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Abstract—A key challenge faced by small and medium-sized
business entities is securely managing software updates and
changes. Specifically, with rapidly evolving cybersecurity threats,
changes/updates/patches to software systems are necessary to
stay ahead of emerging threats and are often mandated by
regulators or statutory authorities to counter these. However,
security patches/updates require stress testing before they can be
released in the production system. Stress testing in production
environments is risky and poses security threats. Large businesses
usually have a non-production environment where such changes
can be made and tested before being released into production.
Smaller businesses do not have such facilities. In this work, we
show how “digital twins”, especially for a mix of IT and IoT
environments, can be created on the cloud. These digital twins act
as a non-production environment where changes can be applied,
and the system can be securely tested before patch release.
Additionally, the non-production digital twin can be used to
collect system data and run stress tests on the environment, both
manually and automatically. In this paper, we show how using
a small sample of real data/interactions, Generative Artificial
Intelligence (AI) models can be used to generate testing scenarios
to check for points of failure.

Index Terms—Digital Twin, Generative Modeling, Software
Testing, Change Management

I. INTRODUCTION

A major challenge in cybersecurity today is staying ahead
of emerging threats and addressing old vulnerabilities before
they are exploited. Constant updates/patches are critical in
the maintenance phase of a product development life cycle.
They are also some of the most effective ways to counter
security threats that exploit existing vulnerabilities. Some of
these updates have been made mandatory by the Government.
In an October 2022 report on Cybersecurity Awareness [7],
NIST reiterates why constant updates are our best defense
against cyber threats. However, releasing a security patch
for a product or system is risky. Without proper testing, a
security patch can break the existing infrastructure or create
new vulnerabilities. To provide seamless integration with the
production environment, product developers and system de-
signers typically run these patches/updates through a series
of testing in a pre-production environment that simulates the
production environment. Larger business entities have the
resources to build both production and non-production envi-
ronments that can be used for pre-release testing and system

integration. However, maintaining an independent resource for
non-production testing can be expensive. Smaller business
entities have limited resources and often do not have a separate
non-production environment. To solve this problem, a virtual
copy, a “digital twin”, can be created of the existing system [4,
18, 14]. The twin behaves as a non-production environment for
testing patches prior to production release. In this paper, we
focus on both single machines and IoT based Cyberphysical
systems. In developing a digital twin for an IT and IoT device,
the process needs a platform to support the cloud environment
and an agent to facilitate the capture and upload of information
to the cloud platform.

After the digital twin is created, manual tests can be
conducted on this new cloud-based system. However, running
manual tests can be time-consuming. One approach is to
capture the user interaction/input to the system, and then
replay it on the twin. However, before releasing a patch/update
into the production environment, the system behavior has to
be observed over long periods of time with different inputs
after application of the patch/update to determine it as safe
for production. Inputs to the system captured during normal
use in the production environment before the update will form
the core of the tests. However, in any limited capture, we run
the risk that only a subset of the possible inputs have been
captured. Our key innovation is using AI to overcome this
limitation. Input data captured as described above can be used
to train generative machine learning (ML) models to generate
new, synthetic input data. The synthetic system data can be
used to create a wide array of testing scenarios and reduce the
need for manual test design.

In this paper, we propose a framework to capture a system
image of the IT and IoT devices, upload them to a cloud
and create a “digital twin” that acts like a non-production
environment. Furthermore, to enhance testing in the digital
twin, we record data in different formats from IT and IoT
devices and use the data to train ML models and generate a
multitude of testing scenarios in a digital twin. We demonstrate
our framework by creating digital twins of IT and IoT devices
on the cloud and using them for patch/update testing.
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II. BACKGROUND AND RELATED WORK

We use digital twins to facilitate smaller business entities
with a non-production environment. The digital twin provides
a platform to the end-users such that they can perform auto-
mated or manual tests on it [4, 18, 14]. These tests will help to
understand the functioning of the system after a patch/change
is applied to it. Jagatheesaperumal et al. [16] said that a digital
twin enables international firms to create digital replicas of
their operations, assets and products to improve performance
and upkeep. Barricelli et al. [3] and Tao et al. [22] focuses
on digital twins in an industry such as their applications or
how much they have been developed in this sector. Our work
extends the use of digital twins for IT and IoT devices with the
most common Operating Systems, like Windows or Ubuntu.
We build twins that can help evaluate security implications of
change/patch management, and use it to stage a pre-production
testing environment where automated or manual tests can
be executed.Furthermore, we use the data collected in the
system to automatically create additional testing scenarios
using Generative AI for synthetic system data.

