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ABSTRACT
Security monitoring is crucial for maintaining a strong IT infras-
tructure by protecting against emerging threats, identifying vul-
nerabilities, and detecting potential points of failure. It involves
deploying advanced tools to continuously monitor networks, sys-
tems, and configurations. However, organizations face challenges
in adapting modern techniques like Machine Learning (ML) due
to privacy and security risks associated with sharing internal data.
Compliance with regulations like GDPR further complicates data
sharing. To promote external knowledge sharing, a secure and
privacy-preserving method for organizations to share data is nec-
essary. Privacy-preserving data generation involves creating new
data that maintains privacy while preserving key characteristics
and properties of the original data so that it is still useful in cre-
ating downstream models of attacks. Generative models, such as
Generative Adversarial Networks (GAN), have been proposed as
a solution for privacy preserving synthetic data generation. How-
ever, standard GANs are limited in their capabilities to generate
realistic system data. System data have inherent constraints e.g.,
the list of legitimate I.P. addresses and port numbers are limited,
and protocols dictate a valid sequence of network events. Standard
generative models do not account for such constraints and do not
utilize domain knowledge in their generation process. Addition-
ally, they are limited by the attribute values present in the training
data. This poses a major privacy risk, as sensitive discrete attribute
values are repeated by GANs. To address these limitations, we pro-
pose a novel model for Knowledge Infused Privacy Preserving Data
Generation. A privacy preserving Generative Adversarial Network
(GAN) is trained on system data for generating synthetic datasets
that can replace original data for downstream tasks while protect-
ing sensitive data. Knowledge from domain specific knowledge
graphs is used to guide the data generation process, check for the
validity of generated values and enrich the dataset by diversifying
the values of attributes. We specifically demonstrate this model by
synthesizing network data captured by the network capture tool,
Wireshark. We establish that the synthetic dataset holds up to the
constraints of the network specific datasets and can replace the
original dataset in downstream tasks.
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1 INTRODUCTION
Security monitoring systems play a vital role in maintaining a ro-
bust IT infrastructure within an organization. They help protect
against emerging threats and vulnerabilities in software, operating
systems, and applications, and identification of potential points of
failure in existing systems [5, 13, 15, 17, 18]. Security monitoring in-
volves deploying advanced tools and technologies that continuously
monitor the organization’s IT infrastructure, networks, and sys-
tems. This monitoring allows organizations to detect and respond
to security incidents promptly. Timely detection enables them to
initiate incident response procedures, minimizing the impact of
security breaches and reducing potential financial and reputational
damage. By analyzing network traffic, system configuration data,
and endpoint data, organizations can identify anomalies, suspicious
activities, or indicators of compromise that may indicate a cyber
attack in progress. Hence, organizations dedicate considerable re-
sources to collecting such data in their IT system.

As the frequency of cyber threats continues to increase, signifi-
cant advancements have been made in cybersecurity tools focused
on threat detection and vulnerability management. Particularly,
the integration of Machine Learning (ML) models have played a
pivotal role in enhancing these capabilities [7–9, 19, 22]. However,
organizations are limited in their ability to adopt these modern tech-
niques as it requires them to share their internal data for learning.
System data often contains personally identifiable information (PII),
confidential business data, trade secrets, or other sensitive data
that cannot be shared due to regulatory, legal, or business issues.
Sharing such data externally can introduce several privacy and
security risks. Additionally, there are specific policy regulations,
such as the GDPR in the EU, that impose obligations on organiza-
tions to ensure data privacy and security, which can make sharing
system data a complex and legally sensitive matter. To encourage
organizations to share their knowledge externally, both to make
their security infrastructure more robust and to aid in cybersecurity
research, there are two approaches. One is federated learning[2]
where models are trained on partial data within organizations and
then joined together. An alternate approach is to provide a secure
and confidential way for organizations to share their data.
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Figure 1: Framework for Knowledge Infused Privacy Preserving Data Generation

Privacy-preserving data generation refers to the process of creat-
ing new synthetic data that maintains privacy while retaining useful
characteristics and statistical properties of the original data. This
technique allows organizations or researchers to share or analyze
data without directly exposing sensitive information. One of the
approaches to generating synthetic data that bears a close resem-
blance to original data for any analytical task is using generative
adversarial networks (GANs). GANs are generative deep learning
models that learn the underlying distribution of a training dataset
in a two-player min-max optimization model. GANs are often used
for synthetic data generation and translation in image and text
data [4, 23, 26]. Conditional GANs (CGAN) have been shown to
accurately learn the underlying distribution of tabular data, like
system monitoring data, that contain a mix of discrete and continu-
ous variables [3, 12, 24, 25]. Synthetic data generated using privacy
preserving versions of GAN have been shown to replace real data
for statistical and analytical purposes while protecting sensitive
information.

