
HOW TO MAKE "Five-in-a-Row' ,
offers no guarantees

A COMPUTER
A[P)[P)[EA~ INTELLIGENT
by JOSEPH WEIZENBAUM, Computer Laboratory,
General Electric Co., Mountain View, Calif.

There exists a continuum of opinions
on what constitutes intelligence, hence
on what constitutes artificial intelligence.
Perhaps most workers in the fields of
heuristic programming, artificial in
telligence, et aI, now agree that the
pursuit of a definition in this area is, at
least for the . time being, a sterile ac

~~--~~---=~'/' tivity. No operationally significant con
tributions can be expected from the abstract contempla-
tion of this particular semantic navel. Minsky has sug
gested in a number of talks that an activity which produces
results in a way which does not appear understandable to
a particular observer will appear to that observer to be
somehow intelligent, or at least intelligently motivated.
When that observer finally begins to understand what has
been going on, he often has a feeling of having been

. fooled a little. He then pronounces the heretofore "intel
ligent" behavior he has been observing as. being "merely
mechanical" or "algorithmic."

The author of an "artificially intelligent" program is, by
the above reasoning, clearly setting out to fool some observ
ers for some time. His success can be measured by the
percentage of the exposed observers who have been
fooled multiplied by the length of time they have failed
to catch on. Programs which. become so complex (either
by themsclves, e.g. learning programs, or by virtue of
the author's poor documentation and debugging habits)
that the author himself loses track, obviously have the
highest IQ's. .

24

The program described in this article plays the game
Five-in-a-Row, also known as Go-MOKU. This game is,
to the author's knowledge, undetermined in the sense that
no strategy other than exhaustive look ahead is known
for guaranteeing a win or even a tie. In this respect it
differs from Nim and Tic-Tac-Toe for which guaranteed
winning strategies are known and have been programmed.
On the basis of the criterion given above, the program
certainly appears (to many observers) to make the com
puter behave intelligently. The fact that it permits its
opponent to develop a position while paying close atten
tion to its own development for a time and only oc
casionally becomes obviously defensive in its play helps
to create and maintain a wonderful illusion of spontaneity.
In fact, however, the program represents a simple algo
rithm as is shown below.

It is perhaps ironic that the author has never succeeded
in beating the program and also that the program is being
used as an automatic opponent (i.e. teacher) to certain
learning programs trying to master its game.

The game can be looked upon as a generalization of
Tic-Tac-Toe which, from this perspective, should be called
Three-in-a-Row. An additional generalization is that
whereas Tic-Tac-Toe is played on a 3 x 3 board, Five
in-a-Row is traditionally played on a Go board of size
19 x 19. The game is won by that player who first suc
ceeds in placing five of his symbols adjacently and in a
straight row (in any direction) on this board.

The fundamental strategy is that after a certain value
is assigned to every potential move both from the point of

DRTRMRTION

o /

c (
\

o

) o

the player (P) and that of the machine (M), the machine
chooses its next move by a technique based on these
values which has for its aim the invalidation to the greatest
extent po'ssible of the planning of the player while optim
izing its own advantage. The trick is in coming up with
good evaluation functions and optimizing techniques ap
propriate to these functions. Once this has been done,
refinements suggest themselves rather easily. Obviously,
a prior problem is that of determining a terminology and
a notation within which evaluation functions and strategies
can be unambiguously described.

definitions
A chain is defined to be any set of five consecutive squares
in either the horizontal, vertical, or diagonal direction.
Every point is said to anchor four chains. For the point
(i, j) (t these are:

W(i,j) == (i - s, j)
(1) NW(i,j) == (i - s, j + s) (s = 0,1, ... ,4)

N (i,j) == (i, j + s)
NE (i, j) == (i + s, j + s) '.

Thus every possible chain has a unique name. Every chain
has two values, a P value (PV) and a M value (MV). The
chain value is simply the number of P or M marks respec
tively which are to be found in the chain. A chain which
has a P value is said to be uninteresting from the M point
of view and vice versa. Clearly some chains are unin
teresting from both the P and M point of view. Chains
which are not uninteresting are interesting.