Software updates require testing in the organization’s IT
infrastructure, networks, and systems, before they can be
deployed to production. These requires constant monitoring of
the system health in the pre-production environment. Modern
tools integrate Machine Learning (ML) models to enhance our
system monitoring capabilities [8, 23, 11, 19, 9]. However,
vigorous testing, specifically with the use of ML techniques,
require significant amount of data which is infeasible in limited
testing environments. The data collected over digital twin
can be used to generate synthetic system data serves several
purposes. It can be used to create functional tests to test the
system is working fine after patch is applied. In general, there
is a lot of evidence of GANs being used for synthetic data
generation and translation in image and text data [5, 15, 27,
24]. However, the properties of system or device data makes
it distinct from image and text data. A conditional generator
model can address the issue of mixed attributes in tabular data
by seeking to minimize the distance between generated and
real data given a fixed value of the discrete variable [1, 25, 26,
17]. System data, specifically network activity data, generated
using conditional GANs have been shown to replace actual
datasets in downstream tasks like network intrusion detection
[21, 6].

III. ARCHITECTURE AND SYSTEM DESIGN

The digital twin is a virtualized copy of the existing system
that can be hosted on the cloud. The patch/update can be
applied on the digital twin. The system logs of the digital twin
can be observed for any changes in system behavior as a result
of the patch/update. The digital twin allows for integrity testing
of patches and expected changes to the production system.
Additionally, system data can be collected from the digital
twin to create additional testing scenarios using generative
modeling. The System Architecture is shown in Figure 1.

A. IT devices

For desktop and laptop computers, Windows is the most
commonly used Operating System [10]. Hence, we use a
digital twin for Windows. Our design for uploading a digital
twin of an IT device consists of an Image Capture Background
Service, a cloud platform where our digital twin is present and
a Tests service for the digital twin.

1) Image Capture Background Service: The background
service is responsible for creating and uploading the pro-
duction system’s image to the cloud. This service keeps on
running on the system whose image needs to be captured.
The general workflow of this service can be separated into two
different functions—that is, the capture and update of device-
specific information in the database via the API server and
the capture and upload of an image of the system to the cloud
storage. These functions are triggered by the end user, typically
a sysadmin, on the web application. The web application is
the user interface which enables the end users to view their
devices, images, digital twins and test reports.

2) Digital Twin on Cloud: Once the background service
uploads an image of the system, it triggers the creation of
a virtual machine on the same user interface. This virtual
machine once started is our digital twin. The digital twin can
be accessed by the user to use as a non-production replica of
the production system. On this digital twin, the patch can be
applied and used for testing.

3) Testing on Digital Twin: Patches can be applied to
the digital twin and the system behavior can be observed
for sanity testing. This includes observing for any system
failure and abnormal behavior. Different tools can be utilized
to collect system information both before and after applying
patches to observe for any changes. This includes system
tools, configuration scanners, and vulnerability scanners to
identify conflicts or vulnerabilities that arise. To record manual
user testing, this service uses a macro creator tool. However,
designing different testing scenarios for the patch can be time-
consuming. The data collected by these tools on the digital
twin can be used to train generative AI models to generate
test scripts for automatic testing, discussed in Section IV.

