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XntrQdqctiQn

I.1 Introduction

This thesis discusses one part of a language processing system 

developed at the Coordinated Science Laboratory of the University of 

Illinois. This system, called PLANES [Waltz 75], is designed to be a 

question answering system which accepts and answers Questions 

concerning a large data base of aircraft maintenance information. 

The intended scope of the PLANES system is to answer such questions 

as:

How many Skyhawks required engine repairs in 1973.
Did any of these log more than 200 hours in March.
Show me the tail numbers of planes which were NOR during May.
What kinds of aircraft are in the data base?

The processing of a user’s request is divided into three main phases: 

parsing, interpretation, and evaluation (see figure 1). The first 

phase, the parsing, is accomplished by a large ATN network [Woods 

70]. This network defines a "semantic grammar" [Brown 76] which maps 

the users request into an internal representation, the Paraphrase 

Language. The grammar is "semantic" in that it incorporates semantic 

and pragmatic knowledge as well as syntactic.
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The Paraphrase Language representation of the user’s request is 

translated by the second stage into a ’program' to generate the data 

to answer the request. This stage contains detailed knowledge about 

the data bases. It must know, for example, which sub-parts of the 

data base contain certain relations and the particular codes used to 

represent certain facts. The program is constructed out of primitives 

provided by the Query Language.

Finally, the Query Language evaluates the 'program' and passes the 

resulting data to the Response Generator. This module can display the 

answer in one of three forms: as a simple number or list, as a graph, 

or as a table. The choice of output form can be determined by the 

user thru a direct request (e.g. "Draw a graph of ...") or by a set 

of heuristics which attempt to find the most "natural" form. A 

graph, for example, will be generated only if the data consists of a 

set of tuples which can be interpreted as a function of two 

variables. Furthermore, the number of tuples must lie within certain 

bounds.

At each stage of the process, the results are sent to the History 

Keeper which manages a set of stacks of relevant information. These 

stacks contain the results of each stage (e.g. users request, 

paraphrase, etc.), syntactic components (e.g. subject, object, etc.), 

and semanticcontextual information (e.g. time specifications, plane 

specifications, etc.). This information is made available for
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resolving anaphoric reference, supplying phrases deleted thru 

ellipsis, and generating responses.

The entire process can be aborted by any of the major stages. If 

this is done, a suitable error message is generated and the user is 

invited to reform his request.

1.2 An Overview of this thesis

This thesis is intended to both document the implementation of the 

ATN interpreter and compiler and to serve as a manual for anyone 

interested in using it. Chapter II gives a brief description of

ATN’s and discusses some of the high level design considerations. 

Chapter III describes the interpreter and the auxiliary functions 

available to the user in some detail. Chapter IV presents the 

compiler which can translate ATN networks into LISP code or machine 

language instructions. Chapter V describes the dictionary format 

expected by the interpreter. Also discussed are the various

functions provided for creating and maintaining dictionaries. 

Chapter VI documents several packages of auxiliary functions provided 

for interfacing the ATN system with the LISP editor and Pretty- 

printer. Appendices include a simple parser for English, a sample 

dictionary, and examples of their operation. An index to function 

calls and global variables and a bibliography conclude this thesis.
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1.3 Conventions

This thesis documents many LISP functions and "function-like" 

constructions. As part of the description for a function, a "syntax 

frame" will be given which specifies the number of arguments and 

whether or not they are evaluated. A "syntax frame" will look like a 

typical call to the function, i.e. it will be a list whose first 

element is the name of the function and whose remaining elements are 

the arguments. Arguments in the "syntax frame" will typically be 

enclosed in angle-brackets (<,>). For example, the syntax frame for 

the LISP function LESSP might be:

(LESSP <number> <number>)

which states that LESSP takes two arguments, both of which are 

evaluated.

If a quote-sign (') precedes an argument, then that argument is not 

evaluated by the function. For example, the following describes the 

function DEFPROP:

(DEFPROP 1<atom> '<value> *<property>)

If a function takes one or more optional arguments, then several

"syntax frames" will be given. For example, the MacLISP function

CATCH would be described as:

(CATCH <expression> ’<tag>)
(CATCH <expression>)

Two conventions will be used to exhibit functions which take an
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indefinite number of arguments. In one, the arguments are simply 

partially enumerated with the elliptical "...", as in:

(PLUS <number1> <number2> ... <numbern>)

The second form has the last argument to the function preceded by the 

"dotted pair" dot, as in:

(DEFUN '<name> ’<argument list> . '<function body>)

The last argument then stands for an indefinite number of final 

arguments. Example calls to a function will usually be given with

the "syntax frame" to clarify its usage. These will be preceded by 

an "eg:".
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II

AugfflgPi.Sd Transition Networks

II. 1 In trod .U.S.ti on

The ATN formalism has been well received by the computational 

linguistics community in the last five years. A number of people 

were working with similar models in the late 60's, but the idea was 

crystallized and popularized by Woods in the early 70's [Woods 71]. 

ATN models have recently been applied to domains other that the 

natural language parsing, including generation of natural language 

[Kay 75], and computer vision research [Lozano 77].

II.2 The ATN Formalism

The ATN formalism is usually described in a evolutionary manner, 

showing how one can start with the notion of a simple finite state 

machine (FSM) and modify and embellish it to arrive at an Augmented 

Finite State Transition Network (ASFTN).

The FSM is _fch£ basis far ATN’s

We start with a garden variety deterministic FSM consisting of a set 

of labeled states, a set of arcs between states, an initial state,
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and a set of distinguished final or accepting states. The first step 

might be to extend the formalism to allow for non-determinism. A 

simple grammar for English might be represented by the graph in 

figure 2.

As a model for natural language processing this is inadequate. The 

most serious deficit is the lack of any mechanism to handle 

embedding of constituents to arbitrary depth. The next extension, 

then, is to provide a "push down" mechanism whereby one can suspend 

the processing of a constituent at one level while using the same 

network to process an embedded one.

Adding recursion extends the power of an FSM

We can represent this by labeling an arc from one state to another 

with the name of a third state. When such an arc is encountered, 

processing is suspended and the network restarted in the specified 

state. If an accepting state is eventually reached, the suspended 

processing is resumed.

Such a capability not only allows one to achieve the power to parse a 

context free language, but also simplifies the representation of a 

grammar. One can collect common network fragments and specify them 

in one place, much as one can substitute a subroutine call for common 

program sequences in a programming language.

Our simplistic English grammar might now be represented by the graph



Figure 2
A Simple Grammar for English
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Figure 3
A Better Grammar for English
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in figure 3. Note that this grammar now accepts conjoined sentences 

and sentences embedded as relative clauses.

Augment action realizes the power jq £  ATN*s

Recursive transition networks are still inadequate for natural 

language processing. To further extend the power of our formalism we 

will allow arcs to be augmented with conditions and actions. Each 

arc can be augmented with:

1 An arbitrary condition which must be met before the arc may be 

taken.

2 A set of arbitrary actions which will be performed if the arc 

is taken. These can have side effects thru the setting of 

registers whose contents can later be accessed in other parts 

of the grammar.

This augmentation gives an ATN the computational power of a Turing 

machine. The final result is a powerful formalism which retains much 

of the elegance of the simple FSM.

II.3 Design considerations

Since ATN’s are based on non-deterministic FSM’s, an implementation 

must be able to simulate all possible paths thru the network. We 

have chosen to implement a depth-first backtracking version for
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several reasons. Firstly, it is our belief that natural language 

processing may be most suited to this approach. At least, evidence 

suggests that our only example of competent natural language 

processors (i.e. humans) do not use highly parallel methods. 

Secondly, we believe that whatever gains might be made thru a 

parallel approach would be more than offset by the additional cost of 

processing. The phenomenon of natural language is such that it 

encompasses an extraordinarily large number of patterns and 

constructions. Most of these, however, are relatively rare, the 

greatest part of most language being drawn from a few common 

constructions. A non-parallel approach can easily take advantage of 

this fact in the ordering of its attempts to find a path thru the ATN 
network.

To simulate the non-deterministic nature of an ATN processor (or a 

FSM for that matter) one needs to maintain an encoding of the current 

configuration (i.e. state, input word, register environment, etc.) as 

well as a stack of past configurations which represent the path so 

far. In our ATN system, we have chosen a recursive implementation in 

which this information is stored on LISP's internal stack. The 

alternative is to maintain an explicit configuration stack built from 

CONS cells from the general pool. The advantages of a recursive 

implementation include:

1 Simplicity of design
Backing up to a previous configuration is achieved by 
"returning" to the environment of that configuration. The 
undoing of side-effects is automatic.
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2 Efficiency
Previous configurations are stored on LISP's internal stack and 
thus do not consume CONS cells from the general pool. This 
reduces the amount of LIST space required and, more importantly, 
results in fewer and shorter garbage collections.

The chief disadvantage of a recursive implementation is that we give 

up the possibility of giving the user complete control over 

processing. Earlier configurations are inaccessible to the user as 

well as to the system itself. This problem is alleviated by the 

inclusion of several flow-of-control modifiers thru which one can 

directly fail back to a specified configuration.

II.4 Implementation

The ATN interpreter, Dictionary Manager, and ATN compiler are written 

in the LISP dialect MacLISP, which runs on a PDP-10 T0PS10 

timesharing system. The following gives approximate values for 

memory requirements:

LIST space BPS space

Interpreter 5100
Dictionary Manager 1200
Compiler 2500

In this table, LIST space refers to

to store lists, atoms, etc. and BPS

4000
1000
1500

the number of memory cells used 

space refers to ’Binary Program

Space’, the number of memory cells used to store compiled code.
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III

The JlTN Interpreter

III.1 Invoking the ATN Interpreter

PARSE and P.4B.SE.1 invoke the interpreter

PARSE and PARSE1 are the main functions used to invoke the ATN

interpreter on an input string. The function PARSE is intended to be 

used at LISP's toplevel and PARSE1 used by other programs.

(PARSE ’<string> ’Cinitial state> ’Cnumber of parses> ) 

eg: (PARSE (which skyhawks required repairs) s:start 3)

The function PARSE starts the ATN interpreter in state <initial 

state> with the input string <string>. It takes from 0 to 3

arguments, none of which is evaluated. If any argument is omitted or 

is NIL, it is defaulted as specified below.

The first argument specifies the input string to be parsed. If it is 

a list of atoms, then that list is used as the input string. If it

is an atom which has a value, then the value of the atom is used as

the input string. If it is omitted or is NIL, then the function 

READTEXT is called which reads the input string from the TTY.
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The second argument to PARSE specifies the initial state of an ATN 

network. If it is omitted or NIL, it defaults to the value of the 

global variable 0INITIALSTATE.

The third argument determines how many parses are produced. If it is 

omitted or NIL it defaults to one. If it is a positive number, then 

the interpreter will attempt to produce that many parses. If it is 

the atom ALL, then all possible parses will be produced.

The function PARSE always returns the value "*", so it is run for its 

side-effects. The principle side-effect is that it sets the the 

variable PARSE to:

1 The atom FAIL if the ATN was unable to reach a final state.

2 The value POPped by the ATN if <number of parses> is 1.

3 A list of the values POPped if <number of parses> is greater 
than one or the atom ALL.

In addition, this value is "pretty printed" on the TTY and the atom 

AGAIN is set to the input string.

