
AN INTERPRETER AND COMPILER FOR AUGMENTED TRANSITION NETWORKS

BY

TIMOTHY WILKING FININ

S.B. Massachusetts Institute of Technology, 1971

Submitted

THESIS

in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinios at Urbana-Champaign, 1977

Thesis Adviser: Professor David L. Waltz

Urbana, Illinois

iii

ACKNOWLEDGEMENT

The work described in this Thesis represents a considerable volume of
complex programs and I have received some assistance in constructing
them. Tomas Lozano-Perez originally wrote a simplified recursive
version of the ATN interpreter on which this system is based. Jack
Holloway contributed modified versions of some of the morphological
analysis routines which were, in turn, based on those described by
Woods. These have been further modified and extended for our own use.

Professor D.L. Waltz has provided the encouragement and support
necessary for this undertaking.

iv

H U E Q. F

I Introduction.. 1

1.1 Introduction..1

1.2 An Overview of this t h e s i s4

1.3 Conventions..5

II Augmented Transition N e t w o r k s 7

11.1 Introduction.. 7

11.2 The ATN F o r m a l i s m ..7

11.3 Design considerations 11

II. 4 Implementation.. 13

III The ATN Interpreter...14

III. 1 Invoking the ATN I n t e r p r e t e r 14

111.2 Arc T y p e s .. 16
111.2. a Arcs which test the current w o r d 17
111.2. b Arcs which Modify the Flow of Control . . . 19
111.2. C The Virtual a r c23
111.2. d Miscellaneous Arcs 24

111.3 Defining ATN Networks and S t a t e s26

111.4 Functions for Manipulating Registers 29
111.4. a Setting Registers 29
111.4. b Accessing Registers 31
111.4. C Testing the contents of a register 32

111.5 Flow of Control..33
111.5. a Effecting State transitions 33
111.5. b Invoking and Returning from Sub-computations . 34
111.5. C Controlling Backtracking and Failure 35
111.5. d Suspending and Resuming Computations 35
111.5. e The HOLD/VIRTUAL facility 37

V

III. 6 Useful Actions ... 39
111.6. a Actions which test the current word 40
111.6. b Actions which Test Arbitrary words 42
111.6. C Miscellaneous Actions 43

III. 7 Tracing Facilities 45

III. 8 Global variables 47

IV The ATN Compiler... 51

IV. 1 Introduction .. 51
IV.1.a Compilation of a state 53
IV.I.b Compilation of an individual arc 55
IV.1.C Optimization 57

IV.2 Using the ATN C o m p i l e r 61
IV.2.a Compiling networks into LISP C o d e 63
IV.2.b Compilation in the compiler 63
IV.2.c Switches 64

V The L e x i c o n .. 67

V.1 Introduction .. 67

V .2 The Dictionary Format 68

V.3 The Dictionary Manager 71

V.4 Auxiliary Functions 73
V.4.a Creating Dictionary Entries 73
V.4.b Dictionary Files 76

VI Auxiliary Functions .. 79

VI. 1 Interfacing with the LISP E d i t o r79

VI.2 Displaying ATN networks and states 80

APPENDICES ...83

A A Sample ATN N e t w o r k 83

B A Sample Dictionary 86

C Examples of Operation 87

vi

D Examples of tracing States 90

E Examples of Tracing Registers 92

INDEX..94

R E F E R E N C E S ...97

vii

LIST OF FIGURES

FIGURE Page

1. The PLANES s y s t e m .. 2

2. A Simple Grammar for English 9

3. A Better Grammar for English..................................... 10

4. Overview of the ATN Compiler..................................... 54

5. Simplification Rules ... 60

6. An Example of Simplification..................................... 62

1

I
XntrQdqctiQn

I.1 Introduction

This thesis discusses one part of a language processing system

developed at the Coordinated Science Laboratory of the University of

Illinois. This system, called PLANES [Waltz 75], is designed to be a

question answering system which accepts and answers Questions

concerning a large data base of aircraft maintenance information.

The intended scope of the PLANES system is to answer such questions

as:

How many Skyhawks required engine repairs in 1973.
Did any of these log more than 200 hours in March.
Show me the tail numbers of planes which were NOR during May.
What kinds of aircraft are in the data base?

The processing of a user’s request is divided into three main phases:

parsing, interpretation, and evaluation (see figure 1). The first

phase, the parsing, is accomplished by a large ATN network [Woods

70]. This network defines a "semantic grammar" [Brown 76] which maps

the users request into an internal representation, the Paraphrase

Language. The grammar is "semantic" in that it incorporates semantic

and pragmatic knowledge as well as syntactic.

