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This dissertation makes significant contributions to automatic, scalable, and
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CPS are increasingly embedded in our everyday life. Security incidents involving
them are often high-profile because of their ability to control critical infrastructure.
Stuxnet and the Ukrainian power-grid attack are some notorious attacks reported
against CPS which impacted governmental programs to ordinary users. In addition
to the deliberate attacks, device malfunction and human error can also result in
incidents with grave consequences. Hence the detection and mitigation of abnormal
behaviors resulting from security incidents is imperative for the trustworthiness and
broader acceptance of smart cyber-physical systems. In this dissertation, we study
the behavior of smart cyber-physical systems and develop techniques to abstract the
typical behaviors in such systems using the data generated from their components
and detect various abnormalities. Our initial research developed a knowledge-graph

based approach which uses semantic technologies to infer complex contexts for de-
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of our approach. As a part of this dissertation, we also generated an automotive

dataset to support future research in the related fields.
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Chapter 1: Introduction

As of 2018, the number of IoT (Internet of Things) devices exceed 23 billion'
and is expected to increase at a compound annual gross rate of 21% in the coming
years®’. B2C (Business to Consumer) use cases of IoT’s like Google Home and
Amazon Alexa are well-known. Recently, B2B (Business to Business) applications
that improve operational efficiency, real-time control, and visibility in production are
also gaining popularity. According to IBM?, most of the IoT devices are also Cyber-
Physical Systems (CPS), a network of connected devices which directly interact with
the physical world and physical processes.

According to the National Science Foundation (NSF), “Cyber-physical sys-
tems integrate sensing, computation, control and networking into physical objects
and infrastructure, connecting them to the Internet and to each other.”* Sensors,
actuators, and control systems that are connected over a network constitute the
major logical entities in a typical cyber-physical system. Sensors measure the phys-

ical environment in which they are deployed and push the measurements to specific

control systems. The control systems might differ in their capabilities such that

lhttps://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
Zhttps://www.ericsson.com/en/mobility-report/internet-of-things-forecast
Shttps://www.ibm.com/blogs/research/2018/01/designing-cyber-physical-systems/
“https://www.nsf.gov/news/special_reports/cyber-physical/’’
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some just store the sensed measurements while others analyze it, alert other compo-
nents (or human in the loop), or use the information to adapt physical parameters
using various actuators. For example, in autonomous automobile systems, a radar
senses the presence of obstruction ahead of the automobile and a control system
integrates this information with other related sensors to come up with a decision
on whether to change lanes or apply brakes. CPS’s find application in a wide va-
riety of domains such as agriculture [47], energy management [44], environmental
monitoring [72], medical monitoring [20], process control [71], smart manufactur-
ing [79], smart transportation systems [83], and so forth. Many cyber-physical sys-
tem instances like smart grids, autonomous automobile systems, robotic systems,
automatic pilot avionics, medical monitoring, and process control systems play a
significant role in the vision of smart cities as well.

The wide range of cyber-physical system applications and their ability to affect
the masses make them a particularly lucrative target for hackers. Several reported
attacks against CPS’s affected entities ranging from governmental organizations
and large corporate companies to ordinary users. Some of the attacks even have a
direct impact on the economy of a nation. Consider the attack on Ukrainian smart
grids [10]. Tt left a whole city without heat and electricity in the cold of December
for many hours. Stuxnet which is dubbed as the world’s first digital weapon [81],
is another classic example of attacks targeted towards CPS’s. It is often touted as
an attempt to derail a nation’s nuclear development program. Stuxnet infected the
PLC’s (Programmable Logic Controllers) of a nuclear plant and rapidly altered the

speed of its isotope enrichment centrifuge which resulted in their premature physical



damage. Such undesirable activities were performed just once in a month to avoid
detection by simple monitors. Stuxnet malware code was so sophisticated that it
penetrated even the air-gapped network. It is believed that such an attack could
only be masterminded by state-sponsored actors.

