state

and with the same register environment.

RESUMETAG ~ ~ configuration

(RESUMETAG '<state name»

(RESUMETAG)

The RESUMETAG function returns a "tag" which encodes a state name and a

register environment. With this "tag", one can later resume computation

in this state with the same register environment. If the <state name>

argument is not given, the current state is used.

RESUME resumes ~ suspended comfutation

(RESUME <tag> • '<register names»

eg: (RESUME ~nptag verb)

The RESUME function resumes the subcomputation which generated <tag>

(i.e. with a call to RESUMETAG) in the current position in the input

string. Optional arguments to RESUME specify registers whose contents

should be "sent" to the lower computation. The value returned by RESUME

is the value POPped by the lower level.

27

3.5.5 The HOLD/VIRTUAL Facility

The HOLD action together with the VIR arc provide a natural mechanism

for handling constituents which are parsed "out of place" in a sentence.

The HOLD action allows one to place a parsed constituent on the HOLD

list. At some later time, the VIR arc can be used to retrieve the held

object and process it as if it were found at that point in the input

string.

An example will show the usefulness of this facility. English syntax

allows for the fronting of the "unknown element" in a question (e.g. a
wh-noun phrase such as "who" or "which man". One would probably like a

grammar to locate the place from which the unknown element was fronted.

One strategy, then,· is to place the unknown constituent on the HOLD list

(via the HOLD action) and then write the grammar such that it checks the

HOLD list whenever it can't find a constituent in the input string.

For example, consider the following sentences:

Who did John see?

Who did John sit next to?
Who did John believe that Harry saw?

Who does John think the FBI wanted to arrest?

These sentences can be handled by placing the constituent generated by

the "who" on the HOLD list indexed as a Noun Phrase. At each point in

the grammar where a NP is sought as either the subject of a sentence,

the object of a sentence, or the object of a preposition, we include a

VIR arc which examines the HOLD list for a held NP.

The addition of the HOLD/VIRTUAL concept to a RTN extends its power by
providing, in essence, an additional stack. The ATN grammar in figure 4,

for example, accepts the context-sensitive language

n n n
S-+ abc

The HOLD action

(HOLD <form> <cat> <features»

eg: (HOLD * 'np nil)

The HOLD action places the expression <form> on the HOLD list indexed

under the category <cat>. An optional third argument, <features> is a

28

(defatn anbncn

(abc (wrd a t (hold 'a 'a) (to abc/a»)

(abc/a (wrd b t (to abc/b»
(push abc t (to abc/ab»)

(abc/ab (wrd c t (to abc/abc»)

(abc/abc (pop t»

(abc/b (vir a t (to abc/ba»)

(abc/ba (wrd c t (to abc/abc»
(wrd b t (to abc/b»»

Fig. 4: A Grammar for an bn en

29

list of features to be associated with the entry. In addition, the level

at which this action is being done is recorded with the entry. This al

lows a VIR arc to select only those constituents held at a particular

level.

The VIRtual arc

The VIR arc allows the grammar to retrieve an element from the HOLD list.

In retrieving the element, the user can specify:

o The lexical category under which the element was held.

o A limit on the number of levels above the current one at which

the element was held.

o An arbitrary test which the element or its features must pass.

The syntax frame for the VIR arc is:

(VIR <head> <test> ••• <actions> .•. <destination»

where <head> can have either of the following two forms:

<cat>

«cat> <level»

The first form will match any item on the HOLD list indexed under the

category <cat> regardless of the level at which it was held. In the se

cond form, <level> specifies the level(s) at which a candidate item was

held. This argument should be a number (0 or positive) which limits the

number of levels above the current one at which the item was held. Thus:

(VIR (PP 0) •••)

will match items indexed as a PP which were held at the current level

only. Similarly,

(VIR (ADV 2) •••)

would find ADV's held at the current level or the next two higher levels.

Once a candidate match has been found, the <test> argument is evaluated

in an environment where * is bound to the candidate constituent and FEA

TURES is bound to the (optional) features list associated with it. If

<test> is non-NIL, then the VIR arc is taken and the item is removed

from the HOLD list.

30

3.6 Useful Actions

3.6.1 Actions which Test the Current Word

A number of functions are provided for testing the current word. These

are typically used as further conditions on an arc, as is the CAT func

tion used in the following arc:

(PUSH pp (CAT prep) ••••• (TO s:end»

or as a condition in one of the actions in an arc:

(CAT det T (and (GETF question) (LIFTR type 'q» •••)

WRD compares the current word

(WRD '<word(s»)

eg: (WRD who)

(WRD (which that who»

The WRD function returns T if the current word (i.e. *) matches its

single argument. If this argument is an atom then the current word must

be identical to it. If it is a list of atoms, then the current word must

be a member of this list.

CAT checks the lexical category of the current word

(CAT '<category»

eg: (CAT pro)

(CAT (n pro npr»

The CAT function tests the current word to see if it can be a member of

the lexical category <category>. As with the WRD function, the argument

can be an atomic category name or a list of atomic category names.

ROOT checks the root form of the current word

(ROOT '<root(s»)

(ROOT '<root(s» '<category»

eg: (ROOT be)

(ROOT (be have»

The ROOT function compares the root form of the current word to its ar

gument. Again, the argument can be an atom or a list of atoms. It re

turns T if and only if the current word has one of the specified root

forms. Thus the expression (ROOT be) would be true if the current word

were be, is, am, are, was, etc. Note that if the current word is homo

morphic between two words with different root forms, both possibilities

will be explored. Thus, if the current word were LIE, both (ROOT lay)

and (ROOT lie) would be true.

The ROOT function takes an optional second argument which can be used
to limit the lexical categories that are considered in determining the

root form of the current word.

GETF gets ~ inflectional feature

(GETF '<feature name»

eg: (GETF tense)

GETF returns the value associated with the feature <feature name> for

the current word. If the current word has no such feature, then NIL is

returned. These features come from three sources:

1. Features on the dictionary entry for the current word.

For example, the tense and number features for the word IS

are coded as:

(IS (BE (tense present) (number 3sg»

2. Features generated by the Dictionary Manager.

For regularly inflected words, certain features are auto

matically generated.

3. The FEATURES property of the word.

Each word can have a FEATURES property associated with it.

For example, the word GIVE might have the features property:

(TRANSITIVE INDIRECTOBJECT PASSIVE)

where these features might mean that GIVE is a transitive

verb which can take an indirect object and can be used in

a passive sentence.

In cases one and two above, a feature can be:

o A tuple whose first element is the name of the feature and whose

second is the value.

o A list of just the feature name. The value of this feature is

taken as T.

32

o An atomic feature name. The value is assumed to be T.

3.6.2 Actions which Test Arbitrary Words

CHECKF checks an inflectional feature

(CHECKF '<feature> <word> '<cat»

The CHECKF function is analogous to GETF, differing only in that it

applies to an arbitrary word given as its argument. CHECKF returns the

value of the feature <feature> associated with the word <word>. An op

tional third argument, <cat>, determines the lexical category assumed

for the word. Thus:

(CHECKF transitive (GETR verb) 'v)

returns the value of the TRANSITIVE feature for the word in the VERB

register when it is interpreted as a verb. Similarly,

(CHECKF tns * 'v)

returns the TNS feature for the current input word when interpreted as

a verb.

