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Intelligent process control may be viewed as encompassing four major tasks. An intelligent 

agent must monitor the target system to obtain the values of relevant state variables in order 

to detect problems and to ascertain the status of the components that may be employed in 

responding to those problems. An intelligent agent must determine plans for managing the 

current situation. An intelligent agent must select a response (the "best" one) through a 

process of plan evaluation. Finally, to carry out the chosen response, the agent must perform 

plan execution. While monitoring and execution are relatively straightforward operations, 

plan determination and plan evaluation may be accomplished in a number of ways that vary 

in their relative depth of reasoning. In this paper we sketch an analysis for the reasoning 

underlying plan determination and evaluation tasks for a class of intelligent control systems 

that attempt to "provide a safety function." This analysis has two objectives: to illustrate a 

domain-independent mode of analysis for examining progressively deeper models, and to 

make the analysis available to those interested in building systems that provide safety func­

tions. 

INTRODUCTION 

Several authors have noted the distinction between "deep" and "shallow" 
models of expertise in expert systems (Hart, 1982; Chandrasekaran and Mittal, 
1983; Fink, 1985). By shallow models we usually mean that conclusions are 
drawn directly from observed facts that characterize a situation. An adv�ntage of 
shallow models is that they often directly encode the heuristics that experts use 
in performing their reasoning tasks, and they are thus relatively easy to build. In 
addition, shallow models tend to be relatively efficient because they select rather 
than construct their solutions. One disadvantage of shallow models, however, is 
that explicitly stating all the preconditions under which a solution should be 
selected is an error-prone process. Another weakness of shallow models is that 
they are inflexible, unable to deal with circumstances even slightly different 
from those explicitly anticipated (de Kleer and Brown, 1984). In addition, shal­
low models may be difficult to maintain, since what is conceptually a single 
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piece of knowledge may be unsystematically distributed across several objects in 
a knowledge base. Finally, explanations generated from shallow models tend to 
be limited to traces of the inference chains that lead to conclusions. 

In contrast, deep models of expertise correspond more closely to the notion 
of reasoning from first principles. They tend to be more robust than shallow 
models, handling problems not explicitly anticipated and exhibiting higher per­
formance at the periphery of their knowledge. Deep models can also be more 
easily analyzed for correctness and completeness. For example, in device­
centered models of physical systems (de Kleer and Brown, 1984; Davis, 1984), 
each physical device maps directly into a structured object in the representation. 
Deep models of expertise are also more useful for generating explanations in 
that reasoning steps that are usually implicit in shallow models can be eluci­
dated. Deep reasoning is, however, bound to be slower and more complex than 
shallow reasoning because a more sophisticated control structure is required 
(Koton, 1985). 

Abstractly characterizing deep and shallow models and contrasting their rel­
ative merits in a general way provides little direction for knowledge engineer­
ing. In particular, the field lacks a definition of exactly what makes a model 
"deep" and lacks guidelines regarding the appropriate depth of models for a 
given application. We believe that such guidelines should be developed by ab­
stracting from a large set of examples. In particular, we advocate the approach 
of (1) adopting an informal definition of "knowledge depth," (2) isolating high­
level reasoning tasks (e.g., diagnosis, simulation) for analysis, and (3) for each 
such reasoning task, contrasting the merits of models inspired by domains that 
vary in their relative depth. 

In this paper we sketch such an analysis for a reasoning task called ''provide 
a safety function" (which is defined later) in order to achieve two objectives: to 
illustrate a domain-independent mode of analysis for examining progressively 
deeper models, and second, to make the analysis available to those interested in 
building systems that provide safety functions. 

The paper is organized as follows. The next section provides a simple opera­
tional definition of depth that is used in the ensuing analysis. We then define the 
reasoning task "provide a safety function" and identify two subtasks that 
present opportunities for varying depth of reasoning. These subtasks are then 
analyzed. The final section presents a summary and our conclusions. 