(PARSE1 <string> <initial state> <number of parses> ) 

eg: (PARSE1 ’(show me the list) ’s:start ’all)

The function PARSE1 requires all three arguments, each of which is 

evaluated. It returns the value(s) POPped by the ATN from the final 

state(s). PARSE1 has the side-effect of binding the global variable 

AGAIN to Cinput string>.
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(READTEXT)

If the first argument to PARSE is omitted or NIL, the function 

READTEXT is called to read the input string from the TTY. This 

function reads a string of characters from the TTY until a carriage- 

return is typed and returns it in the form of a list of atoms. 

Characters which have a "special” meaning to LISP (e.g. . , ; , etc.) 

are automatically "slashified" (i.e. taken literally).

The function incorporates three special features:

1 If the null string is entered by typing only a carriage-return, 
then READTEXT returns the last input string given to PARSE (i.e. 
the value of AGAIN).

2 If the first character on the line is a "(" then READTEXT reads 
a LISP s-expression, evaluates it, and prints the resulting 
value. It then waits for a string of characters to be typed as 
the input string.

3 Whenever a line-feed is typed, READTEXT takes the next character 
of the input string from the last input string (AGAIN again). 
Subsequent line-feeds produce subsequent characters from the old 
input string.

III.2 Arc Types

Our ATN interpreter provides a total of 13 varieties of arcs. These 

can be broken down into the following categories:

1 Flow of Control (PUSH, POP, TO, JUMP, FAIL)
These are arcs which effect transitions from one state to 
another or invoke or return from sub-computations.

2 Testing the Current Word (CAT, WRD, ROOT, PHRASE)
These arcs are taken only when the current word meets a 
specified condition.
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3 Virtual Arc (VIR)
This arc provides a natural mechanism for handling constituents 
which are parsed "out of place" in the input string.

4 Miscellaneous Arcs (TST, DO, AND)
These three arcs provide a mechanism for miscellaneous 
computation.

All of the arcs except the AND arc have the basic form:

(<type> <head> <test> <action1 > ... <actionn> ) 

where <type> is one of the arc types (PUSH, CAT, TST, etc), <head> is 

an argument for that arc type, <test> is an arbitrary condition which 

must be met before the arc can be taken, and the <actions>'s are 

arbitrary lisp expressions which are evaluated if the arc is taken. 

Typically the last action will specify destination - the next state 

to go to.

Ill.2.a .Arcs which test the current word

The WRD arc compares the current word

(WRD ’<word(s)> <test> ...<actions>... <destination>) 
eg: (WRD (the a) T (SETR det *)(T0 np:det))

(WRD please t (SETR polite t)(TO s:start))

The WRD arc compares the current word against <word(s)>, which can be 

an atom or a list of atoms. If the current word matches, then <test> 

is evaluated and, if true, the actions are evaluated from left to 

right.



18

Xhe CAT arc checks for &  lexical category

(CAT '<head> <test> ...<actions>__ <destination>)
eg: (CAT adj T (ADDR adj *)(T0 np:adj))

(CAT (n npr) t (SETR n *)(T0 np:n))

A CAT arc is taken if the current word has a lexical entry under the 

category <head> (if it is an atom) or any of the categories <head> if 

a list. Within the CAT arc, the variable * is bound to the root form 

of the current word. For example, if the current word is CRASHING, 

then the following arc would set the register VERB to CRASH:

(CAT V T (SETR verb *)(T0 s:verb))

Note that this arc may generate several possibilities if the current

word has more than one dictionary entry under the specified category.

For example, the word SAW might have the dictionary entry:

(SAW V ((SEE (tns past))
(SAW (tns present)(untensed)))

In this case the CAT arc above will first try parsing SAW as the past 

tense of SEE and, if that fails, will try parsing SAW as the 

present/untensed form of the verb SAW.

The ROOT arc checks the root form

(ROOT '<root(s)> <test> ...<actions>... <destination>) 
eg: (ROOT BE T (SETR v *)(to S:BE))

(ROOT (have be) (NULLR aux)(SETR aux *)(T0 s:aux))

A ROOT arc compares the root form of the current word to <root(s)>. 

Again, <root(s)> can be an atom or a list of atoms. The arc is taken
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if the current word matches one of the forms in <root(s)>. As with 

the CAT arc, the variable * is bound to the root form of the current 

word within the ROOT arc.

I.frg .EHBASE arc checks the next several words

(PHRASE ’ <phrase> <test> ...<actions>... <destination>) 
eg: (PHRASE (more or less) T (SETR fuzzy T)(T0 quant rend))

(PHRASE (please (give show tell) me) T (TO s :imperative))

The PHRASE arc is used to compare the next several words in the input 

string to <phrase>. This argument should be a list of atoms or lists 

of atoms.

Successive elements of <phrase> are matched against successive words 

from the input string. An element which is a list enumerates several 

possibilities for the corresponding word in the input string. The 

arc is taken if and only if each element of <phrase> is successfully 

matched against the input string.

III.2.b Arcs which Modify the Flow of Control

These arc types can de divided into those which involve sub­

computations (PUSH, POP, POP!), those effecting state transitions 

(TO, JUMP) and one which controls backtracking (FAIL).

The PUSH arc invokes a sub-computation

(PUSH '<state><test> ... <actions>... <destination^
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eg: (PUSH np t (SENDR goal *subj)(SETR subj *)(T0 s:subj))

The PUSH arc is used to invoke a sub-computation. If the expression 

<test> is true, then the ATN interpreter is recursively called, 

starting in state <state>. All registers at the current level are 

saved and made invisible to the lower level. Before actually 

invoking the lower level, the list of actions is scanned for 

"preactions", i.e. those which should be evaluated before the PUSH is 

made. These '’preactions” are SENDR's or any action which begins with 

a ”!" (e.g. (! (OR (EQ $v ’be)(SENDR v))). The SENDR actions, and

any previously done, are typically used to set register values in the 

lower computation.

If the sub-computation fails, i.e. does not reach a state which can 

take a POP arc, then the PUSH fails. If a POP from the lower level 

is taken, then control is returned to the PUSH arc. The variable * 

is then set to the value POPped by the lower network, the values of 

any LIFTRed registers set, and the "postactions" evaluated. These 

"post-actions" are just the actions on the arc minus the "pre­

actions" .

The POP arc returns from a  sub-computation.

(POP <value> <test> . <actions> )

The POP arc returns from a sub-computation. If <test> is true, the
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<actions> are evaluated from left to right and then <value> is 

computed and returned to the most recent PUSH arc or PUSHATN action. 

Both <test> and <actions> can be omitted. If the <test> argument is 

omitted, it defaults to T.

Two conditions affect the taking of a POP arc. If any items have 

been placed on the HOLD list at this level, the POP arc is blocked 

(see section II.5.e). In addition, a POP arc will not be taken if it 

would be returning to the "top-level" and words remain to be parsed 

(i.e. STRING is non-NIL). This last condition can be turned off if 

the global variable USE-ALL-WORDS? is set to NIL.

Some examples of POP arcs are:

(POP (build-np) T (LIFTR head-noun $noun))
(POP (BUILDQ (pp + +) prep np))

The PQP.1 jrc really, returns

(POP! <value> <test> . <actions> )

The POP! arc is almost identical to the POP arc except for one 

important difference: one can not back-up into the sub-computation 

after leaving it via a POP! arc. Under our implementation of the ATN 

interpreter, a POP! arc does a RETURN to the environment of the most 

recent PUSH arc or call to the PUSHATN action. If failure later 

backs up to this point, the entire sub-computation will, in effect, 

be backed up over as well. The grammar writer may find this a useful
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arc in that it gives him greater control over the automatic 

backtracking done by the ATN interpreter.

The TO and JUMP arcs effect state transitions

(TO *<state> <test> . <actions>)

(JUMP ’<state> <test> . <actions>)

As a convenience, special arcs are provided which duplicate the TO

and JUMP actions. Both arc types cause the ATN interpreter to advance

to the state specified by their first "argument". The TO arc causes

the current word to be advanced and the JUMP arc does not. In each

case, the <test> argument and the <actions> arguments are optional.

If the <test> is omitted, it defaults to T. Some examples are:

(JUMP s:end (out-of-words?))
(JUMP np:det)
(TO np:det t (ADDR ignored-words *))

Uie FAIL arc controls backtracking

(FAIL ’<where> <test> . <actions> )

The FAIL arc can be used to gain some control over backtracking. If 

the <test> is true, then this arc will evaluate the <actions> and 

cause failure to propagate backwards to a point specified by <where>. 

Again, the <test> and <actions> arguments may be omitted.

The <where> argument may specify that the ATN interpreter fail from
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the current arc, the current state, the current sub-computation, an

arbitrary named state, or to the initial top-level call. The precise

options for the <where> argument are:

STATE : fail from the current state
PUSH : fail from the current subcomputation

(i.e. from the most recent PUSH)
<state> : fail from the named state
TOP : fail altogether

Note that the setting of registers in the <actions> will have no

effect since their side effects will be undone by the failure. Some

example of FAIL arcs are:

(FAIL state)
(FAIL np:adj (CAT v))
(FAIL push (NOT (CAT prep)))

III.2.C The Virtual arc

(VIR ’<cat> <test> ...<actions>... <destination> )
(VIR ’(<cat> <level>) <test> ...<actions>... <destination> )

The VIR or virtual arc is taken if a constituent is found on the HOLD 

list indexed under the category <cat>. Again, the <test> argument 

must evaluate to non-NIL.

Note that two syntax frames are given for this arc. In the first, 

the "head" of a VIR arc is an atomic category name. In the second, 

it is a tuple whoes first element is a category name and whose second 

is a number which specifies the level at which the constituent is to 

be found on the HOLD list. See section III.5.e for details.
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If the VIR arc can be taken, * is bound to the constituent found on 

the HOLD list and FEATURES is bound to the (optional) feature list 

associated with that constituent.

III.2.d Miscellaneous Arcs

Xhe LSI arc applies _an arbitrary test

(TST ’<label> <test> ...<actions>... <destination> )

The TST arc is taken if the arbitrary LISP expression <test> 

evaluates to non-NIL. The <label> argument is not evaluated and is 

not used in any way by the ATN interpreter. Typically it is used for 

a mnenomic label describing the function of the arc. Some examples 
are:

(TST end-of-sent? (AND (NULL *)(NULL string))(JUMP s:end))
(TST t (MEMQ * cuss-words)(TO srcomplain))

The M  arc has no destination

(DO '<label> <test> . <actions>)

The ATN interpreter handles the DO arc in an identical manner to the
TST arc. If the <test> is true, the <actions> are evaluated. Its
intended use, however, is somewhat different The TST arc is
intended to have a "destination action " as its final action (i.e. a
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call to TO or JUMP). The DO arc is intended to be used without a

"destination action". Thus, the DO arc might be used to initialize a

set of registers. Some sample DO arcs are given below:

(DO initialize t (SETR type 'del)(SETR context NIL))
(DO warn verbose? (print '¡That is not very grammatical!!))