Co
nte

xt
Re

gis
ter

s
2

User's Request

Figure 1
The PLANES system

3

The Paraphrase Language representation of the user’s request is

translated by the second stage into a ’program' to generate the data

to answer the request. This stage contains detailed knowledge about

the data bases. It must know, for example, which sub-parts of the

data base contain certain relations and the particular codes used to

represent certain facts. The program is constructed out of primitives

provided by the Query Language.

Finally, the Query Language evaluates the 'program' and passes the

resulting data to the Response Generator. This module can display the

answer in one of three forms: as a simple number or list, as a graph,

or as a table. The choice of output form can be determined by the

user thru a direct request (e.g. "Draw a graph of ...") or by a set

of heuristics which attempt to find the most "natural" form. A

graph, for example, will be generated only if the data consists of a

set of tuples which can be interpreted as a function of two

variables. Furthermore, the number of tuples must lie within certain

bounds.

At each stage of the process, the results are sent to the History

Keeper which manages a set of stacks of relevant information. These

stacks contain the results of each stage (e.g. users request,

paraphrase, etc.), syntactic components (e.g. subject, object, etc.),

and semanticcontextual information (e.g. time specifications, plane

specifications, etc.). This information is made available for

4

resolving anaphoric reference, supplying phrases deleted thru

ellipsis, and generating responses.

The entire process can be aborted by any of the major stages. If

this is done, a suitable error message is generated and the user is

invited to reform his request.

1.2 An Overview of this thesis

This thesis is intended to both document the implementation of the

ATN interpreter and compiler and to serve as a manual for anyone

interested in using it. Chapter II gives a brief description of

ATN’s and discusses some of the high level design considerations.

Chapter III describes the interpreter and the auxiliary functions

available to the user in some detail. Chapter IV presents the

compiler which can translate ATN networks into LISP code or machine

language instructions. Chapter V describes the dictionary format

expected by the interpreter. Also discussed are the various

functions provided for creating and maintaining dictionaries.

Chapter VI documents several packages of auxiliary functions provided

for interfacing the ATN system with the LISP editor and Pretty-

printer. Appendices include a simple parser for English, a sample

dictionary, and examples of their operation. An index to function

calls and global variables and a bibliography conclude this thesis.

5

1.3 Conventions

This thesis documents many LISP functions and "function-like"

constructions. As part of the description for a function, a "syntax

frame" will be given which specifies the number of arguments and

whether or not they are evaluated. A "syntax frame" will look like a

typical call to the function, i.e. it will be a list whose first

element is the name of the function and whose remaining elements are

the arguments. Arguments in the "syntax frame" will typically be

enclosed in angle-brackets (<,>). For example, the syntax frame for

the LISP function LESSP might be:

(LESSP <number> <number>)

which states that LESSP takes two arguments, both of which are

evaluated.

If a quote-sign (') precedes an argument, then that argument is not

evaluated by the function. For example, the following describes the

function DEFPROP:

(DEFPROP 1<atom> '<value> *<property>)

If a function takes one or more optional arguments, then several

"syntax frames" will be given. For example, the MacLISP function

CATCH would be described as:

(CATCH <expression> ’<tag>)
(CATCH <expression>)

Two conventions will be used to exhibit functions which take an

6

indefinite number of arguments. In one, the arguments are simply

partially enumerated with the elliptical "...", as in:

(PLUS <number1> <number2> ... <numbern>)

The second form has the last argument to the function preceded by the

"dotted pair" dot, as in:

(DEFUN '<name> ’<argument list> . '<function body>)

The last argument then stands for an indefinite number of final

arguments. Example calls to a function will usually be given with

the "syntax frame" to clarify its usage. These will be preceded by

an "eg:".

7

II

AugfflgPi.Sd Transition Networks

II. 1 In trod .U.S.ti on

The ATN formalism has been well received by the computational

linguistics community in the last five years. A number of people

were working with similar models in the late 60's, but the idea was

crystallized and popularized by Woods in the early 70's [Woods 71].

ATN models have recently been applied to domains other that the

natural language parsing, including generation of natural language

[Kay 75], and computer vision research [Lozano 77].

II.2 The ATN Formalism

The ATN formalism is usually described in a evolutionary manner,

showing how one can start with the notion of a simple finite state

machine (FSM) and modify and embellish it to arrive at an Augmented

Finite State Transition Network (ASFTN).