OPERATIONAL DEFINITION OF KNOWLEDGE DEPTH 

We need a simple relation_ that will distinguish the depth of models of exper­
tise for a given reasoning task. Our focus is on the explicit representation of 
knowledge in models of expertise, although other notions of depth, which high­
light, for example, multiple perspectives on a domain (Davis, 1984) or notions 
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of causality (Rieger and Grinberg, 1977; Finin and Morris, 1989), are also 
potentially valuable for this purpose. The following is intended only as an infor­
mal, operational definition of the deeper-than relation, which leaves terms such 
as "knowledge" and "model" to intuition. 

Definition: Consider two models of expertise M and M' . We will say that M' is 

deeper-than M if there exists some implicit knowledge in M that is computed 

explicitly in M ' . 

The deeper-than relation is defined over an infinite space of models of ex­
pertise for a given reasoning task. In cases where a reasoning task is decom­
posed into isolated subtasks that present opportunities for varying depth, the 
relation is applied to subtasks rather than to the composite task. For example, 
consider a task t that may be naturally decomposed into subtasks ti and t2. We 
address the relative depth of models for these subtasks rather than for t, for if we 
build a model X and a deeper model X' for ti and build a model Y and a deeper 
model Y' for t2, then the composite models for t consisting of {X, Y'} and 
{X', Y} are not strictly ordered by deeper-than. This occurs in intelligent safety 
systems, as described in the next section. 

1.. 

·INTELLIGENT SAFETY SYSTEMS

AND KNOWLEDGE DEPTH

There has been great interest in intelligent systems that represent and reason 
about physical devices (Bobrow, 1985). One line of research concerns the devel­
opment of facilities that provide advice or take direct action in response to 
system disturbances (Underwood, 1982; Nelson, 1982; Ennis et al., 1986). Of 
these, we focus on systems that provide safety functions in physical systems. 
Providing a safety function involves executing plans to circumvent potential 
crises in physical system environments. 

In nuclear power operations, this encompasses executing "a group of 
actions that prevent melting of the reactor core or minimize radiation releases to 
the public" (Corcoran et al., 1981). Although the term "safety function" origi­
nated in the context of nuclear facility management, we can identify applications 
of the same idea in other domains, including preventing a chemical reactor in a 
process plant from catching fire and preventing the depletion of operating sys­
tem queue space in a large computer installation. Providing safety functions in 

such process environments may be considered an expert-level task, and we will 
refer to a system that employs models of expertise for providing safety functions 
as an intelligent safety system (ISS). 

Generally speaking, an ISS receives a description of the state of the system 
being controlled (the target system) as input and provides a plan of action for 
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circumventing a crisis as output. The work of an ISS may be naturally decom­
posed as follows: 

Monitoring: An intelligent agent (operator or system) must maintain a model of 
the target system by periodically obtaining the values of target system state 
variables. This is necessary in order to detect problem conditions and to 
ascertain the status of target system components that may be employed in 
managing those conditions. 

Plan determination: An intelligent agent must determine possible plans for man­
aging the current situation. In general, the agent determines a set of alterna­
tive plans, which, depending on the domain, may be a complete set or only a 
set of the most plausible plans. 

Plan evaluation: An intelligent agent must evaluate these alternatives plans to 
select the "best" one. In some domains, this may involve simulating the 
alternatives to ascertain their outcomes. 

Plan execution: An intelligent agent must execute the chosen plan. 

Our first task in examining the relative merits of models that vary in depth 
for a given reasoning task is to identify opportunities for varying depth (in the 
sense of the preceding section) that provide some potential advantages (in the 
sense of the first section). For ISSs, monitoring and execution are relatively 
straightforward operations, but plan determination and plan evaluation may be 
accomplished in a number of ways that vary in depth of reasoning. The next step 
in the analysis involves defining and evaluating progressively deeper models for 
performing each of these subtasks. 