3.6.3 Miscellaneous Actions

The BUILDQ function provides a convenient method for constructing ar

bitrary trees which contain values held in registers. It is modeled af

ter the function described in [Woods71], its syntax being:

(BUILDQ '<structure> . '<fillers»

The first argument, <structure>, is an arbitrary list structure which

can contain special symbols at its leaves. The function returns a simi

lar structure by replacing these symbols by values computed from the

remaining elements, <fillers>.

In filling the structure, BUILDQ traverses the structure in "preorder".

If the symbol "+" is encountered, then the next filler argument is taken

as the name of an ATN register and its contents are substituted for the

"+". If the symbol "*,, is encountered, it is replaced by the current

value of the atom "*". On encountering the symbol ',#", the next filler

argument is evaluated and the resulting value used to replace the "IF".
If the symbol "@" is found as the first element of a list, then the re

maining elements of that list are interpreted as above and the results

are APPENDed together.

33

A few examples may make the operation of BUILDQ clear. Suppose we have

the following register context:

DET the

NOUN man

PRE-MODIFIERS (large heavy)

POST-MODIFIERS «PP (in the park»)

Then if we evaluate:

(BUILDQ (NP ~ (N +) (DET +» (gensym) noun det)

we would get:

(NP G0027 (N man) (DET the»

Evaluating the expression:

(BUILDQ (NP =11= (N +) (@ (MOD) + +»

(gensym) noun pre-modifiers post-modifiers)

would yield the expression:

(NP (N man)

(MOD large heavy (PP (in the park»»

(NEXTWRD) (NEXTWRDS)

The NEXTWRD function returns the next word in the input stream (i.e.

the CAR of STRING). Note that this function does not invoke any of the

Dictionary Manager Specialists such as the compound word recognizer or

the word substituter (see section 5.3) but simply returns CAR of STRING.

If there are no more words in the input stream, i.e. STRING is NIL, then

NEXTWRD returns NIL.

The NEXTWRDS function returns a list of the possible next words in the

input stream after all of the dictionary specialists have been applied.

3.7 Tracing Facilities

Every programming language should provide adequate debugging tools to

enable the user to perfect his programs. Since the ATN should be viewed

as a kind of programming language, we have provided powerful tracing

facilities which we have found to be useful and necessary to build and

debug large grammars.

34

Functions are provided which will print a trace of the developing parse

and allow the user to specify arbitrary points at which to suspend com

putation and enter a "break point". A facility is also provided by which

the user can monitor the values being assigned to particular registers.

TRACE-STATE traces ATN states

The function TRACE-STATE allows the user to trace the flow of control

thru specified states and optionally break upon entering them. If a

state is being traced, the message:

in state <state name>

will be displayed on the terminal when the state is entered. If the

state fails, i.e. no arcs from the state lead to a final state, the

following message will be displayed:

failing from state <state name>

If the user associates a BREAKPOINT with a state, then the message:

;BKPT <state name>

will be typed, computation suspended, and a LISP breakpoint entered. Ty

ping an "~P" will resume the ATN computation.

The syntax of the TRACE-STATE function is:

(TRACE-STATE '<arg1> '<arg2> ... '<argn»

where each argument specifies one or more states to be traced and op

tionally associated with a breakpoint. The arguments are interpreted as

follows:

<state name>

*
«state name> BREAK <test»

(* BREAK <test»

UNTRACE untraces ATN states

trace the named state

trace all states

trace the state and enter
a breakpoint if <test> is true.

trace all states and enter
a breakpoint if <test> is true.

The function UNTRACE-STATE removes states from the set of ATN states to

be traced. Its syntax is:

(UNTRACE-STATE '<arg1> ••• '<argn»

where each argument specifies one or more states to be "untraced". If

an argument is the name of an ATN state being traced, then that state

35

is removed from the list. The argument * causes all states to be removed

from the list of states to be traced.

Registers ~ be traced ~ well

A similar feature allows one to monitor the values assigned to regis

ters. The function TRACE-REG causes a specified ATN register to be "tra

ced". Whenever a value is assigned to that register with a SETR, the

message:

setting register <register name> to <value>

will be typed on the TTY. Similar messages are displayed when a regis

ter is set via the functions LIFTR or SENOR.

The syntax of the function TRACE-REG is similar to that of TRACE-STATE,

being:

(TRACE-REG '<arg1> '<arg2> ••• '<argn»

An argument can be the name of a register, the special "wildcard" *, or

a three-tuple «register name> BREAK <test». The last case allows one

to trace the setting of a register and enter a BREAKPOINT if the arbi

trary lisp expression <test> is true.

The function UNTRACE-REG is used to remove specified registers from the

list of registers being traced. Its argument convention is similar to

that of UNTRACE-STATE.

3.8 Global Variables

The following is a list of the most important global variables in the

interpreter.

* The current constituent

The global variable * is always bound to the "current constitu

ent. Precisely what this is depends on the context. Within a CAT

arc, it is bound to the root form of the current word. Within a

PUSH arc it is bound to the constituent POPped by the SUb-compu

tation (except in the "preactions" where * is the current word).

In a VIR arc, * is bound to the element being removed from the

HOLD list. For the other arc types, it is bound to the current

word (i.e. LEX).
In several other contexts, * is temporarily bound to other ele

ments. For example, when evaluating the <test> in a VIR arc or

in a (GETR <register> NEAREST <test», * is bound to the candi

date element.

LEX The current word

The atom LEX is always ~ound to the current word, exactly as it

appears in the input string. If the input string is exhausted,

then LEX is bound to NIL.

STRING The input string

The atom STRING is always bound to a list of the words remaining

in the input string.

STACK

STACK is a list of the names of states PUSHed to which have not
POPped. This can be used to determine how deeply embedded the

current computation is. For example, the following POP arc will

only be taken if we will be returning to the top level and the

input is exhausted:

(POP (buildnp)

(AND (NULL stack) (NULL *) (NULL string»)

The following additional global variables may be of some use to the

user:

ALIST is an association list which encodes the contents of the

registers, both current and past. Elements of ALIST are tuples

whose CAR is the name of a register and whose CDR is a value'

associated with that register.

STATE is the current ATN state in interpreted grammars. The va

riable is undefined in compiled grammars.

ARC is the current arc being taken in interpreted grammars. It

is undefined in compiled grammars.

USE-ALL-WORDS? is a variable which controls the ability to POP

to the TOP-LEVEL when words remain in the input string. This is

permitted only when USE-ALL-WORDS? is bound to NIL.

37

LEXPRESCAN? is a variable which controls when the dictionary man

ager functions are invoked. If it is bound to T, then the diction

ary manager is applied to the entire string before the grammar is

applied and the results stored in a chart form. If NIL, then the

dictionary manager functions are applied as input is needed.

ALIST-STACK is stack of the values of ALIST for higher levels of

computation.

ARC-STACK is stack of pending actions on any active PUSH arcs

(i.e. those which have not yet been popped to).

POPSTACK is a stack of tags to the active PUSH arcs.

4.0 THE ATN COMPILER

4.1 Introduction

The purpose of the ATN Compiler is to translate ATN networks into pure

LISP code which can be executed directly. This code can subsequently be

translated into machine language code by a standard LISP compiler. In

fact, the PLANES ATN compiler has been written in such a way as to fa

cilitate the direct compilation of ATN networks into machine language

by the MacLISP compiler [Moon74].

