
44 1128]

□ CHARACTERIZING

KNOWLEDGE DEPTH IN

INTELLIGENT SAFETY SYSTEMS

TIM FININ

Paoli Research Center, Unisys Corporation, Paoli,

Pennsylvania 19301

DAVID KLEIN

IBM T. J. Watson Research Center, Yorktown Heights,

New York 10598

Intelligent process control may be viewed as encompassing four major tasks. An intelligent

agent must monitor the target system to obtain the values of relevant state variables in order

to detect problems and to ascertain the status of the components that may be employed in

responding to those problems. An intelligent agent must determine plans for managing the

current situation. An intelligent agent must select a response (the "best" one) through a

process of plan evaluation. Finally, to carry out the chosen response, the agent must perform

plan execution. While monitoring and execution are relatively straightforward operations,

plan determination and plan evaluation may be accomplished in a number of ways that vary

in their relative depth of reasoning. In this paper we sketch an analysis for the reasoning

underlying plan determination and evaluation tasks for a class of intelligent control systems

that attempt to "provide a safety function." This analysis has two objectives: to illustrate a

domain-independent mode of analysis for examining progressively deeper models, and to

make the analysis available to those interested in building systems that provide safety func­

tions.

INTRODUCTION

Several authors have noted the distinction between "deep" and "shallow"
models of expertise in expert systems (Hart, 1982; Chandrasekaran and Mittal,
1983; Fink, 1985). By shallow models we usually mean that conclusions are
drawn directly from observed facts that characterize a situation. An adv�ntage of
shallow models is that they often directly encode the heuristics that experts use
in performing their reasoning tasks, and they are thus relatively easy to build. In
addition, shallow models tend to be relatively efficient because they select rather
than construct their solutions. One disadvantage of shallow models, however, is
that explicitly stating all the preconditions under which a solution should be
selected is an error-prone process. Another weakness of shallow models is that
they are inflexible, unable to deal with circumstances even slightly different
from those explicitly anticipated (de Kleer and Brown, 1984). In addition, shal­
low models may be difficult to maintain, since what is conceptually a single

Copyright © 1989 by Hemisphere Publishing Corporation 45 [129)

, '

46 (130] T. Finin and D. Klein

piece of knowledge may be unsystematically distributed across several objects in
a knowledge base. Finally, explanations generated from shallow models tend to
be limited to traces of the inference chains that lead to conclusions.

In contrast, deep models of expertise correspond more closely to the notion
of reasoning from first principles. They tend to be more robust than shallow
models, handling problems not explicitly anticipated and exhibiting higher per­
formance at the periphery of their knowledge. Deep models can also be more
easily analyzed for correctness and completeness. For example, in device­
centered models of physical systems (de Kleer and Brown, 1984; Davis, 1984),
each physical device maps directly into a structured object in the representation.
Deep models of expertise are also more useful for generating explanations in
that reasoning steps that are usually implicit in shallow models can be eluci­
dated. Deep reasoning is, however, bound to be slower and more complex than
shallow reasoning because a more sophisticated control structure is required
(Koton, 1985).

Abstractly characterizing deep and shallow models and contrasting their rel­
ative merits in a general way provides little direction for knowledge engineer­
ing. In particular, the field lacks a definition of exactly what makes a model
"deep" and lacks guidelines regarding the appropriate depth of models for a
given application. We believe that such guidelines should be developed by ab­
stracting from a large set of examples. In particular, we advocate the approach
of (1) adopting an informal definition of "knowledge depth," (2) isolating high­
level reasoning tasks (e.g., diagnosis, simulation) for analysis, and (3) for each
such reasoning task, contrasting the merits of models inspired by domains that
vary in their relative depth.

In this paper we sketch such an analysis for a reasoning task called ''provide
a safety function" (which is defined later) in order to achieve two objectives: to
illustrate a domain-independent mode of analysis for examining progressively
deeper models, and second, to make the analysis available to those interested in
building systems that provide safety functions.