REASONING DEPTH IN PLAN DETERMINATION 

We examine four progressively deeper models that may be used to determine 
plans to prevent a crisis: invoking hard-coded plans, determining plans based on 
hard-coded paths of components, generating plans based on system structure, 
and generating plans based on system structure and component behavior. 

Invoking Hard-Coded Plans 

The first model of expertise we consider is the shallowest-hard-coding 
plans for preventing a potential crisis under various conditions. This model is 
conveniently implemented in_ formalisms that encode situation-action pairs such 
as production rules. As an example, consider JESQ (Klein, 1985), one of sev­
eral rule-based systems that constitute YES/MVS (Ennis et al., 1986), an expert 
system for managing large computer installations. JESQ's task is to maintain a 
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Allow-Large-Jobs: 

Priority= 5 

IF remaining-queue-space= low 

printer-setting= only-small-jobs 

small-jobs-left= few 

large-jobs-waiting 

THEN submit command to allow large jobs 

FIGURE 1. Example of a simple JESQ rule. 

"comfortable" level of unused space on an operating system queue, that is, to 
provide the safety function "prevent queue space depletion." The antecedents of 
JESQ's rules describe the states under which the hard-coded plans in their conse­
quents should be performed. For example, the rule in Fig. 1 encodes the plan to 
enable a printer to print large jobs so that queue space may be freed. In effect, it 
enables a path of data flow from the queue to the printer. 

These plans, which specify the movement of data from the queue to other 
components (e.g., tape drives, printers), are based on the structure of the under­
lying computer system being modeled, but this structure is only implicitly repre­
sented in JESQ. As such, JESQ suffers from some of the disadvantages of 
shallow models. For example, the configuration of the computer system may be 
changed, requiring modifications to this and other rules, but there is no system­
atic way of identifying such modifications. In addition, JESQ's rules may omit 
reference to conditions in the computer system which do not usually occur but 
which occasionally render encoded plans unsuccessful. Another limitation of the 
system is that explanations can offer little more than a presentation of the condi­
tions under which plans are applicable. Finally, JESQ can handle only precisely 
the state conditions that have been anticipated. 

According to our definition, a deeper model would explicitly represent the 
potential paths of data flow, although deeper does not necessarily imply better. 
For example, if configuration changes are unlikely or if the encoded precondi­
tions are appropriate most of the time and are of manageable volume, the bene­
fits of a deeper model of plan determination expertise might not justify the cost 
of its construction or the overhead of its execution. 

Determining Plans from Hard-Coded Paths 

The next model to be considered involves explicitly representing sets of 
"' 

components that may be employed to provide a safety function. This approach is 
taken in REACTOR (Nelson, 1982), which provides safety functions in a nu­
clear reactor facility. 
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Potential paths of components that can be used to cool the reactor core are 

encoded in a response tree as shown in Fig. 2. Each path in the tree contains an 

instance of each of the functional components required to provide the safety func­

tion (e.g., water source, heat sink). Part of REAC'IDR's mission is to select, in 
real time, a path made up of components that are correctly operating. 

The primary advantage of this approach is its robustness. Not all potential 

combinations of component failures need be explicitly anticipated, since these 

are coordinated by the response tree structure and associated logic. Another 

advantage is that a change to the configuration is more easily mapped into the 

representation, since paths of components are explicitly represented. Still im­

plicit, however, is the configuration description from which response trees are 

constructed. Since the response tree is hard-coded, only the potential paths of 

components explicitly identified in advance are candidates for selection, and 

configuration changes require that the resulting new paths be identified by a 

knowledge engineer. A still deeper model would reason directly from a sche­

matic to generate the potential paths. However, for applications in which the 

number of potential paths is manageable and the structure of the target system is 

relatively stable, we might not be inclined to consider a deeper model. 