Burton describes another compiler for ATN grammars in [Burt76b]. The

scope of this compiler is similar to the one described in this section,

although the implementational details and some of the capabilities are

quite different. Finin describes an ATN compiler written in the APL pro

gramming language which is very similar to the PLANES ATN compiler in

[FINI78].

Advantages of compilation

The advantages of compiling an ATN network are the same as those of any

compilation process: reduced execution time and storage space. We have

applied our compiler on a modified version of the LUNAR English grammar

[Wood72] and found that the execution time for the resulting LISP code

was decreased by about a factor of 2. The resultant machine language

code achieved a speed up factor of 5 to 10.

The compiler is able to preserve all of the features available under

the interpreter. A grammar writer need take no special steps or consider-

38

ations if he intends to compile his network. In other words, if one has

a system of ATN networks which behaves correctly in the interpreter,

then compiling these networks without modifications will result in com

piled code which also behaves correctly.

The PLANES ATN compiler has the additional feature of being able to in

crementally compile ATN grammars. Each state is compiled independantly,

making it easy to use the compiler on a grammar which is still evolving.

Incremental compilation also allows one to replace the compiled version

of a single state with an uncompiled version. Thus, if one discovers a

bug in some state of a large compiled grammar, he can edit the source

code and reload only the corrected state. The rest of the compiled gram

mar can still be used.

Special Features of the Compiler

A compiled ATN network is more efficient mainly because the interpreta

tion stage is by-passed. This compiler also achieves greater efficiency

thru four additional optimization processes:

1. The resulting LISP code is locally "optimized" by a simple

pattern matching scheme.

2. Certain conunon actions and arc conditions are "open coded"

into more primitive LISP code.

3. The compiler automatically detects local contexts in which

certain ATN features are not being used (e.g. explicit failure

via the FAIL function). In these contexts, code to handle these

features need not be generated.

4. The user is able to globally "turn off" a number of genera~ ATN

features which he is not using. This causes the compiler not to

produce the code necessary to implement these features.

4.1.1 Compilation of a State

The basic organization of the ATN compiler is shown in figure 5 (An

OVerview of the ATN Compiler). The function COMPILESTATE1 is applied to

each state in the network. It produces a LISP function which will simu

late the action of the state when called. In doing so, it applies the

function COMPILEARC to each arc in the state. The resulting code for

each arc is combined with additional code to produce the function.

39

compi'~

''''"~ r",'e S~1fYl
/ ~mplify-argS ~' I ~ e

- ~ instanciat match
get-ru es ~~

check-arc

(specialists

for each arc~~==~~~~~~"

~r~'h1fY ¥ isolate check-code (action coders)

expand pat
note

,j{) /. .. ~
(. - jumpcoder

nott-code

Fig. 5: An

getrcoder •••

Overv~e the ATN Compiler . w of

40

The basic frame for an ATN state function is:

(DEFUN «state name> ATNEXPR ATNSUBR)

NIL

<tracing code>

(CATCH (PROGN <code

<code

...)
<state name>

<more tracing code>

'FAIL)

for arc 1>

for arc 2>

DEFUN is, of course, the MacLisp function defining function. The first

argument gives the name of the function being defined «state name»

and the properties under which its uncompiled and compiled definitions

are to be stored (ATNEXPR and ATNSUBR, respectively). The second argu

ment to DEFUN is NIL, indicating that we are defining a function of no

arguments.

The (CATCH .•. <state name» construct is included to implement the

ability to fail to a named state from a later point. The inclusion of

the tracing code and the (CATCH ... <state name» expression is under

the control of the user thru switches described in a later section.

Once this code has been produced, an optimization procedure is applied

to the function. The result is then evaluated if we are in the LISP in

terpreter or passed to the MacLisp compiler if it is resident.

4.1.2 Compilation of an Individual Arc

The function COMPILEARC is responsible for writing an expression for an

individual arc. Its job is to:

1. verify that the arc is in a legal format.

2. dispa~ch the arc to the appropriate specialist for compilation.

The verification includes a simple check on the last action of an arc.

For arc types POP, TO, JUMP and DO this action should not specify a

destination (i.e. call TO or JUMP). For the rest of the arc types, the

terminal arc should be a destination. If this condition is not met a

warning message is displayed.

41

Each arc compiler specialist compiles one type of arc. It examines the

condition and actions and produces' a LISP expression which simulates

that arc. The general form of the code for an arc is given below:

(CATCH «LAMBDA (ALIST) (AND <arc dependent code>

<test>

ALIST)

ARCFAILURE)

(PROGN • <actions»»

The (CATCH ••• ARCFAILURE) construction is necessary to handle a possib

le (FAIL 'ARC) in the <actions> or the <test>. The «LAMBDA (ALIST) •••

ALIST) is required to isolate the possible side effects caused by the

arc.

Before adding these two fragments, the arc compiler checks to see if

they are really necessary. The <test> and <actions> are examined to see

if they might contain a call to a function with a side effect (e.g. a

call to SETR) or a call to the FAIL function. In examining the express

ions, the compiler must be aware of which expressions are "executable"

and which are potentially "data".

The following conservative algorithm is used to determine whether eva

luating an s-expression will generate a side effect.

1. Trivial case

Atoms, of course, can't cause side effects. Return NIL.

2. Known offenders

Some functions are known to cause side effects (e.g. SETR).
Return T.

3. Guilty until proven innocent

If the function is unknown (i.e. one which the user has written)

then assume it might generate a side effect. Return T.

4. Fexpers, etc.

If the function has no arguments or is known not to evaluate
any of its arguments, then return NIL.

5. Recurse

Recursively apply this procedure to those arguments of the s-ex

pression which are evaluated. If any generates a side effect,

then return T, else return NIL. Here the compiler must know how

42

a function evaluates its arguments. For the standard built-in

LISP functions and the built-in ATN functions and actions this

information is stored for each function in an "evaluation tem

plate".

An analogous procedure is used to determine if evaluating an expression

might generate a failure. If the arc contains no expressions which might

have a side effect then the LAMBDA expression is omitted. If no FAIL ac

tion is found, then the CATCH is omitted.

Another of the compiler's optimizing technique is to delay the CATCH

(if any) and LAMBDA binding (if any) until the last possible moment.

Thus, the following WRD arc:

(WRD because (getr obj) (setr conj *) (to s:conjoined»

is compiled as:

(AND (EQ * 'because)

(GETR obj)

«LAMBDA (ALIST) (SETR conj *) (TO s:conjoined»

ALIST))

Note that the LAMBDA binding is done only if the arc is actually taken

and that no CATCH was generated since no FAIL action was contained in

the arc.

4.1.3 Optimization

The optimization phase of the compiler was originally added to make the

compiler easier to write and debug. The idea was to simplify the code

generation process for each of the arcs. In compiling an arc, we needn't

produce efficient code, but merely straightforward code which is gaaran

teed to work properly. Once the code has been generated, a standard "op

timizing" routine is applied to it to simplify the expression.

The General Procedure

The basic procedure to optimize a LISP s-expression it to traverse the

expression in "post order", applying a simplification algorithm at each

node. Thus the expression is optimized "from the bottom up", Le. the

arguments to a function are optimized before the function call itself

is optimized. We must take care, however, that the optimization proce-

43

dure is only applied to "executable" nodes and not to "data nodes". An

"executable" node is one which is known to be evaluated as a LISP ex

pression. All other nodes are assumed to be "data" nodes.