B. IOT devices

The architecture of an IoT based system is different from
that of a typical IT system. The Background Service like in IT
devices is responsible for creating the image of the IoT device
and uploading it to the cloud storage. However, in this case,
the image is captured as a tar file. This created image can then
be uploaded to the cloud, and can be run as a digital twin on
the Docker application. We used Docker as it provides us with
a platform to host an operating system initially running on an
IoT device. End users can run the image in a Docker container,
which is running in a virtual machine on the cloud. Similar to
the IT devices, the digital twin for IoT devices can be observed
for post-patching system changes and failures. We also collect
system data like active processes, cpu and memory usage data
from the digital twin of IoT devices to train generative AI
models and synthesize additional testing scenarios.
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Figure 1: System Architecture for creating and testing on Digital Twins of IT and IoT devices

IV. TESTING USING AI APPROACHES

Manually designing different testing scenarios to stress the
system require lot of time and effort that are again demand-
ing for smaller businesses with limited resources. The pre-
production environment of the digital twins provide an unique
opportunity to observe and collect system behavior data. This
system data is not only important for sanity testing, but can be
used to train Generative AI models. We use the data collected
by our digital twins to train Generative AI Models that can
learn the underlying distribution of data and sample a new
dataset of synthetic system data. This allows us to design
various testing scenarios that can help with stress testing of
patches/updates to the system.

System data is typically captured in two formats:
1) tabular data with a mix of discrete and continuous values
2) sequence of texts
We demonstrate by training two different generative mod-

els for each kind of system data capture. For tabular data,
the synthetic data is generated using Generative Adversarial
Networks. For sequence of texts, we use the large language
model GPT-2. We further discuss these models in this section.

A. Generative Adversarial Networks

Generative adversarial Networks (GANs) are a kind of
generative model in AI that have been successfully used to
generate synthetic data that closely resemble the original data.
GANs have been shown to be extremely accurate in synthetic
data generation and translation, particularly for image and text
data. In case of system data, the data is usually tabular, i.e. a
mix of discrete and continuous values. Additionally, the con-
tinuous values are not arbitrarily random and usually follow
a specific distribution within a given range. To account for
this, we need specialized versions of GAN that can accurately
replicate system data that is collected over our digital twin. The
PriveTab model [17], addresses this issue in three key steps
(1) Mode-specific normalization, (2) Conditional Generator,
and (3) Training by sampling. Additionally, it ensures that the

synthetic dataset is distributionally close to the original dataset,
such that it can replace the original datasets in functional tests.
For this, the Earth Mover’s distance (EMD) of the distribution
of features in the synthetic is calculated w.r.t. the original
dataset. The sampling process continues to sample from the
trained generator till the generated distribution is within a
threshold distance of the original distribution. We use the
model described in PriveTab to generate synthetic system data
that are in the tabular format.

B. Generative LLMs

Generative Pre-trained Transformer 2 (GPT-2) is a deep
neural network large language model created by OpenAI and
is based on the transformer model. Typically, the architecture
of a GPT-2 model is decoder-only transformer [13]. It has
decoder blocks stacked on one another. In addition to the feed
forward neural network, each decoder stack has a masked
self attention, which means that the tokens to the right of
the current position or the attention head are not taken into
consideration. We used GPT-2 model and fine-tuned it with
the cleaned data that we extracted from the macro creator on
the digital twin. Fine-tuning enabled the model to perform
the downstream task of predicting and generating subsequent
commands. The newly generated commands could serve as a
new test script in addition to the other test scripts which were
created directly by the macro creator.

V. PROTOTYPE FOR DIGITAL TWIN SYSTEM

For our experiments, we built digital twins for both IT and
IoT devices. In the case of IT devices, we created a digital
twin for Windows 10 on the Azure cloud. For IoT devices, we
created a digital twin for Ubuntu 22.10 running on a Raspberry
Pi 4 8GB Model B of ARM v8 architecture which connects
to/controls a variety of sensors, and this digital twin runs on
a Docker Application.
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A. Digital Twin for IT Devices

