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offers no guarantees 
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There exists a continuum of opinions 
on what constitutes intelligence, hence 
on what constitutes artificial intelligence. 
Perhaps most workers in the fields of 
heuristic programming, artificial in
telligence, et aI, now agree that the 
pursuit of a definition in this area is, at 
least for the . time being, a sterile ac

~~--~~---=~'/' tivity. No operationally significant con
tributions can be expected from the abstract contempla-
tion of this particular semantic navel. Minsky has sug
gested in a number of talks that an activity which produces 
results in a way which does not appear understandable to 
a particular observer will appear to that observer to be 
somehow intelligent, or at least intelligently motivated. 
When that observer finally begins to understand what has 
been going on, he often has a feeling of having been 

. fooled a little. He then pronounces the heretofore "intel
ligent" behavior he has been observing as. being "merely 
mechanical" or "algorithmic." 

The author of an "artificially intelligent" program is, by 
the above reasoning, clearly setting out to fool some observ
ers for some time. His success can be measured by the 
percentage of the exposed observers who have been 
fooled multiplied by the length of time they have failed 
to catch on. Programs which. become so complex (either 
by themsclves, e.g. learning programs, or by virtue of 
the author's poor documentation and debugging habits) 
that the author himself loses track, obviously have the 
highest IQ's. . 
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The program described in this article plays the game 
Five-in-a-Row, also known as Go-MOKU. This game is, 
to the author's knowledge, undetermined in the sense that 
no strategy other than exhaustive look ahead is known 
for guaranteeing a win or even a tie. In this respect it 
differs from Nim and Tic-Tac-Toe for which guaranteed 
winning strategies are known and have been programmed. 
On the basis of the criterion given above, the program 
certainly appears (to many observers) to make the com
puter behave intelligently. The fact that it permits its 
opponent to develop a position while paying close atten
tion to its own development for a time and only oc
casionally becomes obviously defensive in its play helps 
to create and maintain a wonderful illusion of spontaneity. 
In fact, however, the program represents a simple algo
rithm as is shown below. 

It is perhaps ironic that the author has never succeeded 
in beating the program and also that the program is being 
used as an automatic opponent (i.e. teacher) to certain 
learning programs trying to master its game. 

The game can be looked upon as a generalization of 
Tic-Tac-Toe which, from this perspective, should be called 
Three-in-a-Row. An additional generalization is that 
whereas Tic-Tac-Toe is played on a 3 x 3 board, Five
in-a-Row is traditionally played on a Go board of size 
19 x 19. The game is won by that player who first suc
ceeds in placing five of his symbols adjacently and in a 
straight row (in any direction) on this board. 

The fundamental strategy is that after a certain value 
is assigned to every potential move both from the point of 
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the player (P) and that of the machine (M), the machine 
chooses its next move by a technique based on these 
values which has for its aim the invalidation to the greatest 
extent po'ssible of the planning of the player while optim
izing its own advantage. The trick is in coming up with 
good evaluation functions and optimizing techniques ap
propriate to these functions. Once this has been done, 
refinements suggest themselves rather easily. Obviously, 
a prior problem is that of determining a terminology and 
a notation within which evaluation functions and strategies 
can be unambiguously described. 

definitions 
A chain is defined to be any set of five consecutive squares 
in either the horizontal, vertical, or diagonal direction. 
Every point is said to anchor four chains. For the point 
(i, j) (t these are: 

W(i,j) == (i - s, j) 
(1) NW(i,j) == (i - s, j + s) (s = 0,1, ... ,4) 

N (i,j) == (i, j + s) 
NE (i, j) == (i + s, j + s) '. 

Thus every possible chain has a unique name. Every chain 
has two values, a P value (PV) and a M value (MV). The 
chain value is simply the number of P or M marks respec
tively which are to be found in the chain. A chain which 
has a P value is said to be uninteresting from the M point 
of view and vice versa. Clearly some chains are unin
teresting from both the P and M point of view. Chains 
which are not uninteresting are interesting. 

Every point (i, j) is said to belong to twenty chains. 
These are the chains whose values are affected if a mark 
were to be made at that particular point. The names of 
these chains for the point (i,j) are: 

W(i + s, j) 
(2) NW(i + s, j - s) (s = 0, 1, ... ,4) 

N (i, j - s) 
NE(i - s, j - s) 

In addition, every point ( i, j) is said to be associated 
with 32 points, namely those points different from the 
point (i, j) which form the union of all points which make 
up the twenty chains to which the reference point belongs. 
For the point (i, j) this set consists of the points 

(i ± t, j) 
(3) (i,j±t) (t=1,2,3,4) 

(i ± t, j ± t) 
(i ± t, j ± t) 

position values 
It is now possible to define position values for both P and 
M. These will be called P position value (PPV) and M 
position values (MPV) respectively. Judgment enters into 
the determination of algorithms suitable for their com
putation. Before describing a specific algorithm, however, 
the general manner in which position values enter into 
the strategy is discussed. 