The paper is organized as follows. The next section provides a simple opera­
tional definition of depth that is used in the ensuing analysis. We then define the
reasoning task "provide a safety function" and identify two subtasks that
present opportunities for varying depth of reasoning. These subtasks are then
analyzed. The final section presents a summary and our conclusions.

OPERATIONAL DEFINITION OF KNOWLEDGE DEPTH

We need a simple relation_ that will distinguish the depth of models of exper­
tise for a given reasoning task. Our focus is on the explicit representation of
knowledge in models of expertise, although other notions of depth, which high­
light, for example, multiple perspectives on a domain (Davis, 1984) or notions

Knowledge Depth in Intelligent Safety Systems 4 7 [131 I

of causality (Rieger and Grinberg, 1977; Finin and Morris, 1989), are also
potentially valuable for this purpose. The following is intended only as an infor­
mal, operational definition of the deeper-than relation, which leaves terms such
as "knowledge" and "model" to intuition.

Definition: Consider two models of expertise M and M' . We will say that M' is

deeper-than M if there exists some implicit knowledge in M that is computed

explicitly in M ' .

The deeper-than relation is defined over an infinite space of models of ex­
pertise for a given reasoning task. In cases where a reasoning task is decom­
posed into isolated subtasks that present opportunities for varying depth, the
relation is applied to subtasks rather than to the composite task. For example,
consider a task t that may be naturally decomposed into subtasks ti and t2. We
address the relative depth of models for these subtasks rather than for t, for if we
build a model X and a deeper model X' for ti and build a model Y and a deeper
model Y' for t2, then the composite models for t consisting of {X, Y'} and
{X', Y} are not strictly ordered by deeper-than. This occurs in intelligent safety
systems, as described in the next section.

1..

·INTELLIGENT SAFETY SYSTEMS

AND KNOWLEDGE DEPTH

There has been great interest in intelligent systems that represent and reason
about physical devices (Bobrow, 1985). One line of research concerns the devel­
opment of facilities that provide advice or take direct action in response to
system disturbances (Underwood, 1982; Nelson, 1982; Ennis et al., 1986). Of
these, we focus on systems that provide safety functions in physical systems.
Providing a safety function involves executing plans to circumvent potential
crises in physical system environments.

In nuclear power operations, this encompasses executing "a group of
actions that prevent melting of the reactor core or minimize radiation releases to
the public" (Corcoran et al., 1981). Although the term "safety function" origi­
nated in the context of nuclear facility management, we can identify applications
of the same idea in other domains, including preventing a chemical reactor in a
process plant from catching fire and preventing the depletion of operating sys­
tem queue space in a large computer installation. Providing safety functions in

such process environments may be considered an expert-level task, and we will
refer to a system that employs models of expertise for providing safety functions
as an intelligent safety system (ISS).

Generally speaking, an ISS receives a description of the state of the system
being controlled (the target system) as input and provides a plan of action for

48 [1321 T. Finin and D. Klein

circumventing a crisis as output. The work of an ISS may be naturally decom­
posed as follows:

Monitoring: An intelligent agent (operator or system) must maintain a model of
the target system by periodically obtaining the values of target system state
variables. This is necessary in order to detect problem conditions and to
ascertain the status of target system components that may be employed in
managing those conditions.

Plan determination: An intelligent agent must determine possible plans for man­
aging the current situation. In general, the agent determines a set of alterna­
tive plans, which, depending on the domain, may be a complete set or only a
set of the most plausible plans.

Plan evaluation: An intelligent agent must evaluate these alternatives plans to
select the "best" one. In some domains, this may involve simulating the
alternatives to ascertain their outcomes.

Plan execution: An intelligent agent must execute the chosen plan.