Thus, the optimizer does not attempt to optimize a function call unless

that function is:

o known to be a EXPR, SUBR, LEXPR or LSUBR

o known to be a FEXPR or FSUBR which evaluates all of its

arguments (e.g. AND, OR,.etc.)

o a special FEXPR or FSUBR that the optimizer "understands".

The functions covered in the third case are those which are known to

evaluate some of these arguments in a special manner. For example, the

optimizer knows that the function PROG evaluates all but its first ar

gument and that the arguments to the COND function are lists of express

ions to be optimized.

Simplification

Once the arguments to a function have been optimized, the function call

is simplified. This Simplification is driven by a set of production

like rules which specify code transformations. These transformations

simplify the code but do not change its behavior. These rules are three

tuples which have the form:

«pattern> <result> <restrictions»

Each rule states that if a LISP expression matches <pattern> and <res

trictions> evaluates to non-NIL, then it can always be replaced by the
simpler s-expression <result>.

The <pattern> and <result> elements of a rule are general s-expressions

in which the characters * and ? have special significance. The atom "?"

is allowed to match any single s-expression. The atom ,,*" may match zero

or more sister s-expressions. Any atom whose first character is a "?" or

a "*,, behaves in a similar manner except that that atom is bound to the

s-expression(s) matched. As an example, consider the pattern:

(PROG ?A *B (RETURN *»

when matched against the following expression:

(PROG (A B C)

(SETQ A (TIMES X X»

(SETQ B (TIMES X Al)

(RETURN (LIST A B»)

The match succeeds and has the side effects of setting the variables ?A

and *B to (A B C) and «SETQ A (TIMES X X» (SETQ B (TIMES X A»), res

pectively. Figure 6 (Some Simplification Rules) gives a list of some of

the simplification rules used in the ATN compiler.

Application of the simplification rules

The simplification rules are applied according to the following algorithm:

1. Collect the rules which may apply.

The rules are indexed by function name (i.e. the CAR of the ex

pression).

2. Find a rule which matches the expression.

The matcher compares the <pattern> and <restriction> of each

rule against the data until a match is found.

3. If no matching rule was found, then stop else continue.

4. Replace the expression.

Replace the expression with the instantiation of the <result>

element of the rule found in step 2.

5. Continue with step 1.

Since the function being called may have changed, we must start

from the top.

Figure 7 (An Example of Simplification) shows an example of the simpli

fication process.

4.2 Using the ATN Compiler

The ATN compiler can easily be used to produce executable LISP code in

the LISP interpreter or to produce machine language code in conjunction

with the standard MacLisp compiler. In either case, the user can selec

tively disable unused features to achieve faster execution time. This
is discussed in section 4.3.3.

(AND)
(AND *A T *B)
(AND ?A)
(AND *A (AND *B) *C)

NIL
(AND *A *B)
?A
(AND *A *B *C)

45

(OR *A *B)

(APPEND *A (LIST *B)(LIST *C) *D) (APPEND *A (LIST *B *C) *D)

(CAR (CAR ?A» (CAAR ?A)
.•• etc ..•

(COND)
(COND *A (NIL *) *B)
(COND *A (T *B) *C)
(COND (? A ? B))
(CONO (T *A»
(CONO (?A»
(COND *E (?A *B (PROGN *C) *D) *F)

(CONS ?A NIL)

(DEFUN ?A ?B *C (PROGN *D) *E)
(DEFUN ?A ?B *C NIL *0)

(DO ?A ?B *C (PROGN *D) *E)

(EQ ?A NIL)

(EQUAL '?A ?B)
(EQUAL ?A '?B)

(LAMBDA ?A *B (PROGN *C) *D)

(LIST ?A)

(PROG ?A *B (PROGN *C) *D)

(PROGN ?A)
(PROGN *A (PROGN *B) *C)

(OR)
(OR ?A)
(OR *A T *)
(OR *A NIL *B)

NIL
(COND *A *B»
(COND *A (T *B»
(AND ?A ?B)
(PROGN *A)
?A
(COND *E (?A *B *C *0)

(MCONS ?A)

(DEFUN ?A ?B *C *D *E)
'(DEFUN ?A ?B *C *D)

(DO ?A ?B *C *D *E)

(NULL ?A)

(EQ '?A ?B)
(EQ ?A '?B)

(LAMBDA ?A *B *C *D)

(NCONS ?A)

(PROG ?A *B *C *D)

?A
(PROGN *A *B *C)

NIL
?A
(OR *A)
(OR *A *B)

Fig. 6: Some Simplification Rules

*C

*F»)

(ATOM ?A)
(ATOM ?B)

46

(PROGN (AND T (COND «> X 10.)(SETQ x 10.»»

I_(cond (?a ?b» ==> (and?a ?b)

(PROGN (AND T (AND (> X 10.)(SETQ X 10.»»

I_(and *a (and *b) *c) ==> (and *a *b *c)

(PROGN (AND T (> X 10.)(SETQ X 10.»)

I_(and *a t *b) ==> (and *a *b)

(PROGN (AND (> X 10.)(SETQ X 10.»)
I_(progn ?a) ==> ?a

(AND (> X 10.)(SETQ X 10.»

Fig. 7: An Example of Simplification

47

4.2.1 Compiling Networks into LISP Code

This section describes how one can compile networks into LISP code given

he has a LISP into which the ATN interpreter has been loaded and the net
works defined. Once the ATN compiler has been loaded, the user can then

set whatever switches he wants (using SETQ). A single ATN state can be
compiled with the function COMPlLESTATE. This function takes one (un

evaluated) argument, the name of the ATN state to be compiled. The func
tion defines an equivalent function which will be called whenever con

trol is transferred to that ATN state.

The function COMPlLEATN can be used to compile an entire ATN network.
Its single (unevaluated) argument should be the name of the ATN network
to be compiled. It simply applies COMPILESTATE to each of the states
found in the network.

4.2.2 Compilation in the Lisp Compiler

To compile a file of ATN networks with the standard MacLisp compiler one
need only ensure that the ATN compiler is loaded into the MacLisp compi

ler. The easiest way to do this is to include the following expression
at the top of the file containing an ATN grammar.

(DECLARE (FASLOAD ATNCOMPILER ••• »

This will cause the ATN compiler to be automatically loaded when the

file is compiled. In the environment of the compiler, the functions
DEFARC, DEFSTATE, DEFINTERUPT, etc. are defined to be macros compile

their arguments into Lisp code. Thus, the Lisp compiler sees only the
Lisp code and not the grammar in the ATN formalism.

Switches may be set in a similar manner. For example, one might include
the expression:

(DECLARE (FASLOAD ATNCOMPlLER •••)
(SETQ ATNTRACE? NIL)

(SETQ FAlLARC? NIL»

in the file containing the networks.

Interactions with NCOMPLR

:no tracing
:no (FAIL 'ARC) actions

If the ATN networks call any user defined functions they may have to be

declared to NCOMPLR. Auxiliary functions must be declared if they are

48

FEXPRS, FSUBRs, LEXPRs, LSUBRs, or MACROs. For an explanation of how to

do this, consult [Moon74].

4.2.3 Switches

The following switches control the generation of code by the ATN compi

ler. For each switch the default value is given after its name.

[1] ATNTRACE? T

If ATNTRACE? is T then code which allows states to be traced

(i.e. via TRACE-STATE) will be generated. A NIL value supresses

the generation of this code. Thus, this switch might be set to

NIL if the network is fully debugged or a production module is

desired.

