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With the explosion of available data and computational power, machine learn-

ing and deep learning techniques are being increasingly used to solve problems. The

domain of cybersecurity is no exception, as we have seen multiple papers in the

recent past using data-driven machine learning approaches for different tasks.

Rule-based and supervised machine learning-based approaches are often brittle

in detecting attacks, can be defeated by adversaries that adapt, and cannot use the

knowledge of experts. To address this problem, we propose a novel approach for

cybersecurity tasks that leverages the supply of ‘explicit’ knowledge expressed as

Knowledge Graphs, as well as the data-driven approaches of machine learning to

ascertain the ‘tacit’ knowledge. The inspiration for this hybrid model is drawn from

the manner in which security analysts work, combining their background knowledge

with observed data from host and network-based sensors.

First, we work on extracting background knowledge from unstructured textual

descriptors of malware. Next, we focus on the tasks of malware detection and



mitigation policy generation. We are specifically interested in the capability of 

synthesizing novel ways in which a malware may carry out an attack that can be 

further used to detect unknown attacks. We combine the background or explicit 

knowledge with explorations in the “action space” of malware detection and malware 

mitigation agents.

Analysts take response strategies for novel malware based on their knowledge 

of past experiences, while also exploring new strategies through “trial and error”. 

In this dissertation, we describe knowledge graph construction techniques from 

open-source text as well as several Reinforcement Learning (RL) based algo-

rithms, guided by explicit background knowledge encoded in a knowledge graph, 

that best mimics the approach of security analysts. We observe that the efficiency 

of RL algorithms has increased by 4% by incorporating prior knowledge. We also 

observe that in simulated environments RL policies are able to generate more pre-

cise mitigation strategies with the help of prior knowledge. Certain parameters that 

measure the precision of mitigation actions, such as network availability, show an 

increase of 50% when prior knowledge is used.
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Chapter 1: Introduction and Motivation

1.1 Introduction

Cybercrime is a growing menace and it has shown a growth of over 600%

during the pandemic [1] years. The financial cost of cybercrime has been rising

consistently by over 15% every year, and some estimates suggest that it will reach

$ 10 trillion by 2025 [2]. The Global Risk report [2] stated that even in the US in

2020, the detection rate is 0.05 percent. However, the silver lining is that with each

passing day a greater number of dedicated security research groups are developing

innovative ways to tackle cybercrime. The increased interest in solving cybersecurity

problems is for the following reasons.

With vulnerabilities present in the software that people use, more sensitive in-

formation is exposed for attackers to collect. Some software vulnerabilities can also

help attackers to gain control of the system. As our society becomes increasingly

reliant on digital platforms and services, maintaining trust in online environments is

paramount. By detecting these attacks, private companies deter potential offenders

and ensure the safety of the users. Cybercrimes can also have severe implications

for national security [3]. Detecting and preventing cyberattacks on critical infras-

tructure, government networks, or military systems is crucial to protect a nation’s
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interests. It helps preserve the integrity and functionality of vital systems, ensuring

the safety and stability of the country.

Relying on signature-based methods to detect cyber-attacks can prove to be

unhelpful as 99% of malware programs are used only once in their current form

before being modified [4]. Such modifications can render signature-based defenses

useless. With more corporations adopting the use of machine learning (ML), we see

a similar trend in cybersecurity as well [5]. ML is an important tool for recognising

patterns in data. In the cybersecurity space, this can be useful to identify the

behavior of a system under attack. However, supervised ML models have limitations

in the cybersecurity space, especially in real deployments [6, 7]. They also suffer

from many of the same shortcomings as signature-based systems, since they are

typically trained on historical data and have limited ability to generalize or foresee

mutations in the training data. Recently, SR Labs analyzed Endpoint Detection

and Response (EDR) systems to find out that relying on specific ‘triggers’ to launch

malware defense mechanisms may not be helpful [8]. This makes it very easy for

skilled attackers to evade the system. Simulating multiple attack scenarios and

testing defenses will lead to a more ‘generic’ defense against attackers. The authors

state that generic defenses are more difficult to evade than defenses that work on

‘triggers’. With the help of Reinforcement Learning RL, we simulate these attack

scenarios to create defenses that are more generic and do not rely on a specific trigger.

RL models are constrained by partial observations of cyber threats, limiting their

effectiveness. Malware behavior varies across environments, making it impossible to

simulate all possibilities. External knowledge from domain experts plays a vital role
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by providing key information to RL algorithms during the learning process. This

external knowledge is derived from open-source text describing cyber-attacks that

we capture and represent in the form of a knowledge graph.

There is a plethora of open-source text available that talks about cyber-attacks

and defense strategies. This is because the exchange of information brings numerous

benefits to the field of cybersecurity [9]. Collaborating with others allows organiza-

tions, both private enterprises and government agencies, to develop a robust cyberse-

curity strategy, which serves as the most effective defense against malicious attacks.

Open-source knowledge about the recent developments in cybersecurity have helped

both defenders and adversaries. MIT published a report [10] about how a security

company BitDefender announced that they found loopholes in a ransomware built

by a group called the ‘DarkSide’.

Mining information from these sources can help us extract key attack indi-

cators and defensive measures. These help both security analysts as well as RL

models as they simulate variants of attacks and determine the best course of action

to mitigate these attacks simultaneously.

Open-source text about past cyber-incidents, as well as general information

or common knowledge can be helpful for detecting cyberattacks. A centralized

knowledge base that records static analyses of malwares, like VirusTotal [11] can

also be helpful. Another contribution of our work, which we will discuss more about

in Sections 5.1 and 5.2, is collecting information from unstructured sources with the

help of Natural Language Processing (NLP). Malware analysts, in order to generate

more information about cyber-attacks, collect malware samples, detonate them in
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a ‘sandbox’ and publish their findings in the form of unstructured text. We have

fused both behavioral information as well as information extracted with NLP tools

to be used by RL algorithms.

For specific tasks, security analysts have the option of querying from these

CKGs to ascertain particular actions that they need to take to tackle the prob-

lems associated with these tasks. A few examples of these tasks can be malware

identification, malware classification and malware mitigation. Since CKGs capture

semantic relationship between different ‘entities’ of interest that are helpful for the

above mentioned tasks, we propose to use them in our ML-based algorithms. Par-

ticularly, we choose reinforcement learning for these tasks. Reinforcement learning

has the ability to emulate the way humans reach a conclusion, by trial and error.

In certain cybersecurity tasks, it is difficult to fit a mathematical equation to min-

imize a pre-defined loss function. This is how most of the data-driven approaches

work in cybersecurity. For example, a loss function would include network activity

as a parameter if the malware uses command and control infrastructure as its at-

tack pattern. However, with novel attacks being more in vogue, it becomes difficult

to formulate loss functions to detect specific types of malware. For continuously

evolving adversaries, it is helpful if we incorporate the CKG information about sim-

ilar attack-patterns. A more natural approach would be to assign what states are

known ‘good’ or ‘benign’ states and what states are indicative of the presence of

a malware. This can be achieved through RL, as we have the option of assigning

rewards for specific state,action pairs. RL algorithms can work particularly well for

cybersecurity [12] because they can leverage their exploration capabilities to dis-
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cover previously unknown attack and defense scenarios. This is an improvement

over signature-based and supervised ML models that do not have the capability of

envisioning intelligent mutations of previously known attacks and unknown attacks.

In this dissertation, we use the knowledge about cyber-entities asserted in

CKGs for helping the RL algorithms designed for specific cybersecurity tasks. The

RL algorithms receive inputs from the CKGs that guide them in evaluating state-

action sequences, as well as state exploration. The cybersecurity tasks that we have

chosen to address are detection, mitigation, and adversarial malware generation. For

all these tasks, CKGs contain specific information that will be helpful. We evaluate

the performance of these models in simulated environments, as well as in generation

policies for detection for real malware data.

The thesis underlying our work is that Reinforcement Learning combined with

Knowledge Graphs will improve malware detection, as well as automatic threat-

mitigation strategy generation.

1.2 Motivation

Conventional ML models have found success in the domain of cybersecurity,

both in theory and in practice. A few years back, Microsoft publicly stated how their

ML based component of their 365 Defender was successful in identifying malicious

files during the Emotet outbreak [13]. They used a simple light-weight ML model

that looks at features such as ‘entropy’, ‘number of sections’ of a file and sends a

classification signal to a more complex ML model running in the cloud. These ML
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models are successful when they are able to discover ‘tacit’ knowledge by simply

looking at the data. They are also useful when the signature-based rules that could

have also been used for the same purpose become very complex. However, if the

objective of the ML model is to alter a few files to mitigate a perceived threat, it

would not be obvious to the ML model that there are certain files in the system

that should not be tampered with. For example, it is common knowledge for cy-

bersecurity professionals that the Master Boot Record holds key information about

the disk, and should not be tampered with. This particular knowledge is ‘explicit’

knowledge, and we do not need further exploration to verify this.

Recently in the AI community, there has been a renewed interest in a discussion

on the differences between ‘tacit’ and ‘explicit’ knowledge [14]. There are certain

pieces of information that an AI agent can discover on its own by looking at the

data, and then there are other pieces of information that the AI agent may not

be able to learn from the data. The data that the AI agent can learn from the

data itself, is defined as the ‘tacit’ knowledge. However, some information cannot

be inferred as easily from the data and there is a possibility that this information

needs to be externally provided to the AI agent. This is what is defined as ‘explicit’

knowledge. Tacit knowledge is something that cannot be verbally communicated

over, but explicit knowledge can be.

Kambhampati, in this opinion piece [14], argues that unfair importance has

been put on data-driven learning for AI agents. This is paradoxical as humans do

not learn that way. AI systems have been built for complex tasks, without any

understanding of the intrinsic knowledge that is required to achieve those tasks.
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Data-driven machine learning can uncover hidden facts, but it is also possible that

it is a more cumbersome approach to realize already known facts. An example

that has been used, is creating an AI agent to solve the Rubik’s cube problem from

billions of examples, rather than using the already established rules of Rubik’s cube.

A similar cyber-security specific argument can be made that we do not need a million

sample points to find out how security analysts check for persistence. Looking at

registry keys should be the first step in this regard.

Although there are two schools of thought that exists in this domain and

one school of thought evidently talks about how everything can be discovered from

data [15], it makes sense to utilize the already existing rules for cybersecurity for

cybersecurity tasks. If we compare a task like image recognition (detection of cats)

with malware detection, a deep neural network can discover features that indicate

that the image is that of a cat. For malware detection, however, a deep neural

network may be able to achieve a high accuracy at detection, but ignoring the rules

set for those specific malware may result in using features that are irrelevant for the

malware. Malware detection for humans is a far more challenging task, compared

to identifying cats. Although data-driven approaches have the option to uncover

unknown ways to detect a malware, it is difficult to say if a good performance on a

test dataset indicates that the AI algorithm reasonably came to the same conclusion

a human did. We want to use the rules set for malware detection, from cybersecurity

knowledge graphs that contain information about past attacks that have been similar

in nature.

However, we do not want to restrict our AI algorithm to only use the rules or
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identifiers that have been generated for previous attacks. We also want to leverage

the capabilities of data-driven approaches to uncover unknown rules that may be

beneficial for cybersecurity tasks, such as malware detection. We propose a hybrid

model, that uses the rules for cybersecurity tasks, that we can garner from CKGs,

and utilizes them in the data-driven approaches for cybersecurity tasks.

Supervised ML and signature-based methods work well with things that are

stationary. An ML algorithm trying to identify pictures of cats, will still be able to

do so till the time cats start to look very different. In the domain of cybersecurity,

active adversaries are looking at what defences work best and are actively trying

to break them. RL can prove to be useful for constantly changing domains like

cybersecurity, since it internally creates a simulation map of different variants that

may spin off from the data presented for training. This helps deal with the problem

of new attacks used by adversaries. Our hypothesis is that exploratory approaches

will work well in this scenario, and thus we choose RL because it can use this to its

advantage. Since adversaries are continuously evolving, pure tacit knowledge may

not be very useful always. A combination of explicit and tacit knowledge will work

well.
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Chapter 2: Background for RL and CKG

In this chapter, descriptions of some of the key elements of Reinforcement

Learning and Knowledge Graph are provided.

2.1 Reinforcement Learning

Reinforcement Learning(RL) has been around for a significant period of time.

The way reinforcement learning differs from other forms of machine learning is that

it espouses a more ‘natural’ way of learning. We have an ‘agent’ that interacts with

the ‘environment’. The agent takes certain ‘actions’ and based on either the quality

of the action, or the states that the agent ends up in by taking an action, a feedback

is provided from the environment. This feedback is called the reward. The key

elements of an RL system are as follows.

• ‘State’: A state is a particular position the agent is at during training. For

example, if we are training an RL agent to play a game of chess, the state

would be the distribution of all the chess pieces across the chess board, at a

given instance.

• ‘Action’: An agent takes a particular ‘action’ in order to transition from a

given state to another state. For example, if an agent is at a state s, and it
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takes a particular action a, it will end up in another state s’.

• ‘Reward’: The transition from one particular state to another is marked by a

feedback. Every transition is associated by the quality of the transition based

on how good the ‘reached’ state is, or how good a state the agent can reach

from the ‘reached’ state. The reward is expressed in the form of r(s,a,s’). This

is a function that has as parameters, the previous state, the action that was

taken by the agent and the state reached.