Generating Plans from System Structure 

The next model that we consider involves explicitly representing the config­

uration of the target system and using this description to generate plans for 

circumventing a potential crisis. As an example, we again refer to JESQ's do­

main as cast in the structural representation of Fig. 3. Using this model, plan 

determination adopts the form of searching a graph in which nodes represent 

components and edges represent their interconnections. The search always be­

gins at node QUEUE and terminates at node USER, and each such path through 

the graph represents a candidate path through which data sets may flow in order 
to clear the QUEUE. 

This representation has the advantage that a change in the configuration may 

be directly mapped into a change in the representation, and the knowledge about 

computing plans for moving data sets (searching the graph) remains unchanged. 
It is also more portable than the other representations, requiring only a configu­

ration description for any particular installation. This model is deeper than the 
rules' hard-coded plans, which only implicitly represent the queue-clearing 

paths. This model is also deeper than the response trees of the preceding section, 

because we have hard-coded the mechanism by which paths are generated rather 
than the paths themselves. 

The queue space domain permits the convenience of uniformly treating each 

represented device in the system, because each device is capable of accepting 

and storing data. In domains encompassing devices that do not exhibit this be-
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FIGURE 2. Response tree. (From Nelson, 1982.) 

havioral homogeneity, we would require a still deeper model in order to generate 

plans. Specifically, we would need to reason explicitly about the behavior of 

components, since not all components would play the same functional role in 

providing a safety function. A similar point is made by Ginsberg (1984) regard­

ing diagnostic systems. 

Generating Plans from System Structure and Behavior 

The deepest model of plan determination we consider is based on an explicit 

representation of target system structure and component behavior. This approach 

-

FIGURE 3. Structural model of computer installation. 
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is taken in several systems that perform other reasoning tasks such as simulation 
(de Kleer and Brown, 1984), troubleshooting (Davis, 1984), and verification 
(Barrow, 1984). 

As an example of reasoning from structure and behavior to provide a 
safety function, consider the following hypothetical ISS. Using a spatial repre­
sentation as in Fig. 4 (Stephanopoulous, 1984) and descriptions of component 
behaviors, the ISS generates alternative plans for keeping the reactor (RXRl) 

from catching fire when components fail. For example, if the valve (V3) that 
regulates the coolant flowing to the reactor jacket is stuck closed, the ISS 
searches for a compensating action to lower the temperature of the reactor. The 
search proceeds both forward and backward from the reactor to yield the fol­
lowing alternative plans: close V4, close V5, request A to stop feed stream, 
request A to lower feed stream temperature, request cool temperature material 
from the heating system, and request the heating system to stop. For example, 
the ISS identifies the action '' close V 4'' as follows. The feed stream input to 
RXRl must be such that the temperature of RXRl is normal. Since V3 is stuck 
closed, the ISS must reduce either the temperature or the flow rate of the feed 
stream. Searching backward from RXRl, the ISS examines the behavioral 
model of valve V4, noting that in state CLOSED the flow rate from the valve 
is zero. The ISS searches a list of potential actions to find that action "close 
valve" cause V4 to enter state CLOSED. Thus, the plan "close V4" is a 
candidate for execution to be assessed by the plan evaluation process. 

These components (heat exchangers, reactor, valves) are not behaviorally 
homogeneous, so reasoning about how to maintain a safe temperature in the 

FIGURE 4. Chemical reactor subsystem. (From Stephanopoulous, 1984.) 
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reactor must encompass consideration of the individual behaviors of the com­
ponents that affect it, as well as their position in the system structure. This 
model is deeper than the solely structural model of the preceding section in that 
the behavior of components is explicitly represented and reasoned about. 

VARYING DEPTH OF REASONING 

IN PLAN EVALUATION 

Given a set of alternative plans for providing a given safety function in a 
particular situation, plan evaluation involves selecting the "best" one. We 
discuss three significant levels of depth for evaluating alternative plans: hard­
coded evaluation (explicit priorities), evaluation using utility theory and hard­
coded decision attributes (computation of priorities), and evaluation using util­
ity theory and decision attributes that are themselves computed from a 
structural and behavioral model of the target system ( computation of priorities 
and of underlying attributes). 