[2] ATNFAlLARC? T

If ATNFAlLARC? is T then code will be generated which allows

one to use the (FAIL 'ARC) action. If NIL, then this code is

not generated.

[3] ATNFAILSTATE? T

Code which allows one to fail to a named state is generated if

this switch is T. If NIL, then the code is not generated. Re

call that one can fail to a named state with the FAIL arc or

the FAIL action.

[4] ATNFAILPPSH? T

If T, then code will be generated which allows one to fail from

a sub-computation (i.e. to the last PUSH arc or PUSHATN action).

If NIL, then the code will not be generated.

[5] ATNFAIL? T

This switch has no effect if it has the value T, but a NI~ va

lue disables all explicit failure. Thus, if ATNFAIL? is NIL,

this implies that ATNFAlLARC = ATNFAILSTATE = ATNFAILPUSH = NIL.

[6] ATNSIMPLECAT? NIL

This switch controls the code generated for a CAT arc and the

CAT action. If it is T, then it is assumed that each word will

have at most ~ entry for a particular lexical category in the

dictionary. If this is so, the compiler need not set up a de
cision point for each CAT arc or action.

49

5.0 THE LEXICON

5.1 Introduction

The lexicon consists of two parts: the DICTIONARY which contains words

and certain features associated with them and the DICTIONARY MANAGER

which is a package of procedures for accessing, maintaining, and upda
ting the dictionary.

A dictionary entry for a word typically consists of the syntactic cate

gory that the word belongs to and a list of syntactic features for the

word when interpreted under that category. In English, as in many lan

guages, a word can belong to several lexical categories. In such cases,

multiple entries can be made in the Dictionary. For example the word

CRASH might have the following entries:

CRASH

CRASH

N -es

V -es-ed (intransitive)

This says that crash can be interpreted as a noun (N) whose plural is

formed be adding the suffix "es" or as an intransitive verb (V) whose

inflectional forms can be generated by adding the suffixes "es" or "ed".

Initially, no entries need exist for the regularly inflected forms of

words. Such forms are discovered and entries for them generated as they

are needed. For example, if the input contains the word CRASHED, a set

of programs (Morphology Specialists) are invoked which discover that

CRASHED is the past tense form of the root word CRASH. These programs

insert the lexical entry:

CRASHED V (CRASH) (tense past) (intransitive)

The words CRASHES and CRASHING are similarly recognized and their lexi

cal entries generated.

5.2 The Dictionary Format

The dictionary entry for a word is stored on the LISP property list for

that atom (i.e. the word). The standard property names which might be

used are atoms representing lexical categories (e.g. N for noun, DET for

determiner, etc.), and three special atoms: COMPOUNDS, SUBSTITUTE, and

FEATURES.

For each lexical category, <C>, a word might have a property indexed

under the indicator <C>. The value of this property depends on the par-

50

ticular category and the relationship between the word and its root form.

These are discussed in the next section.

The value of the COMPOUNDS property for a word is a tree which repre

sents pre-defined compound phrases which that word may start. Associated
with each phrase in the tree is a word which that phrase should be map

ped into. The user need not concern himself with the, exact representa
tion of this tree as the functions DEFPHRASE and DEFP (described later)
can be used to create it.

The value of the SUBSTITUTE property for a word is a list of phrases
which should replace that word. Thus, it forms a kind of inverse to the
COMPOUNDS mechanism. This property is discussed further under the func

tions DEFSUBSTITUTE and DEFSUB.

The value of the FEATURES property is a list of atoms or sublists which
name "features" to be associated with the word. These features may be
accessed in several ways within the ATN interpreter (see, for example,

the functions GETF and CHECKF).

The value of a lexical category property for a word specifies the root

formes) of the word and a set of inflectional features to be associated
with the word. The exact encoding of this information is as follows:

1. If the value is a list whose first element is atomic, then the

first element is the root form of the word and the remaining
elements are the inflectional features. For example:

BLEW V (blow (tns past»

says that the word BLEW is the past tense of the verb BLOW.

2. If the value is a list whose first element is a sub-list, then

the word has more than one possible root form when interpreted
under this lexical category. Each sub-list should be of the

form discussed in point one above. AN example is:

SAW V «see (tns past»

«saw (tns present) (untensed) »)

This property states that the word SAW is either the past tense

form of the verb SEE £E the present/un tensed form of the verb
SAW (what we do to a board).

51

3. If the value is atomic, then the word itself is taken as the
root form and the inflectional features are supplied by the dic

tionary manager. Exactly what features are supplied is described
in the next section. Some examples are:

COOK V s-ed

N -s

FAST ADJ er-est

V s-ed
N -s

The meaning of atomic category values

The lexical categories N (noun), V (verb), ADJ (adjective), and ADV (ad
verb) are treated in a special manner by the dictionary manager. An atom
ic value for one of these properties can specify that the word fits one
of a number of regularly inflected paradigms. For nouns, the following
possibilities exist:

* The noun is irregular.
-s The plural is formed by adding an "s".
-es The plural is formed by adding an "es" or, if the noun

ends in a "y", by deleting the "y" and adding an "ies".

For verbs, we have the following:

* The verb is irregular.
,s-ed The third person singular is formed by adding an "s" and

the past/past-participle is formed by adding an "ed".
es-ed The third person singular is formed by adding an lies" and

the past/past-participle is formed by adding an "ed".

For adjectives (ADJ) and adverbs (ADV) we have the following possibili

ties:

*
er-est

r-st

The word has no regularly inflected comparative or
superlative (e.g. UNSUCCESSFUL).
The comparative and superlative are formed by adding an
ER and EST, respectively (e.g. LONG). If the word ends
in a Y,' then it is first changed to an I (e.g. HAPPy).
Add an R or ST to form the comparative and superlative
(e.g. WIDE).

5.3 The Dictionary Manager

The Dictionary Manager is a collection of programs which access, main

tain, and update the Dictionary. They also act as a filter between the

52

Parser and the user's input suggesting alternative words as the 'next

word'. As each word of the input is needed by the parser, the Dictionary

Manager checks to see if there is an entry in the Dictionary for that

word or if the word belongs to certain categories which are recognized

procedurally, such as numbers. If an entry exists, then the word is

passed on to the parser with a list of features associated with the word.

These features are those found in the dictionary together with any others

suggested by the Morphology Specialists.

If the word does not have a lexical entry, then a series of Morphology

Specialists are invoked to see if the word is a regularly inflected form

of a known word. These specialists use their knowledge of typical Eng

lish affixes to propose candidate 'roots' for the word. Each candidate

is then looked up in the Dictionary and, if found, checked to see if it

accepts the affix removed.

If this process fails then the Punctuation Checker is called which ex

amines the word to see if it might contain any embedded punctuation.

For example, if the input is TAIL-NUMBER, the Punctuation Checker would

suggest that the two words TAIL and NUMBER be substituted.

Finally, if the word is still unknown, control is passed to the New Word

Learner. This module interacts with the user and attempts to create a

lexical entry for the word.

Two other subsystems generate alternative suggestions for the 'next

word': ~ Compound Word Recognizer and a Word Substituter. The Compound

Word Recognizer is used to map short phrases into single "words". For

example, we might map the phrases UNITED STATES and UNITED STATES OF

AMERICA into the single "word" USA. Just before a new word is passed

to the parser, the Compound Word Recognizer checks to see if that 'word

can begin a phrase that it knows. If so, then it checks the rest of the

sentence, and if it matches, suggests the alternative 'next word'.