• ‘Environment’: An RL environment is what dictates the state transfers after

taking specific actions, as well as the reward distibution. The environment can

be a model-based environment or a model-free environment. A model-based

environment obeys a fixed probability distribution for state changes. In partic-

ular we are talking about the probability distribution p(s′, r(s, a, s′)|s, a). This

helps calculate rewards and future rewards better. However, this is unfeasible

in different situations because the probability distribution may be unknown for

state changes. For example, for a drone that is flying in uncharted territories,

it is impossible to know beforehand the probability distribution of different ac-

tions and the possible states it will end up being in. A model-free environment

is one where the knowledge of transition probabilities is not compulsory.

• ‘Policy’: A policy can be considered as a mapping of states and actions for

a particular agent. For every particular state, the policy dictates the action

that the agent is going to take at that state. A deterministic policy is a direct

mapping of individual states and actions. A randomized policy, however has a
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probability distribution that dictates the actions that are needed to be taken

from particular states. Typically, a policy is represented by π(a|s). This

function, π, if randomized, is a probability of taking an action a from state

s. In a problem where we are using an RL algorithm to solve, the policy is

optimized so that it produces the best overall reward. An optimal policy is

typically represented by the function π∗(a|s).

• ‘Value Function’: A value function represents the quality of a state or a state,

action pair. The value function V(s) represents the quality of the state s by

aggregating the rewards and the future rewards that the agent is expected to

collect from all the future states that can be reached from the current state.

For a model-based RL system, the transition probabilities are already known.

Hence, a single V(s) can be used to compute all the future rewards. As we can

see in Equation 2.1, V π(s) represents the value function of state s following

the policy π. Here γ represents the discount factor. The discount factor is a

value between 0 and 1, and it represents how much we care about the future

rewards as opposed to the immediate reward. A value closer to 1, places

a higher importance on the future rewards. For a model-based system the

transition probabilities are already known, and hence we can use a function

called a transition function T(s,a,s’) to calculate the value function.

V π(s) = E

[
∞∑
t=0

γtR(st) | s0 = s, π

]
(2.1)
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V π(s) = R(s) +
∑
s′

T (s, a, s′)γV π(s′) (2.2)

We have seen how we calculate value functions in a model-based setting. Next

we are going to see how we utilize these methods in model-free reinforcement learning

[16]. Model-free RL agents employ prior experience and inductive reasoning to

estimate, rather than generate, the value of a particular action. There are many

kinds of model-free reinforcement learning models such as SARSA, Monte Carlo

Control, Actor-Critic and Q-learning. We specifically utilize the Q-learning methods

[16].

Q-learning agents learn an action-value function (policy), which returns the

reward of taking an action given a state. Q-learning utilizes the Bellman equation in

order to learn expected future rewards. We calculate the maximum future reward

max(Q(s′, a′)) given a set of multiple actions corresponding to different rewards.

Q(s, a) is the current policy of an action a from state s, and γ is the discount

factor. The discount factor is the total reward an agent will receive from the current

iteration until termination, and allows us to value short term reward over long term

reward. The goal is to therefore maximize the discounted future reward at every

iteration [17].

NewQ(s, a)︸ ︷︷ ︸
New Q-Value

= Q(s, a) + α∣∣∣
Learning Rate

[R(s, a)︸ ︷︷ ︸
Reward

+γ∣∣∣∣∣
Discount rate

Maximum predicted reward, given
new state and all possible actions︷ ︸︸ ︷

maxQ′(s′, a′)−Q(s, a)]
(2.3)

12



We update a policy table, also known as a Q-table for every action taken from

a state. A Q-table is simply a lookup table that preserves the maximum expected

reward for an action at each state. The columns represent actions and the rows

represent states. The Q-table is improved at each iteration and is controlled by the

learning rate α [17].

Some other aspects of RL that will be of interest to us in the following sections

are as follows:

• ‘Deep Q Networks’: Q-Learning is a great way of quantifying state-action

pairs. The traditional way of computing Q-values is with the help of dynamic

programming. However, they do not scale well. The complexity of Q-learning

is S.A where S is the cardinality of the number of states and A is the cardinality

of the number of actions. As the number of states and actions grow to the

range of millions, it becomes infeasible to calculate the Q-values iteratively.

Deep Q-Networks, or DQNs are a great way of approximating the Q-values

with the help of a neural network. Mnih et al. [18] put forward the loss function

to approximate Q-values for a given state-action pair. The following equation

tells us, how the Equation 2.3 can be used to create a loss function for DQN

models.

L(θ) = E(s,a,r,s′)

[
1

2
(Bellman−Q(s, a; θ))2

]
= E(s,a,r,s′)

[
1

2

(
R(s, a, s′) + γ max

a′
Q(s′, a′; θ)−Q(s, a; θ)

)2] (2.4)
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The policy gradients can be calculated as such:

θs,a = θs,a − α
∂

∂θs,a
L(θ)

= θs,a − α
(
R(s, a, s′) + γ max

a′
Q(s′, a′; θ)− θs,a

)
(−1)

= (1− α)θs,a + α
(
R(s, a, s′) + γ max

a′
Q(s′, a′; θ)

)
(2.5)

• ‘Inverse RL’: In the situations described above, we are working on an assump-

tion that we know the reward distribution beforehand. This may not be the

case all the time, as in domains such as cybersecurity, we may not have the

knowledge for being able to quantify the good and the bad states. To tackle

these problems, Inverse RL was introduced [19]. Here, the RL agent learns

from an expert performing the task. The goal of this algorithm is to model ϕ in

such a way that the policy emulates the expert. By emulating the expert, the

algorithm learns how to assign rewards for different state-action pairs. Here

µE is the feature estimate of the expert.

R(s, a, s′) = ϕ(s)

minimize(ϕµ(π∗)− ϕµE)

(2.6)

2.2 Cybersecurity Knowledge Graphs

Cybersecurity Knowledge Graphs have been widely used to represent Cyber

Threat Intelligence (CTI). We use CKG to store CTI as semantic triples that helps

in understanding how different cyber entities are related. This representation allows

the users to query the system and reason over the information. The classes and

possible relationships between their instances are dictated by a pre-defined schema.
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This schema also helps in reasoning, as it can help define specific constraints and

axioms that may exist between the classes. For example, we can define a class ‘A’

disjoint from a class ‘B’. So, if we assert an entity in class ‘A’ and ‘B’ both, the

knowledge graph reasoner is going to display an error and not let us perform the

action.

Knowledge graphs for cybersecurity have been used before to represent various

entities [20]. Open source CTI has been used to build CKGs and other agents to

aid cybersecurity analysts working in an organization [21–25]. CKGs have also been

used to compare different malware by Liu et al. [26]. Some behavioral aspects have

also been incorporated in CKGs, where the authors used system call information [27].

Graph based methods have also been post processed by machine learning algorithms,

as demonstrated by other approaches [28–30].

Syed et al. in their paper about the Unified Cybersecurity Ontology [31]

proposed a schema to represent cyber-threat intelligence. UCO 1.0 was based on

STIX 1.2 [32], which is a standard to share cyber-threat information. UCO 2.0 was

based on STIX 2.0 [33], and it has refined the previous version of STIX [20]. We

build the schema of our CKG based on the classes and relationships specified in

UCO 2.0. Some important classes present in UCO 2.0 which are useful in our CKG,

along with some additional new classes to better represent cyber-threat intelligence

from cybersecurity text are:

• Software : An entity that relates to a piece of code usually used as tool such

as Office or Adobe.
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Figure 2.1: Some of the classes and the relationships as shown by the VOWL visu-
alizer.

• Exploit-Target : An entity that relates to the site of the attack usually targeted

by a malware such as Android or an operating system like Windows.

• Malware : An entity that refers to malicious code and/or software which is

inserted into a system.

• Indicator : An entity that contains a pattern which helps the administrator

to indicate an ongoing attack or malicious activity.

• Vulnerability : An entity that refers to a patch of bug or weakness that could

be exploited by ill-intended users.

• Course-of-action : An entity that refers an action or set of actions that either

prevents or responds to an attack.

• Tool : An entity that refers to legitimate software that can be used by threat
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actors for malicious activities.

• Attack-pattern : An entity that refers to steps that could result in an active

attack on an individual or group of users.

• Campaign : An entity that refers to grouping of activities that could lead to

a malicious attack.

• Filename : A file which is used by the malicious software to execute the attack

• Hash : A SHA-256 hash of an executable which may be used to identify an

attack

• IP Addresses : An IP Address or addresses which a malicious software may

be using in the course of the attack

Pingle et. al, in their paper about CKG improvement and UCO 2.0 [20], have

defined the classes and the relationships, necessary for the schema of our CKG.
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Chapter 3: Related Work

In this chapter, we describe some of the relevant work that has been done in

this research area.

3.1 OSINT and CKG

Unstructured text about a cyber-attack provides security analysts with knowl-

edge, extracted and captured in a mandated format, so that they are able to use

this information to analyze future attacks. The vast collection of these text reports

about cyber-attacks fall under the umbrella of Open-Source Intelligence or OSINT.

There is a wide variety of OSINT that is available to researchers. Although

they have varying degrees of credibility, all these sources are capable of provid-

ing critical information that can help security researchers identify cyber-threats.

There are organizations like CVE [34]that collect Cyber-threat Intelligence (CTI).

The cyber-threat information contains textual descriptions of known vulnerabilities.

Other sources of similar information are the National Vulnerabilities Database [35]

and CWE [36]. Technical reports published by official security agency websites like

Kaspersky [37] and FireEye [38] make a reliable source of information to mine in-

telligence. This makes these reports a credible source of intelligence, as opposed
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to mining data from dark web logs, or social media as demonstrated by Mittal et

al. [21–23], where the authenticity of the information, cannot be verified. How-

ever, even dark web logs, technical blogs, and social media contribute to the cyber-

knowledge available to the general public.

After Action Reports (AARs) are different from technical blogs and include

more technical details about malware behaviour. An AAR gives security analysts

technical details and knowledge about a cyber incident. Cybersecurity blogs, differ

from AARs and do not capture ample technical information. Sometimes, even su-

perficial information about cybersecurity can be helpful for modeling cyber-threats

and representing them. Apart from these sources, there are software companies that

publish security vulnerabilities existing in their own products [39, 40]. They often

mention possible ways to patch those vulnerabilities which also makes beneficial

sources of information for aggregating security intelligence.

3.1.1 Cybersecurity Knowledge Graphs

A knowledge graph is a set of semantic triples, which are pairs of ‘entities’ with

‘relationships’ between them. Cybersecurity Knowledge Graphs (CKGs) have long

been used to represent Cyber Threat Intelligence (CTI). To represent CTI in a CKG,

the first step is to identify what entities and relationships need to be asserted. We

also use an ontology called ‘Unified Cybersecurity Ontology’ (UCO) [31] to provide

our system with cybersecurity domain knowledge. UCO is based on Structured

Threat Intelligence Language (STIX 2.0) [33] which provides a schema to represent
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cyber-threat intelligence. CKGs have also been developed from other open-source

information by Mittal et al. [21, 23]. CKGs and knowledge graphs have also been

used to create various analyst augmentation systems [24, 25, 29, 30, 41, 42]. Next,

we discuss the 3 main components of our system - a named entity recognizer, a

relationship extractor, and a system to compare the various malware nodes in the

CKG.

3.1.2 Named Entity Recognition

Named Entity Recognition (NER) for cyber-threat information extraction have

been built using Conditional Random Fields (CRF), Support Vector Machines [43],

and neural networks [44]. Ekbal et al. in their paper [43] have proposed a lan-

guage independent algorithm for detecting named entities. Recently, Bi-directional

LSTMs are being used to recognize named entities. Even in the field of CTI, entity

extraction has been done with the help of deep learning [45] [46]. Some of the ap-

proaches, in the field of CTI, have also demonstrated the use of neural networks on

hand-picked features which yielded better results [47] [48]. Despite the widespread

applications of Long Short Term Memory (LSTM), the use of CRF-based classifiers

for entity extraction have continued to remain state of the art [49]. Using BiDirec-

tional LSTMs, aids in the process of capturing (or forgetting) long term context,

which is necessary to predict an entity class. However, some of the entities that we

are interested in, like ‘filenames’, ‘IPAddresses’, or ‘hashes’, do not need contextual

information to be predicted into the correct class. Capturing diverse context for
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these classes may even be detrimental for the task of entity classification. Moreover,

BiLSTMs overfit with limited data. Thus, we build our own entity extractor for

cybersecurity text based on CRFs and regular expressions (See Section 5.1.1).

3.1.3 Relationship Extractor

Relationship extraction predicts the links or the relationships existing between

pairs of entities extracted by our system. There has been significant work done

in the field of relation extraction between entities. Relationship mapping can be

many-to-many, many-to-one, or one-to-one. TransH models [50] have worked on

extracting many-to-many mapping by shifting vector spaces in hyperplanes. TransE

models [51] have used head and tail entities to predict one-to-one mapping. Sparse

vectors have also been used [52] to predict relationship mapping, which was an

improvement over TransH and TransE models. We use the Relationship Extraction

method proposed by Pingle et al. [20], which is our previous work in this area.

The Relationship Extraction algorithm uses vector encodings of individual entities

created using word2vec [53]. These vector representations help capture the context

of the cybersecurity entities in text, which aids in the task of relationship prediction.