A CPS domain which demonstrated fast advancements is the automotive do-
main. Although automobiles with technologically advanced control systems are
capable of providing efficient transportation and mitigating accidents, the poten-
tial attacks against them are alarming. The famous 2016 Jeep Hack [50] in which
the researchers manipulated an unaltered moving vehicle on the road resulted in
Chrysler calling back 1.4 million® vehicles. Mirai botnet attacks was another noto-
rious example in which many smart home devices were added to the bot network by
exploiting known vulnerabilities. Later this army of bots (300k devices at its peak®)
was used to generate a Distributed Denial of Service (DDoS) attack on the scale of
250 Gbps”.

The security of cyber-physical systems includes more than just defending
against cyber-attacks. Device malfunctioning and human errors are among the
other important security issues which must be addressed. Securing them against
such problems is also vital for their wide-scale acceptance because, in many appli-
cation domains like medical monitoring and autonomous navigation systems, they
control critical systems and abnormalities can result in grave consequences. One

such incident caused by a combination of device malfunction and human error is the

Shttps://www.wired.com/2015/07/jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/
6https ://wuw.computerworlduk.com/galleries/security/timeline-of-mirai-internet-of-things-botr
"https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
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Air France flight 447 crash that resulted in more than 200 fatalities. Major causes
of the accident® were attributed to the temporary failure of pitot probes caused by
ice crystals, and the inability of pilots to comprehend the situation. Due to the ic-
ing, pitot tubes that measure airspeed during the flight malfunctioned and reported
wrong values to the pilots eventually resulting in the aircraft’s fatal crash. Another
incident which was caused by device malfunction is the recent Lion Air flight crash’
that resulted in 189 fatalities. According to preliminary investigations, an errant
sensor triggered the MCAS (Maneuvering Characteristics Augmentation System),
an autonomous safety system which avoids engine stalls (Engine stall is a situation
in which there is not enough thrust on the wings to support the airplane’s weight
at a very high altitude. Engine stalls often result in a free fall of the flight). The
general practice to recover from a stall is to point the flight’s nose down and allow
the flight to gain more airspeed. However, in the case of the Lion Air flight, the
faulty sensor made the flight’s nose down at a very low altitude causing the pilots
to correct it by pulling the nose up manually. This process was repeated more than
20 times before the crash. It is pointed out that the emergency procedure in such
a situation was to disable MCAS. As a result of another presumed similar incident
with the same aircraft (Boeing 737 Max 8), many countries and airlines grounded!®
their Boeing 737 Max 8 aircraft’s. This incident reveals that the detection and mit-

igation of abnormal activities are imperative for the trustworthiness and broader

8https://web.archive.org/web/20120711071354/http://www.bea.aero/docspa/2009/
f-cp090601.en/pdf/f-cp090601.en.pdf
Yhttps://www.insurancejournal.com/news/international/2018/11/30/510682.htm
Ohttps://www.cnbc.com/2019/03/12/uk-has-grounded-all-boeing-737-max-aircraft.
html
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acceptance of cyber-physical systems.

One approach to secure systems against cyber-attacks is to add advanced se-
curity features. Layering on a complex security system is impossible in many cases
due to a variety of constraints [61] including physical environment feedback, dis-
tributed control, real-time response, wide-scale geographic distribution, and multi-
tiered characteristics. The area, power, and cost requirements also put constraints
on the design of cyber-physical systems and make it difficult to have advanced
software and hardware security stack on them. For example, the geographic dis-
tribution and remote locations of the components in a power grid CPS may result
in reduced network connectivity. Mobile CPS’s like health and fitness monitoring
systems might be power constrained. Support for legacy systems is another con-
straint against adding advanced security features. CAN bus, a broadcast based
legacy communication channel lacks even the most basic authentication and au-
thorization techniques. This deficiency is exploited in many attacks on cars which
range from simple driver distractions to complete remote takeover of an unaltered
car [30,49,50]. However, moving away from CAN networks is often not permitted
due to cost and compatibility constraints. Besides, the security features alone may
not handle device malfunctioning and human errors as they cannot detect and mit-
igate anomalous behaviors. All these show the importance of anomaly detection

based solutions in this domain.