The FSM is _fch£ basis far ATN’s

We start with a garden variety deterministic FSM consisting of a set

of labeled states, a set of arcs between states, an initial state,

8

and a set of distinguished final or accepting states. The first step

might be to extend the formalism to allow for non-determinism. A

simple grammar for English might be represented by the graph in

figure 2.

As a model for natural language processing this is inadequate. The

most serious deficit is the lack of any mechanism to handle

embedding of constituents to arbitrary depth. The next extension,

then, is to provide a "push down" mechanism whereby one can suspend

the processing of a constituent at one level while using the same

network to process an embedded one.

Adding recursion extends the power of an FSM

We can represent this by labeling an arc from one state to another

with the name of a third state. When such an arc is encountered,

processing is suspended and the network restarted in the specified

state. If an accepting state is eventually reached, the suspended

processing is resumed.

Such a capability not only allows one to achieve the power to parse a

context free language, but also simplifies the representation of a

grammar. One can collect common network fragments and specify them

in one place, much as one can substitute a subroutine call for common

program sequences in a programming language.

Our simplistic English grammar might now be represented by the graph

Figure 2
A Simple Grammar for English

10

u *•

Figure 3
A Better Grammar for English

11

in figure 3. Note that this grammar now accepts conjoined sentences

and sentences embedded as relative clauses.

Augment action realizes the power jq £ ATN*s

Recursive transition networks are still inadequate for natural

language processing. To further extend the power of our formalism we

will allow arcs to be augmented with conditions and actions. Each

arc can be augmented with:

1 An arbitrary condition which must be met before the arc may be

taken.

2 A set of arbitrary actions which will be performed if the arc

is taken. These can have side effects thru the setting of

registers whose contents can later be accessed in other parts

of the grammar.

This augmentation gives an ATN the computational power of a Turing

machine. The final result is a powerful formalism which retains much

of the elegance of the simple FSM.

II.3 Design considerations

Since ATN’s are based on non-deterministic FSM’s, an implementation

must be able to simulate all possible paths thru the network. We

have chosen to implement a depth-first backtracking version for

12

several reasons. Firstly, it is our belief that natural language

processing may be most suited to this approach. At least, evidence

suggests that our only example of competent natural language

processors (i.e. humans) do not use highly parallel methods.

Secondly, we believe that whatever gains might be made thru a

parallel approach would be more than offset by the additional cost of

processing. The phenomenon of natural language is such that it

encompasses an extraordinarily large number of patterns and

constructions. Most of these, however, are relatively rare, the

greatest part of most language being drawn from a few common

constructions. A non-parallel approach can easily take advantage of

this fact in the ordering of its attempts to find a path thru the ATN
network.

To simulate the non-deterministic nature of an ATN processor (or a

FSM for that matter) one needs to maintain an encoding of the current

configuration (i.e. state, input word, register environment, etc.) as

well as a stack of past configurations which represent the path so

far. In our ATN system, we have chosen a recursive implementation in

which this information is stored on LISP's internal stack. The

alternative is to maintain an explicit configuration stack built from

CONS cells from the general pool. The advantages of a recursive

implementation include:

1 Simplicity of design
Backing up to a previous configuration is achieved by
"returning" to the environment of that configuration. The
undoing of side-effects is automatic.

13

2 Efficiency
Previous configurations are stored on LISP's internal stack and
thus do not consume CONS cells from the general pool. This
reduces the amount of LIST space required and, more importantly,
results in fewer and shorter garbage collections.

The chief disadvantage of a recursive implementation is that we give

up the possibility of giving the user complete control over

processing. Earlier configurations are inaccessible to the user as

well as to the system itself. This problem is alleviated by the

inclusion of several flow-of-control modifiers thru which one can

directly fail back to a specified configuration.

II.4 Implementation

The ATN interpreter, Dictionary Manager, and ATN compiler are written

in the LISP dialect MacLISP, which runs on a PDP-10 T0PS10

timesharing system. The following gives approximate values for

memory requirements:

LIST space BPS space

Interpreter 5100
Dictionary Manager 1200
Compiler 2500

In this table, LIST space refers to

to store lists, atoms, etc. and BPS

4000
1000
1500

the number of memory cells used

space refers to ’Binary Program

Space’, the number of memory cells used to store compiled code.