3.1.4 Utilizing CKG for Malware Comparison

There has been significant research done in the area of comparing malwares.

Some of these approaches use machine learning after extracting features about these

malwares [26]. One interesting approach generates graphs on instruction traces of
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target executables [28]. The authors subsequently used machine learning algorithms

to classify various softwares as benign or malicious. Other graph-based approaches

include building behavioral graphs of malwares, based on system calls as demon-

strated by Park et al. [27]. After constructing these graphs, the authors propose a

method of subgraph matching to calculate similarity between malwares. However,

this approach would encapsulate only the system behaviour at the site of attack. It

does not necessarily capture broader details like, what is the target software, or if

this malware is a part of a bigger campaign. It will not capture, the attack pattern

of the malware in natural language. The CKG that we are building has technical

details, as well as broader details about campaigns launched, tools used, softwares

targeted, etc. Thus we can use the CKG, extract triples about a malware, and com-

pare it with the triples about another malware and simply compare them, to cluster

similar malwares. Jiang et al. in their paper [54], have proposed a method of

recreating the semantic view of the host machine in a virtual machine and running

malware analysis in the VM to tackle the problem of malware hiding from detec-

tion software. The paper demonstrates how, by recreating the semantic view of the

host machine in the VM, it is possible to identify ‘self-hiding’ malware by using

file comparisons. Although it is possible to detect newer varieties of malware using

the semantic view, it does not give us higher level details about the malware. The

semantic view that has been recreated in the paper is focused on system specific met-

rics. Some examples of these metrics are processes, memory, files. Our CKG based

on STIX, captures not only system specific information, like filenames and hashes,

it is also able to capture a wide range of details which aids security researchers. For

22



example, by performing analysis in an infected machine, we may be able to gather

the information that a file is suspiciously trying to connect to a remote IP Address

and is trying to transmit some information. AARs, having already analyzed this

may be able to assert that this is due to the ‘command and control infrastructure’

that the malware is using. Since we gather our information from AARs, we identify

these keywords and populate the CKG. So a security researcher can easily search

for all malwares using ‘command and control’ infrastructure in our CKG and will

be presented with appropriate results.

3.2 Reinforcement Learning in Cybersecurity

Security is critical in maintaining the integrity of cyber systems. Technological

innovations have lead to complex system architectures that are increasingly hard to

protect. Pre-emptively identifying attack scenarios and taking mitigating actions is a

complex task. There is no perfect solution to it yet. AI, especially ML, can be helpful

in answering questions to which there is no easy answer. ML techniques have been

previously used in the domain of cybersecurity for intrusion detection [55], malware

detection [56], and cyberphysical attacks [57]. However, traditional ML techniques

are not ideal for to emulate how a security researcher conducts malware analysis.

The shortcomings of traditional ML techniques in the domain of cybersecurity have

been discussed in Section 1.1.

RL is an alternate strategy for automatic resolution of tasks in domains where

the correct answer is not known. This technique is popular in the field of game
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playing [58], robotics [59] and even for biological data [60]. There are similarities

in the problem space of game playing and attack identification and mitigation in

the cybersecurity domain. Previous literature explore how applications of RL can

be applied to various aspects of cybersecurity. The 2016 study by Feng et al. [61]

characterises cyber state dynamics as a function of physical state, control inputs,

disturbances, and current cyber attacks and defenses. The cyber defense problem

was then modeled as a two-player zero-sum game. An RL algorithm was used to

efficiently learn the optimal cyber defense strategy in the problem space. Some of

these models generate adversaries to train the RL algorithm by changing some of

the parameters of the malware sample that may make it lose its potency. In our ex-

periments, we use the behavior of actual malware samples. We do not automatically

generate adversaries yet as there are challenges to preserve the malware potency.

Robustness in the cyber-physical space measures the resiliency of a given spec-

ification being satisfied. The security problem is to find candidates with minimal

robustness (counterexample) by falsification or changing of input and parameters of

the system. Conventional methods, such as simulated annealing and cross entropy,

require a large number of simulation runs to the minimize robustness. Akazaki et

al. [62] proposed the use of RL techniques, i.e., Asynchronous Advantage Actor-

Critic (A3C) and Double Deep Q Network (DDQN), to reduce the number of sim-

ulation runs required to find such counterexamples. Intrusion detection is also an

important defense technique and current techniques leave room for improvement.

Xu et al. [63] proposed a kernel-based RL approach using Least-Squares Temporal-

Difference (LS-TD) for intrusion detection that showed better accuracy than Hidden
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Markov Model and and linear TD algorithms. Shamshirband et al. [64] discuss the

challenges in detecting malicious behavior in Wireless Sensor Networks (WSNs).

They explain why traditional intrusion detection methods fail to detect distributed

denial-of-service attacks and propose a Game-based Fuzzy Q-learning (G-FQL) algo-

rithm that combines game theoretic approach and the fuzzy Q-learning for intrusion

detection in WSN.

Although these papers use RL for malware analysis, these approaches do not

take advantage of prior knowledge about the domain when developing an attack

detection and mitigation strategy. The inability to use pre-existing knowledge, puts

prior RL algorithms for cyber-security at a significant disadvantage. The AI has very

limited idea in the beginning about the environment the malware is acting on, and

the possible actions that a human, who is an expert in this domain, would take. The

same disadvantage burdened the RL algorithms for mobile robotics. In 2004, Moreno

et al. [65] proposed a supervised reinforcement learning for mobile robotics that takes

advantage of external knowledge and validates it in a “wall-following” behaviour.

Although the paper broadly discussed about ranking the ‘prior human knowledge

sources’ by changing the exploration probability distribution, it also briefly discussed

about how it can be used to improve performance. In our study, we use a variant of

this technique in one of our experiments. The key difference is that we are utilizing

CKGs that already hold knowledge about cybersecurity and we do not have to rely

on expensive human inputs.
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Chapter 4: Methodology

4.1 Main Architecture

The system that we are proposing will have two main components. One sig-

nificant component is building a cyber knowledge extraction pipeline that can take

an unstructured piece of text describing a cyber-attack as an input and identify

key pieces of information present in it. We have presented a brief description of

cyber-knowledge extraction in general in Section 2.2. The second component is us-

ing this information in a RL algorithm for different cybersecurity tasks like malware

detection, mitigation, and also adversarial malware generation.

If we look at Figure 6.5, we can see how an unstructured piece of text is

provided as an input to the knowledge extraction pipeline. The unstructured piece

of text can be a malware After Action Report, social media feeds, dark web or reddit

logs about malware, etc. It is then fused with other sources of information that can

be structured or unstructured. It will be helpful if these sources of information can

tell us about how certain system parameters behave in the presence of a malware,

compared to the absence of it. This enriched knowledge is particularly useful for

detecting new variants of malware. By querying this CKG that has been enriched

by the fusion process, we can retrieve key pieces of information that can help us
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model an RL algorithm for specific cybersecurity tasks. We will first talk about the

motivation for selecting our tasks and then move onto more details of our individual

components.

4.2 Motivation for Task Selection

From the perspective of a cybersecurity professional, it helps to visualize cy-

bersecurity problems with three categories.

• ‘Nothing bad will happen. Find out before it acts’

• ‘Something bad has happened. How do we stop it?’

• ‘Something bad will happen. How do we know beforehand?’

The primary work that is going to help us in achieving all the aforementioned

tasks is automating the interaction between a CKG and the RL algorithm designed

specifically for the task. The parameters of the RL algorithm will change as the

tasks change, and we want to retrieve those parameters from a CKG instead of

handcrafting generic rules that may not perform well for all tasks.

When we speak of finding out before a malware acts, we mean improving the

detection of the malware. This can also be mapped to mitigation tasks, if we are

patching vulnerabilities before an adversary has gained access to a system. When we

say that ‘something bad has happened’, we mean an adversary has already gained

access to a victim’s system. The goal here should be to stop the adversary from gain-

ing access to all the sensitive details of the system. We can visualize this particular
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situation as a defender working against an adversary in a ‘Capture the Flag’ type

setting. The last category talks about knowing beforehand that something bad will

happen. This can be mapped to adversaries that can also leverage the information

present in CKGs to generate more efficient malware. If we create a model that can

use the CKG’s information, we will be able to include these malware samples in a

potential malware classifier in future, or even in our malware detection framework.

As we said before, we are now going to discuss the components of our proposed

system that can help us achieve these tasks.

4.3 Cyber Knowledge Extraction

Figure 4.1: An architecture diagram specifying the different steps of our method

The cyber knowledge extraction pipeline, as seen in Figure 4.1, takes an un-
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structured piece of text as an input and produces semantic triples relating to cy-

bersecurity. Security researchers perform analysis on malware samples and publish

them in the form of technical reports or After Action Reports. Some of this infor-

mation can also come from companies that are actively involved in finding security

threats in their own products, and benevolently informing the general public of

their findings [39,40]. The knowledge extraction would require state-of-the art NLP

techniques to identify key entities present in an unstructured piece of text about

cybersecurity. The first part of the knowledge extraction would relate to this. The

key entities that are extracted from the piece of text requires Named Entity Recog-

nition. By recalling the useful classes and relationships that we mentioned in Section

2.2, we are able to identify the target classes. In order to train a classifier that is

going to extract information that can be mapped to those classes, we need an an-

notated corpus of cybersecurity text. We want this classifier to work on a variety of

cybersecurity text. Since long pieces of cybersecurity text and smaller pieces of text

like CVE descriptors, that are also useful, are structurally very different, our corpus

needs to be inclusive of examples from a variety of sources. The trained classifier

for Named Entity Recognition needs to extract entities from these sources and also

other pieces of unseen text.

Figure 4.2: An example of extraction of entities and relationship extraction from a

small piece of text
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The output of the previous step is a list of entities extracted from a piece of

text. The next step in this process is relationship extraction. We provide pairs of

extracted entities as an input to the relationship extractor and we expect a correctly

predicted relationship that should exist between the pair of entities. If there is no

possible relationship between the pairs of entities, the relationship extractor should

be able to identify that as well. Figure 4.2 provides an example of how the knowledge

extraction would work on a small piece of text.

4.4 Enrichment of CKG by Fusion of Knowledge from Other Sources

The CKG should not limit itself to the knowledge extracted from text sources.

The knowledge does not always come from credible sources, since we plan on using

open-source text. In order to improve this knowledge, we also need information

resulting from the actual detonation of a malware.

This not only improves the quality of knowledge, but it also enriches our CKG

as it provides the CKG with additional knowledge. One way to approach this would

be to assert the behavioral data after detonation of a malware. If we get data about

how certain system parameters change after a malware is active in the system, it

would help an RL agent to observe those specific parameters to identify the presence

of the malware.
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4.5 Making CKGs Robust against Poisoning Attacks

After we create this knowledge graph, we need to ensure that the informa-

tion present was correct and/or stood the test of time. Data poisoning is a real

problem for these knowledge graphs built from OSINT. We create SVM-based ML

models that detect poisoned data based on metadata from the data source, such as

reddit text descriptors. This helped in processing the OSINT that is not poisoned.

However, with the advent of Generative Pre-trained Transformers (GPT), it is pos-

sible to generate realistic OSINT for cyber-attacks. Detecting what is generated

or fake CTI and what is real is challenging even for human experts. We create a

graph neural-network-based trust score for semantic triples in our knowledge graph.

This score can also be used to filter possibly poisoned semantic knowledge. We will

discuss more about this in Sections 5.2 and 5.2.1.

4.6 Reinforcement Learning Tasks

We plan to address the issues mentioned in Section 4.2 with the help of three

specific tasks. The first task, described in more detail in Section 6.2, helps in

the interaction between RL and CKG for malware detection and mitigation. This

follows the problem statement: ‘Nothing bad will happen’ and ‘Something bad has

happened’. This interaction, if automated, can help the RL agent to communicate

with the CKG to improve reward metrics and also explore more on some suggested

actions. For detection and mitigation, an important step for RL is to identify the
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‘state-action’ pairs that are good (or bad) for the objective. Our goal is to take

advantage of the enriched CKG that contains information regarding the system

parameters to look out for. These system parameters when incorporated in the

reward function, can help in differentiating between the ‘good’ state-action pairs

and the ‘bad’ state-action pairs. Another important step is to guide the exploration

of these actions that are useful. An RL agent can take a long time to understand the

actions that are proving to be useful for a specific task. Depending upon the problem

and the RL agent’s exploration, it may or may not be able to find out the optimal

action sequence for an objective. We can use the CKG to suggest certain actions

to the RL agent that it can explore more, instead of randomly choosing an action

to explore. This can help the RL agent to be successful in finding out the optimal

action sequence. However, we do not want to limit the RL agent’s exploration to

the suggested action. We want the RL agent to explore the suggested actions, as

well as other actions through random exploration.

Further discussion on ‘Something bad has happened’ is presented in Section

6.4. Since CKGs contain information about the ‘Course-of-Action’ required to miti-

gate a threat, this becomes particularly useful for automatically generating strategies

to thwart a cyber-attack. In order to anticipate future attacks and address the issue:

‘Something bad will happen’, we also discuss simulating a cyber-attack in specific

environments to understand how certain nodes can have vulnerabilities exposed for

an intelligent attacker. We leverage the information present in the CKGs to aid in

the discovery of new attacker policies and defender policies. This is motivated by

the use of both tacit and implicit knowledge in human intelligence in our day-to-day
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lives. The information contained in knowledge graphs can be imagined as absolute

truth, which does not need to be learned (again) through experience. However,

because these knowledge graphs often work in open-world domains, there is infor-

mation that is true but not contained in these knowledge graphs. New information

can be uncovered using exploratory algorithms, such as RL.