1.1 Intuition & Problem Statement

An identifying feature that differentiates cyber-physical systems is their direct
interaction with the physical environment. Such interactions constrain the oper-
ational behaviors of their components. An instantaneous increase of speed values
from the speed sensor of a car, for instance, is suspicious because the laws of physics
constrain such behaviors in normal conditions. Similarly, in the case of the Stuxnet
attack, a sudden speed variation of the centrifuge should not have occurred because
the domain behaviors were well understood. Operations of a cyber-physical system
might also follow certain domain etiquette’s. For instance, it is not normal to allow
filling a tank above its specified capacity or to allow a car to be driven in the night
with the headlights off. However, there are several challenges in capturing such

normal domain behaviors.

1. A cyber-physical system may be a collection of components from several do-
mains and the relationship between their components can be very complicated.
Sometimes these relationships can even be non-intuitive. Hence, the manual
extraction of relationships is a tedious task which may require experts from

several domains to work together.

2. The number of components in a cyber-physical system can be high. In the
automotive domain, the number of sensors is projected to be close to 200!

per car. This makes it hard to list out all their relationships manually.

"Uhttp://www.newelectronics.co.uk/electronics-technology/
automotive-sensors-market-is-booming/149323/
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3. A cyber-physical system may behave in different ways when exposed to differ-
ent environmental conditions. Extreme climatic and geographical conditions
affecting the normal operational behaviors and sensor values of an automobile
is such a case. As a result, the set of normal operational behaviors for the

same cyber-physical system might differ which makes the task more difficult.

With the advent of communication technologies and smart cyber-physical sys-
tem infrastructure, a large amount of normal operational data is available. This data
encapsulates different complex behaviors that may exist in that specific domain. We
hypothesize that a solution which ingests this normal operational data from a cyber-
physical system and abstracts its common behaviors or contexts of events may be
able to detect unusual behaviors specific to that system. In this dissertation re-
search, we aim to develop such a detection strategy which can aid cyber-physical
systems to mitigate abnormal behaviors, both attack and device malfunctioning

scenarios.

1.2 Thesis Statement

“We can learn a latent space that abstracts a smart cyber-physical system’s
typical environment specific behaviors using the plethora of operational data gener-
ated by its different components like sensors, actuators, and control systems. The
generated latent space can be used to develop more potent, scalable and domain-

independent solutions to detect behavioral anomalies and attacks.”



1.3 Anomaly Detection in Smart Cyber-Physical Systems

This dissertation focuses on learning a latent space which can be used to detect
anomalous behaviors using the normal operational data from smart cyber-physical

systems. Significant contributions in the dissertation are enumerated below.

1. Developed a domain-specific approach to identify abnormal behaviors in cars
using a knowledge-graph based approach. In this research, we designed an
extension to the IoT Lite Ontology such that it accommodates cyber-physical
system specific features and updated its A-Boxes with entities from the au-
tomotive domain. We also developed a system which extracts local contexts
directly from the raw bits on the CAN (Controller Area Network) bus. Unlike
simple rule-based systems, in our system domain experts can write general
behavioral descriptions using SWRL (Semantic Web Rule Language) and a
reasoner infers complex contexts from the extracted local contexts to detect

atypical behaviors.