14

III

The JlTN Interpreter

III.1 Invoking the ATN Interpreter

PARSE and P.4B.SE.1 invoke the interpreter

PARSE and PARSE1 are the main functions used to invoke the ATN

interpreter on an input string. The function PARSE is intended to be

used at LISP's toplevel and PARSE1 used by other programs.

(PARSE ’<string> ’Cinitial state> ’Cnumber of parses>)

eg: (PARSE (which skyhawks required repairs) s:start 3)

The function PARSE starts the ATN interpreter in state <initial

state> with the input string <string>. It takes from 0 to 3

arguments, none of which is evaluated. If any argument is omitted or

is NIL, it is defaulted as specified below.

The first argument specifies the input string to be parsed. If it is

a list of atoms, then that list is used as the input string. If it

is an atom which has a value, then the value of the atom is used as

the input string. If it is omitted or is NIL, then the function

READTEXT is called which reads the input string from the TTY.

15

The second argument to PARSE specifies the initial state of an ATN

network. If it is omitted or NIL, it defaults to the value of the

global variable 0INITIALSTATE.

The third argument determines how many parses are produced. If it is

omitted or NIL it defaults to one. If it is a positive number, then

the interpreter will attempt to produce that many parses. If it is

the atom ALL, then all possible parses will be produced.

The function PARSE always returns the value "*", so it is run for its

side-effects. The principle side-effect is that it sets the the

variable PARSE to:

1 The atom FAIL if the ATN was unable to reach a final state.

2 The value POPped by the ATN if <number of parses> is 1.

3 A list of the values POPped if <number of parses> is greater
than one or the atom ALL.

In addition, this value is "pretty printed" on the TTY and the atom

AGAIN is set to the input string.

(PARSE1 <string> <initial state> <number of parses>)

eg: (PARSE1 ’(show me the list) ’s:start ’all)

The function PARSE1 requires all three arguments, each of which is

evaluated. It returns the value(s) POPped by the ATN from the final

state(s). PARSE1 has the side-effect of binding the global variable

AGAIN to Cinput string>.

16

(READTEXT)

If the first argument to PARSE is omitted or NIL, the function

READTEXT is called to read the input string from the TTY. This

function reads a string of characters from the TTY until a carriage-

return is typed and returns it in the form of a list of atoms.

Characters which have a "special” meaning to LISP (e.g. . , ; , etc.)

are automatically "slashified" (i.e. taken literally).

The function incorporates three special features:

1 If the null string is entered by typing only a carriage-return,
then READTEXT returns the last input string given to PARSE (i.e.
the value of AGAIN).

2 If the first character on the line is a "(" then READTEXT reads
a LISP s-expression, evaluates it, and prints the resulting
value. It then waits for a string of characters to be typed as
the input string.

3 Whenever a line-feed is typed, READTEXT takes the next character
of the input string from the last input string (AGAIN again).
Subsequent line-feeds produce subsequent characters from the old
input string.

III.2 Arc Types

Our ATN interpreter provides a total of 13 varieties of arcs. These

can be broken down into the following categories:

1 Flow of Control (PUSH, POP, TO, JUMP, FAIL)
These are arcs which effect transitions from one state to
another or invoke or return from sub-computations.

2 Testing the Current Word (CAT, WRD, ROOT, PHRASE)
These arcs are taken only when the current word meets a
specified condition.

17

3 Virtual Arc (VIR)
This arc provides a natural mechanism for handling constituents
which are parsed "out of place" in the input string.

4 Miscellaneous Arcs (TST, DO, AND)
These three arcs provide a mechanism for miscellaneous
computation.

All of the arcs except the AND arc have the basic form:

(<type> <head> <test> <action1 > ... <actionn>)

where <type> is one of the arc types (PUSH, CAT, TST, etc), <head> is

an argument for that arc type, <test> is an arbitrary condition which

must be met before the arc can be taken, and the <actions>'s are

arbitrary lisp expressions which are evaluated if the arc is taken.

Typically the last action will specify destination - the next state

to go to.

Ill.2.a .Arcs which test the current word

The WRD arc compares the current word

(WRD ’<word(s)> <test> ...<actions>... <destination>)
eg: (WRD (the a) T (SETR det *)(T0 np:det))

(WRD please t (SETR polite t)(TO s:start))

The WRD arc compares the current word against <word(s)>, which can be

an atom or a list of atoms. If the current word matches, then <test>

is evaluated and, if true, the actions are evaluated from left to

right.