In the next sections, we will look at each of these components in more details.

We will discuss our findings, and provide an outline of future directions of this

research.
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Chapter 5: Cyber Knowledge Extraction

In this chapter, we will discuss the core components of our model. We will

discuss the experiments that we performed and our conclusions from them.

5.1 Named Entity Recognition (NER) and Relationship Extraction

In our paper [66], we described a system that takes After Action Reports

(AARs) as an input and automatically generates a CKG as an ouput. The three

main components of our system are as follows:

• MEE : A Malware Entity Extractor which has been trained over annotated

pieces of cybersecurity text, to predict cybersecurity entities in an AAR.

• RelExt : A relationship extractor which has been trained over cybersecurity

data, to predict a relationship between pairs of entities extracted by MEE.

• CKG : Cybersecurity Knowledge Graphs which are populated with the entity

relationship sets of the extracted data. The CKG represents the unstructured

data present in the AAR into a structured ontology.

We have published two key papers in this area [20, 66]. The MEE is a CRF

based classifier that takes an unstructured text as an input and tries to map it
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to the UCO based classes mentioned in Section 2.2. For some of the classes the

contextual information is not necessary, and the predictions are better if we simply

concentrate on the structure of the words in the text. This is pertinent to ‘IP

Addresses’, ‘Filenames’, and‘SHA-256 Hashes’. For these classes, we exclusively use

regular expressions for detection. The Relationship extractor [20] is a deep neural

network based classifier. It takes Word2Vec [53] embeddings of the pairs of entities

extracted by the MEE as an input. The output is a relationship that exists between

the pair of entities. The classification scores for MEE and RelExt can be seen in

Tables 5.1 and 5.3 respectively .

5.1.1 MEE

General purpose NERs do not necessarily work well for a particular domain.

In some cases, it is imperative that we build a dataset on our own if we want

to build an NER for a particular domain. Most of the prior work on NER for

cybersecurity has concentrated on CVE and NVD feeds for their data. Annotated

datasets required for supervised learning are not readily available for cybersecurity.

Even if an annotated dataset is available, it is difficult to reach a consensus about

what classes need to be extracted from the data. Recently an NER corpus for

cybersecurity has become available for researchers to use [67]. But even this dataset

has concentrated only on twitter feeds, and annotated the feeds with a few classes

that may not necessarily help cyber-researchers to extract meaningful information.

In order to compare different NER algorithms, we need to test them on a dataset
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that has a mix of different types of feeds. We create a dataset of 2100 sentences

collected from various sources.

• Microsoft Security Bulletin [39]

• Adobe Security Updates [40]

• Twitter feeds

• Long Technical Reports

• Common Vulnerabilities Enumeration [34]

• National Vulnerabilities Database [35]

These sources provide a mixed bag of sentences which is ideal for testing

out different algorithms for NER. Some NER algorithms trained on CVE and NVD

sentences may not work well for long technical reports. The information in sentences

from small pieces of text is often condensed, compared to sparse descriptive reports

about cyber-attacks. We have curated 550 pieces of text from Microsoft and Adobe

and we have 474 Technical Reports about cybersecurity.

In Table 5.1, we look at the performance of a CRF based classifier on var-

ious cyber-entity classes. We also conduct a comparative study of deep learning

algorithms for cyber entity extraction [68].

In Table 5.2, we observe that the models using BERT embeddings, even though

not trained entirely on a cybersecurity corpus, achieve better scores than models

using Word2Vec embeddings. Among the models using Word2Vec embeddings, we

can see that the CNN based models perform slightly better than the CRF based
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Entity Classes Precision Recall F-1 Score

Attack-Pattern 77 63 69

Campaign 92 74 82

Course-of-Action 80 62 70

IP Addresses 100 88 93

Hashes 100 100 100

Exploit-Target 77 90 83

Filenames 80 90 85

Malware 83 83 83

Software 86 88 87

Tool 80 90 85

Vulnerability 73 53 62

Average 91 92 91

Table 5.1: Precision, Recall, and F-1 score for Entity Classes evaluated across the

test sets of the corpus.
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Table 5.2: Comparison of Results of Deep Learning Algorithms for Cyber Entity

Extraction

Test and Validation Results

Method Test Acc. Validation Acc. Precision. Recall. F-1.

Stanford NER 91.6 90.8 78.00 78.00 77.00

Domain independent Word2vec+LSTM +CRF 96.96 96.71 85.00 77.00 81.00

Domain independent Word2vec+BiLSTM+CRF 97.40 97.09 88.00 80.00 84.10

Domain independent Word2vec+CNN+LSTM 97.59 96.64 84.00 80.00 82.00

Domain-specific Word2vec+LSTM +CRF 97.31 96.16 90.00 76.00 82.40

Domain-specific Word2vec+BiLSTM+CRF 97.20 96.80 88.00 81.00 84.30

Domain-specific+CNN+LSTM 97.66 97.18 90.00 81.00 85.20

BERT+LSTM+CRF 97.73 96.93 90.00 83.00 86.20

BERT+BiLSTM+CRF 98.10 97.18 93.00 84.60 88.60

BERT+CNN+LSTM 97.50 96.80 91.00 80.30 85.30

aF-1 score is the key evaluator for performance

models. The character level understanding is helpful for Word2vec, but since BERT

has built-in character level information in its embedding step, it is not necessarily

an advantage.

5.1.2 RelExt

We take pairs of malware entities captured by our MEE and pass it to the

next stage of our pipeline, which establishes a relationship existing between a given

pair of entities.The RelExt is essentially a neural network that takes two vectors

representing two entities extracted by our MEE and predicts a relationship between
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Relationship Classes Precision Recall F-1 Score

hasProduct 49 97 65

hasVulnerability 92 74 82

uses 100 88 93

indicates 80 90 85

mitigates 55 70 62

related-to 92 74 66

Table 5.3: Precision, Recall, and F-1 score for relationship classes.

them. We train a Word2vec [53] model separately and the extracted entities are

passed to the model to generate their respective embeddings. The dimension of the

embeddings is 200. The RelExt neural network takes a pair of embeddings as input.

It has ab input layer, 3 hidden layers, and a softmax layer as output. The dimension

of the input layer is 400 and the hidden layers have dimensions 200, 100, and 50

respectively. The output softmax layer has a dimension of 6.

Before we send entity pairs to RelExt, we perform post-processing of candi-

date entity pairs based on the pre-defined schema of our CKG. We only pass the

entity pairs, which can have a credible relationship between them, and we discard

the pairs of entities which, according to the schema of our CKG, cannot have any

relationship. For example, there can be no direct relationship between a ‘Software’

and a ‘Filename’, according to our CKG, so we do not pass entity-pairs which are
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of the type ‘Software’ and ‘Filename’ as candidates to our next stage. Since we

have already defined a schema for our CKG, we automatically filter out pairs of

entities which do not have credible relationships between them. This component

of our pipeline, is a neural network, which takes in two entities as input and then

predicts a particular relationship which exists between the two entities.

The first stage for relationship extraction is to represent the input entities in a

vector form, which is suitable for neural networks to perform matrix multiplication.

The output of the MEE (See Section 5.1.1), merely produces a class type, or entity

type, for a particular word, which is not sufficient for neural networks. So we take

the corpus we used for training the MEE, and generate word2vec embeddings [53]

for each word. Word2Vec is a technique to represent words present in a corpus.

Word2vec algorithm captures the context of each word in the corpus, and represents

each word with a vector of a specified length. We train word2vec on a corpus of

cybersecurity text from NVD [35], CVE [34], and STIX data from TAXII servers [20],

to represent each entity captured by our MEE.

The second part of the relationship extractor is to train the neural network

with the help of a training set made from NVD, CVE and STIX datasets. We have

labeled pairs of entities and the relationship which exists between them. Our dataset

consists of a total of 33,000 labeled relationships. We split the dataset into a training

set and validation set. We use different split ratios: 80 (train), 20 (validation); 70

(train), 30 (validation); 90 (train), 10 (validation).

We then train the neural network model RelExt to produce the output class of

relationship that exists between the pairs of embeddings. We see the performance
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of this relext model in Table 5.3.

5.1.3 CKG Assertion and Fusion

Figure 5.1: Hellsing malware entities in the Cybersecurity Knowledge Graph.

After we generate the entity-relationship set, which is the output of the re-

lationship extraction component of our system, we are able to assert this data to

our CKG. We base our knowledge graph schema on STIX (Structured Threat In-

telligence) [33] and use UCO 2.0 [31] to provide cybersecurity domain knowledge to

the system. The output of the relation extraction is a set of semantic triples and

the types of the individual entities. Entity classes, relations, and the specific classes

which act as a domain or range of each relation describe the schema of a knowledge

graph.

In our dataset, we encounter multiple AARs describing the same attacks or

malwares. Ideally, we would like to fuse knowledge extracted from different AARs

describing the same malware to create a more robust CKG.
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If an AAR entity has been already asserted in our CKG and an exact match

is available, we simply declare a ‘owl:SameAs ’ assertion and fuse the graph enti-

ties. Here we declare that the two entities nodes and subgraphs are the same. If

there is no exact match for a newly discovered AAR entity, we calculate the term

frequency–inverse document frequency (TF-IDF) scores to calculate similarity be-

tween the current document and previously processed AARs. We also calculate

string similarity between new entities and entities which are already asserted using

various ‘edit-distance’ metrics. If there is a close match, we fuse them. Fusion helps

us discover knowledge about a malware or a cyber-entity which is found in multiple

AAR sources. This makes our CKG more robust, with more information about

cyber-entities ingested. Here is an example query on the ‘unfused’ CKG.

SELECT ?x WHERE {

?x a CKG:Malware;

CKG:uses

CKG:588f41bbc117346355113f.}

The above query returns:

Hellsing

The same query on the ‘fused’ CKG returns:

SELECT ?x WHERE {

?x a FusedCKG:Malware;

FusedCKG:uses

FusedCKG:588f41bbc117346355113f.}

42



The above query returns:

Hellsing, XWeber

In Figure 5.1 we see how the Hellsing malware and its attributes are identi-

fied and asserted in the CKG. We can see that ‘Hellsing’ ‘uses’ different files like

‘cmd.exe’, ‘test.exe’, and ‘xKat.exe’. This was created using the entity relationship

sets from two reports about the same malware. One of them mentioned the file-

name ‘xkat.exe’ and the other report mentioned a filename called ‘xKat.exe’. An

edit-distance algorithm helped us calculate the similarity between the two entities

and we used an ‘owl:SameAs’ relation to assert that those two individuals were

identical. All relationships held by one of the nodes will hold for the other as

a result of the ‘owl:SameAs’ assertion. We also see other entities identified. For

example, ‘7zip archive’ is a ‘Tool’ which is used by the Hellsing malware.

5.2 Understanding Poisoning Attacks on CKGs and Knowledge Ver-

ification

A CKG that has been built from the information extracted from OSINT text

is limited to the information provided by the author of the text. However, an author

sometimes focuses on a particular aspect of the malware. For example, the writer

of this text at Figure 5.2 does not say how she suspects that the firewall has been

compromised nor how she determined that the file was being downloaded every 90

minutes. However, she does infer that the malware has been using a ‘weak password’

vulnerability, which is something that may not be easily inferred by simply observing
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Figure 5.2: (a) An excerpt of a CTI describing a malware. (b) The knowledge graph

representation of the CTI.

the system parameters of the behavior data. If we merge the information that has

been stated online about the malware with the behavior data, we can get an enriched

CKG.

If we only consider information extracted from open-source text, our CKG

will have to rely on the conclusions derived by the authors of the text. For text

written by a trusted security organization, we can say with some confidence that the

information is likely to be correct. However, very often, open source text describing
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a malware is written by someone whose identity cannot be verified, which raises

a question on the quality of information present in the knowledge graph. Since

our knowledge graph’s underlying schemas are based on ontologies, constraints, and

rules defined in OWL [69], contradictory information can be detected. If an author

claims that the network activity will increase after the malware infects a system,

and our behavior data says that there has been no increase in the network activity,

we can infer that there is a reasoning error. This will lead us to conclude that

the information stated by the author may not be correct, thereby improving the

reliability of our CKG. In this paper [41], we describe a method to collect the system

behavior when a malware is active in the system. We analyze the system behavior

and fuse this data with CTI collected from OSINT. If we want to query from the

information asserted in the fused knowledge graph, we can run the following query.

This simply translates to ‘which parameters have their maximum values changed for

the malware which has the hash: ‘5d10bcb15bedb4b94092c4c2e4d245b6’. A point

to be noted here is that the values returned have their maximum values changed by

a significant amount. For our experiments, we chose this threshold as 30%.

SELECT ?x WHERE {

BKG:5d10bcb15bedb4b94092c4c2e4d245b6

BKG:hasParameter ?x.