2. Proposed a Hidden Markov Model (HMM) based system that can detect
anomalous behaviors in a smart car environment. As a part of this research,
we extracted data from the CAN bus of a car, discretized it, and modeled it
to form a sequence of observations. We then solved the problem of detect-
ing anomalous behaviors by considering it as a sequence anomaly detection
problem. In our solution, after modeling the data, we learned the HMM pa-

rameters using the Baum-Welch algorithm. We then developed a posterior



probability based technique to detect anomalous activities in the sequence. A
significant outcome from this research is a vindication of our hypothesis that
normal behaviors could be learned from the operational data of cyber-physical

systems (in this research, cars).

. Our next major contribution is developing a domain-independent and scalable
solution that can support the efficient detection of abnormal activities in any
smart cyber-physical system environment. This novel technique considers the
cyber-physical system as a black box generating data and tries to learn re-
lationships between the data coming out of it. In this solution, we combine
similar vectors from data using Euclidean distances and generate a fixed list
of states that can directly identify point anomalies. Further, we developed a
novel technique based on neural networks that generates a latent space where
contextually similar states appear together while keeping the dissimilar states
apart. By integrating these two techniques, we find context vectors in the

latent space corresponding to each observed state.

. We developed a more efficient and potent technique that uses context vectors
in the newly generated latest space to associate a score for every event in the
cyber-physical system under consideration. This newly generated score de-
notes the efficacy of that specific event in its context. We implemented the
complete system using python and tensorflow architecture and evaluated our
system using two real-world cyber-physical systems; Secure Water Treatment

(SWaT) plant dataset and automotive dataset. We demonstrate the ability of



our technique to detect attacks using the SWaT dataset and context abstrac-

tion features with a new automotive dataset.

5. For evaluations, we used a real-world dataset extracted from a scaled down
water treatment plant. However, to test the multi-domain applicability of our
technique, we needed another dataset. A major time consuming and challeng-
ing engineering contribution is to develop a new automotive dataset rich with
several sensors. We believe that this dataset will help the research community
to experiment and try out newer techniques on real-world datasets than being
constrained on synthetic datasets. To create the dataset, we identified and
evaluated several techniques to collect data from automobiles like ELM 327
based chipsets, STN 1100 based chipsets, Arduino based solutions, OpenXC
Platform, etc. We subsequently developed an OpenXC based solution to ag-
gregate data from various sensors of an automobile. After data collection, we
aggregated and characterized close to 1000 miles (or 25 hrs) of standard driv-
ing data which constitutes diverse driving conditions including long and short

drives on highways, country-sides, mountainous terrains, and rainy weather.

1.4 Dissertation Organization

In chapter 2, we discuss some related domains of cyber-physical systems and
how they differ from each other. Apart from the high profile attacks on cyber-
physical systems this dissertation is motivated by growing prominence of car as a

smart cyber-physical system and the attacks which were demonstrated against them.

10



Hence, this chapter also describes the car as a smart cyber-physical system, its attack
surface and different attacks against them from the recent literature. Chapter 3 looks
at deep dive into the research literature relating to smart cyber-physical system
security, anomaly detection, and automotive security. One significant engineering
contribution in this dissertation is the creation of an automotive dataset. Details
about the data collection process and data characterization is detailed in chapter 4.
While Chapter 5 details the knowledge-graph based approach for anomaly detection,
chapters 6 and 7 details the automatic behavioral learning in cars and smart cyber-

physical systems and the conclusion and future directions ensue in chapter 9.

11



Chapter 2: Background

Businesses benefit from the introduction of connected smart systems in their
respective domains. According to an article published in Forbes [16] , Harley David-
son reduced the build to order cycle by a whopping 36 times by employing [oT in
their manufacturing plant and Rolls-Royce increased the fuel efficiency of jet en-
gines which results in a total savings of $250, 000 per plane per year. Hence several
competing technologies emerged which have similar characteristics but have their

own identifying features. Some of them are enumerated below

e Internet of Things (IoT): European Research Cluster defines the Inter-
net of Things (IERC) as “A dynamic global network infrastructure with self-
configuring capabilities based on standard and interoperable communication
protocols where physical and virtual “things” have identities, physical at-
tributes, and virtual personalities and use intelligent interfaces, and are seam-
lessly integrated into the information network”. In IoT’s each “thing” can
be a full system running a full operating system or a bluetooth beacon which

simply transmits a fixed URL at constant intervals.