The AND arc conjoins other arcs

(AND <arc1> <arc2> ... <arcn> )

The AND arc is the only one which does not fit the general arc 

syntax. The AND arc takes an indefinite number of arguments, each of 

which can be any of the legal arc types (including another AND arc). 

The effect of an AND arc is to evaluate each of the "sub-arcs" from 

left to right until one of them fails or the last one is reached. 

Consequently, none of the "sub-arcs" should contain a "destination 

action" except the last one, which should have a "destination" as its 

last action.

Note that after evaluating each of the "sub-arcs", the current word 

is always advanced. This arc is useful in eliminating many states 

which contain only a single arc. This can greatly increase the 

readability of a network by keeping together arcs which form a single 

path. For example, to handle two-word comparative adjective, one 

might use the following arc:

(AND (WRD more t)
(CAT adj t (SETR adj (BUILDQ (adj: * comparative)))

(TO np:adj)))
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III.3 Defining ATN Networks and States

Our ATN system provides functions for defining ATN networks, states, 

individual arcs and special word-triggered interrupt functions.

DEFATN defines an M R  network

(DEFATN '<name> '<default-arcs> '<default-registers>
’ (<state> ... <state>))

The function DEFATN takes from 2 to 4 arguments and defines an ATN 

network. The first argument is the name of the ATN network and the 

last argument is a list of the states in the network. Intervening 

arguments are optional and, if included, can specify initial values 

for registers and special "default arcs" which are assumed to be the 

initial arcs of each state in the network.

If a register default argument is supplied, its form should be:

("default-register" (<register name> <value>)
(<register name> <value>)... ))

This argument causes the specified registers to be set to the 

specified initial values whenever a state in the network is PUSHed 

to.

If a "default-arc" argument is given to DEFATN, its form should be: 

("default-arc" <arc1> <arc2> ... <arcn> ) 

where an arc has one of the forms:

<arc name>
(<arc type> <head> .... )
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If the arc is an atom, it is assumed to be the name of separately- 

defined arc (see DEFARC). If it is a list, then it should be in the 

form of a legally defined arc. The effect of this argument is to 

cause the specified arcs to be added at the beginning of each state 

in the network.

EEESlAIfi defines an individual state 

(DEFSTATE f<name> . f<arcs> )

Individual ATN states can be defined with the function DEFSTATE.

This function takes an indefinite number of arguments, the first of

which is the name of the state. The remaining arguments specify the

arcs leading from the state. Again, an arc can be represented either

by an atomic name or by a complete list. An example is:

(DEFSTATE np:start
(CAT det (SETR det *)(T0 nprdet))
(CAT pro (SETR noun *)(T0 npiend))
(JUMP np:det))

BEE&flG defing.g an individual arc

(DEFARC '<name> f<arc>)

An individual arc can be defined with the function DEFARC. Arcs 

defined in this way can be of two types: Regular arcs which have a

destination (i.e. a call to TO or JUMP) as their last action and 

degenerate arcs which do not have a destination as their last action. 

When a degenerate arc is inserted into an ATN state, a destination is
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supplied which causes the ATN to loop back to that state. For 

example:

(DEFARC timephrase (PUSH timepp T (SETR time *)))

is an arc which will attempt to parse a time phrase and then reenter 

the current state.

Word interrupts are created bx DEFINTERUPT

Our ATN system provides a mechanism whereby certain computations can 

be performed whenever a certain word is encountered in the input 

string. The function DEFINTERUPT associates an interrupt function 

with a word.

(DEFINTERUPT *<word(s)> ’<function>) 
eg: (DEFINTERUPT please cdr)

(DEFINTERUPT (in on before)
(lambda (x)(parse-time-pp (car x)(cdr x))))

The first argument to DEFINTERUPT should be a word or a list of 

words. The second should be a function of one argument, expressed as 

either the atomic name of the function or as a lambda expression. 

Whenever one of the specified words is encountered in the input 

string, the associated interrupt function is called with the input 

string as its argument. Its return value is used as the new input 

string. Thus the first example would cause the word PLEASE to be

ignored (since it returns the CDR of the input string). The second 

example would call the function PARSE-TIME-PP whenever the words IN, 

ON, or BEFORE are discovered in the input string.
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III.4 Functions for Manipulating Registers

A register in the ATN system plays the role of a variable in a 

typical high level programming system. The interpreter provides 

functions for assigning a register a value (SETR, SENDR, LIFTR), 

accessing the value of a register (GETR, $), and testing the contents

of a register (NULLR). Registers need not be declared and are

"created" when they are assigned a value for the first time. The

contents of a register which has never been assigned a value is

defined to be NIL.

III.4.a Setting Registers

Registers can be set at the current level (SETR) in the next lower 

level (SENDR) or in any of the higher levels (LIFTR).

SETR sets a register at the current .level

(SETR ’<register name> <value> ) 

eg: (SETR verb ’be)

The function SETR assigns a value to a register at the current level. 

SETR assigns the register <register name> the value <value>.

SENDR sets a register a£ a lower level

(SENDR ’Cregister name> <value>)
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(SENDR '<register name>)

SENDR is used to set the contents of a register at a lower level, 

typically just before a PUSH action. Whenever a SENDR is evaluated, 

the register name and value are stored on the SENDLIST. When a PUSH 

occurs, the SENDLIST is used to initialize the registers to the 

specified values. If the second argument is omitted, it defaults to 

the current contents of the register named by the first argument. 

Thus (SENDR noun) is the equivalent to (SENDR noun (GETR noun)).

I.TFTR sets a register _at a higher level

The function LIFTR is used to set the contents of a register at a 

higher level. It takes from one to three arguments, the syntax

being:
(LIFTR ’<register name> <value> <level>)
(LIFTR '<register name> <value>)
(LIFTR ’<register name>)

If all three arguments are given, LIFTR assigns <register name> the 

value <value> <level> levels above the current one. For example, 

(LIFTR stype 'q 1) would set the register STYPE to 0 in the next 

highest level. If the <level> argument is the atom TOP, then it 

refers to the highest level. If the <level> argument is omitted, it 

defaults to 1 (i.e. the next highest level).

The second argument, <value>, specifies the value to be assigned to
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the register. If it is omitted, the current contents of the register 

are used. Thus (LIFTR noun) is equivalent to (LIFTR noun (GETR 

noun)).

When a LIFTR action is evaluated, it adds the complete three tuple 

(<register name><value><level>) to the special register LIFTLIST. 

When a POP action is taken, the LIFTLIST is processed by setting 

those registers associated with a <level> of 1 and "re-lifting" the 

rest of the elements with a decremented <level>. Thus, the effect of 

a LIFTR is only seen once we have POPped to the appropriate level.

III.4.b Accessing Registers

GETR gets the contents of a register

The function GETR is used to access the contents of a register at the

current level or, if an optional argument is supplied, at any higher

level. The syntax is:

(GETR '<register name>)
(GETR Xregister name> <level>)
(GETR Xregister name> 'nearest <test>)

If only one argument is supplied, GETR retrieves the contents of that

register at the current level. An optional second argument instructs

GETR to get the contents of the register at a higher level. If

<level> evaluates to the atom NEAREST, then GETR will return the

contents of the register at the lowest level in which it has a value.
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If <level> is NEAREST, an optional third argument, <test>, can 

specify an arbitrary test which must be met by the candidate register 

value. While evaluating <test>, the variable * is bound to the 

contents of the candidate register. For example, the expression: 

(GETR verb 'nearest ’(TRANSITIVE *)) 

would search upwards thru the chain of levels until it found a VERB 

register which contained a transitive verb.

The character J. acts as prefix operator

The character $ (i.e. dollar sign) is defined to be a "read macro 

character" which acts as a prefix operator identical to GETR. Thus 

$noun is the equivalent to the function call (GETR noun). This 

feature can be turned on or off with the function DOLLARMACRO. 

Evaluating (DOLLARMACRO NIL) will turn it off causing the dollar sign 

to lose its special significance. Similarly, (DOLLARMACRO T) will 

turn the feature back on.

Ill.4.c Testing the contents of a register

NULLR tests fhe value _of a register

Since the value of a register which has never been set is defined to 

be NIL, there is no way to tell whether or not a register has been 

set to the value NIL or has never been set. To provide the user with 

this capability, the function NULLR will return T if and only if a 

register has been explicitly set to NIL. the syntax is simply:
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(NULLR Kregister name>)

III.5 Flow of Control

Six function are provided which modify the flow of control. Five of 

them are analogous to arcs PUSH, POP, TO, JUMP and FAIL. The sixth 

provides a special facility by which one can save the state of a 

subcomputation just before returning via a POP and later resume it 

with the same register environment.

Ill.5.a Effecting State transitions

IQ. £nd JUMP advance the U N  to a nesi s,tg,t£

These are typically found as the last action at the end of an arc, as 

in:

(CAT v t (SETR v *)(T0 s:verb))
(TST T (out-of-words)(JUMP s:end))

They can, however, be called at any point by the user and embedded in

arbitrary LISP expressions.

(TO '<state name>) 
eg: (TO s:verb)

The TO function effects a transition to the named state and causes

the current word to be advanced.

(JUMP '<state name>) 
eg: (JUMP s:end)
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The JUMP function also causes the ATN interpreter to enter the 

specified state but does not advance the input word. The next state 

will find the current word unchanged.

III.5.b Invoking and Returning from Sub-computations

PUSHATN simulates a PUSH.

(PUSHATN <state>) 

eg: (PUSHATN np:start)

The effect of a call to the function PUSHATN is similar to that of a 

PUSH arc. It recursively applies the ATN network to the input string 

starting in state <state>. The value returned by this function is 

the value POPed by the sub-computation or the atom FAIL if the sub­

computation does not reach a final state. Additional side-effects 

are:

1 The variable * is bound to the value POPped.

2 The variable LEX is bound to the new current word.

3 The variable STRING is bound to the rest of the input string. 

PQPATN simulates .a POP

(POPATN <value>) 

eg: (POPATN (buildquestion))
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The POPATN function is similar to the POP arc. It causes control to 

return to the most recent PUSH arc or PUSHATN function call. As with 

the POP arc, the POP will only succeed if nothing has been placed on 

the HOLD list at the current level.

111.5. C Controlling Backtracking and Failure

FAIL controls backtracking 

(FAIL <where>)

The FAIL function is almost identical to the FAIL arc. It causes the

ATN interpreter to backtrack to a point specified by the argument

<where>. The options for this argument are:

ARC : fail from the current arc
* : fail from the current state
PUSH : fail from current level (i.e. to most recent PUSH)
TOP : fail from entire network (i.e. give up completely)
<state>: fail back to the state named <state>

111.5. d Suspending and Resuming Computations

Suppose that we wanted to parse a sentence like:

How many planes were there which required no repairs in April?

In this sentence, the relative clause "which required no repairs in 

April" has been extraposed to the right (or the head "how many
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planes" extraposed to the left, if you like). We would like to be 

able to parse these two sub-strings as if they occurred together, as 

is usually the case:

...planes which required no maintenance in April...

Using RESUME and RESUMETAG, one can "remember" where one stopped 

parsing a noun phrase (e.g. in "How many planes") and, at some later 

point in the input string, resume parsing the same noun phrase in the 

same state and with the same register environment.