?x BKG:parameterchange

BKG:increases_maxchange.}

This query results in two values:
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cpu_children_sys,io_write_bytes

5.2.1 Fake CTI Generation

In this paper [70], we highlight the potential risks of fake Cyber Threat In-

telligence (CTI) being used to attack cyber-defense systems. We demonstrate how

transformers, such as GPT-2, can automatically generate plausible fake CTI text

that can mislead these systems. The generated fake CTI can be used in data poison-

ing attacks, leading to incorrect reasoning outputs, and representation poisoning.

The study reveals that cybersecurity professionals and threat hunters were equally

likely to consider the generated fake CTI as true, emphasizing the need to address

this issue.

Generation Input Cyber Threat Intelligence True/Fake

APT41 is a

state-sponsored

espionage group

APT41 is a state-sponsored espionage group which operates against higher education, travel

services, and news/media firms which provide some indication that the group also tracks

individuals and conducts surveillance.

True CTI

APT41 is a state-sponsored espionage group. The Russian, Moscow-based group is responsible for

capturing and stealing computer network communications and intellectual property. APT41

employs social engineering techniques to get around network defenses designed to last for

years, and is capable of compromising and stealing dozens of companies

Fake CTI (generated)

Malicious Domain

in SolarWinds

Hack Turned

into ‘Killswitch’

Malicious Domain in SolarWinds Hack Turned into ‘Killswitch’. A key malicious domain name

used to control potentially thousands of computer systems compromised via the months-long

breach at network monitoring software vendor SolarWinds was commandeered by security

experts and used as a “killswitch” designed to turn the sprawling cybercrime operation

against itself.

True CTI

Malicious Domain in SolarWinds Hack Turned into Killswitch Service. This attack took place

last year and affected hundreds of organizations. The attackers took advantage of the

vulnerability in Win32k framework to attack their targets through crafted code.

Fake CTI (generated)

An issue was

discovered in the

Quiz and Survey

Master plugin

An issue was discovered in the Quiz and Survey Master plugin before 7.0.1 for WordPress.

It made it possible for unauthenticated attackers to upload arbitrary files and achieve

remote code execution.

True CTI

An issue was discovered in the Quiz and Survey Master plugin 1.2.1 for WordPress. By

setting a CSRF token, an attacker can take advantage of a vulnerability in the survey.php

admin panel.

Fake CTI (generated)

Table 5.4: Fake CTI Samples produced by our fine-tuned GPT-2 model.
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In the Table 5.4, we observe some of the CTI text generated by the GPT-2

model. In comparison, we also see similar true CTI for reference.

Participant Labels

True False Total

Actual

Data

True 206 74 280

False 220 60 280

Total 426 134

Table 5.5: Confusion matrix of participants evaluating CTI as true and false

In Table 5.5, we observe that human participants were able to label 206/280

actual true labels as true CTI, but when asked to label 280 fake CTI, they labeled

220 of them as true. Although the majority of the fake CTI contained entities (such

as products and attack vectors) that were unrelated to each other, we found if the

sentence structure displayed little or no linguistic deficiencies, the data was likely

labeled as true. We also noticed sources that lacked substantial context were likely

labeled as false. The generated fake CTI not only has the ability to mislead cyber-

security professionals, but also has the ability to infiltrate cyber defense systems. In

the next section, we describe how the generated fake CTI examples can be used to

launch a data poisoning attack.
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Figure 5.3: The poisoned CKG with additional data (red box) extracted from fake

CTI.

5.2.2 KG Correction and Provenance

In this paper [71], we discuss a Graph Neural Network-based model that will

help us generate scores for the specific relationships that exist between pairs of

entities in a CKG. We use a supervised approach, where we use known triples that

are correct, as the ‘labels’. The relationships for all the entities that do not belong

in the ‘label’ are also updated simultaneously. Each relationship in the graph has a

score, that gets updated after receiving the supervision from the ‘label’. We want

to use this updated score to filter out the relationships that are possibly incorrect

due to being outdated, or simply because they were from a data source that had

incorrect information. This will help us preserve the relationships that are still

correct, and discard the relationships that are not.
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The problem statement of our paper is to find out scores between 0 and 1 to

represent each relationship in a CKG. The higher the score the more credible or

trustworthy the relationship is.

Let us consider that we have a set of entities E and a set of relationships

R. Each semantic triple in the CKG is represented as K = {Eh, r, Et}, where

Eh represents the head-entity, Et represents the tail-entity, and r represents the

relationship between them, such that r ∈ R.

We represent each input CKG in the form of a matrix K, where

K = {0, 1}|E|×|E|×|R|

Here |E| denotes the number of entities in K and |R| denotes the number of

relationships. It is a symmetric matrix, where each row denotes if the particular

relationship exists or not for the entity pair. For example if K(i, j, k) = 1, it means

Rk exists between Ei and Ej. If it is 0, then the relationship Rk does not exist

between entities Ei and Ej. After successful training, K(i, :, :) can be interpreted

as an embedding vector representing Ei that tells us how much credible all the

relationships are with respect to all the other entities in the CKG, for the entity

Ei. For example if a Malware ‘Solarwinds hack’ uses an Attack-Pattern ‘clicks

an icon’, we have to index these entities ‘Solarwinds hack’, ‘clicks an icon’, and

the relationship ‘uses’. Supposedly, the indexes come out to be E3, E7, and R2,

respectively, then K(3, 7, 2) becomes 1.

The input to the system is a CKG that is represented by K consisting of

partially correct information. We use a CKG that holds the correct entities and

relationships in place that we denote by K∗. The GCN is a function approximator,
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f , that produces another CKG K ′ as output such that

K ′ = [0, 1]|E|×|E|×|R| and

K ′ = f(K)

In this case, K ′(i, j, k) is a probabilistic value between 0 and 1 that tells us

how important the relationship Rk is between entity-pairs Ei and Ej.

We use K∗ as the target. As discussed before, each K∗(i, :, :) gives us the

ideal representation of entity Ei. The neural network f produces an output K ′ and

K ′(i, :, :) represents the predicted representation of the same entity Ei. We define

a loss function L such that it calculates the dissimilarity between the predicted

representations of all the entities and the target representations of all the entities.

The cumulative loss function is defined as follows.

Loss =
∑|E|

i=1 L(K∗(i, :, :), K ′(i, :, :))

The construction of K∗ does not require an entire CKG that has been rectified

by human annotators. The purpose of our research is to update the probabilistic

values that signify the ‘trust’ scores of the relationships of our CKG. In order to

make our algorithm scale well, we cannot place a requirement on a completely correct

CKG for training. If we do not have a complete CKG to be used as label, and we

have partial triples that talk about the same malware we generate a CKG on our

own in the following way.

For supervision, let us consider we have a set of triples Tp. In the original

graph we have a set of triples Ts. Each triple t ∈ Tp can be represented by Ph, Pr, Pt

corresponding to the head-entity, relationship, and the tail-entity. Similarly, each

triple t ∈ Ts can be represented by Sh, Sr, St. We iterate through all the triples in
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Tp, and check if the head of any triple in Tp overlaps with any of the tail nodes of

the triples in Ts. If that node is Tp(i)h, we remove all triples from Ts, where Tp(i)h

is a head node. After that we add all triples from Tp to Ts, that have Tp(i)h as a

head node. We remove them from Tp. We repeat this for all the remaining nodes

in Tp untill it is empty. We discard nodes that have no overlap with |E| which

is the set of entities in K. The key motivation for doing so is that Tp can come

from a source that talks about some specific details of a cyber-attack. We want to

update the knowledge graph for those specific details of the cyber-attack, but we

also want to preserve the semantic triples that talk about the other aspects of the

cyber-attack that have been collected from other CTI sources that is represented

by Ts. For example, consider a malware ‘Dark Caracal’ that uses another malware

‘xRAT’. The entire CKG that has information related to ‘Dark Caracal’ and ‘xRAT’

is Ts. Suppose, a new report comes that has updated information about ‘xRAT’. We

want to create a new CKG that retains the information about ‘Dark Caracal’, but

updates the information about ‘xRAT’. A possible critique of this method could be

removal of all knowledge about ‘xRAT’ from Ts that is not covered in Tp. It should

be noted here that a missing triple would not mean that after training, the scores

of the relationships belonging to the removed triples will be low. The GCN model

changes the scores based on subgraphs and it is a self-correcting system. With more

CTI being available about ‘xRAT’ it will be possible to change the scores of the

relationships from the discarded triples, if they happen to be correct. We can see

the algorithm in Algorithm 1.

It is imperative that we record key information about the source of the threat-
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Algorithm 1 Algorithm to create K∗ from partial sub-graphs

Ns ← |Ts|

Np ← |Tp|

while Np ̸= 0 do

Ph, Pr, Pt ← Tp(Np)

while Ns ̸= 0 do

Sh, Sr, St ← Ts(Ns)

C ← ∅

A← ∅

if Ph equals St then

C ← Ts(i) ∀i ∈ Ns s.t. Ts(i)h = Ph

A← Tp(i) ∀i ∈ Np s.t. Tp(i)h = Ph

end if

Ts ← Ts − C + A

Tp ← Tp − A

Np ← |Tp| − 1

end while

Ns ← |Ts| − 1

end while

return Ts
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intelligence. For example, if a CTI originating from a Twitter post suggests that

a cyber-threat can be mitigated by updating Adobe Acrobat, it should carry less

weight than a CTI from Adobe Security Bulletin that says otherwise. Recording

provenance level information provides us with the ability to create additional filters

on the threat-intelligence that practitioners use.

In order to effectively use CTI to evaluate and mitigate risks, organizations

need to process the raw data feeds and appropriately represent them. Cyberse-

curity Knowledge Graphs (CKG) are becoming popular to represent CTI. This is

because CKG has reasoning capabilities that are applied on the interconnected en-

tities. These reasoning capabilities enforce rules that help in preserving credible

information and discarding the rest. Additionally, classes capturing the provenance

can be added in the schema of the CKG that can give us more information about

the source of the data. In our paper, we improve an existing CKG schema that

records CTI with additional classes and relationships that indicate provenance.

The schema of the CKG, as mentioned before, tells us the entity-classes and

the relationship-classes. After the schema is defined, various semantic triples are

asserted in the CKG. The semantic triples record a specific relationship existing

between pairs of entities. Unstructured sources for CTI need to be processed to

extract the entities and relationships. We use Natural Language Processing (NLP)

techniques to extract the CTI information representing a cyber-attack or a malware,

along with the information related to the provenance. The objective of this paper

[72] is to associate provenance with the entities asserted in the CKG.

The provenance system is to gather CKG sources to address the authenticity of
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that data. We consider URL, Publisher, etc. as a source. In Provenance Extractor

(ExP), we extract triples mentioned in UCO 2.0 from the data source to draw

relations among them using the Provenance Encoder.

Syed et al. [73] in their paper have developed the Unifed Cybersecurity Ontol-

ogy (UCO) 1.0, which was updated to UCO 2.0 [20]. These updates in the ontology

have been in line with the updates in STIX from 1.0 to 1.2 [33]. We extend UCO

2.0 to add provenance information into the CKG by redefining the existing schema

and possible relations. Next, we explain various provenance classes that have been

added in UCO 3.0, which inherits the cybersecurity schema and domain knowledge

from UCO 2.0.

• Intelligence-Id : An entity class that refers to a unique CTI represented in our

CKG.

• URL: An entity class that refers to the originating URL from where the CTI

was collected.

• Organization-Name: An entity class that refers to a name of an organization

that published the CTI.

• Author : An entity class that refers to the name of the author of the CTI.

• Country : An entity class that refers to the originating country. Such as USA,

Canada, Israel, etc.

• Origin-Type: An entity class that refers to the type of CTI, such as AAR or

Blog etc.
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• Creation-Date: An entity class that refers to the date of the publishing.

• Provenance-Score: A value that refers to the amount of knowledge the CKG

posses on that entity.

ExP is an updated version of MEE. It was trained using UCO 3.0 to identify

the provenance entities from various CTI sources. As UCO 3.0 is developed on top

of UCO 2.0, it contains all the entity classes in UCO 2.0 along with the above-listed

classes. While executing, the Provenance Extractor parses the CTI sources and

classifies the intelligence according to UCO 3.0. While parsing each CTI, we generate

a unique Intelligence-Id to identify cybersecurity knowledge and allow graph fusion.

Based on the Provenance Extractor results and entity vector embeddings obtained

using Word2Vec [53], we determine provenance relationships for the particular CTI

intelligence. We also keep the count of an entity occurrence to calculate the CKG

confidence score for a specific CTI, this informs the value of the Provenance-Score.
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Chapter 6: Reinforcement Learning Tasks

In this chapter, we discuss the methods in which we leverage the information

present in the CKGs and the exploratory capabilities of RL for cybersecurity tasks.

In a system that calls for complicated analysis to reach a conclusion, we need

to consider expert knowledge that may help us better identify or mitigate malicious

process names. In Figure 6.1, we can see a screenshot of an open source text

description of a malware sample that an expert has provided. Instead of relying

on hand-crafted reward functions to evaluate the quality of a state, we can use the

knowledge extracted from open source text and use them directly in the reward

function. In Figure 6.1, the text description serves as input to a CKG that captures

the semantic relationship between the malware and the ‘high nice values’. The ‘high

nice values’ are an indicator for the malware referenced. The CKG establishes a

relationship between the Malware and the Indicator. When we query the knowledge

graph about the indicator, it returns ‘high nice values’ as a result. We can map this

entity to features of our behavior data and incorporate them into the parameters of

our RL algorithm.
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Figure 6.1: Diagram showing a knowledge source (a) describing a similar malware

and the time series data we collected after detonating a malware (b).