Our first task in examining the relative merits of models that vary in depth
for a given reasoning task is to identify opportunities for varying depth (in the
sense of the preceding section) that provide some potential advantages (in the
sense of the first section). For ISSs, monitoring and execution are relatively
straightforward operations, but plan determination and plan evaluation may be
accomplished in a number of ways that vary in depth of reasoning. The next step
in the analysis involves defining and evaluating progressively deeper models for
performing each of these subtasks.

REASONING DEPTH IN PLAN DETERMINATION

We examine four progressively deeper models that may be used to determine
plans to prevent a crisis: invoking hard-coded plans, determining plans based on
hard-coded paths of components, generating plans based on system structure,
and generating plans based on system structure and component behavior.

Invoking Hard-Coded Plans

The first model of expertise we consider is the shallowest-hard-coding
plans for preventing a potential crisis under various conditions. This model is
conveniently implemented in_ formalisms that encode situation-action pairs such
as production rules. As an example, consider JESQ (Klein, 1985), one of sev­
eral rule-based systems that constitute YES/MVS (Ennis et al., 1986), an expert
system for managing large computer installations. JESQ's task is to maintain a

Knowledge Depth in Intelligent Safety Systems 49 [1331

Allow-Large-Jobs:

Priority= 5

IF remaining-queue-space= low

printer-setting= only-small-jobs

small-jobs-left= few

large-jobs-waiting

THEN submit command to allow large jobs

FIGURE 1. Example of a simple JESQ rule.

"comfortable" level of unused space on an operating system queue, that is, to
provide the safety function "prevent queue space depletion." The antecedents of
JESQ's rules describe the states under which the hard-coded plans in their conse­
quents should be performed. For example, the rule in Fig. 1 encodes the plan to
enable a printer to print large jobs so that queue space may be freed. In effect, it
enables a path of data flow from the queue to the printer.

These plans, which specify the movement of data from the queue to other
components (e.g., tape drives, printers), are based on the structure of the under­
lying computer system being modeled, but this structure is only implicitly repre­
sented in JESQ. As such, JESQ suffers from some of the disadvantages of
shallow models. For example, the configuration of the computer system may be
changed, requiring modifications to this and other rules, but there is no system­
atic way of identifying such modifications. In addition, JESQ's rules may omit
reference to conditions in the computer system which do not usually occur but
which occasionally render encoded plans unsuccessful. Another limitation of the
system is that explanations can offer little more than a presentation of the condi­
tions under which plans are applicable. Finally, JESQ can handle only precisely
the state conditions that have been anticipated.

According to our definition, a deeper model would explicitly represent the
potential paths of data flow, although deeper does not necessarily imply better.
For example, if configuration changes are unlikely or if the encoded precondi­
tions are appropriate most of the time and are of manageable volume, the bene­
fits of a deeper model of plan determination expertise might not justify the cost
of its construction or the overhead of its execution.

Determining Plans from Hard-Coded Paths

The next model to be considered involves explicitly representing sets of
"'

components that may be employed to provide a safety function. This approach is
taken in REACTOR (Nelson, 1982), which provides safety functions in a nu­
clear reactor facility.

50 [134] T. Finin and D. Klein

Potential paths of components that can be used to cool the reactor core are

encoded in a response tree as shown in Fig. 2. Each path in the tree contains an

instance of each of the functional components required to provide the safety func­

tion (e.g., water source, heat sink). Part of REAC'IDR's mission is to select, in
real time, a path made up of components that are correctly operating.

The primary advantage of this approach is its robustness. Not all potential

combinations of component failures need be explicitly anticipated, since these

are coordinated by the response tree structure and associated logic. Another

advantage is that a change to the configuration is more easily mapped into the

representation, since paths of components are explicitly represented. Still im­

plicit, however, is the configuration description from which response trees are

constructed. Since the response tree is hard-coded, only the potential paths of

components explicitly identified in advance are candidates for selection, and

configuration changes require that the resulting new paths be identified by a

knowledge engineer. A still deeper model would reason directly from a sche­

matic to generate the potential paths. However, for applications in which the

number of potential paths is manageable and the structure of the target system is

relatively stable, we might not be inclined to consider a deeper model.