BE&UME1AQ .saves configuration

(RESUMETAG ' <state name>)

(RESUMETAG)

The RESUMETAG function returns a "tag" which encodes a state name and 

a register environment. With this "tag", one can later resume 

computation in this state with the same register environment. If the 

<state name> argument is not given, the current state is used.

BESUMS resumes a suspended computation

(RESUME <tag> . f<register names>) 

eg: (RESUME $nptag verb)

The RESUME function resumes the subcomputation which generated <tag> 

(i.e. with a call to RESUMETAG) in the current position in the input
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string. Optional arguments to RESUME specify registers whose

contents should be "sent" to the lower computation. The value 

returned by RESUME is the value POPped by the lower level.

III.5.e £h£ HOLD/VIRTUAL facility

The HOLD action together with the VIR arc provide a natural mechanism 

for handling constituents which are parsed "out of place" in a 

sentence. The HOLD action allows one to place a parsed constituent 

on the HOLD list. At some later time, the VIR arc can be used to 

retrieve the held object and process it as if it were found at that 

point in the input string.

An example may show the usefulness of this facility. English syntax 

allows for the "fronting" of the "unknown element" in a question. 

One would probably like a grammar to locate the place from which the 

"unknown" element was fronted. One strategy, then, is to place the 

"unknown" constituent on the HOLD list (via the HOLD action) and then 

write the grammar such that it checks the HOLD list whenever it can't 

find a constituent in the input string.

For example, consider the following sentences:

Who did John see?
Who did John sit next to?
Who did John believe that Harry saw?
Who does John think the FBI wanted to arrest?
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These sentences can be handled by placing the constituent generated 

by the "who" on the HOLD list indexed as a Noun Phrase. At each 

point in the grammar where a NP is sought as either the subject of a 

sentence, the object of a sentence, or the object of a preposition, 

we include a VIR arc which examines the HOLD list for a held NP.

The HOLD action

(HOLD <form> <cat> <features>) 

eg: (HOLD * 'np nil)

The HOLD action places the expression <form> on the HOLD list indexed 

under the category <cat>. An optional third argument, <features> is 

a list of features to be associated with the entry. In addition, the 

level at which this action is being done is recorded with the entry. 

This allows a VIR arc to select only those constituents held at a 
particular level.

Xhg VIRtual arc

The VIR arc allows the grammar to retrieve an element from the HOLD 

list. In retrieving the element, the user can specify:

1 The lexical category under which the element was held.

2 A limit on the number of levels above the current one at which 
the element was held.

3 An arbitrary test which the element or its features must pass.

The syntax frame for the VIR arc is:
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(VIR <head> <test> __ <actions> ... <destination>)

where <head> can have either of the following two forms:

<cat>
(<cat> <level>)

The first form will match any item on the HOLD list indexed under the 

category <cat> regardless of the level at which it was held. In the 

second form, <level> specifies the level(s) at which a candidate item 

was held. This argument should be a number (0 or positive) which 

limits the number of levels above the current one at which the item 

was held. Thus:

(VIR (PP 0) ...)

will match items indexed as a PP which were held at the current level 

only. Similarly,

(VIR (ADV 2) ... )

would find ADV's held at the current level or the next two higher 

levels.

Once a candidate match has been found, the <test> argument is 

evaluated in an environment where * is bound to the candidate 

constituent and FEATURES is bound to the (optional) features list 

associated with it. If <test> is non-NIL, then the VIR arc is taken 

and the item is removed from the HOLD list.

III.6 Useful Actions
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III.6.a Actions which test the current word

A number of functions are provided for testing the current word. 

These are typically used as further conditions on an arc, for 

example:

(PUSH pp (CAT prep) ....  (TO s:end))

or as a condition in one of the actions in an arc:

(CAT det T (and (GETF question)(LIFTR type ' q)) ... )

WRD compares the current word

(WRD '<word(s)>) 
eg: (WRD who)

(WRD (which that who))

The WRD function returns T if the current word (i.e. *) matches its 

single argument. If this argument is an atom then the current word 

must be identical to it. If it is a list of atoms, then the current 

word must be a member of this list.

CAT checks the lexical category of the current word

(CAT ’<category>) 
eg: (CAT pro)

(CAT (n pro npr))

The CAT function tests the current word to see if it can be a member 

of the lexical category <category>. As with the WRD function, the 

argument can be an atomic category name or a list of atomic category

names.
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ROOT checks the root form of the current word

(ROOT '<root(s)>)
(ROOT ’<root(s)> ’<category>) 
eg: (ROOT be)

(ROOT (be have))

The ROOT function compares the root form of the current word to its 

argument. Again, the argument can be an atom or a list of atoms. It 

returns T if and only if the current word has one of the specified 

root forms. Thus the expression (ROOT be) would be true if the 

current word were be, is, am, are, was,etc. Note that if the current 

word is homomorphic between two words with different root forms, both 

possibilities will be explored. Thus, if the current word were LIE, 

both (ROOT lay) and (ROOT lie) would be true.

The ROOT function takes an optional second argument which can be used 

to limit the lexical categories that are considered in determining 

the root form of the current word.

GETF gets an inflectional fe.atucs
(GETF '<feature name>) 
eg: (GETF tense)

GETF returns the value associated with the feature <feature name> for 

the current word. If the current word has no such feature, then NIL 

is returned. These features come from three sources:

1 Features on the dictionary entry for the current word.

For example, the tense and number features for the word IS are

coded as:
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(IS (BE (tense present)(number 3sg))

2 Features generated by the Dictionary Manager

For regularly inflected words, certain features are 

automatically generated.

3 The FEATURES property of the word

Each word can have a FEATURES property associated with it. 

For example, the word GIVE might have the features property: 

(TRANSITIVE INDIRECTOBJECT PASSIVE)

where these features might mean that GIVE is a transitive verb 

which can take an indirect object and can be used in a passive 

sentence.

In cases one and two above, a feature can be:

1 A tuple whose first element is the name of the feature and 
whose second is the value.

2 A list of just the feature name. The value of this feature is 
taken as T.

3 An atomic feature name. The value is assumed to be T.

Ill.6.b Actions which Test Arbitrary words

CHECKF checks an inflectional feature 

(CHECKF ’<feature> <word> ’<cat>)
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The CHECKF function is analogous to GETF, differing only in that it 

applies to an arbitrary word given as its argument. CHECKF returns 

the value of the feature <feature> associated with the word <word>. 

An optional third argument, <cat>, determines the lexical category 

assumed for the word. Thus:

(CHECKF transitive (GETR verb) ’v)

returns the value of the TRANSITIVE feature for the word in the VERB 

register when it is interpreted as a verb. Similarly,

(CHECKF tns * ’v)

returns the TNS feature for the current input word when interpreted 

as a verb.

III.6.C Miscellaneous Actions

The BUILDQ function provides a convenient method for constructing 

arbitrary trees which contain values held in registers. It is 

modeled after the function described in [Woods 71], its syntax being: 

(BUILDQ '<structure> . '<fillers>)

The first argument, <structure>, is an arbitrary list structure which 

can contain special symbols at its leaves. The function returns a 

similar structure by replacing these symbols by values computed from 

the remaining elements, <fillers>.

In filling the structure, BUILDQ traverses the structure in 

"preorder". If the symbol "+" is encountered, then the next filler
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argument is taken as the name of an ATN register and its contents are 

substituted for the ,,+ H. If the symbol "*n is encountered, it is

replaced by the current value of the atom On encountering the

symbol the next filler argument is evaluated and the resulting

value used to replace the "#". If the symbol "6" is found as the 

first element of a list, then the remaining elements of that list are 

interpreted as above and the results are APPENDed together.

A few examples may make the operation of BUILDQ clear. Suppose we

have the following register context:

DET the
NOUN man
PRE-MODIFIERS (large heavy)
POST-MODIFIERS ((PP (in the park)))

Then if we evaluate:

(BUILDQ (NP # (N +) (DET +)) (gensym) noun det) 

we would get:

(NP G0027 (N man) (DET the))

Evaluating the expression:

(BUILDQ (NP # (N +) (§ (MOD) + +))
(gensym) noun pre-modifiers post-modifiers)

would yield the expression:

(NP (N man)
(MOD large heavy (PP (in the park))))

(NEXTWRD)
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The NEXTWRD function returns the "on deck" input word (i.e. the CAR 

of STRING). If STRING is empty, it returns NIL.

III.7 Tracing Facilities

Every programming language should provide adequate debugging tools to 

enable the user to perfect his programs. Since the ATN should be 

viewed as a kind of programming language, we have provided powerful 

tracing facilities which we have found to be useful and necessary to 

build and debug large grammars.

Functions are provided which will print a trace of the developing 

parse and allow the user to specify arbitrary points at which to 

suspend computation and enter a "break point". A facility is also 

provided by which the user can monitor the values being assigned to 

particular registers.

TRACE-STATE traces UN. sfratea

The function TRACE-STATE allows the user to trace the flow of control 

thru specified states and optionally break upon entering them. If a 

state is being traced, the message: 

in state <state name>
will be displayed on the TTY when the state is entered. If the state 

fails, i.e. no arcs from the state lead to a final state, the 

following message will be displayed:



46

failing from state <state name>

If the user associates a BREAKPOINT with a state, then the message: 

;BKPT <state name>

will be typed on the TTY, computation suspended, and a LISP 

breakpoint entered. Typing an "$P" will resume the ATM computation.

The syntax of the TRACE-STATE function is:

(TRACE-STATE '<arg1> ’<arg2> ... *<argn>) 

where each argument specifies one or more states to be traced and 

optionally associated with a breakpoint. The arguments are 

interpreted as follows:

<state name> : trace the named state
* : trace all states
(<state name> BREAK <test>) : trace the state and enter

a breakpoint if <test> is true.
(* BREAK <test>) : trace all states and enter

a breakpoint if <test> is true.

UNTRACE untraces M R  states

The function UNTRACE-STATE removes states from the set of ATN states 

to be traced. Its syntax is:

(UNTRACE-STATE ’<arg1> ... ’<argn>)

where each argument specifies one or more states to be nuntracedn. 

If an argument is the name of an ATN state being traced, then that 

state is removed from the list. The argument * causes all states to 

be removed from the list of states to be traced.
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Registers .can be traced as well

We provide a similar feature whereby one can monitor the values 

assigned to registers. The function TRACE-REG causes a specified ATN 

register to be "traced”. Whenever a value is assigned to that 

register with a SETR, the message:

setting register <register name> to <value> 

will be typed on the TTY. Similar messages are displayed when a 

register is set via the functions LIFTR or SENDR.

The syntax of the function TRACE-REG is similar to that of TRACE- 

STATE, being:

(TRACE-REG '<arg1> ’<arg2> ... *<argn>)

An argument can be the name of a register, the special "wildcard" *, 

or a three-tuple (<register name> BREAK <test>). The last case 

allows one to trace the setting of a register and enter a BREAKPOINT 

if the arbitrary lisp expression <test> is true.

The function UNTRACE-REG is used to remove specified registers from 

the list of registers being traced. Its argument convention is 

similar to that of UNTRACE-STATE.

III.8 Global variables

The following is a list of the most important global variables in the 

interpreter.