6.1 Q-Learning for malware detection with CKG parameters

There are two ways we incorporate prior knowledge into our RL algorithm [74].

The first method are inspired on some of the concepts mentioned by Moreno et

al. [75] In Q-Learning, we have an exploration phase and an exploitation phase.

In vanilla Q-Learning, exploration phases, we try random actions and observe the

reward. During the exploitation phase, we choose the action that maximizes the
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Q-value for the state-action pair. Moreno et al. [75] demonstrate a method of using

existing Q-values of a given state action pair for exploration leading to a faster con-

vergence. We can see this in Equation 6.1. We can also manipulate the exploration

probabilities with the help of the T(s) value.

P (s, ai) =
exp(Q(s, ai)/T (s))∑
j exp(Q(s, aj)/T (s))

(6.1)

In our algorithm, we use the extracted knowledge to tune the probability distribution

for exploration of a state-action pair. For example, Equation 6.2 will change the

probability distribution, into assigning higher probabilities for actions associated

with a ‘nice value’ of -20. The extracted knowledge from expert sources show us

‘nice values’ are important while searching for malicious processes.

P (s, ai) = 1− (nicevalue(ai) + 20)

2· | maxj nicevalue(aj) |
(6.2)

The second method is incorporating the extracted knowledge into our reward

functions to identify the malicious processes. For example, if a knowledge source

indicates that the processes create multiple threads, we can use that as an additional

parameter for our reward function.

Now, we discuss the results from our experiments. Most of the malware analy-

sis and machine learning research concentrates on evaluating the performance of the

machine learning algorithm on a dataset of malware samples. For example, Gavri-

lut et al. [76], discuss multiple machine learning algorithms to detect malware files

using perceptrons and kernelized perceptrons and they evaluate the performance of

their trained algorithm on a test set. Since our approach is aimed at discovering
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a sequence of process names that we suspect to be malicious, we aim to rank the

actions (processes) with respect to their q-values after some episodes of training.

To be precise, we use 140 episodes for training with 10,000 steps in each of them.

The high number of step count compared to the number of episodes is because the

time series data consists of 26,000 to 28,000 states. If we use a small value for the

step count, we would be able to cover only a small portion of the state space in

one episode. Hence, we keep the step count high and the episode count relatively

low. We aim to calculate as much q-values as possible in one episode itself. We

then record how our RL system scores the known malicious processes with respect

to other processes that are benign.

We use a combination of reward functions from Equations 6.3, 6.4, and 6.5.

The first reward function is constructed based on common knowledge and intuition.

If the I/O activity or the network activity decreases after a process creation, we

can make an educated assumption that the process could be benign. We assign a

reward value of ‘+1’ if the I/O or network activity decreases after a process creation.

For this we calculate the average of I/O read/write bytes for 5 time-steps before a

process creation and 5 time steps after a process creation. The same approach is

used for KiloBytes (KB) Sent/Received. This is done because the effect of a process

creation may not be immediate. In our first experiment (Exp 1) we simply use

Equation 6.3 and Equation 6.4 as our reward function.

In our second experiment (Exp 2), we keep the reward functions constant.

However, we change the exploration criteria for our RL algorithm based on prior

knowledge. The exploration probability distribution is stated in Equation 6.2. This
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helps the RL algorithm to explore state-action pairs that have high priority nice

values leading to a faster convergence.

Reward(s, a) + = 1 (if I/O write/read decreases

or KB sent/received decreases)

(6.3)

Reward(s, a) − = 1 (otherwise) (6.4)

Reward(s, a) = w1 · nicevalue
20

+ w2 · (numthreads(state, action)

− numthreads(state− 1, previousaction))

(6.5)

In the third experiment (Exp 3), we incorporate the prior knowledge source in

our reward function. The prior knowledge source states that the nice values of the

associated processes are high priority. We use Equation 6.5 with the value of ‘w2’

set to 0. A high priority nice value will be close to -20. So, a state-action pair for

which the nice value is close to -20, will have a negative reward associated with it if

the value of ‘w1’ is set to 1.

In the last experiment (Exp 4), we select another source of information de-

scribing the Bill Gates Botnet family. The source tells us that this malware family

spawns a significantly higher number of threads. We use Equations 6.3, 6.4, and

6.5 for this experiment. We use a weighted sum of the two prior sources in this

experiment.
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Type Exp-1 Exp-2 Exp-3 Exp-4

Q-value -5.1 -5.7 -7 -16.99

Rank 9(99) 11(99) 8(99) 1(99)

Table 6.1: Ranking and Q-values of the known malicious process

In Table 6.1 we can see that the reward function using the weighted mean

of prior information sources is able to identify the known malicious process as the

highest ranked process. The Q-values are greater in magnitude because the reward

functions have more parameters included in them. This shows that including more

knowledge sources in our RL algorithm yields better results.

In Figure 6.2, we can see the comparison of time required to complete each

episode that consists of 10,000 steps. We argued previously that tuning the explo-

ration probability distribution would lead to a faster convergence. We observe that

this is partly true. In sharp dips signify the exploitation phase of the RL algorithm,

when the algorithm knows what it looks for. The surge signifies more time to find

‘actions’ during exploration that fit the state-transition. Although the average time

is lower in Figure 6.2a than in Figure 6.2b, this is because in the beginning the envi-

ronment is benign. So, the tuned probability distribution that is supposed to aid in

the process of finding malicious processes hinders the RL algorithm to find processes

or actions, that are benign in the beginning, that fits the state transformation. How-

ever, we do observe some sharp peaks in Figure 6.2a, as the RL algorithm’s episodes

move to the malicious phase. In contrast, the time per episode is more consistent
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Figure 6.2: Comparison of time required to complete each episode for two experi-

ments

in Figure 6.2b. This is the result of the changed probability distribution that helps

the RL algorithm in finding processes faster in the malicious phase.

6.2 Mining RL parameters from CKG

RL algorithms designed for specific cybersecurity tasks need an evaluating

criteria. Specifically, reward functions are what drives these algorithms. These

algorithms converge to maximize the reward defined to evaluate these tasks. For
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malware generation, a simple reward function would be to check how successful the

generated or mutated malware is to evade an externally trained malware detector.

If the malware mutation is unable to evade the malware detector, we observe no

reward.

The reward function definitions become more challenging when we are dealing

with malware detection and generating malware mitigation strategies. A general

framework for detecting malware would be to classify the system parameters as a

‘state’. We will define the ‘process names’ or ‘file names’ that are getting created

as ‘actions’. The challenge here would be to quantify the different ‘state-action’

pairs so that we can use that in the reward function. Some existing methods to

evaluate certain attack vectors or vulnerabilities are CVSS (Common Vulnerabilities

Scoring System) [77] and DREAD. Although these systems are able to quantify

attack-vectors and vulnerabilities, they are very generic. It is difficult for these

scoring mechanisms to evaluate ‘risks’ as opposed to ‘severity’ of an attack vector.

CVSS also places an importance on ‘Privileges gained and not attained’. In certain

occasions, this is misleading. Severity is also an important factor to be taken into

consideration. For example, if a fan falls on someone’s head and kills him, the

severity of this unfortunate incident is high. However, measuring a ‘risk’ associated

with a ceiling fan over somebody’s head would not yield a high score. CKGs will have

this information recorded and thus if we were to design a RL algorithm for malware

detection, a state-action pair that has ‘room’ and ‘ceiling fan’ as parameters, the

reward for this pair would be appropriate. CKGs contain context for that attack

vector, and also we can leverage the reasoning capabilities of the CKG.
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Figure 6.3: A general framework for mining RL parameters from CKGs

Figure 6.3 provides a description of a system that incorporates CKGs for RL

parameters. An RL algorithm like DQN, when trained, is nothing but a series of

matrices that produce the appropriate action as an output. This is too general a

framework for the wide variety of malware families that security analysts have to

deal with on a daily basis. A general reward function that helps the RL algorithm

to update its own weights for producing an appropriate action as an output, may

not be sufficient for the variety of malware families. In Figure 6.3, we see that the

RL algorithm queries the CKG, with certain arguments in the query specific to the

malware family that it is targeting. The query being asked in the figure is about

specific indicators for the particular malware family. This is useful information as

the RL algorithm can adjust its weights in a way, that these indicators incorporated

as parameters in its reward function are used.

An example of such a query is as follows: SPARQL [78] Query:
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SELECT ?x WHERE {

?x a Software; :hasVulnerability ?y .

?z a Malware Family;

?z uses ?y}

The SPARQL Query above is basically throwing the question what Softwares

have a vulnerability that can be used by a particular malware family. The RL

agent can then look for the presence of those softwares in the system and use that

information for a specific task.

Another example of a query could be as follows:

SELECT ?x WHERE {

BKG:MalwareFamily M

BKG:hasParameter ?x.

?x BKG:parameterchange

BKG:increases_maxchange.}

The above query asks the CKG (Behavioral Knowledge Graph in this case) that

which system parameters creates a change in the max value. The answer to the query

is ‘cpu child sys’, ‘io write bytes’. This type of query provides valuable information

for the RL algorithm for a cybersecurity task like detection. We can incorporate

these parameters in the reward function, for detecting malware belonging to a family

M.
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6.3 Knowledge Guided Adversarial vs Defensive Policies

Recent advancements in RL have shown promising results for generating ad-

versaries as well as mitigating them with defense mechanisms. RL algorithms can

work particularly well for cybersecurity [12] because they can leverage their ex-

ploration capabilities to discover previously unknown attack and defense scenarios.

Microsoft recently released an open-source cyber-battle simulation platform called

‘CyberBattleSim’ [79]. This helps practitioners generate simulated environments of

cyber defense exercises (CDX) and capture-the-flag (CTF) scenarios.

In this simulation-based approach, there is an RL agent that tries to attack

and take over a network, called the attacker agent. The RL agent aims to explore

different types of exploits on vulnerabilities mentioned in the system. Although we

have provisions for generating cyber-battle scenarios, it needs a significant amount

of human effort to explicitly mention what the results of a successful exploit will

be at a given machine, or node, in the network. An external knowledge source that

captures semantic information about different machine types, vulnerabilities, and

mitigation can greatly help in this regard. Providing such a knowledge source as

knowledge graphs is one of our contributions in this paper.

CyberBattleSim also has naive defenders that take random defensive actions,

completely unaware of the attackers’ actions. The attacker becomes more intelligent,

but we need to know how the attacker would perform under more sophisticated

defense mechanisms. The number of steps to reach a particular goal can vary based

on how well the agents explore their corresponding environments. An external
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knowledge source can also prove beneficial in this regard to guide exploration to

states that are more likely to yield better results.

In this paper [80], we describe a knowledge-guided two-player RL algorithm

for cyber defenses and attacks that makes the attacker more robust, while also

greatly improving the performance of the defender. We test this algorithm in the

CyberBattleSim environments under different scenarios.

We use the schema of the CKGs that have been used to represent STIX

data [20, 81, 82]. These CKGs are populated with information extracted from

STIX [33] and contain semantic information about cyberattacks collected from mul-

tiple sources, such as TAXII servers as well as from the CVE [83], and CWE [84]

datasets. Apart from the knowledge collected from these semi-structured sources,

we use a deep learning-based CKG construction pipeline [81] that collects data from

unstructured text. We further improve this CKG by parsing additional text for vul-

nerabilities. We further enhance the knowledge in our CKG by creating a function

that queries the National Institute of Standards and Technology (NIST) cyberse-

curity database to obtain a list of CVEs. This function takes in a list of operating

systems and searches for known CVEs relating to a given Operating system using

NIST’s API. It compiles a list of vulnerabilities for each operating system, stores it

within a dictionary, and returns it to the user for further use.

The entity classes are mapped to the classes in STIX [33], which is an industry

standard for exchanging threat intelligence. Out of all the classes, we concentrate

on four specific classes: Exploit-Target, Attack-Pattern, Vulnerability, and Course-

of-Action.
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Figure 6.4: Feeds are parsed to identify vulnerabilities and to generate the network

graph for the simulation.

Our CyberBattleSim simulation platform expects practitioners to define the

network, specifying each machine or node. A few node properties are also required,

along with vulnerabilities associated with the node and the result of a successful

vulnerability exploit. The network graph also requires information about the cre-

dentials that can be leaked as a result of a successful exploit. The credentials can be

of a particular node or a remote node that can be accessed from the current node.

We use the Common Vulnerability Scoring System (CVSS) [77] to determine

the amount of control an attacker may get over a node if an exploit is successful.

CVSS scores range from 1 to 10, with 10 being the highest access that can be

guaranteed by exploiting the vulnerabilities. If the CVSS score is greater than nine,

we assume that the attacker has total control over the node, and the system-level

files can reveal a remote node’s credentials. We use this as guidance. However,

the agent is not limited by the vulnerabilities suggested by the CKG as there may

not be enough vulnerabilities to exploit with a CVSS greater than 9. If a Linux
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node is accessed through ‘SSH’ from another node, say Node X, it is discovered by

the attacker if a successful exploit of a vulnerability with a higher CVSS score has

taken course on Node X. These pieces of information are parsed and asserted in the

CKG that we use. Through simple queries, we can retrieve this information about

the network’s nodes. We write simple rules to populate the properties of the nodes

that we define. For example, in Figure 6.4, we can see how information relating

to a vulnerability ‘CVE-2022-26923’ present in a particular version of Windows 10

is parsed and asserted to the CKG. The same information is used to generate the

vulnerability properties of a node in the network. It should be noted that these

actions are suggested by the CKG to the RL algorithm, but it does not limit the

exploration of the RL algorithm to these vulnerabilities.