18

Xhe CAT arc checks for & lexical category

(CAT '<head> <test> ...<actions>__ <destination>)
eg: (CAT adj T (ADDR adj *)(T0 np:adj))

(CAT (n npr) t (SETR n *)(T0 np:n))

A CAT arc is taken if the current word has a lexical entry under the

category <head> (if it is an atom) or any of the categories <head> if

a list. Within the CAT arc, the variable * is bound to the root form

of the current word. For example, if the current word is CRASHING,

then the following arc would set the register VERB to CRASH:

(CAT V T (SETR verb *)(T0 s:verb))

Note that this arc may generate several possibilities if the current

word has more than one dictionary entry under the specified category.

For example, the word SAW might have the dictionary entry:

(SAW V ((SEE (tns past))
(SAW (tns present)(untensed)))

In this case the CAT arc above will first try parsing SAW as the past

tense of SEE and, if that fails, will try parsing SAW as the

present/untensed form of the verb SAW.

The ROOT arc checks the root form

(ROOT '<root(s)> <test> ...<actions>... <destination>)
eg: (ROOT BE T (SETR v *)(to S:BE))

(ROOT (have be) (NULLR aux)(SETR aux *)(T0 s:aux))

A ROOT arc compares the root form of the current word to <root(s)>.

Again, <root(s)> can be an atom or a list of atoms. The arc is taken

19

if the current word matches one of the forms in <root(s)>. As with

the CAT arc, the variable * is bound to the root form of the current

word within the ROOT arc.

I.frg .EHBASE arc checks the next several words

(PHRASE ’ <phrase> <test> ...<actions>... <destination>)
eg: (PHRASE (more or less) T (SETR fuzzy T)(T0 quant rend))

(PHRASE (please (give show tell) me) T (TO s :imperative))

The PHRASE arc is used to compare the next several words in the input

string to <phrase>. This argument should be a list of atoms or lists

of atoms.

Successive elements of <phrase> are matched against successive words

from the input string. An element which is a list enumerates several

possibilities for the corresponding word in the input string. The

arc is taken if and only if each element of <phrase> is successfully

matched against the input string.

III.2.b Arcs which Modify the Flow of Control

These arc types can de divided into those which involve sub­

computations (PUSH, POP, POP!), those effecting state transitions

(TO, JUMP) and one which controls backtracking (FAIL).

The PUSH arc invokes a sub-computation

(PUSH '<state><test> ... <actions>... <destination^

20

eg: (PUSH np t (SENDR goal *subj)(SETR subj *)(T0 s:subj))

The PUSH arc is used to invoke a sub-computation. If the expression

<test> is true, then the ATN interpreter is recursively called,

starting in state <state>. All registers at the current level are

saved and made invisible to the lower level. Before actually

invoking the lower level, the list of actions is scanned for

"preactions", i.e. those which should be evaluated before the PUSH is

made. These '’preactions” are SENDR's or any action which begins with

a ”!" (e.g. (! (OR (EQ $v ’be)(SENDR v))). The SENDR actions, and

any previously done, are typically used to set register values in the

lower computation.

If the sub-computation fails, i.e. does not reach a state which can

take a POP arc, then the PUSH fails. If a POP from the lower level

is taken, then control is returned to the PUSH arc. The variable *

is then set to the value POPped by the lower network, the values of

any LIFTRed registers set, and the "postactions" evaluated. These

"post-actions" are just the actions on the arc minus the "pre­

actions" .

The POP arc returns from a sub-computation.

(POP <value> <test> . <actions>)

The POP arc returns from a sub-computation. If <test> is true, the

21

<actions> are evaluated from left to right and then <value> is

computed and returned to the most recent PUSH arc or PUSHATN action.

Both <test> and <actions> can be omitted. If the <test> argument is

omitted, it defaults to T.

Two conditions affect the taking of a POP arc. If any items have

been placed on the HOLD list at this level, the POP arc is blocked

(see section II.5.e). In addition, a POP arc will not be taken if it

would be returning to the "top-level" and words remain to be parsed

(i.e. STRING is non-NIL). This last condition can be turned off if

the global variable USE-ALL-WORDS? is set to NIL.

Some examples of POP arcs are:

(POP (build-np) T (LIFTR head-noun $noun))
(POP (BUILDQ (pp + +) prep np))

The PQP.1 jrc really, returns

(POP! <value> <test> . <actions>)

The POP! arc is almost identical to the POP arc except for one

important difference: one can not back-up into the sub-computation

after leaving it via a POP! arc. Under our implementation of the ATN

interpreter, a POP! arc does a RETURN to the environment of the most

recent PUSH arc or call to the PUSHATN action. If failure later

backs up to this point, the entire sub-computation will, in effect,

be backed up over as well. The grammar writer may find this a useful

22

arc in that it gives him greater control over the automatic

backtracking done by the ATN interpreter.