48

The current constituent

The global variable * is always bound to the "current 

constituent. Precisely what this is depends on the context.

Within a CAT arc, it is bound to the root form of the

current word. Within a PUSH arc it is bound to the

constituent POPped by the sub-computation (except in the 

"preactions" where * is the current word). In a VIR arc, * 

is bound to the element being removed from the HOLD list. 

For the other arc types, it is bound to the current word 

(i.e. LEX).

In several other contexts, * is temporarily bound to other 

elements. For example, when evaluating the <test> in a VIR 

arc or in a (GETR <register> NEAREST <test>), * is bound to 

the candidate element.

LEX The current word

The atom LEX is always bound to the current word, exactly as 

it appears in the input string. If the input string is 

exhausted, then LEX is bound to NIL.

STRING The input string

The atom STRING is always bound to a list of the words 

remaining in the input string.

STACK
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STACK is a list of the names of states PUSHed to which have 

not POPped. This can be used to determine how deeply 

embedded the current computation is. For example, the 

following POP arc will only be taken if we will be returning 

to the top level and the input is exhausted:

(POP (buildnp)
(AND (NULL stack)(NULL *)(NULL string)))

The following additional global variables may be of some use to the 

user:

ALIST An association list which encodes the contents of the 

registers, both current and past. Elements of ALIST are 

tuples whose CAR is the name of a register and whose CDR is 

a value associated with that register.

STATE In the interpreter, STATE is bound to the current state that 

the ATN is in.

ARC Bound, in the interpreter, to the current arc being 

followed.

USE-ALL-WORDS? This variable controls the ability to POP to the 

TOP-LEVEL when words remain in the input string. This is 

permitted only when USE-ALL-WORDS? is bound to NIL.

ALIST-STACK A stack of the values of ALIST for higher levels of

computation.
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ARC-STACK A stack of pending actions on any active PUSH arcs (i.e. 

those which have not yet been popped to).

POPSTACK A stack of tags to the active PUSH arcs.
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IV

The ATN Compiler

IV.1 Introduction

The purpose of the ATN Compiler is to translate ATN networks into 

pure LISP code which can be executed directly. This code can 

subsequently be translated into machine language code by a standard 

LISP compiler. In fact, the ATN compiler has been written in such a 

way as to facilitate the direct compilation of ATN networks into 

machine language by the MacLISP compiler [Moon 74].

Advantages of compilation

The advantages of compiling an ATN network are the same as those of 

any compilation process: reduced execution time and storage space.

We have applied our compiler on a modified version of the LUNAR 

English grammar [Woods 72] and found that the execution time for the 

resulting LISP code was decreased by about a factor of 2. The 

resultant machine language code achieved a speed up factor of 5 to 

10.
The compiler is able to preserve all of the features available under 

the interpreter. A grammar writer need take no special steps or
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considerations if he intends to compile his network. In other words, 

if one has a system of ATN networks which behave correctly in the 

interpreter, then compiling these networks without modifications will 

result in compiled code which also behaves correctly

Special Features of the Compiler

A compiled ATN network is more efficient mainly because the 

interpretation stage is by-passed. This compiler also achieves 

greater efficiency thru four additional processes:

1 The resulting LISP code is locally "optimized" by a simple 

pattern matching scheme.

2 Certain common actions and arc conditions are "open coded" 

into more primitive LISP code.

3 The compiler automatically detects local contexts in which 

certain ATN features are not being used (e.g. explicit failure 

via the FAIL function). IN these contexts, code to handle 

these features need not be generated.

4 The user is able to globally "turn off" a number of general 

ATN features which he is not using. This causes the compiler 

not to produce the code necessary to implement these features.
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IV.1.a Compilation of a state

The basic organization of the ATN compiler is shown in figure 4. The 

function C0MPILESTATE1 is applied to each state in the network. It 

produces a LISP function which will simulate the action of the state 

when called. In doing so, it applies the function COMPILEARC to each 

arc in the state. The resulting code for each arc is combined with 

additional code to produce the function.

The basic frame for an ATN state function is:

(DEFUN (<state name> ATNEXPR ATNSUBR) NIL 
<tracing code>
(CATCH (PROGN <code for arc 1>

<code for arc 2>
. . . )

<state name> )
Cmore tracing code>
’FAIL )

The (CATCH ... <state name>) construct is included to implement the 

ability to fail to a named state from a later point. The inclusion 

of the tracing code and the (CATCH ... <state name>) expression is 

under the control of the user thru switches described in a later 

section.

Once this code has been produced, an optimization procedure is 

applied to the function. The result is then evaluated if we are in 

the LISP interpreter or passed to the MacLISP compiler if it is

resident.
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compile-statel

Figure 4
Overview of the ATN Compiler
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IV.1.b Compilation of an individual .arc

The function COMPILEARC is responsible for writing an expression for 

an individual arc. Its job is to:

1 verify that the arc is in a legal format.

2 dispatch the arc to the appropriate specialist for
compilation.

Currently the verification is a simple check on the last action of an 

arc. For arc types POP, TO, JUMP and DO this action should not 

specify a destination (i.e. call TO or JUMP). For the rest of the 

arc types, the terminal arc should be a destination. If this

condition is not met a warning message is displayed.

Each arc compiler specialist compiles one type of arc. It examines

the condition and actions and produces a LISP expression which

simulates that arc. The general form of the code for an arc is given 

below:
(CATCH ((LAMBDA (ALIST) (AND <arc dependent code>

<test>
(PROGN . <actions>)))

ALIST)
ARCFAILURE)

The (CATCH ... ARCFAILURE) construction is necessary to handle a 

possible (FAIL ’ARC) in the <actions> or the <test>. The ((LAMBDA 

(ALIST) .... ) ALIST) is required to isolate the possible side

effects caused by the arc.
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Before adding these two fragments, the arc compiler checks to see if 

they are really necessary. The <test> and <actions> are examined to 

see if they might contain a call to a function with a side effect 

(e.g. a call to SETR) or a call to the FAIL function. In examining 

the expressions, the compiler must be aware of which expressions are 

’'executable” and which are potentially "data".

The following conservative algorithm is used to determine whether 

evaluating an s-expression will generate a side effect.

1 Trivial case
Atoms, of course, can't cause side-effects. Return NIL.

2 Known offenders
Some functions are known to cause side effects (e.g. SETR). 
Return T.

3 Guilty until proven innocent
If the function is unknown (i.e. one which the user has written) 
then assume it might generate a side effect. Return T.

4 Fexpers, etc.
If the function has no arguments or is known not to evaluate any 
of its arguments, then return NIL.

5 Recurse
Recursively apply this procedure to those arguments which are 
evaluated. If any generates a side-effect, then return T, else 
return NIL. Here the compiler must know how a function 
evaluates its arguments. For the standard built-in LISP
functions and the built-in ATN functions and actions this
information is stored for each function in an "evaluation 
template".

An analogous procedure is used to determine if evaluating an 

expression might generate a failure.

If the arc contains no expressions which might have a side effect
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then the LAMBDA expression is omitted. If no FAIL action is found, 

then the CATCH is omitted.

Another trick used by the compiler to increase efficiency is to delay

the CATCH (if any) and LAMBDA binding (if any) until the last

possible moment. Thus, the following WRD arc:

(WRD because (getr objMsetr conj *)(to s:conjoined))

is compiled as:

(AND (EQ * ’because)
(GETR obj)
((LAMBDA (ALIST) (SETR conj *)(T0 s:conjoined))
ALIST))

Note that the LAMBDA binding is done only if the arc is actually 

taken and that no CATCH was generated since no FAIL action was 

contained in the arc.

IV.1.c Optimization

The optimization phase of the compiler was originally added to make 

the compiler easier to write and debug. The idea was to simplify the 

code generation process for each of the arcs. In compiling an arc, 

we needn’t produce efficient code, but merely straightforward code 

which is guaranteed to work properly. Once the code has been 

generated, a standard "optimizing” routine is applied to it to 

simplify the expression.

The General Procedure
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The basic procedure to optimize a LISP s-expression it to traverse 

the expression (which is just a tree, after all) in "post order", 

applying a simplification algorithm at each node. Thus the 

expression is optimized "from the bottom up", i.e. the arguments to a 

function are optimized before the function call itself is optimized. 

We must take care, however, that the optimization procedure is only 

applied to "executable" nodes and not to "data nodes". An 

"executable" node is one which is known to be evaluated as a LISP 

expression. All other nodes are assumed to be "data" nodes.

Thus, the optimizer does not attempt to optimize a function call 

unless that function is:

1 known to be a EXPR, SUBR, LEXPR or LSUBR

2 known to be a FEXPR or FSUBR which evaluates all of its 
arguments (e.g. AND, OR, etc.)

3 a special FEXPR or FSUBR that the optimizer "understands".

The functions covered above under point three are those which are 

known to evaluate some of these arguments in a special manner. For 

example, the optimizer knows that the function PROG evaluates all but 

its first argument and that the arguments to the COND function are 

lists of expressions to be optimized.

Simplification

Once the arguments to a function have been optimized, the function 

call is simplified. This simplification is driven by a set of
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production-like rules which specify code transformations. These 

transformations simplify the code but do not change its behavior. 

These rules are three-tuples which have the form:

(<pattern> <result> <restrictions>)

Each rule states that if a LISP expression matches <pattern> and 

<restrictions> evaluates to non-NIL, then it can always be replaced 

by the simpler s-expression <result>.

The <pattern> and <result> elements of a rule are general s-

expressions in which the characters * and ? have special

significance The atom t l  9  I f is allowed to match any single s-

expression. The atom "*" may match zero or more "sibling" s-

expressions. Any atom whose first character is <a "?" or a n * i i

behaves in a similar manner except that that atom is bound to the the

s-expression(s) matched.

As an example, consider the pattern:

(PROG ?A *B (RETURN *))

when matched against the following expression:

(PROG (A B C)
(SETQ A (TIMES X X))
(SETQ B (TIMES X A))
(RETURN (LIST AB)))

The match succeeds and has the side effects of setting the variables 

?A and *B to (A B C) and ((SETQ A (TIMES X X))(SETQ B (TIMES X A))),

respectively.
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(AND *A T *B) (AND *A *B) (OR *A *B)
(AND ?A) ?A
(AND *A (AND *B) *C) (AND *A *B *C)

(APPEND *A (LIST *B)(LIST #C) *D) (APPEND *A (LIST *B *C) *D)

(CAR (CAR ?A)) (CAAR ?A)
•••6tC•••

(COND) NIL
(COND *A (NIL *) *B) (COND *A *B))
(COND *A (T *B) *C) (COND *A (T *B)) *C
(COND (?A ?B)) (AND ?A ?B)
(COND (T *A)) (PROGN *A)
(COND (?A)) ?A
(COND *E (?A *B (PROGN *C) *D) *F)(COND *E (?A *B *C *D) *F) ) )

(CONS ?A NIL) (NOONS ?A)

(DEFUN ?A ?B *C (PROGN *D) *E) (DEFUN ?A ?B *C *D *E)
(DEFUN ?A ?B *C NIL *D) (DEFUN ?A ?B *C *D)

(DO ?A ?B *C (PROGN *D) *E) (DO ?A ?B *C *D *E)

(EQ ?A NIL) (NULL ?A)

(EQUAL '?A ?B) (EQ ’?A ?B) (ATOM ?A)
(EQUAL ?A ’?B) (EQ ?A '?B) (ATOM ?B)

(LAMBDA ?A *B (PROGN *C) *D) (LAMBDA ?A #B *C *D)

(LIST ?A) (NOONS ?A)

(PROG ?A *B (PROGN *C) *D) (PROG ?A *B *C *D)

(PROGN ?A) ?A
(PROGN *A (PROGN *B) *C) (PROGN *A *B *C)

(OR) NIL
(OR ?A) ?A
(OR *A T #) (OR *A)
(OR *A NIL *B) (OR *A *B)

Figure 5

Simplification Rules
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Figure 5 gives a list of some of the simplification rules used in the 

ATN compiler.