e System of Systems (S0S): System of Systems is a collection of task-oriented
or dedicated systems that pool their resources and capabilities together to cre-

12



ate a new, more complex system which offers more functionality and perfor-
mance than simply the sum of the constituent systems. Currently, systems of
systems is a critical research discipline for which frames of reference, thought
processes, quantitative analysis, tools, and design methods are incomplete [65].
SoS differs from [oT’s because in SoS each component is a full system unlike

in ToT’s.

e Industrial IoT (IIoT) / Industry 4.0: IIoT is named differently in differ-
ent countries. Some of the different names include Smart Industry, Industry
4.0 (4.0 denotes fourth industrial revolution), Smart Factories, and Advanced
Manufacturing. All of these generally stands for the use of various IoT tech-
nologies in manufacturing and industrial processes and depends on innovations
in Information and Communication Technology (ICT), CPS, network commu-

nications, simulations, and so forth.

e Cyber-Physical Systems: Definition for CPS’s from NSF states “Cyber-
physical systems integrate sensing, computation, control and networking into
physical objects and infrastructure, connecting them to the Internet and to
each other.!”. The differentiating feature of CPS’s is their ability to monitor

(and sometimes control) physical processes and physical activities.

lhttps://www.nsf.gov/news/special _reports/cyber-physical/
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2.1 Cyber-Physical Systems

In this dissertation, we focus our research on smart Cyber-Physical Systems
(CPS). As mentioned in the definition, it is an interconnected network of devices
which interact with physical entities. In a typical CPS, there are 3 main enti-
ties; Sensors that sense the physical environments, Control systems that aggregate,
process, and analyze the sensed physical measurements (may/may not generate
actionable intelligence), and Actuators that can alter the physical state of its de-
ployment according to instructions from the control system. According to CPSE?
typical CPS may control and monitor various processes(physical or organizational),
integrate solutions from multiple disciplines, handle human interactions, optimize
its own performance, evolve (and adapt) according to the changed environments,

involve a large-scale (even with a hierarchical structure), and so forth.

2.1.1 Applications

CPS domain is multi-disciplinary and finds application in several domains. A
comprehensive literature review on various applications and research in the CPS

domain is presented by [14]. Some of them are enumerated below.

e Agriculture: Several techniques are used for efficient food consumption, and
food production capabilities. Some of them include precision agriculture, in-

telligent water management, etc.

Zhttp://www.cpse-labs.eu/cps.php
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e Energy Management: CPS are widely used to monitor, and transfer energy
efficiently adapting itself to the user demands and availability. Smart grids is

a well-known example.

e Environmental Monitoring: Monitoring environment is important for early
detection of natural calamities like fire, flooding, Tsunami’s, etc. CPS’s are

deployed to monitor and report such instances continuously.

e Intelligent Transportation: CPS’s are used to manage complex traffic flow,

safety, and situational awareness.

2.2 Car as a Cyber-Physical System

A popular cyber-physical system which acquired smart decision-making capa-
bility is cars. Automobiles as just moving parts, pulleys, and mechanical devices
solely controlled by human drivers are antiquated long back, and they developed
from being just mechanical devices into machines which can drive autonomously. A
modern car has a large number of smart sub-systems (Fig. 2.1), and they make a
lot of intelligent decisions every second. They can provide safe, efficient, and fast
transportation in smart cities. Driver-assist features like anti-lock braking system,
adaptive cruise control, and blindspot warning systems are becoming the de facto
in many newer cars. For instance, the latest version of Accord from Honda Mo-
tor Company has Honda Sensing® (Honda’s package of smart features like Collision