Generating Plans from System Structure

The next model that we consider involves explicitly representing the config­

uration of the target system and using this description to generate plans for

circumventing a potential crisis. As an example, we again refer to JESQ's do­

main as cast in the structural representation of Fig. 3. Using this model, plan

determination adopts the form of searching a graph in which nodes represent

components and edges represent their interconnections. The search always be­

gins at node QUEUE and terminates at node USER, and each such path through

the graph represents a candidate path through which data sets may flow in order
to clear the QUEUE.

This representation has the advantage that a change in the configuration may

be directly mapped into a change in the representation, and the knowledge about

computing plans for moving data sets (searching the graph) remains unchanged.
It is also more portable than the other representations, requiring only a configu­

ration description for any particular installation. This model is deeper than the
rules' hard-coded plans, which only implicitly represent the queue-clearing

paths. This model is also deeper than the response trees of the preceding section,

because we have hard-coded the mechanism by which paths are generated rather
than the paths themselves.

The queue space domain permits the convenience of uniformly treating each

represented device in the system, because each device is capable of accepting

and storing data. In domains encompassing devices that do not exhibit this be-

Injection
point

Route

Pump

Water

source

Heat

sink

Mode

number

Downcomet

Normal

B

I
LPIS

Auto.

cross tie

LPIS

Knowledge Depth in Intelligent Safety Systems 51 [135 l

Reactor

vessel

Lower

plenum
I

Auto.

cross tie

Normal

A

I

I
Cold

leg

Auto.
cross tie

INEL 21661

FIGURE 2. Response tree. (From Nelson, 1982.)

havioral homogeneity, we would require a still deeper model in order to generate

plans. Specifically, we would need to reason explicitly about the behavior of

components, since not all components would play the same functional role in

providing a safety function. A similar point is made by Ginsberg (1984) regard­

ing diagnostic systems.

Generating Plans from System Structure and Behavior

The deepest model of plan determination we consider is based on an explicit

representation of target system structure and component behavior. This approach

-

FIGURE 3. Structural model of computer installation.

52 [136] T. Finin and D. Klein

is taken in several systems that perform other reasoning tasks such as simulation
(de Kleer and Brown, 1984), troubleshooting (Davis, 1984), and verification
(Barrow, 1984).

As an example of reasoning from structure and behavior to provide a
safety function, consider the following hypothetical ISS. Using a spatial repre­
sentation as in Fig. 4 (Stephanopoulous, 1984) and descriptions of component
behaviors, the ISS generates alternative plans for keeping the reactor (RXRl)

from catching fire when components fail. For example, if the valve (V3) that
regulates the coolant flowing to the reactor jacket is stuck closed, the ISS
searches for a compensating action to lower the temperature of the reactor. The
search proceeds both forward and backward from the reactor to yield the fol­
lowing alternative plans: close V4, close V5, request A to stop feed stream,
request A to lower feed stream temperature, request cool temperature material
from the heating system, and request the heating system to stop. For example,
the ISS identifies the action '' close V 4'' as follows. The feed stream input to
RXRl must be such that the temperature of RXRl is normal. Since V3 is stuck
closed, the ISS must reduce either the temperature or the flow rate of the feed
stream. Searching backward from RXRl, the ISS examines the behavioral
model of valve V4, noting that in state CLOSED the flow rate from the valve
is zero. The ISS searches a list of potential actions to find that action "close
valve" cause V4 to enter state CLOSED. Thus, the plan "close V4" is a
candidate for execution to be assessed by the plan evaluation process.

These components (heat exchangers, reactor, valves) are not behaviorally
homogeneous, so reasoning about how to maintain a safe temperature in the

FIGURE 4. Chemical reactor subsystem. (From Stephanopoulous, 1984.)