Evaluations Encoded as Priorities 

The shallowest representation of plan evaluation that we consider is the 
hard-coded numeric priority. This is a commonly employed approach; for ex­
ample, a priority is associated with each rule in JESQ and with each path in the 
response tree in REACTOR to provide for choosing the best when more than 
one are applicable. 

In rule-based systems like JESQ, priorities specify relative preferences to 
conflict resolution. The antecedent of a rule determines the eligibility of the 
plan in its consequent, and the rule's associated priority indicates its desirabil­

ity relative to other plans. Note that all objectives underlying the desirability of 
a plan (e.g., minimizing cost, maximizing convenience, maximizing the satis­
faction of system users, maximizing speed) are implicitly represented in the 
priority, and this gives rise to several difficulties. 

First, as the rule base grows it becomes difficult to predict the conse­
quences of adding new rules to the knowledge base. In effect, the knowledge 
engineer must understand the basis for the priorities of all existing rules in 
order to assign a new priority to a new rule. Second, the meaning of a priority 
is completely opaque, so there exists no basis for justifying a priority in an 
explanation. Finally, a system that uses this shallow model of choice will lack 
robustness. Because great importance is placed on a single heuristically justi­
fied symbol, the result of changing the priority of a single rule can signifi­
cantly alter the overall behavior of an ISS. 

This model of plan evaluation suffices when the number of plans is small 
and the relative desirability of each plan is obvious. For applications not hav-
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ing these characteristics, deeper models that explicitly represent the factors 
underlying priority selection may be useful for automatically justifying a 
choice among competing plans in an explanation and for facilitating the incre­
mental modification of the knowledge base. 

Utility Theory with Encoded Objective Values 

The next model to be examined involves explicitly representing the attrib­
utes and objectives underlying priority selection in the framework of utility 
theory. Multiattribute utility theory (Keeney and Raiffa, 1976; Hansen, 1983) 
is of particular interest in the domain of intelligent safety systems, where 
multiple, often mutually competitive objectives drive choices between compet­
ing plans. Under this approach, we regard each plan's characteristics with 
respect to each of the objectives that underlie plan evaluation as arguments to a 
utility function that computes the priority for each plan. The utility function 
itself abstractly captures the relationships between objectives that underlie the 
choice of plan and can be thought of as encoding the plant's operational policy. 

Employing an explicit model of choice based on utility theory has several 
advantages over implicit models such as hard-coded priorities. First, since the 
underlying objectives of plan evaluation are explicitly represented, a basis is 
provided for generating explanations regarding choices among competing 
plans. In addition, adding plans to the knowledge base is simplified because 
the knowledge engineer need only score a new plan with respect to the defined 
objectives. 

For example, consider the hypothetical rules for the JESQ domain given in 
Figs. 5 and 6. Each rule consists of an event specification that describes the 
relationships among target system state variable values and determines the 
eligibility of the plans. The plan itself is laid out in the response portion of the 
rule. Finally, the response attributes portion of the rule describes it in terms of 
underlying objectives. 

Either rule may be appropriate, depending on the status of the target sys­
tem at the time of instantiation. If, say, printer2 is not free but tapel is, then 
the copy rule of Fig. 5 would be executed. Alternatively, if printer2 is free but 
tapel is not, then the expensive printing rule shown in Fig. 6 would be em­
ployed. If neither device is free we are out of options.* But what if both tapel 
and printer2 are free? Which plan is better? We essentially need to choose 
between the two heuristics according to the installation's operational policy, 
which enables one to determine the preferred plan using the response attributes 
(Klein, 1989). 