Mitigation Braking System (CMBS), Road Departure Mitigation System (RDM),

3https://automobiles.honda.com/safety
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Adaptive Cruise Control (ACC), and Lane Keeping Assist System (LKAS)) feature
as a default, even for its base version. Current cutting-edge research in this domain
focuses on autonomous driving in which a car can navigate you from one location
to another without direct human intervention. Waymo® (an Alphabet company),
Uber®, GM motors®, Tesla’, etc. are some automotive giants who are innovating
in this area. Waymo’s fleet of autonomous cars has already driven over 4 million®

combined miles on normal roads.
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Figure 2.1: Modern Car Sub-Systems.

‘https://waymo.com/
Shttps://www.uber.com/
Shttps://www.gn.com/
"https://www.tesla.com/
8https://waymo.com/ontheroad/
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2.2.1 Modern Car Architecture

Advancements in microprocessor technologies resulted in the emergence of new
and powerful ECU’s (Electronic Control Units) in automobiles for making fast and
smart decisions for many activities. Typically, an ECU will be connected to different
sensors (eg. Acceleration sensor, Rain sensor, Ambient light sensor, Wheel speed
sensor, RPM sensor, Vehicle Speed sensor, Oxygen sensor, temperature sensor, etc.)
and actuators (eg. Instrument clusters, spark plugs, airbag inflators, etc.) using
cables. Even though all automobiles have similar facilities, as of now, they don’t have
a standardized architecture. Different manufacturers like Honda, Toyota, BMW,
Benz, Kia, and General Motors use different types of equipment, internal wiring
architecture, and protocols. However, in general, we can see that all of them use
one or more buses inside, and most of the subsystems and sensors are connected to
them as shown in Fig. 2.2. Sub-systems need to meet specific constraints according
to the task it is assigned to. For example, ABS (Anti-lock Braking System) need
to meet strict time requirements. Otherwise, the vehicle won’t stop at the required
location. On the other hand, some sub-systems like entertainment subsystem need
not meet the time requirement, but they need high volume data transfer. Different
buses are chosen based on these requirements. Attributed to lack of standardization,
some sensors are directly connected to the ECU, while others are connected to the
common bus. Broadly each vehicle has at least a common bus and different smart

subsystems.
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2.2.1.1 Common Bus

Earlier vehicle manufacturers used a point-to-point wiring harness to connect
all the components, and it became complicated due to an increase in the number of
components. In 1986, Robert Bosch GMBH introduced a lightweight and low-cost
serial bus protocol named Controller Area Network (CAN) for vehicular communi-
cation because none of the then existing protocols had the required characteristics.
CAN was a broadcast based protocol in which all the devices are connected to the
same bus, and all devices see all network communications. Error correction and
priority maintenance were its important characteristics along with decreased com-
plexity in the wiring harness. The newer CAN 2.0 specification was published in
1992 and became widely used by different manufacturers. The number of smart
systems increased considerably over the past few decades. According to a report?,
the average number of such systems in a car increased from 24 in 2002 to 70 in 2013.
To cope with this increase in the number of components and speed requirements of
different subsystems, newer protocols and buses were introduced. Some of the pro-
tocols over CAN bus are ISO-TP protocol, CANopen, etc. A newer version of CAN
named CAN-FD got introduced in 2011 which has flexible data rates. Other proto-
cols introduced include PWM protocol from Ford, Keyword Protocol (KWP2000),
VPW Protocol used in GM and Chrysler, LIN (Local Interconnect Network) proto-

col'®, MOST (Media Oriented System Transport) protocol'!; etc. Each of them has

Ynttp://cvrr.ucsd.edu/ecel56/AutomotiveSensors-Review- IEEESensors2008. pdf
Ohttps://vector.com/vi_lin_spec_download_en.html
Uhttps://www.mostcooperation.com/publications/specifications-organizational-procedures/

request-download/mostspecificationpdf
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