Application of the simplification rules

The simplification rules are applied according to the following 

algorithm:

1 Collect the rules which may apply.
The rules are indexed by function name (i.e. the CAR of the 
expression).

2 Find a rule which matches the expression.
The matcher compares the <pattern> and <restriction> of each 
rule against the data until a match is found.

3 If no matching rule was found, then stop else continue.

4 Replace the expression.
Replace the expression with the instantiation of the <result> 
element of the rule found in step 2.

5 Continue with step 1.
Since the function being called may have changed, we must start 
from the top.

Figure 6 shows an example of the simplification process.

IV.2 Using the ATN Compiler

The ATN compiler can easily be used to produce executable LISP code 

in the LISP interpreter or to produce machine language code in 

conjunction with the standard MacLISP compiler. In either case, the 

user can selectively disable unused features to achieve faster 

execution time. This is discussed in section IV.3.c.



(PROGN (AND T (COND ((> X 10.)(SETQ X 10.))))
T
i

!__(cond (?a ?b)) ==> (and ?a ?b)

(PROGN (AND T (AND (> X 10.)(SETQ X 10.))))
T
I

!__(and *a (and *b) *c) ==> (and * a  *b *c)

(PROGN (AND T (> X 10.)(SETQ X 10.)))|
j__(and *a t *b) ==> (and *a *b)

(PROGN (AND (> X 10.)(SETQ X 10.))) 
1* i
!__(progn ?a) ==> ?a

(AND (> X 10.)(SETQ X 10.))

Figure 6

An Example of Simplification
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IV.2.a Compiling networks into LISP Code

This section describes how one can compile networks into LISP code 

given he has a LISP into which the ATN interpreter has been loaded 

and the networks defined. The ATN compiler can be loaded by 

evaluating the expression:

(FASLOAD ATNCOMPILER FAS COM)

The user can then set whatever switches he wants (using SETQ). A 

single ATN state can be compiled with the function COMPILESTATE. 

This function takes one (unevaluated) argument, the name of the ATN 

state to be compiled. The function defines an equivalent function 

which will be called whenever control is transferred to that ATN 

state.

The function COMPILEATN can be used to compile an entire ATN network. 

Its single (unevaluated) argument should be the name of the ATN 

network to be compiled. It simply applies COMPILESTATE to each of 

the states found in the network.

IV.2.b Compilation in the compiler

To compile a file of ATN networks with the standard MacLISP compiler 

one need only ensure that the ATN compiler is loaded into the MacLISP 

compiler. The easiest way to do this is to include the following 

expression at the top of the file:
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(DECLARE (FASLOAD ATNCOMPILER FAS COM))

This will cause the ATN compiler to be automatically loaded when the 

file is compiled.

Switches may be set in a similar manner. For example, one might

include the expression:

(DECLARE (FASLOAD ATNCOMPILER FAS COM)
(SETQ ATNTRACE? NIL) ;no tracing
(SETQ FAILARC? NIL)) ;no (FAIL ’ARC) actions

in the file containing the networks.

Interactions with NCQMPLg

If the ATN networks call any user defined functions they may have to 

be declared to NCOMPLR. Auxiliary functions must be declared if they 

are FEXPRs, FSUBRs, LEXPRs LSUBRs, or MACROS. For an explanation of 

how to do this, consult [MOON 74].

IV.2.c Switches

The following switches control the generation of code by the ATN 

compiler. For each switch the default value is given after its name.

[1] ATNTRACE? T

If ATNTRACE? is T then code which allows states to be traced 

(i.e. via TRACE-STATE) will be generated. A NIL value supresses
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the generation of this code. Thus, this switch might be set to 

NIL if the network is fully debugged or a production module is 
desired.

[2] ATNFAILARC? T

If ATNFAILARC? is T then code will be generated which allows one 

to use the (FAIL ’ARC) action. If NIL, then this code is not 
generated.

[3] ATNFAILSTATE? T

Code which allows one to fail to a named state is generated if 

this switch is T. If NIL, then the code is not generated. 

Recall that one can fail to a named state with the FAIL arc or 
the FAIL action.

[4] ATNFAILPUSH? T

If T, then code will be generated which allows one to fail from a 

sub-computation (i.e. to the last PUSH arc or PUSHATN action). 

If NIL, then the code will not be generated

[5] ATNFAIL? T

This switch has no effect if it has the value T, but a NIL value 

disables all explicit failure. Thus if ATNFAIL? is NIL, this 

implies that ATNFAILARC = ATNFAILSTATE = ATNFAILPUSH = NIL.

[6] ATNSIMPLECAT? NIL

This switch controls the code generated for a CAT arc and the CAT
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action. If it is T, then it is assumed that each word will have 

at most one entry for a particular lexical category in the 

dictionary. If this is so, the compiler need not set up a 

decision point for each CAT arc or action.
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V

The Lexicon

V.1 Introduction

The lexicon consists of two parts: the DICTIONARY which contains

words and certain features associated with them and the DICTIONARY 

MANAGER which is a package of procedures for accessing, maintaining, 

and updating the dictionary.

A dictionary entry for a word typically consists of the syntactic 

category that the word belongs to and a list of syntactic features 

for the word when interpreted under that category. It is a fact of 

English, as in most other languages, that many words allow multiple 

senses for a single word. In these cases, multiple entries can be 

made in the Dictionary. For example the word CRASH might have the 

following entries:

CRASH N -es
CRASH V -es-ed (intransitive)

This says that crash can be interpreted as a noun (N) whose plural is 

formed be adding the suffix "es" or as an intransitive verb (V) whose 

inflectional forms can be generated by adding the suffixes "es" or 

"ed".
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Initially, no entries need exist for the regularly inflected forms of 

words. Such forms are discovered and entries for them generated as 

they are needed. For example, if the input contains the word 

CRASHED, a set of programs (Morphology Specialists) are invoked which 

discover that CRASHED is the past tense form of the root word CRASH. 

These programs insert the lexical entry:

CRASHED V (CRASH) (tense past)(intransitive)

The words CRASHES and CRASHING are similarly recognized and their 

lexical entries generated.

V.2 The Dictionary Format

The dictionary entry for a word is stored on the LISP property list 

for that atom (i.e. the word). The standard property names which 

might be used are atoms representing lexical categories (e.g. N for 

noun, DET for determiner, etc), and three special atoms: COMPOUNDS, 

SUBSTITUTE, and FEATURES.

For each lexical category, <C>, a word might have a property indexed 

under the indicator <C>. The value of this property depends on the 

particular category and the relationship between the word and its 

root form. These are discussed in the next section.

The value of the COMPOUNDS property for a word is a tree which
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represents pre-defined compound phrases which that word may start. 

Associated with each phrase in the tree is a word which that phrase 

should be mapped into. The user need not concern himself with the 

exact representation of this tree as the functions DEFPHRASE and DEFP 

(described later) can be used to create it.

The value of the SUBSTITUTE property for a word is a list of phrases 

which should replace that word. Thus it forms a kind of inverse to 

the COMPOUNDS mechanism. This property is discussed further under 

the functions DEFSUBSTITUTE and DEFSUB.

The value of the FEATURES property is a list of atoms or sublists 

which name "features" to be associated with the word. These features 

may be accessed in several ways within the ATN interpreter (see, for 

example, the functions GETF and CHECKF).

The value of a lexical category property for a word specifies the 

root form(s) of the word and a set of inflectional features to be 

associated with the word. The exact encoding of this information is 

as follows:
1 If the value is a list whose first element is atomic, then the 
first element is the root form of the word and the remaining 
elements are the inflectional features. For example:

BLEW V (blow (tns past))

says that the word BLEW is the past tense of the verb BLOW.

2 If the value is a list whose first element is a sub-list, then 
the word has two possible root forms when interpreted under this 
lexical category. Each sub-list should be of the form discussed 
in point one above. AN example is:
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SAW V ((see (tns past))
(saw (tns present)(untensed))))

This property states that the word SAW is either the past tense 
form of the verb SEE or the presentuntensed form of the verb SAW 
(what we do to a board).

3 If the value is atomic, then the word itself is taken as the 
root form and the inflectional features are supplied by the 
dictionary manager. Exactly what features are supplied is 
described in the next section. Some examples are:

COOK V s-ed 
N -s

FAST ADJ er-est 
V s-ed 
N -s

The meaning of atomic category values

The lexical categories N (noun), V (verb), ADJ (adjective), and ADV 

(adverb) are treated in a special manner by the dictionary manager. 

An atomic value for one of these properties can specify that the word 

fits one of a number of regularly inflected paradigms.

For nouns, the following possibilities exist:

* the noun is irregular.

-s the plural is formed by adding an "s".

-es the plural is formed by adding an "es" or, if the noun ends 
in a "y", by deleting the "y" and adding an "ies".

For verbs, we have the following:

* The verb is irregular.

s-ed The third person singular is formed by adding an "s" and 
the pastpast-participle is formed by adding an "ed".
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es-ed The third person singular is formed by adding an "es" and 
the pastpast-participle is formed by adding an "ed".

For adjectives (ADJ) and adverbs (ADV) we have the following 

possibilities:

* The word has no regularly inflected comparative or
superlative (e.g. UNSUCCESSFUL).

ER-EST The comparative and superlative are formed by adding an ER 
and EST, respectively (e.g. LONG). If the word ends in a 
Y, then it is first changed to an I (e.g. HAPPY).

R-ST Add an R or ST to form the comparative and superlative
(e.g. WIDE).

V.3 lbs Dictionary Manager

The Dictionary Manager

The Dictionary Manager is a collection of programs which access, 

maintain, and update the Dictionary. They also act as a filter 

between the Parser and the user’s input suggesting alternative words 

as the 'next word'. As each word of the input is needed by the 

parser, the Dictionary Manager checks to see if there is an entry in 

the Dictionary for that word or if the word belongs to certain 

categories which are recognized procedurally, such as numbers. If an 

entry exists, then the word is passed on to the parser with a list of 

features associated with the word. These features are those found in 

the dictionary together with any others suggested by the Morphology

Specialists.
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If the word does not have a lexical entry, then a series of 

Morphology Specialists are invoked to see if the word is a regularly 

inflected form of a known word. These specialists use their 

knowledge of typical English affixes to propose candidate 'roots’ for 

the word. Each candidate is then looked up in the Dictionary and, if 

found, checked to see if it accepts the affix removed.