However, standard GANs are limited in capabilities to generate
realistic system data, like network activity data, that are used in
security monitoring tools. For example, in a typical network data
capture, a limited set of IP addresses are observed. CGAN for tabular
data is limited to repeating observed values of discrete attributes.
Hence, even in the synthetic dataset, only the observed values of
IP addresses can appear. However, this is a privacy risk since it
reveals what addresses are communicating within an organization.
Additionally, system data typically contain inherent constraints,
e.g., fixed sequence of events in the network activity, fixed range
of IP addresses, valid set of port numbers, etc. However, standard
GANs do not enforce these constraints. The result is unrealistic
generated data that can easily be discerned from the original data
and may mislead downstream tasks such as classifiers that are try-
ing to separate legitimate traffic from attacks. We propose infusing
knowledge and reason in the generation process of privacy preserv-
ing GANs to enrich the synthetic dataset. Information like valid
range of attributes can be easily captured and represented in do-
main specific Knowledge Graphs (KG). We can mine this knowledge
from domain specific Knowledge Graphs (KG) to control the data
generation process in a GAN.

In this paper, we propose a novel framework for a knowledge
infusion in privacy preserving data generation for system data. We
show how knowledge from domain specific Knowledge Graphs can
be induced in the sampling step of GANs to create realistic synthetic
datasets, that can replace original data for downstream tasks. We
have demonstrated the use of our framework for the generation
of Network Activity Data. For inducting the domain knowledge,
we have developed a novel ontology for network data capture
that guides the valid sequence of events in a network activity. We
demonstrate our proposed framework by training Network Activity
Data in a live system throughWireshark and training a GANmodel
on the captured data and using the network data ontology to guide
the generation process. We show the validity of the generated
dataset by verifying with a human annotator, using the generated
dataset to replace the original dataset in downstream tasks with
minimal loss, and showing that the generated dataset is resistant
to privacy attacks.

2 PROPOSED FRAMEWORK
Our proposed model uses knowledge infusion from a domain-
specific Knowledge Graph to generate enriched synthetic datasets
that preserve privacy while still being able to replace original data
for downstream tasks. A privacy preserving Generative Adversarial
Network (GAN) is used to learn the underlying distribution of the
training data. Knowledge from domain specific knowledge graphs is
used to guide the data generation process, check for the validity of
generated values and enrich the dataset by diversifying the values
of attributes. The overall architecture for our proposed framework
is illustrated in Figure 1.

2.1 Privacy Preserving Data Generation
Generative adversarial Networks (GANs) are a generativeML frame-
work that attempts to learn the underlying distribution of the train-
ing set in an adversarial setting. A typical GAN framework consists
of a generative model G that approximates the training data distri-
bution, and a discriminative model D that differentiates between
a sample from the original distribution versus a sample generated
from G. The training procedure for G is to maximize the probability
of D making a mistake. With each iteration, the generator gets bet-
ter at approximation and sampling from the underlying distribution
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Figure 2: Ontology for Network Activity Capture

of the training data. The idea behind GAN can be formulated as a
two-player min-max game with value function 𝑉 (𝐺, 𝐷):

min
𝐺

max
𝐷

𝑉 (𝐺,𝐷) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥 ) [𝑙𝑜𝑔𝐷 (𝑥)]

+𝐸𝑧∼𝑝𝑧 (𝑧 ) [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧)))]
(1)

In the case of system data, the data is usually tabular i.e. a mix
of discrete and continuous values. To account for this, we need
specialized versions of GAN that can accurately replicate system
data that is collected from our system. In Conditional Generative
Adversarial Nets (CGAN) [14], the generator is trained by condi-
tioning the model on a constraint. It is thus possible to direct the
data generation process.

Additionally, we have to ensure that the data generated using
GAN preserves privacy. The PriveTab generator [12], models tab-
ular data in three key steps (1) Mode-specific normalization, (2)
Conditional Generator, and (3) Training by sampling. Additionally,
the model ensures that the synthetic dataset is t-close to the origi-
nal dataset to enforce privacy. For this, the Earth Mover’s distance
(EMD) of the distribution of features in the synthetic is calculated
w.r.t. the original dataset. We train a GAN for privacy preserving
synthetic data generation using the method described in Privetab.