Every point (i, j) is said to belong to twenty chains.
These are the chains whose values are affected if a mark
were to be made at that particular point. The names of
these chains for the point (i,j) are:

W(i + s, j)
(2) NW(i + s, j - s) (s = 0, 1, ... ,4)

N (i, j - s)
NE(i - s, j - s)

In addition, every point (i, j) is said to be associated
with 32 points, namely those points different from the
point (i, j) which form the union of all points which make
up the twenty chains to which the reference point belongs.
For the point (i, j) this set consists of the points

(i ± t, j)
(3) (i,j±t) (t=1,2,3,4)

(i ± t, j ± t)
(i ± t, j ± t)

position values
It is now possible to define position values for both P and
M. These will be called P position value (PPV) and M
position values (MPV) respectively. Judgment enters into
the determination of algorithms suitable for their com
putation. Before describing a specific algorithm, however,
the general manner in which position values enter into
the strategy is discussed.

The P position value of an unoccupied position (i, j),
i.e. PPV (i, j) is supposed to be a numerical measure. of
the utility of that particular position to the developing
plan of the player of P. It must therefore reflect the extent
to which P-interesting chains would be enriched were that
move to be made by P. The way this is done is to assign
a specific, weight w (PV) to the four non-trivial possible
chain values, and then to compute PPV (i, j) by simply
summing the weights of all P-interesting chains to which
the position (i, j) belongs. The computation of PPV(i, j)
is therefore given by

* For definiteness, it can be assumed that the first mark made
determines the origin of the coordinate system.

February 1962

r
(4) PPV =

s=l
where s ranges over the r P-interesting chains involved.
Similarly for MPV (i, j). '.

The function (4) is still quite general. in that the weight
assignment procedure has not been specified. Indeed, ex
periments show that quality of machine play is strongly
dependent on weight assignment rules. Such rules are
easy to state in tabular form. The table given below is that
used in the game exhibited in this paper.

Chain Weight Table
Chain
Value

1
2
3
4

the basic strategy

Weight

5
25
80

1000

Assuming a specific chain weight table, machine strategy
is now quite straightforward. When P makes his move all
relevant chains are updated. New PPV's and MPV's for
the 32 points associated with the chosen point are. com
puted and stored. Every empty point associated with any
point which has a mark in it is considered a candidate for
the next machine move. For each candidate point the
number

(6) N = K1PPV + RK2MPV. .
is computed. Kl and K2 (small integers) are parameters
withiri the strategy. R is computed as described below.
Thus the strategy has essentially five free parameters;
Kl /K2' and four weights which determine the chain
weight table. It may be seen that the ratio Kl/K2 con
stitutes an aggression coefficient. That is, its value deter
mines how offensive or defensive a game the machine
will play. Observation reveals, however, that human
players vary the aggressiveness with which they play from
move to move. They make this determination on the basis
of an evaluation of the danger they feel themselves to be
in versus the strength of their own position. This evahi
ation is approximated in this strategy by having the ma
chine (when it is its turn to move) compute the ratio

(7) R = max (MPV) /max (PPV)
and then multiplying K2 by R for each of its moves. This
means that if the machine's strongest move is much
stronger than that of the player's next possible one, the
machine will play proportionately more aggressively, and
vice versa.

The point for which N (i, j) is a maximum (if .. there is
one) is the machine move. If several N's have the max
imum value, then the final choice of the move is made
from among the maximum candidates on the basis of a
rau'dom number generator. After proper updating of the,
appropriate MVs, PPV's and MPV's the player may make
his next move.

Experience has led to the conclusion' that an initial ag
gressiveness coefficient of approximately 1 is proper. Ob
viously, if the machine game is too defensive, then the
machine follows the player's moves like a puppy dog,
permitting the observant player to lead the machine play
into traps. Too offensive a coefficient, on the other hand,
permits the player to build combinations which remain
unchallenged until it is too late.

The weight table exhibited above can be justified on
the basis of the judgments that

a) An interesting chain of value two should have a
greater weight than two crossing chains of value one,

and
b) An interesting chain of value three should have a

25

greater weight than two crossing chains of value two
each.

These lead to the inequalities
8 w(l) < 2 [3 w(2) + w(l)]

(8) and
2 w(3) > 5 w(2) + w(l)

which are satisfied by the table.
The weight w(4) is really irrelevant in the sense that a

simple test can' be made to determine whether the machine
or the player has a chain of value four. If the machine
has such a chain, theh it completes it and wiris the game.
Any player chain of value four must be stopped under
all other conditions. The weight table could take care of
these matters. But when the machine is playing defens
ively and it and the player have an interesting four chain
each, the machine will block rather than win. A "four
test" fixes this difficulty simply. '

The program displays an initial aggressiveness which is
a manifestation of an overly naive goal directed behavior.
The job is to make five-in.;a-row and the program proceeds
right to the task. I~ the beginning game, the player has,
of course, not yet developed any position against which a
defense appears necessary. This form of initial behavior
on the part of the program gives the player an important
advantage. A way to avoid this is to give the machine
a stack of starting patterns to develop .. Two or three moves
would probably be sufficient to overcome the difficulty
under discussion. Similarly, a number of "pattern detec
tors" could easily be built in. These would catch certain
patterns which are known to result in winning combina
tions if completed.