If this process fails then the Punctuation Checker is called which

examines the word to see if it might contain any embedded

punctuation. For example, if the input is TAIL-NUMBER, the

Punctuation Checker would suggest that the two words TAIL and NUMBER

be substituted.

Finally, if the word is still unknown, control is passed to the New 

Word Learner. This module interacts with the user and attempts to 

create a lexical entry for the word.

Two other subsystems generate alternative suggestions for the 'next 

word': a Compound Word Recognizer and a Word Substituter. The 

Compound Word Recognizer is used to map short phrases into single 

"words". For example, we might map the phrases UNITED STATES and 

UNITED STATES OF AMERICA into the single "word" USA. Just before a 

new word is passed to the parser, the Compound Word Recognizer checks 

to see if that word can begin a phrase that it knows. If so, then it 

checks the rest of the sentence, and if it matches, suggests the

alternative 'next word'.
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The Word Substituter provides a similar mechanism - one which can 

expand a single word in the input into a sequence words. For 

example, the word DIDN’T could be expanded into the sequence DID NOT. 

The sequence of words substituted can be of zero length, which 

provides a facility for ignoring words. This facility might be used, 

for example, to ignore extraneous punctuation.

V.4 Auxiliary Functions

Several functions are provided which simplify creating dictionary 

entries and loading and manipulating dictionary files.

V.4.a Creating Dictionary Entries

DEFINEWORD and DEFW create dictionary entries for a word

(DEFINEWORD <word> <definition> )

(DEFW '<word> . '<definition> )

These functions are used to create a dictionary entry for the word 

<word> or to add information to the dictionary entry for <word> if an 

entry is already in the dictionary.

The function DEFINEWORD takes two arguments: a word and a "property 

list fragment". It adds the property list fragment to the property 

list of the word.
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The function DEFW takes an indefinite number of arguments, none of 

which are evaluated. The first is the word and the remaining ones 

are alternating property names and values. The name-value pairs are 

added the the word's property list.

Examples of these functions in use are:

(DEFINEWORD 'fly '(v * n -es features (intrans trans))) 
(DEFINEWORD 'i ’(pro *))
(DEFW ship n -s v -s-ed features (trans passive))
(DEFW ? punct *)

DEFINEPHRASE and DEEP Create Compounds properties

(DEFINEPHRASE <phrase> <word>)

(DEFP '<phrase> '<word>)

These functions create COMPOUNDS entries for a word. A COMPOUNDS 

entry will cause the ATN interpreter to map a sequence of words in 

the input string into a single word. These functions will cause the 

input sequence <phrase> (which should be a list of atoms) to be 

replaced by the single word <word>.

For example:

(DEFP (how much) howmuch)

would create or modify the COMPOUNDS entry for the word HOW such that 

if the ATN interpreter encounters the two word sequence "HOW MUCH" in 

the input string, it will replace these two words with the single
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word HOWMUCH. Note that if subsequent parsing fails, the interpreter 

will also try parsing the string as containing the two individual 

words HOW and MUCH.

Several COMPOUNDS entries can be created at once by including sub­

lists in the first argument. For example, (DEFP (how (much many)) 

howmuch) is the equivalent to:

(DEFP (how much) howmuch)
(DEFP (how many) howmuch)

Thus, a sublist in the <phrase> argument specifies that one of its 

elements be in the compound phrase.

DEFSUBSTITUTE and DEFSUB create SUBSTITUTE entries

(DEFSUBSTITUTE <word> <phrase>)

(DEFSUB '<word> ’<phrase>)

These functions create or modify SUBSTITUTE properties for a word. 

The first argument is an atom and the second argument is an atom or 

list of atoms which should be substituted for the first whenever it 

occurs in the input string. The following example will explain the 

various possibilities:

(DEFSUB aircraft plane)
If the second argument is an atom (but not the atom NIL), 
then it will replace the first argument in the input 
string. Thus, PLANE will replace instances of the word 
AIRCRAFT in the input string.

(DEFSUB don’t (do not))
If the second argument is a list of atoms, then that list



76

will replace the first argument in the input string. Thus, 
occurances of the word DON'T will be replaced by the two 
words DO and NOT.

(DEFSUB please NIL)
If the second argument is NIL, than the first argument will 
be deleted from the input string. Thus instances of the 
word PLEASE will be deleted from the input string. This 
provides a simple method for ignoring certain words (such 
as "extraneous" punctuation).

As with the COMPOUNDS mechanism, if a substitution is made and 

failure later backs up to that point, the ATN interpreter will 

attempt to continue the parse without making the substitution.

V.4.b Dictionary Files

If one is dealing with a large number of words it is convenient to 

store them in a file in a special simplified format. Two functions 

are provided to manipulate such dictionary files.

The format of a dictionary file is a sequence of lists. The first 

element of each list is an atom or a list. If it is an atom, then 

the list is taken as the argument list to the function DEFW. In 

other words, the first element is a word and the remaining elements 

are alternating property-names and associated values. If the first 

element is a sub-list, then the entire list is used to supply 

arguments to the function DEFP. In this case, the first element is a 

phrase and the remaining element (there should be only one) is the
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word that the phrase gets mapped into. The following might be the

beginning of such a dictionary file:

(a det *)
(about prep *)
(an det *)
((and or) and-or)
(and-or conj *)
(ask v s-ed features (trans indobj thatcomp tocomp))

LOADDIC loads a Dictionary File

(LOADDIC . f<file specifications)*) 

eg: (LOADDIC navy die dsk (1000 130))

The function LOADDIC is used to read a dictionary file and create the 

specified entries. Its syntax is similar to that for the MacLISP 10 

functions ("old 10" functions, that is). It takes from one to four 

arguments where the first is the file name, the second the file 

extension, the third the device and the fourth is the PPN. 

Unsupplied arguments are defaulted as follows:

arg 1 : <file name>
arg 2 : <file extension>
arg 3 : <device>
arg 4 : <ppn>

must be supplied 
defaults to DIC 
defaults to current device 
defaults to the current ppn

■GBIND.DIC reformat? a .dictionary file

(GRINDDIC . '<file specifications> ) 

eg: (GRINDDIC navy die)
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This function sorts and grinds (i.e. pretty-prints) a dictionary 

file. The sorting function sorts each top level list in the file by 

the "leftmost" atom in the list only. The argument syntax and 

meaning is identical to the function LOADDIC. The function GRINDDIC 

is useful in maintaining growing dictionaries in an easily readable 

format.

Miscellaneous dictionary managing functions are provided

Currently, one other auxiliary function is supplied for managing a 

dictionary. The function SHOWWORD "pretty-prints" the dictionary 

entry for a word. It's syntax is:

(SHOWWORD ’<word> )
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VI

Auxiliary Functions

VI.1 Interfacing with the LISP Editor

The functions EDITATN and EDITSTATE allow one to apply the LISP 

Editor [Gabriel 75] to ATN networks and individual states. These 

functions do not normally reside in the ATN system but are

automatically loaded if they are called. In addition, this subsystem 

modifies appropriate Editor variables so that the editor can

recognize ATN network definitions in files. Thus, one can say (EDIT 

<network name> <file specifications)*) and expect the editor to find 

the network definition in the specified file. This also allows one 

to use the REFILE editor command to update the file once the networks 

have been edited.

EDITATN applies the Editor _£o an ATN network

This function sets up an ATN network for editing and then invokes the

LISP Editor. It takes one or no arguments, the syntax being:

(EDITATN <network name>)
(EDITATN <state name>)
(EDITATN *)
(EDITATN)
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If EDITATN is called with the name of a network, then that network is 

set up for editing. If called with the name of an individual state, 

then the editor is invoked on the network which includes that state. 

If called with the argument *, then the network which includes the 

current state is edited. If no argument is given, then the network 

which was last edited is set up for re-editing.

EDITSTATE invokes the editor on _an individual ATN state

The function EDITSTATE is similar to EDITATN except that it applies

the editor to an individual ATN state. If an argument is given, it

can be the name of the state to be edited or the special atom * which

refers to the state that the interpreter is currently in. If no

argument is given, the editor is primed with the last edited ATN

state. The syntax is:

(EDITSTATE ’<state name>)
(EDITSTATE *)
(EDITSTATE)

VI.2 Displaying ATN networks and states 

SflQMAXM. displays an U N  network

The function SHOWATN is used to display an entire ATN network in

"pretty print" format. The optional argument is interpreted in a

manner identical to that for the function EDITATN. The options are:

(SHOWATN f<network name>)
(SHOWATN '<state name>)
(SHOWATN *)
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(SHOWATN)

SHOWSTATE displays an individual ATN state

The SHOWSTATE function "pretty prints" an individual ATN state. Its 

optional argument is interpreted like that of EDITSTATE. The syntax 

is:

(SHOWSTATE ’<state name>)
(SHOWSTATE *)
(SHOWSTATE)
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APPENDIX A

A Sample ATN Network

The following three ATN networks comprise a simple grammar to a small 

subset of English. Note that most features of English syntax are not 

handled. Two auxiliary functions, BUILDSENTENCE and BUILDNP, are 

used to construct the parse trees.

(defatn sentence
((s: (cat aux t (setr v #) (to s:aux))

(push np: t (setr subj *) (to srsubj))
(vir np t (setr subj *) (to srsubj)))

(sraux (push np: t (setr subj *) (to s:v)))
(srsubj (cat v t (setr v *) (to srv)))
(srv (cat v

(getf pastpart)
(cond ((eq $v ’be)

(hold $subj 'np nil)
(setr subj ’someone))

((eq $v ’have)
(setr aspect ’perfect))

(t (fail ’arc)))
(setr v *)
(to srv))

(push npr (getf transative $v) (setr obj *) (to srobj)) 
(vir np (getf transative $v) (setr obj #) (to srobj)) 
(and (wrd to (getf strans $v))

(push srsubj 
t
(sendr subj $obj)
(setr obj *)
(to srend)))

(and (wrd that (getf strans $v))
(push sr t (setr obj *) (to srend)))

(jump srend (getf intrans $v)))
(srobj (push np:

(getf indobj $v)
(setr indobj $obj)
(setr obj *)
(to srend))

(vir np
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(getf indobj $v)
(setr indobj $obj)
(setr obj *)
(to s:end))

(and (wrd to)
(push s:subj 

t
(sendr subj $obj)
(setr obj *)
(to s:end)))

(jump s:end))
(s:end (push pp: (cat prep) (addr pps *)) 

(pop (buildsentence)))))



(defatn noun-phrase
((np: (cat det t (setr det *) (to nprdet)) (jump np:det)) 
(nprdet (cat adj t (addr adj *) (to nprdet))

(cat n t (addr adj *) (to np:det))
(cat n t (setr n *) (to np:n)))

(np:n (push pp: (cat prep) (addr modifiers *) (to np:n)) 
(and (wrd (which who that whom) 

t
(hold (buildnp) ’np nil))

(push s: t (addr modifiers *) (to nprend))) 
(jump nprend))

(nprend (pop (buildnp)))))

(defatn prep-phrase
((ppr (cat prep t (setr prep *) (to pprprep)))
(pprprep (push npr t (setr np *) (to pprend))

(vir np t (setr np #) (to pprend)))
(pprend (pop (buildq (pp + +) prep np)))))

(defun buildsentence nil
(buildq (s (verb +) (subj +) (obj +) (indobj +) (pps +)) 

v
subj
obj
indobj 
pps))

(defun buildnp nil
(buildq (np (n +) (det +) (§ (adj) +) (§ (modifiers) +)) 

n
det
adj
modifiers))
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APPENDIX B 

A Sample Dictionary

This example shows a small dictionary which was used with the example 

network to parse the sentences in this appendix. Only the lexical 

features used by the simple grammar are included for these words.