Knowledge Depth in Intelligent Safety Systems 53 [137]

reactor must encompass consideration of the individual behaviors of the com­
ponents that affect it, as well as their position in the system structure. This
model is deeper than the solely structural model of the preceding section in that
the behavior of components is explicitly represented and reasoned about.

VARYING DEPTH OF REASONING

IN PLAN EVALUATION

Given a set of alternative plans for providing a given safety function in a
particular situation, plan evaluation involves selecting the "best" one. We
discuss three significant levels of depth for evaluating alternative plans: hard­
coded evaluation (explicit priorities), evaluation using utility theory and hard­
coded decision attributes (computation of priorities), and evaluation using util­
ity theory and decision attributes that are themselves computed from a
structural and behavioral model of the target system (computation of priorities
and of underlying attributes).

Evaluations Encoded as Priorities

The shallowest representation of plan evaluation that we consider is the
hard-coded numeric priority. This is a commonly employed approach; for ex­
ample, a priority is associated with each rule in JESQ and with each path in the
response tree in REACTOR to provide for choosing the best when more than
one are applicable.

In rule-based systems like JESQ, priorities specify relative preferences to
conflict resolution. The antecedent of a rule determines the eligibility of the
plan in its consequent, and the rule's associated priority indicates its desirabil­

ity relative to other plans. Note that all objectives underlying the desirability of
a plan (e.g., minimizing cost, maximizing convenience, maximizing the satis­
faction of system users, maximizing speed) are implicitly represented in the
priority, and this gives rise to several difficulties.

First, as the rule base grows it becomes difficult to predict the conse­
quences of adding new rules to the knowledge base. In effect, the knowledge
engineer must understand the basis for the priorities of all existing rules in
order to assign a new priority to a new rule. Second, the meaning of a priority
is completely opaque, so there exists no basis for justifying a priority in an
explanation. Finally, a system that uses this shallow model of choice will lack
robustness. Because great importance is placed on a single heuristically justi­
fied symbol, the result of changing the priority of a single rule can signifi­
cantly alter the overall behavior of an ISS.

This model of plan evaluation suffices when the number of plans is small
and the relative desirability of each plan is obvious. For applications not hav-

54 [1381 T. Finin and D. Klein

ing these characteristics, deeper models that explicitly represent the factors
underlying priority selection may be useful for automatically justifying a
choice among competing plans in an explanation and for facilitating the incre­
mental modification of the knowledge base.

Utility Theory with Encoded Objective Values

The next model to be examined involves explicitly representing the attrib­
utes and objectives underlying priority selection in the framework of utility
theory. Multiattribute utility theory (Keeney and Raiffa, 1976; Hansen, 1983)
is of particular interest in the domain of intelligent safety systems, where
multiple, often mutually competitive objectives drive choices between compet­
ing plans. Under this approach, we regard each plan's characteristics with
respect to each of the objectives that underlie plan evaluation as arguments to a
utility function that computes the priority for each plan. The utility function
itself abstractly captures the relationships between objectives that underlie the
choice of plan and can be thought of as encoding the plant's operational policy.

Employing an explicit model of choice based on utility theory has several
advantages over implicit models such as hard-coded priorities. First, since the
underlying objectives of plan evaluation are explicitly represented, a basis is
provided for generating explanations regarding choices among competing
plans. In addition, adding plans to the knowledge base is simplified because
the knowledge engineer need only score a new plan with respect to the defined
objectives.

For example, consider the hypothetical rules for the JESQ domain given in
Figs. 5 and 6. Each rule consists of an event specification that describes the
relationships among target system state variable values and determines the
eligibility of the plans. The plan itself is laid out in the response portion of the
rule. Finally, the response attributes portion of the rule describes it in terms of
underlying objectives.