The Word Substituter provides a similar mechanism - one which can ex
pand a single word in the input into a sequence words. For example, the

word DIDN'T could be expanded into the sequence DID NOT. The sequence

of words substituted can be of zero length, which provides a facility

for ignoring words. This faciltty might be used, for example, to ignore

extraneous punctuation.

53

5.4 Auxiliary Functions

Several functions are provided which simplify creating dictionary entries

and loading and manipulating dictionary files.

DEFINEWORD and DEFW create dictionary entries for a word

(DEFINEWORD <word> <definition»

(DEFW '<word> . '<definition»

These functions are used to create a dictionary entry for the word

<word> or to add information to the dictionary entry for <word> if an

entry is already in the dictionary.

The function DEFINEWORD takes two arguments: a word and a "property list

fragment". It adds the property list fragment to the property list of

the word.

The function DEFW takes an indefinite number of arguments, none of which

are evaluated. The first is the word and the remaining ones are alterna

ting property names and values. The name-value pairs are added to the

word's property list.

Examples of these functions in use are:

(DEFINEWORD 'fly' (v * n -es features (intrans trans»)

(DEFINEWORD 'i '(pro *»

(DEFW ship n -s v -s-ed features (trans passive»

(DEFW ? punct *)

DEFINEPHRASE and DEFP Create Compounds properties

(DEFINEPHRASE <phrase> <word»

(DEFP '<phrase> '<word»

These functions create COMPOUNDS entries for a word. A COMPOUNDS entry

will cause the ATN interpreter to map a sequence of words in the input

string into a single word. These functions will cause the input sequence

<phrase> (which should be a list of atoms) to be replaced by the single

word <word>. For example:

(DEFP (how much) howmuch)

would create or modify the COMPOUNDS entry for the word HOW such that

if the ATN interpreter encounters the two word sequence "HOW MUCH" in

54

the input string, it will replace these two words with the single word

HOWMUCH. Note that if subsequent parsing fails, the interpreter will

also try parsing the string as containing the two individual words HOW

and MUCH.

Several COMPOUNDS entries can be created at once by including sub-lists

in the first argument. For example,

(DEFP (how (much many» howmuch)

is equivalent to:

(DEFP (how much) howmuch)

(DEFP (how many) howmuch)

Thus, a sublist in the <phrase> argument specifies that one of its ele

ments be in the compound phrase.

DEFSUBSTITUTE and DEFSUB create SUBSTITUTE entries

(DEFSUBSTITUTE <word> <phrase»

(DEFSUB '<word> '<phrase»

These functions create or modify SUBSTITUTE properties for a word. The

first argument is an atom and the second argument is an atom or list of

atoms which should be substituted for the first whenever it occurs in

the input string. The following example will explain the various possi

bilities:

(DEFSUB aircraft plane)

If the second argument is an atom (but not the atom NIL), then

it will replace the first argument in the input string. Thus,

PLANE will replace instances of the word AIRCRAFT in the input

string.

(DEFSUB don't (do not»

If the second argument is a list of atoms, then that list will

replace the first argument in the input string. Thus, occurances

of the word DON'T will be replaced by the two words DO and NOT.

(DEFSUB please NIL)

If the second argument is NIL, then the first argument will be

deleted from the input string. Thus instances of the word PLEASE

will be deleted from the input string. This provides a simple

method for ignoring certain words (such as "extraneous" punctu

ation) •

55

As with the COMPOUNDS mechanism, if a substitution is made and failure

later backs up to that point, the ATN interpreter will attempt to con

tinue the parse without making the substitution.

Dictionary Files

If one is dealing with a large number of words it is convenient to store

them in a file in a special simplified format. Two functions are provi

ded to manipulate such dictionary files.

The format of a dictionary file is a sequence of lists. The first ele

ment of each list is an atom or a list. If it is an atom, then the list

is taken as the argument list to the function DEFW. In other words, the

first element is a word and the remaining elements are alternating pro

perty-names and associated values. If the first element is a sub-list,

then the entire list is used to supply arguments to the function DEFP.

In this case, the first element is a phrase and the remaining element

(there should be only one) is the word that the phrase gets mapped into.

The following might be the beginning of such a dictionary file:

(a det *)

(about prep *)

(an det *)

((and / or) and-or)

(and-or conj *)

(ask v s-ed features (trans indobj thatcomp tocomp»

LOADDIC loads ~ Dictionary File

(LOADDIC • '<file specifications»

eg: (LOADDIC navy dic .••)

The function LOADDIC is used to read a dictionary file and create the

specified entries. Its syntax is similar to that for the MacLISP I/O

functions ("old I/O" functions, that is). It takes from one to four ar

guments where the first is the file name, the second the file extension,

the third the device and the fourth .is the PPN. Unsupplied arguments are

defaulted as follows:

56

arg

arg 2

arg 3

arg 4

<file name>

<file extension>

<device>

<ppn>

must be supplied

defaults to DIC

defaults to current device

defaults to the current ppn

GRINDDIC reformats ~ dictionary file

(GRINDDIC • '<file specifications»

eg: (GRINDDIC navy dic)

This function sorts and grinds (i.e. pretty-prints) a dictionary file.

The sorting function sorts each top level list in the file by the "left

most" atom in the list only. The argument syntax and meaning is identi

cal to the function LOADDIC. The function GRINDDIC is useful in main

taining growing dictionaries in an easily readable format.

Miscellaneous dictionary managing functions are provided

Currently, one other auxiliary function is supplied for managing a dic

tionary. The function SHOWWORD "pretty-prints" the dictionary entry for

a word. It's syntax is:

(SHOWWORD '<word»

6.0 AUXILIARY FUNCTIONS

6.1 Interfacing with the LISP Editor

The functions EDITATN and EDITSTATE allow one to apply a general purpose

List structure editor [Gabr75] to ATN networks and individual states.

These functions do not normally reside in the ATN system but are auto

matically loaded if they are called. In addition, this subsystem modi

fies appropriate Editor variables so that the editor can recognize ATN

network definitions in files. Thus, one can say (EDIT <network name>

<file specifications» and expect the editor to find the network defi

nition in the specified file. This also allows one to use the REFILE

editor command to update the file once the networks have been edited.

A special purpose ATN Grammar editor called NETEDI is also available.

This editor is described in [Fini77b].

EDITATN applies the Editor to an ATN n~twork

This function sets up an ATN network for editing and then invokes the

LISP Editor. It takes one or no arguments, the syntax being:

(EDITATN <network name»

(EDITATN <state name»

(EDITATN *)

(EDITATN)

If EDITATN is called with the name of a network, then that network is

set up for editing. If called with the name of an individual state,

then the editor is invoked on the network which includes that state.

If called with the argument *, then the network which includes the

current state is edited. If no argument is given, then the network

which was last edited is set up for re-editing.