6.3.1 Two-player RL Agents

The vanilla Deep Q-Network (DQN) [85] is based on a Markov Decision Process

(MDP) of the form (S,A, T ,R, γ), where S is the state space, A is the action space,

T is the transition matrix that tells us the next state S ′ from a given state S, R

is the rewards received, and γ is the discount factor. The Bellman equation for

updating the Q values for a state action pair (s, a) is as follows.

Q(s, a)︸ ︷︷ ︸
New Q-Value

= Q(s, a) + α∣∣∣
Learning Rate

[R(s, a)︸ ︷︷ ︸
Reward

+γ∣∣∣∣∣
Discount rate

Maximum predicted reward, given
new state and all possible actions︷ ︸︸ ︷

maxQ′(s′, a′)−Q(s, a)]

In the equation above, Q values for state-action pairs are updated with the
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Figure 6.5: An architecture diagram specifying the different components of our

model. CKG has information about vulnerabilities of different nodes based on their

operating systems and versions. This information is used to populate the node

properties. This collection of nodes and properties forms the environment. The two

agents, the attacker and defender, also receive guidance from the CKG. The joint

reward is observed for both the attacker and defender from the environment after

taking the actions ‘Exploit’ and ‘Defense’ respectively.

help of the current Q values and the discounted future rewards of the next states.

The DQN for the attacker agent is modeled based on the equation above. We have a

policy network Q(s) and a target network Tar(s). The defender agent in CyberBat-

tleSim performs actions randomly. However, random actions are not sophisticated

enough to defend against an attacker agent being trained with the DQN. These

actions do not observe the state space, and they do not have knowledge about the

possible vulnerabilities that can be exploited by the attacker. In order to train the
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attacker and the defender jointly, we model a minimax-based two-player DQN [86].

The categories of actions for the attacker are as follows.

• Local attack

• Remote attack

• Connect

We use the following action categories for the defender.

• Patch vulnerability

• Re-image machine

• Add firewall rule

• Remove firewall rule

• Shut down service/port

For the attacker, the action space is |Attacklocal|+|Attackremote|+|Connect|+1,

where |A| represents the cardinality. For defense, the action space is |V ulnerabilitylocal|+

|V ulnerabilityremote|+ |Services|+ |Nodes|+ 2 + 1. The actions of adding and re-

moving firewall rules are random, so we need to add two at the end to represent

those actions. In both cases, we add one that symbolizes no action at a particular

step.

For a two-player minimax game the MDP is represented as (S,A,B, T ,R, γ).

The term B represents the defender action space. Compared to vanilla DQN, the

state transition takes place as S ′ = T (S, aattack, bdefend). The reward is observed

jointly after observing the state S ′. The goal of the attacker is to maximize the
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reward, and the goal of the defender is to minimize the reward. The two-player

game is successfully able to learn two separate policies, one for the attacker π and

one for the defender ϕ, jointly.

Q(s, aattack, bdefend)←

(1− α) ·Q(s, aattack, bdefend) + α · {r(s, aattack, bdefend)

+ γ · max
π′∈P(A)

min
ϕ′∈P(B)

Ea′attack∼π′,b′defend∼ϕ′

[Q
(
s′, a′attack, b

′
defend

)
(6.6)

In Equation 6.6, we see how Q-values are updated jointly, and two separate

policies are updated. At a particular timestep, we sample attacker actions aattack and

defender actions bdefend, either through exploration or exploitation. We calculate the

discounted future rewards by taking the min-max of the expected future rewards

under the defender’s current policy ϕ′ and the attacker’s current policy π′.

Tari ← {r(s, aattack, bdefend)

+ γ · max
π′∈P(A)

min
ϕ′∈P(B)

Ea′attack∼π′,b′defend∼ϕ′

[Q
(
s′, a′attack, b

′
defend

)
(6.7)

The Minimax DQN has two neural networks: a policy network Q and a target

network Tar. The target value is represented by Equation 6.7, whereas the policy

network update is shown in Equation 6.8.

Q̃k+1 ← min
n∑

i=1

[Tari −Q (Si, aattack, bdefend)]
2 . (6.8)
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The number of actions, in this case, becomes:

|Attackeractions| · |Defenderactions|.

A sequence of features represents the state space. The feature set has two

segments: global features and node-specific features. The global feature set indicates

the attacker’s current state and comprises counts of discovered nodes, discovered

ports, and discovered credentials. Node-specific features include the success and

failure counts of attempted exploits at each node. We also include three additional

features. The first is an array of services that are active at each node. This is

very important because the defender is able to shut down services, and the attacker

should be aware of it through the features representing the state. The other features

are also specific to defender actions, such as the number of vulnerabilities active in

the state, and the number of firewall rules that allow traffic to each node. These

additional features are included so that both the attacker and the defender are aware

of each other’s actions. The additional features manifest the actions of the defender

to ensure that the attacker is still at an advantage.

6.3.2 Guiding Agents

DQN algorithms create an experiential replay buffer with a collection of sample

points that are individual entries of the MDP defined in Section 6.3.1. Each data

point of the MDP (S,A,B, T ,R, γ) is achieved through exploring attacker actions

a ∈ A and defender actions b ∈ B. We use the standard approach of ϵ-greedy

action selection to generate our experiential replay buffer that forms our training
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set for training the DQN. In ϵ-greedy action selection, an agent explores more at

the beginning of an episode and begins to exploit what it has learned more as the

number of iterations increases. The defender can use information from our CKGs

to guide its exploration of actions more favorable to defenders.

In order to keep track of all relevant CVEs, we parsed a relevant data set

containing a large amount of them. The data set contains valuable identifying

information for CV, but what we want for a given CVE is specific courses of action for

it and what each action mitigates. To parse this from a large file of 813 megabytes,

we had to construct an algorithm that singles out courses of action and mitigation

and stores them in pairs. In the file, the course of action would often function as

a header with other identifying information about the CVE stored below it. One

part of this identifying information is the other piece of information we are looking

for, the mitigation section. A word-matching algorithm was employed to pull out

the specific lines containing the course of action and mitigation portion, they were

stored in a python dictionary with the course of action as the key and the mitigation

as the value.

Once we parse the CKG to get the (Course-of-Action, Attack-Pattern) pairs

and we find the CVEs associated with the Course-of-Action, we perform a simple

word matching to map the Course-of-Action with the defender actions of our cyber

battle environment.
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Algorithm 2 Knowledge guided minimax DQN
1: C ← KG(V uln = X,Node = N)

2: if C ̸= ∅ then

3: b∗ = minb D[b− C]

4: Generate(Pexp(b))

5: else

6: Generate uniform distribution

7: end if

8: Initialize(Q, S)

9: while done ̸= True do

10: if x < ϵ then

11: b∗ ← Sample(Pexp(b))

12: Shuffle(b)∀b ̸= b∗

13: b← b∗

14: Dilate(Pexp)

15: a← Explore(a)

16: else

17: b = minb maxa(Q(s, a, b))

18: a = maxa minb(Q(s, a, b))

19: end if

20: S′, R← (S, a, b)

21: Tari = R+ γ ∗maxa′ minb′ [Q(S′, a′, b′)]

22: loss = [Tari −Q(S, a, b)]2

23: Q∗ ← minQ(loss)

24: end while

25: return Q∗

Let us consider that the best-matched defender action is b∗. Instead of ran-

domly sampling from a uniform distribution of all the action sequences, we use a

normal distribution as shown in Equation 6.9.

Pexp(b) =
1

σ
√

2π
exp

(
−1

2

(
b− b∗
σ

)2
)

(6.9)
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We first use an encoder to convert the defender actions to integer values. We

set the mean of those integer values as b∗. Initially, we set a low value for σ, so that

we aggressively explore the favorable actions. As training progresses, we dilate the

distribution by increasing the value of σ so that other actions are also explored. We

also shuffle the ‘unfavored’ actions, to free them from the bias that can be imposed

on them if they are numerically close to b*. This leads to a CKG-guided exploration,

that helps in discovering valuable states early in the training process. We summarize

our entire algorithm in 2.

When we compare it with our algorithm, we see that the attacker’s reward is

reduced significantly. The attacker reward also gets reduced in later episodes. This

can be attributed to the rules of the reward scores in CyberBattleSim. For example,

an unsuccessful attempt at an exploit carries a very high negative reward (-50) for

the attacker. In later episodes, with significantly higher exploitation, the defender

takes appropriate reactive measures against an attacker’s exploit resulting in the

failure of the attack, which makes it even more difficult for the attacker to obtain

positive rewards. The cumulative attacker rewards for all iteration ranges from 8.82

at iteration 0 to 1707.7 at iteration 700 in the DQN with the RL-based defender

(minimax DQN), and it ranges from 12.2 to 3608.4 in the DQN with no defender.

However, our hypothesis was that with more effective defensive measures the

attacker would also learn innovative ways to launch exploits. In order to check if

the attacker agent has improved its performance, we compare the cumulative attack

rewards of our CKG-guided minimax DQN with a Random agent. Figure 6.6 shows

that our model has better attack rewards than the Random agent.
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Figure 6.6: Comparison of the cumulative attacker rewards for two scenarios. On

the left we see the cumulative attacker rewards vs iterations for minimax DQN

(DQN with RL defender) compared with a DQN with no defender. To the right we

see the cumulative attacker rewards of a minimax DQN compared with a Random

Agent

One criticism of RL algorithms is that in most episodes, the agents do not

observe anything concrete leading to uneventful explorations. In Table 6.2, we see

that the episodes with CKG guidance are more eventful. This is because the CKG
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Figure 6.7: Diagram showing the number of steps required to reach a goal at each

episode with and without knowledge guidance

is able to inform the agents what needs to be done beforehand. We also want to see

how KG guidance has helped in reducing the time required to reach the end of an

episode. An episode ends when either the attacker or the defender has reached their

respective goals. The defender’s goal is to evict the attacker from the network, and

the attacker’s goal is to own a certain percentage of the network. In Figure 6.7, we

see that the DQN with CKG guidance reaches the goal faster at the beginning and

at the end of the episodes. This can be attributed to our normal distribution based

Exploration distribution Pexp(b) that helps in identifying favorable actions. We also

see the effect of knowledge guidance on other RL algorithms in similar simulation

environments in Table 6.3.

The trained DQN can launch exploits in order to bypass the defender agent.

The defender agent also gets simultaneously trained by the actions of the attacker
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Episodes
DQN (without CKG) %

non-zero rewards

DQN (with CKG) %

non-zero rewards

0-2 5.1 11.3

3-5 8.4 17.2

6-8 23.3 22.5

9-11 38.3 41.5

11+ 37.8 41.7

Table 6.2: Percentage of non-zero rewards with respect to episodes with and without

knowledge guidance

agent and generates suitable actions for defense. With further improvement in

attack simulations, it will be possible to uncover novel or zero-days through our

model. In ongoing work, we are evaluating the performance of our models on real

CDX datasets. Our knowledge graph-guided minimax DQN can predict how defense

and attack teams perform in a CDX event which can then be compared to the actions

of the human participants of the respective events. We are also extending this work

of knowledge-guided exploration with more sophisticated methods to map CKG-

suggested actions with RL actions.

6.4 Offline RL and Knowledge guidance

RL can prove to be useful for constantly changing domains like cybersecurity,

since it internally creates a simulation map of different variants that may spin off

from the data presented for training. This helps deal with the problem of new attacks
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With KG guidance Without KG guidance

DQN 753+21 794+2

TRPO 788+6 793+3

PPO 784+11 793+5

VPG 767+13 789+2

A3C 745+22 769+4

Table 6.3: Number of iterations per episode for different RL algorithms with and

without knowledge guidance

used by adversaries. However, a significant critique of online RL models is that they

need to observe a vast number of state-action pairs to generate a generalizable policy,

making it impractical for many domains [87], including cybersecurity. However,

offline RL techniques [88] have claimed to be just as good with a limited and fixed

number of observations of state-action pairs [89]. One of the contributions in this

paper is we observe how useful offline RL is for cyber-threat detection. Although

offline RL models may produce a policy for cyber-threat detection, it is still limited

by partially observed possibilities of cyber threats. For example, if we look at data

that describes the behavior of a particular malware in a specific environment, the

behavior is limited by the particulars of that environment. The processes created

by the malware or the values of system parameters may be different in a different

environment or at a different time. It is impossible to simulate the possibilities of

malware behavior in all environments. This is where explicit external knowledge
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Figure 6.8: Diagram showing the percentage of network available after defender

agents perform actions

comes into play. The external knowledge about a domain that an expert has can

provide the RL algorithms with key information during the learning process. Our

other contribution in this paper is to show how to create knowledge-guided Offline

RL algorithms that can leverage the existing body of work that captures explicit

domain knowledge about cybersecurity as knowledge graphs [81,82,90].