The TO and JUMP arcs effect state transitions

(TO *<state> <test> . <actions>)

(JUMP ’<state> <test> . <actions>)

As a convenience, special arcs are provided which duplicate the TO

and JUMP actions. Both arc types cause the ATN interpreter to advance

to the state specified by their first "argument". The TO arc causes

the current word to be advanced and the JUMP arc does not. In each

case, the <test> argument and the <actions> arguments are optional.

If the <test> is omitted, it defaults to T. Some examples are:

(JUMP s:end (out-of-words?))
(JUMP np:det)
(TO np:det t (ADDR ignored-words *))

Uie FAIL arc controls backtracking

(FAIL ’<where> <test> . <actions>)

The FAIL arc can be used to gain some control over backtracking. If

the <test> is true, then this arc will evaluate the <actions> and

cause failure to propagate backwards to a point specified by <where>.

Again, the <test> and <actions> arguments may be omitted.

The <where> argument may specify that the ATN interpreter fail from

23

the current arc, the current state, the current sub-computation, an

arbitrary named state, or to the initial top-level call. The precise

options for the <where> argument are:

STATE : fail from the current state
PUSH : fail from the current subcomputation

(i.e. from the most recent PUSH)
<state> : fail from the named state
TOP : fail altogether

Note that the setting of registers in the <actions> will have no

effect since their side effects will be undone by the failure. Some

example of FAIL arcs are:

(FAIL state)
(FAIL np:adj (CAT v))
(FAIL push (NOT (CAT prep)))

III.2.C The Virtual arc

(VIR ’<cat> <test> ...<actions>... <destination>)
(VIR ’(<cat> <level>) <test> ...<actions>... <destination>)

The VIR or virtual arc is taken if a constituent is found on the HOLD

list indexed under the category <cat>. Again, the <test> argument

must evaluate to non-NIL.

Note that two syntax frames are given for this arc. In the first,

the "head" of a VIR arc is an atomic category name. In the second,

it is a tuple whoes first element is a category name and whose second

is a number which specifies the level at which the constituent is to

be found on the HOLD list. See section III.5.e for details.

24

If the VIR arc can be taken, * is bound to the constituent found on

the HOLD list and FEATURES is bound to the (optional) feature list

associated with that constituent.

III.2.d Miscellaneous Arcs

Xhe LSI arc applies _an arbitrary test

(TST ’<label> <test> ...<actions>... <destination>)

The TST arc is taken if the arbitrary LISP expression <test>

evaluates to non-NIL. The <label> argument is not evaluated and is

not used in any way by the ATN interpreter. Typically it is used for

a mnenomic label describing the function of the arc. Some examples
are:

(TST end-of-sent? (AND (NULL *)(NULL string))(JUMP s:end))
(TST t (MEMQ * cuss-words)(TO srcomplain))

The M arc has no destination

(DO '<label> <test> . <actions>)

The ATN interpreter handles the DO arc in an identical manner to the
TST arc. If the <test> is true, the <actions> are evaluated. Its
intended use, however, is somewhat different The TST arc is
intended to have a "destination action " as its final action (i.e. a

25

call to TO or JUMP). The DO arc is intended to be used without a

"destination action". Thus, the DO arc might be used to initialize a

set of registers. Some sample DO arcs are given below:

(DO initialize t (SETR type 'del)(SETR context NIL))
(DO warn verbose? (print '¡That is not very grammatical!!))

The AND arc conjoins other arcs

(AND <arc1> <arc2> ... <arcn>)

The AND arc is the only one which does not fit the general arc

syntax. The AND arc takes an indefinite number of arguments, each of

which can be any of the legal arc types (including another AND arc).

The effect of an AND arc is to evaluate each of the "sub-arcs" from

left to right until one of them fails or the last one is reached.

Consequently, none of the "sub-arcs" should contain a "destination

action" except the last one, which should have a "destination" as its

last action.

Note that after evaluating each of the "sub-arcs", the current word

is always advanced. This arc is useful in eliminating many states

which contain only a single arc. This can greatly increase the

readability of a network by keeping together arcs which form a single

path. For example, to handle two-word comparative adjective, one

might use the following arc:

(AND (WRD more t)
(CAT adj t (SETR adj (BUILDQ (adj: * comparative)))

(TO np:adj)))

26

III.3 Defining ATN Networks and States

Our ATN system provides functions for defining ATN networks, states,

individual arcs and special word-triggered interrupt functions.