To create a cloud platform supporting the digital twin,
specific device information like OS, processor, memory, and
storage is captured and updated in our database via the API
server. Users add their devices through the web app and then
initiate image creation of their device on the web application,
followed by the digital twin creation. The image file that is
created and uploaded by the background service is in the
form of VHD (Virtual Hard Disk) file format because of
the support of utility tools such as Microsoft’s Disk2vhd.
This cloud platform enables our digital twin to function as
a virtual machine on Azure. A macro creator application
known as Pulover’s Macro Creator [20] was used for the
purpose of creating custom test scripts and to train our AI
model to generate test scripts in .ahk format. A patch can
be applied to the digital twin and the Tests Service can be
initiated. Our Windows Tests Service, includes Windows event
logs for Application, Security and System. It also includes
Vulmap that can be used to test for vulnerabilities and a
configuration scanning tool CIS-CAT Lite that can identify the
list of changes in configuration required for enhanced security
post-patching. The above tests generate test reports. Process
Monitor and the test scripts, both custom and generated, can
be executed simultaneously to check for any crashes or failures
post-patching and will prompt user notifications for debugging.
Our Windows 10 Tests Service automates Vulmap, CIS-CAT
Lite, Process Monitor, and Windows event logs capturing. The
final test report includes vulnerability scan, configuration scan
and Windows event logs in a zip file.

B. Digital Twin for IoT Device

To create a digital twin of a Raspberry Pi 4 Model B (ARM
v8) running Ubuntu 22.10, we used Docker application and
created an image of the IoT device in the form of a tar
file instead of a VHD. We have created an Image Capture
Background Service for image creation and uploading. The
function of our background service is to create a tar (tar.gz) file
of the complete filesystem. Some directories were not included
while creating the tar.gz file. For an instance, tmp directory
which contains temporary files required by the machine was
removed while creating the tar.gz file. A new tmp directory
was created while building the final Docker image, from which
the Docker container can be started. The created image tar file
is also uploaded to the Azure cloud storage by the background
service using Azure Command-Line Interface. The virtual
machine is a generic VM and not created from a specialized
OS disk like in IT devices. The functionality for creating a
generic virtual machine for Ubuntu 22.10 was added to our
existing client web application for IT devices. After the image
file has been downloaded into the VM, it is imported into
the Docker application present in the Azure VM. A new and
updated Docker image is built using this imported image. The
digital twin was made accessible on the Docker container. The
digital twin can be used to perform manual tests to check it’s
functioning. A vulnerability scan can be done using Vulmap
for Linux. Other Linux logs for an instance, dmesg, syslog or

Process ID User
CPU Usage

(in %)

MEM Usage

(in %)

Time Lapsed

(in ms)
Command

392 root 3.3 0.2 00:01.1 gedit

1281 root 2 0.1 00:39.5 top

184 root 2 0.1 00:09.1 sh

421 root 1.7 0.7 00:00.7 xdg-desktop-por

75 root 0.7 0.4 00:00.1 featherpad

Table I: Samples of Generated Active Process and CPU Usage
data

Recorded Data Synthetic Data
Average CPU Usage
(in %) 0.20 0.14

Average Memory Usage
(in %) 0.99 1.00

Average Run time
of Processes (in ms) 0.005 0.007

Most Frequent User root root

Table II: Comparison of Recorded and Generated Active
Process and CPU Usage data

auth.log can also be monitored to check some of the events
that occur. Also, the synthetic active processes and CPU usage
data will give us an idea how the new data should look like
after the patch is applied to the digital twin.

VI. TESTING AND VALIDATION

We collect system data from the digital twins by manually
recreating testing scenarios for integrity check of the system.
The data collected is used to train generative AI models. In
a deployed system, the idea would be to capture system state
for a short time as users interact with the system before the
patch is applied. System data are typically captured as tabular
data or sequence of texts. We demonstrate by collecting CPU
usage data in the tabular format and User Interaction Data in
the textual format. We demonstrate how the collected data can
be used to train generative AI models and sample new sets of
data in both formats. In this section, we describe how the data
is collected from the digital twin, our results from training the
generative models and validate the synthetic dataset against
actual data collected from the system.