(a det *)
(aircraft substitute ((plane)))
(by prep *)
(electrical adj *)
(engine n -s)
(extensive adj *)
(for prep *)
(good adj #)
(has v (have (tns present)))
(have v irr features (transative))
(I n *)
(in prep *)
(list n -s v s-ed features (transative))
(maintenance n -s)
(me n (i))
(of prep *)
(plane n -s)
(poor adj er-est)
(record n -s)
(repair n -s v s-ed features (transative))
(require v s-d features (transative))
(see v irr features (transative intransative))
(show v s-ed features (transative indobj))
(that det *)
(the det *)
(to prep *)
(very adj *)
(want v s-ed n -s features (transative indobj strans)) 
(were v (be (tns past)))
(which det *)
(which det *)
(you n *)
(? substitute (nil))
(. substitute (nil))
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APPENDIX C

Examples of Operation

Given below are the results of applying the example ATN network to 

six sentences. For each, the sentence is given exactly as it was 

typed, preceded by a n>>". Following that, the list POPed by the ATN 

network is given.

>> which planes required engine maintenance?

(S (VERB REQUIRE)
(SUBJ (NP (N PLANE) (DET WHICH) (ADJ) (MODIFIERS)))
(OBJ (NP (N MAINTENANCE) (DET NIL) (ADJ ENGINE) (MODIFIERS))) 
(INDOBJ NIL)
(PPS NIL))

>> electrical repairs were required.

(S (VERB REQUIRE)
(SUBJ SOMEONE)
(OBJ (NP (N REPAIR) (DET NIL) (ADJ ELECTRICAL) (MODIFIERS))) 
(INDOBJ NIL)
(PPS NIL))

>> I want a list of those planes 

(S (VERB WANT)
(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ (NP (N PLANE) (DET THOSE) (ADJ) (MODIFIERS)))
(INDOBJ (NP (N YOU)

(DET NIL)
(ADJ)
(MODIFIERS (PP TO

(NP (N LIST)
(DET NIL)
(ADJ)
(MODIFIERS))))))

(PPS NIL))

>> I want you to list those planes.
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(S (VERB WANT)
(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ (S (VERB LIST)

(SUBJ (NP (N YOU) (DET NIL) (ADJ) (MODIFIERS))) 
(OBJ (NP (N PLANE) (DET THOSE) (ADJ) (MODIFIERS))) 
(INDOBJ NIL)
(PPS NIL)))

(INDOBJ NIL)
(PPS NIL))

>> I want to see a list of the planes that required 
extensive engine repairs.

(S
(VERB WANT)
(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ
(S (VERB SEE)

(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ (NP (N LIST)

(DET A)
(ADJ)
(MODIFIERS (PP OF

(NP (N PLANE)
(DET THE)
(ADJ)
(MODIFIERS (S (VERB REQUIRE)

(SUBJ (NP (N PLANE) 
(DET THE) 
(ADJ)

(MODIFIERS))) 
(OBJ (NP (N REPAIR) 

(DET NIL) 
(ADJ
EXTENSIVE 
ENGINE) 

(MODIFIERS))) 
(INDOBJ NIL)
(PPS NIL))))))))

(INDOBJ NIL)
(PPS NIL)))

(INDOBJ NIL)
(PPS NIL))

>> I want you to show me the planes which have poor 
maintenance records.

(S (VERB WANT)
(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))



89

(OBJ (S (VERB SHOW)
(SUBJ (NP (N YOU) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ (NP (N PLANE)

(DET THE)
(ADJ)
(MODIFIERS (S (VERB HAVE)

(SUBJ (NP (N PLANE)
(DET THE)
(ADJ)
(MODIFIERS)))

(OBJ (NP (N RECORD)
(DET NIL)
(ADJ POOR MAINTENANCE) 
(MODIFIERS)))

(INDOBJ NIL)
(PPS NIL)))))

(INDOBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))
(PPS NIL)))

(INDOBJ NIL)
(PPS NIL))
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APPENDIX D

Examples of tracing States

The following example shows a trace of the action of the ATN network 

in parsing a sentence. This trace was generated by evaluating 

(TRACE-STATES *). Again, the input string is preceded by ">>" and 

the final value POPed by the network is displayed at the end. Values 

POPed by final states have been abbreviated.

>> Which aircraft have very poor maintenance records?

in state S: 
pushing to state NP: 

in state NP: 
in state NP:DET 
in state NP:DET 
failing from state NP:DET 
in state NP:N 
jump to state NP:END 
in state NP:END
pop from state NP: with value (NP (N PLANE) ... ) 

jump to state S:SUBJ 
in state S:SUBJ 
in state S:V 
pushing to state NP: 

in state NP: 
jump to state NP:DET 
in state NP:DET 
in state NP:DET 
in state NP:DET 
in state NP:DET 
in state NP:DET 
failing from state NP:DET 
in state NP:DET 
failing from state NP:DET 
in state NP:N 
jump to state NP:END 
in state NP:END
pop from state NP: with value (NP (N RECORD) __ )

jump to state S:0BJ



in state S:OBJ 
jump to state S:END 
in state S:END
pop from state TOPLEVEL with value (S (VERB HAVE) ... 

(S (VERB HAVE)
(SUBJ (NP (N PLANE) (DET WHICH) (ADJ) (MODIFIERS))) 
(OBJ (NP (N RECORD)

(DET NIL)
(ADJ VERY POOR MAINTENANCE)
(MODIFIERS)))

(INDOBJ NIL)
(PPS NIL))
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APPENDIX E

Examples of Tracing Registers

This example shows a trace of the values assigned to ATN registers as 

well. This was achieved by evaluating (TRACE-STATES *) and (TRACE- 

REG *).

>> I want you to list those planes

in state S: 
pushing to state NP: 

in state NP: 
jump to state NP:DET 
in state NP:DET 
setting register ADJ to (I) 
in state NP:DET 
failing from state NP:DET 
setting register N to I 
in state NP:N 
jump to state NP:END 
in state NP:END
pop from state NP: with value (NP (N I) ... ) 

setting register SUBJ to (NP (N I) ... ) 
jump to state S:SUBJ 
in state S:SUBJ 
setting register V to WANT 
in state S:V 
pushing to state NP: 

in state NP: 
jump to state NP:DET 
in state NP:DET 
setting register ADJ to (YOU) 
in state NP:DET 
failing from state NP:DET 
setting register N to YOU 
in state NP:N 
jump to state NP:END 
in state NP:END
pop from state NP: with value (NP (N YOU) ... ) 

setting register OBJ to (NP (N YOU) ... ) 
jump to state S:OBJ 
in state S:OBJ
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pushing to state NP: 
in state NP: 
jump to state NP:DET 
in state NP:DET 
failing from state NP:DET 
failing from state NP: 

sending register SUBJ to (NP (N YOU) ... ) 
pushing to state S:SUBJ 

in state S:SUBJ 
setting register V to LIST 
in state S:V 
pushing to state NP: 

in state NP:
setting register DET to THOSE 
in state NP:DET
setting register ADJ to (PLANE)
in state NP:DET
failing from state NP:DET
in state NP:DET
failing from state NP:DET
in state NP:DET
failing from state NP:DET
setting register N to PLANE
in state NP:N
jump to state NP:END
in state NP:END
pop from state NP: with value (NP (N PLANE) ... ) 

setting register OBJ to (NP (N PLANE) (DET THOSE) ... ) 
jump to state S:0BJ 
in state S:OBJ 
jump to state S:END 
in state S:END
pop from state S:SUBJ with value (S (VERB LIST) ... ) 

setting register OBJ to (S (VERB LIST) ... ) 
jump to state S:END 
in state S:END
pop from state TOPLEVEL with value (S (VERB WANT) ... )

(S (VERB WANT)
(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ (S (VERB LIST)

(SUBJ (NP (N YOU) (DET NIL) (ADJ) (MODIFIERS))) 
(OBJ (NP (N PLANE) (DET THOSE) (ADJ) (MODIFIERS))) 
(INDOBJ NIL)
(PPS NIL)))

(INDOBJ NIL)
(PPS NIL))
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* 18, 19, 20, 39, 48

0INITIALSTATE 15

AGAIN 15, 16 
ALIST 49 
ALIST-STACK 49 
AND arc 25 
ARC 49 
ARC-STACK 50 
ATNFAIL? 65 
ATNFAILARC? 65 
ATNFAILPUSH? 65 
ATNFAILSTATE? 65 
ATNSIMPLECAT? 65 
ATNTRACE? 64

BREAKPOINT 46 
BUILDQ 43

CAT action 66 
CAT arc 18, 65 
CAT function 40 
CHECKF 43, 69 
COMPILEATN 63 
COMPILESTATE 63 
COMPOUNDS 74 
COMPOUNDS property 68

DEFARC 27 
DEFATN 26 
default-arc 26 
default-register 26 
DEFINEWORD 73 
DEFINTERUPT 28 
DEFSTATE 27 
DEFSUB 75 
DEFSUBSTITUTE 75 
DEFW 73, 74 
degenerate arcs 27 
dictionary entry 68 
DO arc 24 
dollar sign 32 
DOLLARMACRO 32

EDITATN 79 
EDITSTATE 79, 80
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FAIL action 65 
FAIL arc 22, 65 
FAIL function 35 
FEATURES 24, 39 
FEATURES property 69

GETF 41, 69 
GETR 31

HOLD action 38
HOLD list 21, 23, 37, 38, 39

initial state 15

JUMP arc 22 
JUMP function 34

LEX 48
lexical categories 68 
LIFTLIST 31 
LIFTR 30 
LISP Editor 79

MacLISP compiler 51

NEXTWRD 45 
NULLR 32

PARSE 14 
PARSE1 14 
PHRASE arc 19 
POP arc 20 
POP! arc 21 
POPATN 35 
POPSTACK 50 
post-actions 20 
preactions 20 
Punctuation 72 
PUSH arc 20 
PUSHATN 34

READTEXT 14, 16 
register 29 
RESUME 36 
RESUMETAG 36 
ROOT arc 18 
ROOT function 41

SENDLIST 30 
SENDR 30
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SETR 29
SHOWATN 80
SHOWSTATE 81
STACK 48, 49
STATE 49
STRING 48
sub-computation 20
SUBSTITUTE properties 75
SUBSTITUTE property 69
syntax frame 5

TO arc 22 
TO function 33 
TRACE-REG 47 
TRACE-STATE 45 
tracing facilities 45 
TST arc 24

UNTRACE-REG 47 
UNTRACE-STATE 46 
USE-ALL-WORDS? 21 , 49

VIR arc 38 
virtual arc 23

WRD arc 17 
WRD function 40
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