DEFATN defines an M R network

(DEFATN '<name> '<default-arcs> '<default-registers>
’ (<state> ... <state>))

The function DEFATN takes from 2 to 4 arguments and defines an ATN

network. The first argument is the name of the ATN network and the

last argument is a list of the states in the network. Intervening

arguments are optional and, if included, can specify initial values

for registers and special "default arcs" which are assumed to be the

initial arcs of each state in the network.

If a register default argument is supplied, its form should be:

("default-register" (<register name> <value>)
(<register name> <value>)...))

This argument causes the specified registers to be set to the

specified initial values whenever a state in the network is PUSHed

to.

If a "default-arc" argument is given to DEFATN, its form should be:

("default-arc" <arc1> <arc2> ... <arcn>)

where an arc has one of the forms:

<arc name>
(<arc type> <head>)

27

If the arc is an atom, it is assumed to be the name of separately-

defined arc (see DEFARC). If it is a list, then it should be in the

form of a legally defined arc. The effect of this argument is to

cause the specified arcs to be added at the beginning of each state

in the network.

EEESlAIfi defines an individual state

(DEFSTATE f<name> . f<arcs>)

Individual ATN states can be defined with the function DEFSTATE.

This function takes an indefinite number of arguments, the first of

which is the name of the state. The remaining arguments specify the

arcs leading from the state. Again, an arc can be represented either

by an atomic name or by a complete list. An example is:

(DEFSTATE np:start
(CAT det (SETR det *)(T0 nprdet))
(CAT pro (SETR noun *)(T0 npiend))
(JUMP np:det))

BEE&flG defing.g an individual arc

(DEFARC '<name> f<arc>)

An individual arc can be defined with the function DEFARC. Arcs

defined in this way can be of two types: Regular arcs which have a

destination (i.e. a call to TO or JUMP) as their last action and

degenerate arcs which do not have a destination as their last action.

When a degenerate arc is inserted into an ATN state, a destination is

28

supplied which causes the ATN to loop back to that state. For

example:

(DEFARC timephrase (PUSH timepp T (SETR time *)))

is an arc which will attempt to parse a time phrase and then reenter

the current state.

Word interrupts are created bx DEFINTERUPT

Our ATN system provides a mechanism whereby certain computations can

be performed whenever a certain word is encountered in the input

string. The function DEFINTERUPT associates an interrupt function

with a word.

(DEFINTERUPT *<word(s)> ’<function>)
eg: (DEFINTERUPT please cdr)

(DEFINTERUPT (in on before)
(lambda (x)(parse-time-pp (car x)(cdr x))))

The first argument to DEFINTERUPT should be a word or a list of

words. The second should be a function of one argument, expressed as

either the atomic name of the function or as a lambda expression.

Whenever one of the specified words is encountered in the input

string, the associated interrupt function is called with the input

string as its argument. Its return value is used as the new input

string. Thus the first example would cause the word PLEASE to be

ignored (since it returns the CDR of the input string). The second

example would call the function PARSE-TIME-PP whenever the words IN,

ON, or BEFORE are discovered in the input string.

29

III.4 Functions for Manipulating Registers

A register in the ATN system plays the role of a variable in a

typical high level programming system. The interpreter provides

functions for assigning a register a value (SETR, SENDR, LIFTR),

accessing the value of a register (GETR, $), and testing the contents

of a register (NULLR). Registers need not be declared and are

"created" when they are assigned a value for the first time. The

contents of a register which has never been assigned a value is

defined to be NIL.

III.4.a Setting Registers

Registers can be set at the current level (SETR) in the next lower

level (SENDR) or in any of the higher levels (LIFTR).

SETR sets a register at the current .level

(SETR ’<register name> <value>)

eg: (SETR verb ’be)

The function SETR assigns a value to a register at the current level.

SETR assigns the register <register name> the value <value>.

SENDR sets a register a£ a lower level

(SENDR ’Cregister name> <value>)

30

(SENDR '<register name>)

SENDR is used to set the contents of a register at a lower level,

typically just before a PUSH action. Whenever a SENDR is evaluated,

the register name and value are stored on the SENDLIST. When a PUSH

occurs, the SENDLIST is used to initialize the registers to the

specified values. If the second argument is omitted, it defaults to

the current contents of the register named by the first argument.