Either rule may be appropriate, depending on the status of the target sys­
tem at the time of instantiation. If, say, printer2 is not free but tapel is, then
the copy rule of Fig. 5 would be executed. Alternatively, if printer2 is free but
tapel is not, then the expensive printing rule shown in Fig. 6 would be em­
ployed. If neither device is free we are out of options.* But what if both tapel
and printer2 are free? Which plan is better? We essentially need to choose
between the two heuristics according to the installation's operational policy,
which enables one to determine the preferred plan using the response attributes
(Klein, 1989).

*In an actual implementation, we would also encode heuristics that involve deliberate action to free them.

Knowledge Depth in Intelligent Safety Systems 55 11391

ALTERNATIVE copy:

EVENT:

queue space is low

dataset

name = dsl

size • 1,000,000 lines

destination = printer!

printer status

name = printer!

status = broken

tape drive status

name "" tapel

status = free

RESPONSE:

copy dsl to tapel

move tape on tapel to tape library

move tape from tape library to tapel

copy dsl from tapel to queue

print dsl on printer!

move dsl from printer! to user bins

RESPONSE ATTRIBUTES:

excess operator time = 10.0

excess turnaround time = 34.2

difference in form = 1.0

excess cost 1.0

queue clearing time 15.1

END ALTERNATIVE

FIGURE 5. Rule for copying a dataset to a tape.

Where such scores for the response attributes of plans are reasonably easy
to formulate this second level of depth suffices for plan evaluation. However,
in applicati;ns where scores for objectives encompass consideration_ o� the
behaviors of large sets of components, formulating scores may be difficult,
encouraging a greater level of depth. Specifically, we m�y wish to reaso?
about (or compute) the scores for objectives ,rather than assign them. In appli­
cations that employ a model of plan determination that actually g�nerates
plans, a deeper model of plan evaluation will be required, for ther_e will be no
way to assign scores in advance to plans that are constructed durmg problem
solving.

Utility Theory with Computed Objective Values

The deepest model of plan evaluation that we conside� for ISSs invo��es
computing the scores for underlying objectives that are mput to the utlhty

56 [140] T. Finin and D. Klein

ALTERNATIVE expensive printing:

EVENT:

queue space is low

dataset

name = ds1

size = 1,000,000 lines

destination = printer1

printer status

name = printer1

status = broken

printer status

RESPONSE:

name = printer2

status = free

route ds1 from printer1 to printer2

print ds1 on printer2

move ds1 from printer2 to user bins

RESPONSE ATTRIBUTES:

excess operator time • 0.1

excess turnaround time = 0.0

difference in form 1.0

excess cost

queue clearing time

END ALTERNATIVE

100.00

25.0

FIGURE 6. Rule for printing a dataset on a more expensive printer.

function. This may be accomplished by formulating another set of (hard­

coded) data from which objective values may be computed for each plan. In

applications that employ a model of plan determination that actually generates

plans, we would use the same representation of the target system to support

both plan determination and evaluation. For example, consider augmenting the

spatial description of the computer system of Fig. 3 with component descrip­

tions (e.g., processing time per line of data) pertaining to the objectives men­

tioned earlier (e.g., maximize user satisfaction). A plan (path of devices) can

be evaluated with respect to turnaround time (one aspect of user satisfaction)

by summing the processing times of the processors that lie along the generated

path. Other objectives (e.g., speed of action, work for the operator) would be

similarly computed.

This model of evaluation is deeper than that of the preceding section be­

cause, rather than encoding the values for objectives, we encode functions for

computing them. One advantage of this method is that we need only supply

local device-dependent data for each represented device in order to compute

the desirability of actions, rather than making subjective judgments about the

desirability of predefined paths.

Knowledge Depth in Intelligent Safety Systems 57 [141]

SUMMARY AND CONCLUSIONS

We have characterized the depth of models of expertise in terms of knowl­

edge they explicitly represent and reason about. For the reasoning task "pro­

vide a safoty function," we identified two subtasks that provide opportunities

for building progressively deeper models of knowledge, described some par­

ticular models for performing each subtask, and reviewed their relative merits

for some particular domains.