*In an actual implementation, we would also encode heuristics that involve deliberate action to free them.
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ALTERNATIVE copy: 

EVENT: 

queue space is low 

dataset 

name = dsl 

size • 1,000,000 lines 

destination = printer! 

printer status 

name = printer! 

status = broken 

tape drive status 

name "" tapel 

status = free 

RESPONSE: 

copy dsl to tapel 

move tape on tapel to tape library 

move tape from tape library to tapel 

copy dsl from tapel to queue 

print dsl on printer! 

move dsl from printer! to user bins 

RESPONSE ATTRIBUTES: 

excess operator time = 10.0 

excess turnaround time = 34.2 

difference in form = 1.0 

excess cost 1.0 

queue clearing time 15.1 

END ALTERNATIVE 

FIGURE 5. Rule for copying a dataset to a tape. 

Where such scores for the response attributes of plans are reasonably easy 
to formulate this second level of depth suffices for plan evaluation. However, 
in applicati;ns where scores for objectives encompass consideration_ o� the 
behaviors of large sets of components, formulating scores may be difficult, 
encouraging a greater level of depth. Specifically, we m�y wish to reaso? 
about (or compute) the scores for objectives ,rather than assign them. In appli­
cations that employ a model of plan determination that actually g�nerates 
plans, a deeper model of plan evaluation will be required, for ther_e will be no 
way to assign scores in advance to plans that are constructed durmg problem 
solving. 

Utility Theory with Computed Objective Values 

The deepest model of plan evaluation that we conside� for ISSs invo��es 
computing the scores for underlying objectives that are mput to the utlhty 
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ALTERNATIVE expensive printing: 

EVENT: 

queue space is low

dataset 

name = ds1 

size = 1,000,000 lines 

destination = printer1 

printer status 

name = printer1 

status = broken 

printer status 

RESPONSE: 

name = printer2 

status = free 

route ds1 from printer1 to printer2 

print ds1 on printer2 

move ds1 from printer2 to user bins 

RESPONSE ATTRIBUTES: 

excess operator time • 0.1 

excess turnaround time = 0.0 

difference in form 1.0 

excess cost 

queue clearing time 

END ALTERNATIVE 

100.00 

25.0 

FIGURE 6. Rule for printing a dataset on a more expensive printer. 

function. This may be accomplished by formulating another set of (hard­

coded) data from which objective values may be computed for each plan. In 

applications that employ a model of plan determination that actually generates 

plans, we would use the same representation of the target system to support 

both plan determination and evaluation. For example, consider augmenting the 

spatial description of the computer system of Fig. 3 with component descrip­

tions (e.g., processing time per line of data) pertaining to the objectives men­

tioned earlier (e.g., maximize user satisfaction). A plan (path of devices) can 

be evaluated with respect to turnaround time ( one aspect of user satisfaction) 

by summing the processing times of the processors that lie along the generated 

path. Other objectives (e.g., speed of action, work for the operator) would be 

similarly computed. 

This model of evaluation is deeper than that of the preceding section be­

cause, rather than encoding the values for objectives, we encode functions for 

computing them. One advantage of this method is that we need only supply 

local device-dependent data for each represented device in order to compute 

the desirability of actions, rather than making subjective judgments about the 

desirability of predefined paths. 
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SUMMARY AND CONCLUSIONS 

We have characterized the depth of models of expertise in terms of knowl­

edge they explicitly represent and reason about. For the reasoning task "pro­

vide a safoty function," we identified two subtasks that provide opportunities 

for building progressively deeper models of knowledge, described some par­

ticular models for performing each subtask, and reviewed their relative merits 

for some particular domains. 

If knowledge engineering is to become more of a discipline than an art, we 

will need to develop some guidelines that more precisely characterize "depth 

of knowledge" and its implications for intelligent system construction, perfor­

mance, and maintenance. Ultimately, the guidelines would provide a basis for 

selecting among models of varying depth based on general domain characteris­

tics. We believe that such guidelines should be developed by circumscribing 

isolated reasoning tasks and analyzing the relative merits of models of varying 

depth inspired by various domains, and we have sketched one such analysis in 

this paper. Future work will employ alternative definitions of depth in the 

analysis and analyze other reasoning tasks to provide the data on which the 

mentioned guidelines may be based. 
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