EDITSTATE invokes the editor on an individual ATN state

57

The function EDITSTATE is similar to EDITATN expect that it applies the

editor to an individual ATN state. If an argument is given, it can be

the name of the state to be edited or the special atom * which refers

to the state that the interpreter is currently in. If no argument is

given, the editor is primed with the last edited ATN state. The syntax

is:

(EDITSTATE '<state name»

(EDITSTATE *)

(EDITSTATE)

6.2 Displaying ATN Networks and States

SHOWATN displays an ATN network

The function SHOWATN is used to display an entire ATN network in "pretty

print" format. The optional argument is interpreted in a manner identi

cal to that for the function EDITATN. The options are:

(SHOWATN '<network name»

(SHOWATN '<state name»

(SHOWATN *)

(SHOWATN)

SHOWSTATE displays an individual ATN state

58

The SHOWSTATE function "pretty prints" an individual ATN state. Its op

tional argument is interpreted like that of EDITSTATE. The syntax is:

(SHOWSTATE '<state name»

(SHOWSTATE

(SHOWSTATE)

7.0 EXAMPLES

7. 1 A Sample ATN Network

The following three ATN networks comprise a simple grammar to a small

subset of English. Note that most features of English syntax are not

handled. Two auxiliary functions, BUILDSENTENCE and BUILDNP, are used

to construct the parse trees.

(defatn sentence

«s: (cat aux t (setr v *) (to s:aux»

(push np: t (setr subj *) (to s:subj»

(vir np t (setr subj *) (to s:subj»)

(s:aux (push np: t (setr subj *) (to s:v»)

(s:subj (cat v t (setr v *) (to s:v»)

(s:v (cat v

(getf pastpart)

(cond «eq $v 'be)

(hold $subj 'np nil)

(setr subj 'someone»

«eq $v 'have)

(setr aspect 'perfect)}

(t (fail 'arc)}}

(setr v *)

(tos:v)}

(push np: (getf transative $v) (setr obj *) (to s:obj)}

(vir np (getf transative $v) (setr obj *) (to s:obj})

(and (wrd to (getf strans $v})

(push s:subj

t

(sendr subj $obj)

(setr obj *)

(to s:end})}

(and (wrd that (getf strans $v)}

(push s: t (setr obj *) (to s:end)}}

(jump s:end (getf intrans $v»)

(s:obj (push np:

(getf indobj $v)

(setr indobj $obj)

(setr obj *)

(to s:end»

(vir np

(getf indobj $v)

(setr indobj $obj)

(setr obj *)

(to s:end»

(and (wrd to)

(push s:subj

t

(sendr subj $obj)

(setr obj *)

(to s:end»)

(jump s:end»

(s:end (push pp: (cat prep) (addr pps *»

(pop (buildsentence»»)

(defatn noun-phrase

«np: (cat det t (setr det *) (to np:det» (jump np:det»

(np:det (cat adj t (addr adj *) (to np:det»

(cat n t (addr adj *) (to np:det»

(cat n t (setr n *) (to np:n»)

(np:n (push pp: (cat prep) (addr modifiers *) (to np:n»

(and (wrd (which who that whom)

t

(hold (buildnp) 'np nil»

(push s: t (addr modifiers *) (to np:end»)

(jump np:end»

(np:end (pop (buildnp»»)

(defatn prep-phrase

«pp: (cat prep t (setr prep *) (to pp:prep»)

(pp:prep (push np: t (setr np *) (to pp:end»

(vir np t (setr np *) (to pp:end»)

(pp:end (pop (buildq (pp + +) prep np»»)

59

60

(de fun buildsentence nil

(buildq (s (verb +) (subj +) (obj +) (indobj +) (pps +»

v
subj

obj

indobj

pps»

(defun buildnp nil

(buildq (np (n +) (det +) (@ (adj) +) (@ (modifiers) +»

n

det

adj

modif iers))

7.2 A Sample Dictionary

This example shows a small dictionary which was used with the example

network to parse the sentences in this appendix. Only the lexical fea

tures used by the simple grammar are included for these words.

(a det *)

(aircraft substitute «plane»)

(by prep *)

(electrical adj *)

(engine n -s)

(extensive adj *)

(for prep *)

(good adj *)

(has v (have (tns present»)

(have v irr features (transative»

(I n *)

(in prep *)

(list n -s v s-ed features (transative»
(maintenance n -s)

(me n (i»

(of prep *)

(plane n -s)

(poor adj er-est)

(record n -s)

(repair n -s v s-ed features (transative»

(require v s-d features (transative»

(see v irr features (transative intransative»

(show v s-ed features (transative indobj»

(that det *)

(the det *)

(to prep *)

(very adj *)

(want v s-ed n -s features (transative indobj strans»

(were v (be (tns past»)

(which det *)

(which det *)

(you n *)

(? substitute (nil»

(/. substitute (nil»

7.3 Examples of Operation

61

Given below are the results of applying the example ATN network to six

sentences. For each, the sentence is given exactly as it was typed, pre

ceded by a n»n. Following that, the list POPed by the ATN network is

given.

» which planes required engine maintenance?

(S (VERB REQUIRE)

(SUBJ (NP (N PLANE) (DET WHICH) (ADJ) (MODIFIERS»)

(OBJ (NP (N MAINTENANCE) (DET NIL) (ADJ ENGINE) (MODIFIERS»)

(INDOBJ NIL)

(PPS NIL»

» electrical repairs were required.

(S (VERB REQUIRE)

(SUBJ SOMEONE)

(OBJ (NP (N REPAIR) (DET NIL) (ADJ ELECTRICAL) (MODIFIERS»)

(INDOBJ NIL)

(PPS NIL»

» I want a list of those planes

(S (VERB WANT)

(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS»)

(OBJ (NP (N PLANE) (DET THOSE) (ADJ) (MODIFIERS»)

(INDOBJ (NP (N YOU)

(DET NIL)

(ADJ)

62

(PPS NIL»

(MODIFIERS (PP TO

(NP (N LIST)

(DET NIL)

(ADJ)

(MODIFIERS))))))

» I want you to list those planes.

(S (VERB WANT)

(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS»)

(OBJ (S (VERB LIST)

(SUBJ (NP (N YOU) (DET NIL) (ADJ) (MODIFIERS»)

(OBJ (NP (N PLANE) (DET THOSE) (ADJ) (MODIFIERS»)

(INDOBJ NIL)

(PPS NIL»)

(INDOBJ NIL)

(PPS NIL»

» I want to see a list of the planes that required

extensive engine repairs.

(S

(VERB WANT)

(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS»)

(OBJ

(S (VERB SEE)

(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS»)

(OBJ (NP (N LIST)

(DET A)

(ADJ)

(MODIFIERS (PP OF

(NP (N PLANE)

(DET THE)

(ADJ)

(MODIFIERS (S (VERB REQUIRE)

(SUBJ (NP (N PLANE)

(DET THE)

(ADJ)

(MODIFIERS»)

(OBJ (NP (N REPAIR)

(DET NIL)

(INDOBJ NIL)

(PPS NIL»)

(INDOBJ NIL)

(PPS NIL»

(ADJ

EXTENSIVE

ENGINE)

(MODIFIERS»)

(INDOBJ NIL)

(PPS NIL»»»»

» I want you to show me the planes which have poor

maintenance records.

(S (VERB WANT)

(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS»)

(OBJ (S (VERB SHOW)

(SUBJ (NP (N YOU) (DET NIL) (ADJ) (MODIFIERS»)

(OBJ (NP (N PLANE)

(DET THE)

(ADJ)

(MODIFIERS (S (VERB HAVE)

(SUBJ (NP (N PLANE)

(DET THE)

(ADJ)

(MODIFIERS)))

(OBJ (NP (N RECORD)

(DET NIL)

(ADJ POOR MAINTENANCE)

(MODIFIERS)))

(INDOBJ NIL)

(PPS NIL»»)

(INDOBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS»)

(PPS NIL»)

(INDOBJ NIL)

(PPS NIL»

7.4 Examples of Tracing States

63

The following example shows a trace of the action of the ATN network in

parsing a sentence. This trace was generated by evaluating (TRACE-STA

TES *). Again, the input string is preceded by"»" and the final value

64

POPed by the network is displayed at the end. Values POPed by final sta

tes have been abbreviated.