If knowledge engineering is to become more of a discipline than an art, we

will need to develop some guidelines that more precisely characterize "depth

of knowledge" and its implications for intelligent system construction, perfor­

mance, and maintenance. Ultimately, the guidelines would provide a basis for

selecting among models of varying depth based on general domain characteris­

tics. We believe that such guidelines should be developed by circumscribing

isolated reasoning tasks and analyzing the relative merits of models of varying

depth inspired by various domains, and we have sketched one such analysis in

this paper. Future work will employ alternative definitions of depth in the

analysis and analyze other reasoning tasks to provide the data on which the

mentioned guidelines may be based.

REFERENCES

Barrow, H. 1984. VERIFY: A program for proving correctness of digital hardware designs. Artif Intel/

24(1-3) :437-491.
Bobrow, D., ed. 1985. Qualitative Reasoning about Physical Systems. Amsterdam: Elsevier.
Chandrasekaran, B., and Mittal, S. 1983. Deep versus compiled knowledge approaches to diagnostic prob­

lem solving. Int J Man-Machine Studies 10(5):425-436.
Corcoran, W., Finnicum, D., Hubbard, R., III, Musick, C., and Walzer, P. 1981. Nuclear power-plant

safety functions. Nucl Safety 22(2).
Davis, R. 1984. Diagnostic reasoning based on structure and behavior. Artif Intel/ 24(1-3):347-410.
de Kleer, J., and Brown, J. S. 1984. A qualitative physics based on confluences. Artif lntell 24(1-3):7-83.
Ennis, R., Griesmer, J., Hong, S., Karnaugh, M., Kastner, J., Klein, D., Milliken, K., Schor, M., and Van

Woerkom, H. 1986. A continuous realtime expert system for computer operations. IBM J Res Dev

30(1): 14-28.
Finin, T., and Morris, G. 1989. Abductive reasoning in multiple fault diagnosis.- Artif Intel/ Rev (in press).
Fink, P. 1985. Control and integration of diverse knowledge in a diagnostic expert system. Proc. /JCAI

426-431.
Ginsberg, A. 1984. Localization Problems and Expert Systems. CBM-TR-139, Rutgers University.
Hansen, P., ed. 1983. Essays and Surveys on Multiple Criteria Decision Making. New York: Springer­

Verlag.

Hart, P. 1982. Directions for AI in the eighties. SIGART Newslett, no. 79, January, 11-16.
Keeney, R., and Raiffa, H. 1976. Decisions with Multiple Objectives: Preferences and lfllue Tradeoffs.

New York: Wiley.

Klein, D. 1985. An Expert Systems Approach to Realtime, Active Management of a Target Resource. MS­

CIS-85-40, University of Pennsylvania.
Klein, D. 1989. Ph.D. Dissertation, University of Pennsylvania, forthcoming.
Klein, D., and Finin, T. 1987. W hat's in a deep model? A characterization of knowledge depth in intelli­

gent safety systems. Proc. IJCAI-87, 559-562.

58 [142) T. Finin and D. Klein

Koton, P. 1985. Empirical and model-based reasoning in expert systems. Proc. IJCAI, 297-299.
Nelson, W. 1982. REAC1DR: An expert system for diagnosis and treatment of nuclear reactor accidents.

Proc. AAA/, 296-301.
Riege

_
r, C •, and Grinberg, M. 1977. The declarative representation and procedural simulation of causality
m physical mechanisms. Proc. IJCAI, 117-122.

Stephanopoulous, G. 1984. Chemical Process Control. Englewood Cliffs, N.J.: Prentice-Hall.
Underwood, W. 1982. A CSA model-based nuclear power plant consultant. Proc. AAA/, 302-305.

59 (143)

	crop1.pdf
	crop2.pdf
	crop3.pdf