2.2 Knowledge Graphs and Network Activity
Ontology

Knowledge Graphs (KG) are graph-structured data models used
for knowledge representation and reasoning. The information or
knowledge in a KG is structured as semantic triples of subject, pred-
icate, and object. Here subjects and objects are nodes or entities in
the graph and predicate is the functional relation between them.
Due to the graph like structure of KG, large quantities of informa-
tion can be stored in the KG and the network can be extended with
new knowledge as needed. The KG also has powerful reasoning
capabilities that allow us to put constraints on the entities and infer
new knowledge. For example, we could say that source IPs must
not be from within a subnet, or must originate from a specific ex-
ternal CIDR range. Due to its strong knowledge representation and
reasoning abilities, we can use KG to augment our data generation
process.

Figure 3: SPARQL Query to Retrieve Subsequent Network
Event

Figure 4: SPARQL Query to Check Validity of Port Number

For our use case, we have designed a Network Activity ontology
as an extension of Unified Cyber Ontology (UCO)[21] to maintain
the sequence of events as interpreted by network capture tools like
Wireshark. Figure 2, Our ontology introduces three main classes:
“Network_Event", “Network_Event_Property" and “Webpage". “Net-
work_Event" describes individual network events in network traffic
and each event has properties like Source and Destination IP, Port
Address and associated Network Protocol that are described in the
“Network_Event_Property". Each “Network_Event" is subdivided
into 4 classes based on their protocol: “DNS_Event", “TCP_Event",
“ICMP_Event" and “TLS_Event". Each event in Network Event has
a temporal sequence. For instance, a DNS query should be followed
by a DNS response and DNS Response can only come after a DNS
Query. For this purpose, the “Network_Event" has relationships ‘Fol-
lowed_By’ and ‘Preceded_By’ to another “Network_Event" which
dictates the ordering of events in network activity data. We use this
KG to guide our data generation process. We train generative AI
models on our system data.
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Figure 5: SPARQL Query to Retrieve Valid IP addresses

2.3 Knowledge Guided Data Generation
In reality, the discrete attribute can take on a larger range of val-
ues. Additionally, there are strict rules in a system that have to be
observed. One such example is that in a network activity, certain
network packets have to be followed by others to establish a legiti-
mate connection. Generative models can not adhere to these rules
unless specifically constrained.

We can sample the trained generative model to synthesize a
new dataset. However, the sampling process is not constrained
and this can lead to fallacies in the generated dataset. We use the
knowledge in our KG to guide us in this process. We enrich the
sampling process from the trained generative model through 3 key
steps:

(1) Condition Enforcer: Prior knowledge can be induced in
the generation process through Knowledge Graph Query.
Information about previously generated samples can be used
in conjunction with data from the Knowledge graph to set
condition for the conditional generator. For example, the
Network Activity Ontology contains information about the
temporal sequence of events in Network Data Capture. We
can query the knowledge graph to find out which event
logically follows the last generated event from the GAN. An
example of such query is given in Figure 3. The result of the
query can be added as the conditional input to the GAN.

(2) Rule Enforcer: In case of tabular data, CGANs treat each
attribute as either discrete or continuous. It is not able to
model conditionally continuous variables or variables that
are continuous within a range. For example, port addresses
are numbered values that are valid within a range. To enforce
this, we use a rule enforcer that checks the validity of the
generated data and rejects data that violates a constraint.
For example, the knowledge graph can be queried with a
generated port number to check whether the port number is
valid. An example of such query is provided in Figure 4.

(3) Discrete Value Anonymizer: One of the limitations of
data generation using GANs is that the models can only
learn from the data it has seen. This means it can only repeat
the discrete values from the training set which is limited
by the values we have observed during testing in our digi-
tal twin. This is a privacy risk as actual observed values of
attributes can be sensitive. In the case of network activity
data for example, we can only use the IP addresses with ob-
served network activity. Using only that data that we have
observed in our system, the generative model has a limited
view of possible IP addresses. A discrete value anonymizer
queries the Knowledge Graph for possible values of discrete
attributes such as IP address, port number, domain ad-
dress etc. Thus, it decreases the likelihood of adversaries

identifying actual observed values from the synthetic data.
An example of such query is provided in Figure 5.

3 TESTING AND VALIDATION
The objective of our framework is to produce realistic and privacy
preserving datasets that can replace sensitive system data for down-
stream tasks. To test our proposed framework, we use it to generate
synthetic data fro Network Activity Data. Network Activity Data in-
cludes sensitive information such as source and destination address,
and data contained in packets. We use our framework to synthesize
a completely fake dataset of Network Activity data which while
hiding actual sensitive information is still useful for other tasks. For
this collect our own dataset of Network Activity data from a sys-
tem of connected IT and IoT devices through the network capture
tool Wireshark. We use 3 validation techniques to show that the
synthetic data is privacy preserving, retains relevant information
and can replace the original dataset with minimal loss in accuracy.