The P position value of an unoccupied position (i, j), 
i.e. PPV (i, j) is supposed to be a numerical measure. of 
the utility of that particular position to the developing 
plan of the player of P. It must therefore reflect the extent 
to which P-interesting chains would be enriched were that 
move to be made by P. The way this is done is to assign 
a specific, weight w (PV) to the four non-trivial possible 
chain values, and then to compute PPV (i, j) by simply 
summing the weights of all P-interesting chains to which 
the position (i, j) belongs. The computation of PPV(i, j) 
is therefore given by 

* For definiteness, it can be assumed that the first mark made 
determines the origin of the coordinate system. 
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(4) PPV = 

s=l 
where s ranges over the r P-interesting chains involved. 
Similarly for MPV (i, j). '. 

The function (4) is still quite general. in that the weight 
assignment procedure has not been specified. Indeed, ex
periments show that quality of machine play is strongly 
dependent on weight assignment rules. Such rules are 
easy to state in tabular form. The table given below is that 
used in the game exhibited in this paper. 

Chain Weight Table 
Chain 
Value 

1 
2 
3 
4 

the basic strategy 

Weight 

5 
25 
80 

1000 

Assuming a specific chain weight table, machine strategy 
is now quite straightforward. When P makes his move all 
relevant chains are updated. New PPV's and MPV's for 
the 32 points associated with the chosen point are. com
puted and stored. Every empty point associated with any 
point which has a mark in it is considered a candidate for 
the next machine move. For each candidate point the 
number 

(6) N = K1PPV + RK2MPV. . 
is computed. Kl and K2 (small integers) are parameters 
withiri the strategy. R is computed as described below. 
Thus the strategy has essentially five free parameters; 
Kl /K2' and four weights which determine the chain 
weight table. It may be seen that the ratio Kl/K2 con
stitutes an aggression coefficient. That is, its value deter
mines how offensive or defensive a game the machine 
will play. Observation reveals, however, that human 
players vary the aggressiveness with which they play from 
move to move. They make this determination on the basis 
of an evaluation of the danger they feel themselves to be 
in versus the strength of their own position. This evahi
ation is approximated in this strategy by having the ma
chine (when it is its turn to move) compute the ratio 

(7) R = max (MPV) /max (PPV) 
and then multiplying K2 by R for each of its moves. This 
means that if the machine's strongest move is much 
stronger than that of the player's next possible one, the 
machine will play proportionately more aggressively, and 
vice versa. 

The point for which N (i, j) is a maximum (if .. there is 
one) is the machine move. If several N's have the max
imum value, then the final choice of the move is made 
from among the maximum candidates on the basis of a 
rau'dom number generator. After proper updating of the, 
appropriate MVs, PPV's and MPV's the player may make 
his next move. 

Experience has led to the conclusion' that an initial ag
gressiveness coefficient of approximately 1 is proper. Ob
viously, if the machine game is too defensive, then the 
machine follows the player's moves like a puppy dog, 
permitting the observant player to lead the machine play 
into traps. Too offensive a coefficient, on the other hand, 
permits the player to build combinations which remain 
unchallenged until it is too late. 

The weight table exhibited above can be justified on 
the basis of the judgments that 

a) An interesting chain of value two should have a 
greater weight than two crossing chains of value one, 

and 
b) An interesting chain of value three should have a 
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greater weight than two crossing chains of value two 
each. 

These lead to the inequalities 
8 w(l) < 2 [3 w(2) + w(l)] 

(8) and 
2 w(3) > 5 w(2) + w(l) 

which are satisfied by the table. 
The weight w( 4) is really irrelevant in the sense that a 

simple test can' be made to determine whether the machine 
or the player has a chain of value four. If the machine 
has such a chain, theh it completes it and wiris the game. 
Any player chain of value four must be stopped under 
all other conditions. The weight table could take care of 
these matters. But when the machine is playing defens
ively and it and the player have an interesting four chain 
each, the machine will block rather than win. A "four 
test" fixes this difficulty simply. ' 

The program displays an initial aggressiveness which is 
a manifestation of an overly naive goal directed behavior. 
The job is to make five-in.;a-row and the program proceeds 
right to the task. I~ the beginning game, the player has, 
of course, not yet developed any position against which a 
defense appears necessary. This form of initial behavior 
on the part of the program gives the player an important 
advantage. A way to avoid this is to give the machine 
a stack of starting patterns to develop .. Two or three moves 
would probably be sufficient to overcome the difficulty 
under discussion. Similarly, a number of "pattern detec
tors" could easily be built in. These would catch certain 
patterns which are known to result in winning combina
tions if completed. 