Our research approach uses RL to detect malware. We use a malware behavior

dataset containing information on how different system parameters change values

when a malware instance from a known malware family is detonated. We also

incorporate MOTIF [91], a curated dataset of malware samples and their family

names. Our RL algorithm creates a policy to detect a specific malware in a system

for which we have data. We can then use an external knowledge source that provides

information about other malware in the same family, or possibly a similar malware
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Figure 6.9: Figure describing the overview of our approach. The input to the

CKG is a piece of intelligence describing some characteristics of a malware ‘X’.

These characteristics are translated to state-action pairs. If these state-action pairs

correspond to out-of-distribution (OOD) state-action pairs for the CQL algorithm,

we can use it to re-estimate the Q-value for the OOD state-action pair.

family. The RL algorithm can then use this knowledge to make changes to the

policy.

CKGs contain information about recent developments in cyber threats. In our

prior work, we demonstrated how to generate CKGs from textual threat intelligence

and other sources, and used them in downstream tasks [92]. This is also a part of

ongoing research that focuses on enriching these knowledge graphs with additional

information from Wikidata [93, 94]. In our problem, we use offline RL because ob-

serving how system parameters change in real-time is cumbersome and impractical.

Offline RL algorithms typically have the problem of overestimating some unseen
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state-action pairs. To address this, researchers have come up with approaches such

as IQL [95] and CQL [87]. CQL downgrades updates on unseen state-action pairs.

However, CQL has been argued to be too conservative in updating unseen data. In

our domain, we need to update unseen data because the unseen variants of malware

data will be out-of-distribution (OOD).

For example, the system parameter observations are made at specific time

intervals and not all changes are caught when a malware is active in the system.

When a process, or action, is created not all state change observations are available

to us. As seen in Figure 6.9, a large number of CPU threads may be created when

a particular process is active. This observation, if available to us, can be used for

modeling in both online and offline RL algorithms. However, if it is not available

to us, offline RL algorithms such as CQL will relatively downgrade this OOD state-

action pair. If we have an external knowledge source that creates its own state-action

pair distribution K, this can be used to relatively upgrade the OOD state-action

pair (high number of CPU threads and process ‘x’).

Thus, we can create less conservative updates on unseen data if we have evi-

dence of it in the CKG’s. Thus we create a β term in the equation if the state-action

evidence can be retrieved from the CKG. In the following equation, D is the data

distribution, and K is the distribution from the knowledge source.
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Q̂π = arg min
Q

max
µ

αβEs∼D,a∼µ(a|s)[Q(s, a)]− αE(s,a)∼D[Q(s, a)]− βE(s,a)∼K [Q(s, a)]

+E(s,a,s′)∼D

[
(Q(s, a)− (r(s, a) + Eπ [Q (s′, a′)]))

2
]

The equation above minimizes the Bellman error values for all state-action pairs.

α is the hyperparameter that tackles the increase of the Q-value estimates of data

that is not OOD. β is another hyperparameter that increases the Q-value estimates

of the OOD data if the CKG’s information supports them.

We use malware behavior data that is achieved after detonating a malware

sample in a controlled environment. The state space is defined by features of the

systems’ parameters. In our experiments, we calculate the temporal difference be-

tween system parameters and normalize them with min-max normalization. The

actions are individual processes that cause these state changes. We propose to find

out malicious processes with the help of RL. We have labeled malicious process

names for malware samples from different families, and we are going to use informa-

tion from our CKG for these malware families to help RL algorithms. For example,

in Figure 6.9, we see an OSINT source with some information about CPU threads

of a process ‘x’ for a specific malware or a malware belonging to a particular family.

As the RL algorithm goes over the state-action pairs in our system parameter data

while constructing Q-tables, it may come across a state-action pair that was not

encountered in the actual system parameter data. This may be possible due to two

reasons. The first reason is the malware sample in this family may not be adhering

to the information provided by the CKG about the same family. Secondly, because
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of the periodic nature of data collection of the system parameter data, this partic-

ular state-action pair may not be present in the collected data. This is where the

information from CKG comes in, as it lifts the Q-values for those state-action pairs.

6.4.1 Findings

We experimented with 25 malware samples belonging to four malware families.

Our first experiment used RL algorithms that work on all types of samples and

all malware families, and our second applied family-specific RL algorithms. Each

malware sample has time steps (or a number of states) that range from 2163 to

3750. In some cases, we trim the number of states to 3750 due to a high number of

redundant states present in the data collected. The action space for the experiment

with all malware families is 493, and for individual malware families ranged from

102 to 193. We used user-defined reward functions for these exercises formed by our

own understanding of the malware samples.

In order to check how CKG influences the performance of CQL, we take two

approaches. We plot the cumulative rewards of CQL and CQL with CKG guidance

as shown in Figure 6.11. However, it is difficult to quantifiably argue that the

difference in cumulative rewards actually results in better detection capabilities since

the reward functions are hand-crafted based on our own knowledge of the malware.

One algorithm having a higher cumulative reward may be due to the fact that the

reward functions are crafted more favorably. One way to check that the Q-values

are representative of the actual quality of the state-action pairs is to see how the
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Figure 6.10: Comparison of time required to complete each episode for different

experiments

86



Figure 6.11: Comparison of cumulative rewards between CQL and CQL with KG

guidance

associated Q-values are for state-action pairs involving malicious processes. As we

mentioned before, we labeled some of the malicious processes in the data collected.

We check the top 10% of the Q-values for all state-action pairs in our dataset and

observe what percentage of them involve malicious processes.

Ideally, the malicious processes should have the highest Q-values because our

RL training is designed in such a way. In Table 6.4, we observe that the Q-values

for RL models are trained for all families and RL models trained for individual

families. The CQL model trained for all models together does not benefit from CKG
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Malware Family CQL CQL+CKG (β=0.05) CQL+CKG (β=0.1)

All 0.74 0.72 0.72

Acidbox 0.68 0.73 0.71

RogueRobin 0.87 0.89 0.91

vhd 0.93 0.91 0.91

hiddenwasp 0.86 0.93 0.93

Table 6.4: Hits@10 calculated for Q-values of malicious processes

Malware Family CQL
CQL+CKG

(beta = 0.05)

CQL+CKG

(beta = 1)

Offline DQN

All malware 0.73 0.75 0.73 0.73

Acidbox 0.59 0.62 0.63 0.60

RogueRobin 0.84 0.88 0.86 0.79

Vhd 0.90 0.86 0.89 0.87

Hiddenwasp 0.79 0.85 0.86 0.72

Table 6.5: Detection rates of offline RL algorithms for malware families with and

without knowledge guidance
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information. This may be because of the generic nature of the CKG’s information

for all models. A particular process name with a higher Q-value may be relevant

for a particular family, but it may mistakenly raise the Q-values for a state-action

pair for a different family. However, if we look at specific malware families, we see

three of the four malware families observe some lift in scores. We also note how

the variable β affects the scores. This variable controls by what factor we raise the

scores of the Q-values for OOD state-action pairs that are suggested by the CKG.

Raising the value of β may sometimes decrease the score because, in some cases, it

may artificially inflate the values of some state-action pairs.

We also observe the time required to complete each episode. In Figure 6.10,

we see the episode time for DQN as baseline, CQL, and CQL+CKG with β = 0.5.

The periodic dips that we see are due to exploration-exploitation. As we see, the

average time to complete each episode is higher for CQL than for DQN. This is

mostly due to higher computation costs for each iteration. When we compare CQL

with CQL with CKG, we observe that there are more dips in the episode times.

We stop each episode when the cumulative rewards reach a threshold, indicating

that the malicious process has been found or when all the states are covered. In

some cases, CKG might have helped to raise the cumulative rewards and made it

reach the threshold faster than vanilla CQL. The average episode time, even though

the computation is more complex in CQL+CKG, is lower because of these dips.

However, in some cases, CKG also contributes to the distributional shift problem of

RL training leading to higher episode times.

Our results show that for some malware families, such as hiddenwasp, we ob-
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serve a lift of 7% in detection capabilities. In Table 6.5, we see the detection rates

of different offline RL algorithms for specific malware families. For acidbox, hidden-

wasp, and roguerobin families we observe an average improvement of about 4% with

the help of knowledge guidance. The ability of KG guidance in increasing the qual-

ity of Q-learning depends on how representative the knowledge is and how easy it is

to transfer the knowledge to RL parameters. Variance between samples of malware

families also play an important role. Some of the problems that we faced in this

can be mitigated by using a wider range of knowledge. We are currently enriching

our cyber knowledge bases with the help of Wikidata [93,94]. It will be interesting

to see how more knowledge about malware families affects the generalizability of

offline RL models trained with knowledge guidance. In this paper, we talked about

specific cybersecurity tasks, such as malicious process detection. We would like to

extend this to other cybersecurity tasks like cyber attacks and defenses.
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Chapter 7: Conclusion and Future Work

The dissertation research focuses on two main components: utilizing Natural

Language Processing (NLP) techniques to extract structured knowledge from un-

structured text, and using this knowledge to guide data-driven machine learning

(ML) and Reinforcement Learning (RL) algorithms in the field of cybersecurity.

In the first part, the research involves gathering Open-Source Intelligence (OS-

INT) using NLP techniques. Unstructured text, such as social media posts and After

Action Reports, is processed to extract semantic triples that represent relationships

between entities. This extracted knowledge is used to construct a knowledge graph,

which provides a structured representation of the domain-specific information.

To ensure the accuracy and reliability of the knowledge graph, additional steps

are taken. Trusted information is fused with the extracted knowledge, score metrics

and provenance related information are included to filter out potentially poisoned or

incorrect data. Graph neural network models are developed to detect and mitigate

data poisoning, enhancing the overall quality and reliability of the knowledge graph.

In the second part of the research, the knowledge graph is utilized to guide

data-driven ML and RL algorithms. The goal is to leverage the tacit and implicit

knowledge present in the graph to enhance the performance and efficiency of these
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algorithms. The knowledge graph serves as a source of prior knowledge that can

guide the exploration and decision-making processes of the algorithms.

In the case of RL algorithms, the knowledge graph is used to influence the

exploration phase, leading to the discovery of new information about cyber-attacks.

Incorporating prior knowledge in the reward function of RL algorithms and attest-

ing states favored by the knowledge sources result in faster convergence, 8% and

improved conclusions. The research demonstrates that including prior knowledge in

RL algorithms can decrease mean episode time.

Additionally, hybrid AI algorithms are developed that combine semantic knowl-

edge with data-driven algorithms. Offline RL algorithms are utilized, and the impact

of prior knowledge on their efficiency is analyzed. The experiments conducted on

large cybersecurity datasets show that incorporating prior knowledge leads to in-

creased efficiency in RL algorithms, improving their performance by approximately

4%. We study the effectiveness of RL in detecting unseen malware samples, as well

as their effectiveness in generating mitigation steps in simulated environments. We

also observe that the mitigation steps are more precise when guided by knowledge.

Overall, the dissertation research showcases the potential of NLP techniques

in extracting structured cyber knowledge from unstructured text and demonstrates

how this knowledge can guide data-driven ML and RL algorithms in the field of

cybersecurity. By leveraging the information contained in knowledge graphs, these

algorithms can make more informed decisions, enhance their performance, and ex-

pedite the training of the models.

This research can be expanded to domain-independent neuro-symbolic ap-
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proaches. The current interest lies in the identification of prompts or keywords that

can conditionally produce desired outputs from generative models. I propose achiev-

ing this through knowledge transfer from prior knowledge sources. Additionally, the

emergence of Language Model-based Models (LLMs) has introduced challenges with

incorrect language generation. By effectively maintaining the correctness of knowl-

edge graph assertions, these issues can be addressed using knowledge sources.

The second area of research that can be expanded from this is transfer learning

from knowledge graphs to other machine learning (ML) models for cybersecurity.

With the increasing prevalence of zero-day vulnerabilities, constructing models that

maintain effectiveness in the future using existing data proves difficult. Often, these

models necessitate retraining with new data to sustain performance levels. For in-

stance, an attack-detection model trained on a specific dataset may lose effectiveness

when a new attack pattern emerges. The conventional approach of gathering new

data and retraining the model is costly. However, if we possess new information

about novel attack patterns, whether in unstructured (e.g., text) or structured (e.g.,

knowledge graphs) formats, we can directly update the model through a transfer

learning mechanism. This research has substantial potential in addressing significant

data science challenges, and considerable work remains to be done in this domain.

The third research area that can be worked on is online/continual learning.

Given the increasing ubiquity of ML models, the constant need for updates poses

feasibility challenges. In some cases, online learning becomes necessary as the per-

formance of an ML model trained on historical data significantly deteriorates before

new data becomes available. In such situations, online learning represents the only
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viable option. However, if we can mitigate performance degradation before new

data arrives, it would provide a substantial advantage. It is intriguing to investi-

gate whether external knowledge sources can anticipate certain characteristics of

new data and effectively adjust ML model parameters. For example, in the context

of an ML model detecting cyber-attacks, the current model may assign low impor-

tance to the country of origin. However, if we obtain information indicating a new

attack variant specific to a particular country, we can proactively tune the model

accordingly prior to acquiring the dataset containing the new cyber-attack variant.

In summary, my research aspirations involve domain-independent neuro-symbolic

approaches, transfer learning from knowledge graphs to enhance cybersecurity mod-

els, and advancements in online/continual learning techniques. Each of these areas

offers unique opportunities for addressing crucial challenges in AI and cybersecurity,

contributing to the growing body of knowledge in the field.
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