A. Data Collection

1) Active Processes and CPU usage data: : As an example
of the kind of system data that can be used to determine if the
system is behaving normally, we consider process data. The
top command is used to get a list of active processes in a Linux
system. It provides a dynamic real-time view of processes
and threads currently active on Linux kernel. It also includes
information about the CPU and memory usage of each active
process or thread. This is essential for monitoring system
health overview during a patch deployment. The collected data
is in a tabular format, where each row represents an active
process. The tabular data contains a mix of both continuous
and discrete variables. Hence, we use this information to train
a GAN model as described in Section IV-A and synthesize
additional testing scenarios.
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(a) Observed User Interaction Commands (b) Generated User Interaction Commands

Figure 2: Comparison of Observed vs Generated User Interaction Commands

2) User Interaction Data: : We have captured user interac-
tions with the digital twin of IT devices. Each set of captured
user interactions is a test case scenario, where each set is
in the form of a .ahk[2] file. We used a macro creator tool
to achieve this. The user, first begins the recording, then,
for all the applications they want to test, they launch each
application and perform various actions using that application.
The macro creator then generates a report containing the
user’s keystrokes, mouse activity, and the timing between
actions. The user interactions for each application have been
considered as a single test script. We collect the data for an
array of such testing scenarios as well. The data collected is
cleaned and stored as a sequence of texts.

B. Data Generation

1) Active Processes and CPU usage data: : For the CPU
usage data, we train a GAN on the collected data. We collected
the Active Processes and CPU usage data from the digital twin
by running the top command and collecting 560 datapoints.
From the collected data, we train the GAN to generate a
synthetic dataset of 70 datapoints. Samples from our synthetic
CPU usage dataset are provided in Table I. The table consists
of features like Process ID, User, CPU Usage, MEM Usage,
Time Lapsed and Command to initiate a process. We provide a
comparison of the cpu and memory usage from the original vs
the generated data in Table I. The average percentage usage of
CPU usage per process in the generated table is 0.14 which is
close to the observed data, 0.20. The average percentage usage
of Memory usage per process in the generated table is 1.00
which is close to the observed average percentage usage of
Memory usage per process i.e. 0.99. Also, the average running
time of an active process in the synthetic dataset is 0.007 ms
which is close to the actual observed average of 0.005 ms and
the most frequent user in both datasets were “root”.

2) User Interaction Data: Using Macro Creator tool on
the Digital Twin, we capture the User Interaction Data for 6
test scenarios. Here, each testing scenario is a set of user com-
mands. For an instance, a testing scenario can be on activating
Google Chrome and then performing some activities in it. The
corresponding user activities user’s keystrokes, mouse activity,
and the timing between actions are captured to make one set

of testing scenario. We have collected 6 such testing scenarios
for training. Using the training dataset, we have fine-tuned
a pre-trained GPT-2 model. Given an initial command for a
particular test case scenario, the ‘text-generation’ pipeline is
able to generate the subsequent commands that are most likely
a part of that test case scenario. The generated commands
are then converted to a .ahk file and replayed. We generate
3 sets of commands using GPT-2. A sample set of generated
commands are shown in Figure 2b. The generated command
sequence corresponds to a user typing something on the
browser. We compared the generated sequence of text with
original sequence of text corresponding to the same scenario,
user opening and typing something on the browser. An in-
stance of the original sequence of commands is also provided
in Figure 2a. The vectorized generated data had an average
cosine similarity score of 0.73 with the original text sequence.
The average Bleu score of the generated text when compared
to the original was 0.72. 2 of 3 generated testing scenarios
using GPT-2 were replayed successfully using AutoHotKey.

VII. CONCLUSION

Cybersecurity threats are dynamic and constantly evolving.
Fixing vulnerabilities in existing systems and rolling out
constant updates and patches are our best defenses against
evolving cybersecurity threats. Regular changes to the sys-
tem require rigorous testing in production and pre-production
environments that are often difficult for small and medium-
sized businesses who have limited resources. Our framework
for creating “digital twins”, especially for a mix of IT and
IoT environments can be used to stage a non-production
environment. This can be used for patch management and
testing even with limited resources. Furthermore, we use the
data collected in two different formats from our digital twins
to train generative models. This reduces the need for manual
interference during functional testing. In ongoing work, we
are transitioning our GPT-2 AI model to GPT-3 or 4, a newer
version which has the ability to handle specific topics. Domain
specific knowledge graphs have been shown to provide context
awareness for ML models [12], specifically in generation
tasks. We are working on adding knowledge guidance into the
generative process directly to improve the model performance.
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