A program implementing the strategy here outlined has
been written by R. C. Shepardson of the General
Electric Computer Laboratory (Mountain View, Cali
fornia). This program has been matched against players
of various strengths. in gene~al it has beaten novices
ev~n when it piays second.

An interesting sidelight on the apparent intelligence of
the strategy described, is that novices seem to play ac
cording to the same algorithm as that on which the pro
gram is based. They continue to do so in many cases for
some time .. After many games, the novice suddenly makes
moves in an entirely different way. He then begins to beat
the system rather regularly. Evidence for these assertions
is gained from analysis of the print-out of games played.
Among other data, the move the machine would have
made had it been in the player's position is printed out
together with its position value. In. many instances, the
novice p~ayer chooses exactly that move as his own. To
some extent the machine win can therefore be attributed
to the machine's infallible bookkeeping. The player is
finally confused by the mass of data generated by a long
game.

The above comment lends to a possible modification of
the strategy which should improve machine play. The
program can be made to riotice whenever the player de
parts from orthodox (i.e. programmed) strategy. This
condition can be detected on the basis of the fact that
unorthodox moves have low position values. Whenever

. this takes place,. the machine should switch its play to the
purely defensive.' and furthermore consider only points
associated with the player's unorthodox move as candi
dates for its own response. ;.

REFERENCES:
1. C E. Shannon, "P~ogramming a Co;"puter for Playing

Chess," Phil. Mag., Vol. 41, No.3 i 4, 'March, 1950.
2. C. E. Shannon, "Game Playing Machines," Journal of

Franklin Inst. Vol. 260, pp .. 447-453, December, 1955.

26

WARSAW CONFERENCE
ADOPTS ALGOL-60
Automatic Programming
Committee established

From The Institute of Applied Mathematics,
Polish Academy of Science, Warsaw

A working meeting on Automatic Programming
Methods was held in Warsaw last Fall. About 60
participants took part in. the Conference repre-

senting the Soviet Union, Czechoslovakia, East Germany,
Hungary and Rumania. .

The aim of the Conference was to consider theoretical
arid practical problems in the field of automatic program
ming, to get acquainted with progress in countries repre
sented at the Conference, and to trace a common future
action for this group.

Fourteen rep'orts were presented and two panel discus
. sioris were held; one of which was concerned with prob
lems connected with the international ALGOL language,
and the other with address-free computers.

A demonstration of the SAKO automatic programming
system which is similar to FORTRAN II, was organized
at the Institute of Mathematical Machines in Warsaw.
The demonstration was perfornied on the XYZ computer.
Two mathematical problems were formulated by Con
ference participants during this demonstration. The first
problem consisted in finding the root of a third degree
polynomial. The second problem was to provide a tabula
tion of 100 values of a certain function in a given editorial
format. Programs for solving these problems were written
in SAKO, perforated on tape, translated into the resulting
program and operated on by the XYZ computer. In both
cases the performance time for all of these operations was
under 45 minutes.

In the course of the discussion on ALGOL-60, many of
its limitations were .emphasized, as well as the complexity
of its notations which suppress the popularization. of the
language among engineers,. biologists, .. etc. In addition,
numerous difficulties were indicated iI?- producing aneffec
tive translator of the full ALGOL version. In spite of this,
it was decided to accept ALGOL-6o. as the basis for a
standard mathematical language. Further development of
this language was acknowledged as being necessary. It
was· pointed out that some work in this field has already
been accomplished in Moscow and Nowosibirsk.

Besides the work connected with. the realization of a
possible full version of ALGOL; the application and prop~
gation of simpler languages, already in use (for instance,
the auto code us.ed.in Kiev, or the autocode SAKO) was
also. encouraged. The necessity of close cooperation of
different scientific centers in countries represented at the
Conference was emphasized. .

For this purpose, a Committee of Automatic Program
ming was established, the members of which represent the
various countries attending the Conference. The main task
of this Committee will be to organize a mutual exchange
of information and to establish contacts in the field of
autocodes with other international institutions such as the
International ALGOL Committee.

Finally, it was decided to arrange an annual Confer
ence similar to the one held in Warsaw. It was suggested
that the next Conference be held in the Soviet Union in
autumn, 1962. •

DATAMATION

o (

c (
\