3.1 Data Collection
In our experimental setup we have multiple IT and IoT devices that
are connected in our network, including a Blink camera, a smart
plug with lamp and a motion sensor. We monitor the network
traffic in our system of IoT devices using network capture tools like
Wireshark. We filtered the data with the IP addresses of the IoT
devices to comprehend the communications that the devices usually
take part in. The network traffic data that we collected consists
of features like Source IP address, Destination IP Address, Source
Port, Destination Port, Protocol, etc. In case of the camera, data was
collected particularly when motion was detected in front of it. The
smart plug with lamp data consists of activity like turning on/off
the lamp. The motion sensor data consists of communications that
the tag manager makes. The tag manager is connected to the tag
or the sensor.

3.2 Validation
We use our proposed framework to synthesize Network Activity
data by training on our collected data. We use the Network Activity
Ontology as described in Section 2.2 to guide our data generation
process and synthesize our generated dataset. The synthetic dataset
is validated for logical consistency using a human expert. We also
check the accuracy of the synthetic dataset in downstream tasks
and privacy preserving properties against an adversary.

3.2.1 Human Validation. We asked a human expert to analyse the
synthetic dataset and manually annotate observed sequences of
events. In a valid network activity dataset, network events follow a
valid sequence of events and packets. For example, a TLSHandshake
is always preceded by a TCP Handshake. Additionally in a TCP
handshake, a SYN-ACK packet should be preceded by a SYN packet.
In our original data, first, a DNS request is made from 192.168.1.122
(camera) to 192.168.1.1 (router gateway) and a response is received
from the gateway to the camera. In our synthetic data, the human
expert observed that a DNS request - response first takes place
between 192.168.1.168 (camera) and 192.168.1.1 (router’s gateway).
This sequence of events is then followed by a TCP 3 way handshake
process, both in our original and synthetic data. Our synthetic data
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Seq. No. Source Source Port Destination Destination Port Protocol Length Info
Annotated
Events

43869 192.168.1.68 54176 192.168.1.1 53 DNS 60
Standard query 0xbc55 A
VS-cam.u038.immedia-semi.com

DNS Query

...

45863 192.168.1.68 63542 54.164.231.176 443 TCP 590
63542 >443 [SYN] ,Seq=1804
Win=26883 Len=0 MSS=0

TCP Handshake

46022 54.164.231.176 443 192.168.1.68 63542 TCP 1467
443 >63542 [SYN, ACK] ,Seq=1804
Ack=93857 Win=33580 Len=277 MSS=0

46026 192.168.1.68 63542 54.164.231.176 443 TCP 580
63542 >443 [ACK] ,Seq=599 Ack=1804
Win=33580 Len=0

46027 192.168.1.68 63542 54.164.231.176 443 TLSv1.2 157 Client Hello TLS Handshake

46189 192.168.1.68 63542 54.164.231.176 443 TLSv1.2 54 Application Data Data Transfer
...

48405 54.164.231.176 443 192.168.1.68 63542 TCP 70
"443 >63542 [FIN, ACK]
"Seq=1804 Ack=1804 Win=33580 Len=0

TCP Connection End

50281 54.164.231.176 443 192.168.1.68 63542 TCP 1467
443 >63542 [RST] "Seq=1804
Win=33580 Len=0

Table 1: Samples from Generated Network Activity Data with human annotation

Classifier Model Accuracy on
Original Data

Accuracy on
Generated Data

Logistic Regression 0.98 0.96
Decision Tree 0.98 0.97
Random Forest 0.98 0.98
XGBoost 0.99 0.98
Average: 0.98 0.97

Table 2: Comparison of Anomaly detection Classifier models
trained on Original vs Generated Data

also has the TLS events taking place between the camera and the
server. Once the data is transferred, 54.164.231.176 sends a FIN-
ACK packet to 192.168.1.68 (camera) to terminate the connection.
Samples from our synthetic Network Activity dataset along with
the human annotation of network events are provided in Table 1.