» Which aircraft have very poor maintenance records?

in state s:
pushing to state NP:

in state NP:

in state NP:DET

in state NP:DET

failing from state NP:DET

in state NP:N

jump to state NP:END

in state NP:END

pop from state NP: with value (NP (N PLANE) •••)

jump to state S:SUBJ

in state S:SUBJ

in state S:V

pushing to state NP:

in state NP:

jump to state NP:DET

in state NP:DET

in state NP:DET

in state NP:DET

in state NP:DET

in state NP:DET

failing from state NP:DET

in state NP:DET

failing from state NP:DET

in state NP:N

jump to state NP:END

in state NP:END

pop from state NP: with value (NP (N RECORD) •••)
jump to state S:OBJ

in state S:OBJ

jump to state S:END

in state S:END

pop from state TOPLEVEL with value (S (VERB HAVE) •••)

(S (VERB HAVE)

(SUBJ (NP (N PLANE) (DET WHICH) (ADJ) (MODIFIERS»)

(OBJ (NP (N RECORD)

(DET NIL)

(ADJ VERY POOR MAINTENANCE)

(MODIFIERS)))

(INDOBJ NIL)

(PPS NIL»

7.5 Examples of Tracing Registers

65

This example shows a trace of the values assigned to ATN registers as

well. This was achieved by evaluating (TRACE-STATES *) and (TRACE-REG *).

» I want you to list those planes

in state S:

pushing to state NP:

in state NP:
jump to state NP:DET

in state NP:DET

setting register ADJ to (I)

in state NP:DET

failing from state NP:DET

setting register N to I

in state NP:N

jump to state NP:END

in state NP:END

pop from state NP: with value (NP (N I) •••)

setting register SUBJ to (NP (N I) •••)

jump to state S:SUBJ

in state S:SUBJ

setting register V to WANT

in state S:V
pushing to state NP:

in state NP:

jump to state NP:DET

in state NP:DET

setting register ADJ to (YOU)

in state NP:DET

failing from state NP:DET

setting register N to YOU

in state NP:N

66

jump to state NP:END

in state NP:END

pop from state NP: with value (NP (N YOU) •••)

setting register OBJ to (NP (N YOU) •.•)

jump to state S:OBJ

in state S:OBJ

pushing to state NP:

in state NP:

jump to state NP:DET

in state NP:DET

failing from state NP:DET

failing from state NP:

sending register SUBJ to (NP (N YOU) •••)

pushing to state S:SUBJ

in state S:SUBJ

setting register V to LIST

in state S:V

pushing to state NP:

in state NP:

setting register DET to THOSE

in state NP:DET

setting register ADJ to (PLANE)

in state NP:DET

failing from state NP:DET

in state NP:DET

failing from state NP:DET

in state NP:DET

failing from state NP:DET

setting register N to PLANE

in state NP:N

jump to state NP:END

in state NP:END

pop from state NP: with value (NP (N PLANE) ...)

setting register OBJ to (NP (N PLANE) (DET THOSE) ••.

jump to state S:OBJ

in state S:OBJ

jump to state S:END

in state S:END

pop from state S:SUBJ with value (S (VERB LIST) ••.)

setting register OBJ to (S (VERB LIST) •••)

jump to state S:END

in state S:END

pop from state TOPLEVEL with value (S (VERB WANT) •••)

(S (VERB WANT)

(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS»)

(OBJ (S (VERB LIST)

(SUBJ (NP (N YOU) (DET NIL) (ADJ) (MODIFIERS»)

(OBJ (NP (N PLANE) (DET THOSE) (ADJ) (MODIFIERS»)

(INDOBJ NIL)

(PPS NIL»)

(INDOBJ NIL)

(PPS NIL»

8.0 REFERENCES

67

[Bate78] Bates, M., "The Theory and Practice of Augmented Transition

Network Grammars", in Natural Language Communication with

Computers, Leonard Bolc (ed.), Springer Verlag, 1978.

[Bobr69] Bobrow, D., "An Augmented State Transition Network Analysis

Procedure", in Proceedings of the First ,International Joint

Conference on Artificial Intelligence, 1969.

[Burt76a] Burton, R. and Brown, J., "Multiple Representation of Know

ledge for World Reasoning" in 'Representation and Understan

ding', Bobrow and Collins (eds.), Academic Press, 1975.

[Burt76b] Burton, R., "Semantic Grammar: An Engineering Technique for

Constructing Natural Language Understanding Systems", BBN

Report No. 3453, Bolt Beranek and Newman, 1976.

[Fini77a] Finin, T.W., "An Interpreter and Compiler for Augmented Tran

sition Networks", Report T-48, Coordinated Science Laboratory,

University of Illinois, 1977.

[Fini77b] Finin, T.W. and Hadden, G., "Augmenting ATNs", Proceedings

of the Fifth International Joint Conference on Artificial ------
Intelligence, 1977.

68

[Fini78]

[Gabr75]

[Kay 75]

[Loza76]

[Moon74]

[Sinun73]

[Thor68]

[Walt75]

[Walt76]

Finin, T.W., "Casting the RENDEZVOUS Analyzer Rules into

Augmented Transition Network Form", IBM Research Report RJ

2146(29409), IBM RESEARCH LAB., San Jose, CA, 1978.

Gabriel, R.P and Finin, T.W., "The LISP Editor", Working

Paper 1, Advanced Automation Group, Coordinated Science Lab,

University of Illinois, 1975

Kay, M., "Syntactic Processing and Functional Sentence Per

spective", Proceedings of the Conference on 'Theoretical

Issues in Natural Language Processing', June 1975.

Lozano-Perez, T., "Parsing Intensity Profiles", M.I.T. AI

Memo 329, May 1975.

Moon, D.A., "MacLISP Reference Manual", Project MAC, M.I.T.,

1974.

Sinunons, R.F., "Semantic Networks: Their Computation and

Use for Understanding English Sentences" in 'Computer Models

of Thought and Language', R.C. Shank and K.M. Colby (Eds.),

Freeman and Co, 1973

Thorne, J.P., Bratley, P. and Dewar, H., "The Syntactic Ana

lysis of English by Machine" in Machine Intelligence].,

Donald Michie (ed.), 1968.

Waltz, D.L., "Natural Language Access to a Large Data Base:

an Engineering Approach", Advanced Papers of the Fourth In

ternational Joint Conference on Artificial Intelligence,1975.

Waltz, D.L., et. al., "The PLANES System: Natural Language

Access to a Large Data Base", Technical Report T-34, Coordi

nated Science Laboratory, University of Illinois, 1976.

[Walt78] "An English Language QuestionAnswering System for a Large Re

lational Data Base", CACM vol. 21, July 1978.

[Wood70] Woods, W.A., "Transition Network Granunars for Natural Langu

age Analysis", Conununications of the ACM, October 1970.

[Wood72] Woods, W.A., Kaplan, R.M., Nash-Webber, The Lunar Sciences

Natural Language Information System: Final report, Bolt Bera

nek and Newman report No. 2378, June 1972.