A program implementing the strategy here outlined has 
been written by R. C. Shepardson of the General 
Electric Computer Laboratory (Mountain View, Cali
fornia). This program has been matched against players 
of various strengths. in gene~al it has beaten novices 
ev~n when it piays second. 

An interesting sidelight on the apparent intelligence of 
the strategy described, is that novices seem to play ac
cording to the same algorithm as that on which the pro
gram is based. They continue to do so in many cases for 
some time .. After many games, the novice suddenly makes 
moves in an entirely different way. He then begins to beat 
the system rather regularly. Evidence for these assertions 
is gained from analysis of the print-out of games played. 
Among other data, the move the machine would have 
made had it been in the player's position is printed out 
together with its position value. In. many instances, the 
novice p~ayer chooses exactly that move as his own. To 
some extent the machine win can therefore be attributed 
to the machine's infallible bookkeeping. The player is 
finally confused by the mass of data generated by a long 
game. 

The above comment lends to a possible modification of 
the strategy which should improve machine play. The 
program can be made to riotice whenever the player de
parts from orthodox (i.e. programmed) strategy. This 
condition can be detected on the basis of the fact that 
unorthodox moves have low position values. Whenever 

. this takes place,. the machine should switch its play to the 
purely defensive.' and furthermore consider only points 
associated with the player's unorthodox move as candi
dates for its own response. ;. 
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WARSAW CONFERENCE 
ADOPTS ALGOL-60 
Automatic Programming 
Committee established 

From The Institute of Applied Mathematics, 
Polish Academy of Science, Warsaw 

A working meeting on Automatic Programming 
Methods was held in Warsaw last Fall. About 60 
participants took part in. the Conference repre-

senting the Soviet Union, Czechoslovakia, East Germany, 
Hungary and Rumania. . 

The aim of the Conference was to consider theoretical 
arid practical problems in the field of automatic program
ming, to get acquainted with progress in countries repre
sented at the Conference, and to trace a common future 
action for this group. 

Fourteen rep'orts were presented and two panel discus
. sioris were held; one of which was concerned with prob
lems connected with the international ALGOL language, 
and the other with address-free computers. 

A demonstration of the SAKO automatic programming 
system which is similar to FORTRAN II, was organized 
at the Institute of Mathematical Machines in Warsaw. 
The demonstration was perfornied on the XYZ computer. 
Two mathematical problems were formulated by Con
ference participants during this demonstration. The first 
problem consisted in finding the root of a third degree 
polynomial. The second problem was to provide a tabula
tion of 100 values of a certain function in a given editorial 
format. Programs for solving these problems were written 
in SAKO, perforated on tape, translated into the resulting 
program and operated on by the XYZ computer. In both 
cases the performance time for all of these operations was 
under 45 minutes. 

In the course of the discussion on ALGOL-60, many of 
its limitations were .emphasized, as well as the complexity 
of its notations which suppress the popularization. of the 
language among engineers,. biologists, .. etc. In addition, 
numerous difficulties were indicated iI?- producing aneffec
tive translator of the full ALGOL version. In spite of this, 
it was decided to accept ALGOL-6o. as the basis for a 
standard mathematical language. Further development of 
this language was acknowledged as being necessary. It 
was· pointed out that some work in this field has already 
been accomplished in Moscow and Nowosibirsk. 

Besides the work connected with. the realization of a 
possible full version of ALGOL; the application and prop~
gation of simpler languages, already in use (for instance, 
the auto code us.ed.in Kiev, or the autocode SAKO) was 
also. encouraged. The necessity of close cooperation of 
different scientific centers in countries represented at the 
Conference was emphasized. . 

For this purpose, a Committee of Automatic Program
ming was established, the members of which represent the 
various countries attending the Conference. The main task
of this Committee will be to organize a mutual exchange 
of information and to establish contacts in the field of 
autocodes with other international institutions such as the 
International ALGOL Committee. 

Finally, it was decided to arrange an annual Confer
ence similar to the one held in Warsaw. It was suggested 
that the next Conference be held in the Soviet Union in 
autumn, 1962. • 
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