3.2.2 Accuracy in Downstream tasks. Network activity datasets are
commonly used to identify network events. For example, in the
network activity data collected from our IoT system, ML models
are used to automatically detect network activity corresponding
movement in front of a camera and any data being transferred
from the camera due to the movement. Supervised ML models are
trained on annotated network activity dataset to label network
activities to identify such network events. Any ML model trained
on the original data should produce similar results to an ML model
trained on a dataset generated through our framework. To prove
this, we train ML models on both original and synthetic datasets
and compare their accuracy against a test dataset retained from
the original dataset. The results of our comparison are provided in
Table 2. The average accuracy of ML models trained on the original
dataset is 0.98. In comparison, the average accuracy of ML models
trained on the generated dataset is 0.97. Thus there is minimal loss
in accuracy for ML models trained on generated data.

3.2.3 Resistence against Privacy Attack. A common privacy breach
is identifying original datapoints from a shared dataset. Given a

shared synthetic dataset, adversaries try to identify specific data-
points that also belong to the original dataset. The identification
of membership of a datapoint in an original, sensitive dataset is a
privacy risk and we show here that our model is resistant to such
attacks. We test our model with an unsupervised clustering models
based privacy attack. Given known information about labels, the
unsupervised clustering model attempts to divide a dataset into 2
clusters. In a privacy attack, it tries to form 2 groups of original
datapoints and generated datapoints. If the clustering algorithm
can decide with certainty the membership of a datapoint in either
of the two clusters, it is a privacy risk. We use the k-means clus-
tering algorithm to divide a mixed dataset of original datapoints
and generated datapoints from our models into two groups. The
accuracy of the clustering model was 0.53. The probability of the
model correctly identifying whether or not datapoint is original is
close to random chance. Thus showing that our model can resist
such adversarial attacks that try to identify original datapoints in a
shared dataset.

4 RELATEDWORK
In general, there is a lot of evidence of GANs being used for syn-
thetic data generation and translation in image and text data [4,
23, 26]. However the properties of system or device data makes
it distinct from image and text data. The system data is usually
tabular i.e. contains a mix of continuous and discrete variables and
in some cases the sequence of consecutive rows in the data is im-
portant. A conditional generator model can address the issue of
mixed attributes in tabular data by seeking to minimize the dis-
tance between generated and real data given a fixed value of the
discrete variable [3, 12, 24, 25]. System data, specifically network
activity data, generated using conditional GANs have been shown
to replace actual datasets in downstream tasks like network intru-
sion detection [6, 12, 20]. However, conditional GANs still rely on
values of discrete attributes previously seen in the training set. This
limits the capability of producing novel synthetic sets over a wider
range of values. Additionally GANs can not maintain sequencing in
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generated data. In this paper, we use knowledge infusion to address
these limitations of GANs.

Knowledge graphs are ideal for storing contextual information
about distributed systems that can enhance learning. The SOUPA
ontology [1] captures information to support pervasive computing
applications. The DAMLJessKB [11] captures attack vectors in a
target centric ontology. The Unified Cybersecurity Ontology (UCO)
[21] is a unified ontology for cyber situational awareness in cy-
bersecurity systems that has been shown to enhance contextual
awareness in ML systems [16, 19]. Hui et al. [10] proposed a knowl-
edge enhanced GAN to generate IoT traffic data for devices from
multiple manufacturers using KG that captures manufacturer and
contextual information for IoT devices. In this work, we are look-
ing to replace network traffic data as observed by manual testers
using knowledge infused learning. Manual testers typically do not
look at raw network data but process them through network traffic
capture tools like Wireshark. Hence, our KG needs to maintain
the semantics of data as presented by such network capture tools.
Hence, we create a novel KG that captures network traffic events
as interpreted by network capture tools.

5 CONCLUSION
Cybersecurity threats are dynamic and constantly evolving. Con-
tinuous monitoring of system data plays a crucial role in building
secure IT infrastructure by safeguarding against emerging threats,
identifying vulnerabilities, and detecting potential points of fail-
ure. It requires the of advanced tools to continually monitor and
analyse networks, systems, and configurations. However, organiza-
tions encounter difficulties when adopting modern techniques like
Machine Learning (ML) due to the associated privacy and security
risks linked to sharing internal data. Privacy-preserving data gen-
eration involves the creation of new data that maintains privacy
while still being useful as an alternate for sensitive data. Generative
models, specifically Generative Adversarial Networks (GANs), have
emerged as potential solutions for privacy-preserving synthetic
data generation. However, standard GANs exhibit limitations in
generating realistic system data. To address these limitations, we
propose a novel model that uses Knowledge Infusion to overcome
common limitations of Privacy Preserving Data Generation. By
utilizing domain-specific knowledge, such as valid attribute ranges
and constraints, the proposed model enhances the generation of
synthetic data while ensuring privacy preservation. We show the
validity of our framework against Network activity dataset. In fu-
ture, we want to extend this work to other system data and datasets
from other domains.
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