Thus (SENDR noun) is the equivalent to (SENDR noun (GETR noun)).

I.TFTR sets a register _at a higher level

The function LIFTR is used to set the contents of a register at a

higher level. It takes from one to three arguments, the syntax

being:
(LIFTR ’<register name> <value> <level>)
(LIFTR '<register name> <value>)
(LIFTR ’<register name>)

If all three arguments are given, LIFTR assigns <register name> the

value <value> <level> levels above the current one. For example,

(LIFTR stype 'q 1) would set the register STYPE to 0 in the next

highest level. If the <level> argument is the atom TOP, then it

refers to the highest level. If the <level> argument is omitted, it

defaults to 1 (i.e. the next highest level).

The second argument, <value>, specifies the value to be assigned to

31

the register. If it is omitted, the current contents of the register

are used. Thus (LIFTR noun) is equivalent to (LIFTR noun (GETR

noun)).

When a LIFTR action is evaluated, it adds the complete three tuple

(<register name><value><level>) to the special register LIFTLIST.

When a POP action is taken, the LIFTLIST is processed by setting

those registers associated with a <level> of 1 and "re-lifting" the

rest of the elements with a decremented <level>. Thus, the effect of

a LIFTR is only seen once we have POPped to the appropriate level.

III.4.b Accessing Registers

GETR gets the contents of a register

The function GETR is used to access the contents of a register at the

current level or, if an optional argument is supplied, at any higher

level. The syntax is:

(GETR '<register name>)
(GETR Xregister name> <level>)
(GETR Xregister name> 'nearest <test>)

If only one argument is supplied, GETR retrieves the contents of that

register at the current level. An optional second argument instructs

GETR to get the contents of the register at a higher level. If

<level> evaluates to the atom NEAREST, then GETR will return the

contents of the register at the lowest level in which it has a value.

32

If <level> is NEAREST, an optional third argument, <test>, can

specify an arbitrary test which must be met by the candidate register

value. While evaluating <test>, the variable * is bound to the

contents of the candidate register. For example, the expression:

(GETR verb 'nearest ’(TRANSITIVE *))

would search upwards thru the chain of levels until it found a VERB

register which contained a transitive verb.

The character J. acts as prefix operator

The character $ (i.e. dollar sign) is defined to be a "read macro

character" which acts as a prefix operator identical to GETR. Thus

$noun is the equivalent to the function call (GETR noun). This

feature can be turned on or off with the function DOLLARMACRO.

Evaluating (DOLLARMACRO NIL) will turn it off causing the dollar sign

to lose its special significance. Similarly, (DOLLARMACRO T) will

turn the feature back on.

Ill.4.c Testing the contents of a register

NULLR tests fhe value _of a register

Since the value of a register which has never been set is defined to

be NIL, there is no way to tell whether or not a register has been

set to the value NIL or has never been set. To provide the user with

this capability, the function NULLR will return T if and only if a

register has been explicitly set to NIL. the syntax is simply:

33

(NULLR Kregister name>)

III.5 Flow of Control

Six function are provided which modify the flow of control. Five of

them are analogous to arcs PUSH, POP, TO, JUMP and FAIL. The sixth

provides a special facility by which one can save the state of a

subcomputation just before returning via a POP and later resume it

with the same register environment.

Ill.5.a Effecting State transitions

IQ. £nd JUMP advance the U N to a nesi s,tg,t£

These are typically found as the last action at the end of an arc, as

in:

(CAT v t (SETR v *)(T0 s:verb))
(TST T (out-of-words)(JUMP s:end))

They can, however, be called at any point by the user and embedded in

arbitrary LISP expressions.

(TO '<state name>)
eg: (TO s:verb)

The TO function effects a transition to the named state and causes

the current word to be advanced.

(JUMP '<state name>)
eg: (JUMP s:end)

34

The JUMP function also causes the ATN interpreter to enter the

specified state but does not advance the input word. The next state

will find the current word unchanged.

III.5.b Invoking and Returning from Sub-computations

PUSHATN simulates a PUSH.

(PUSHATN <state>)

eg: (PUSHATN np:start)

The effect of a call to the function PUSHATN is similar to that of a

PUSH arc. It recursively applies the ATN network to the input string

starting in state <state>. The value returned by this function is

the value POPed by the sub-computation or the atom FAIL if the sub­

computation does not reach a final state. Additional side-effects

are:

1 The variable * is bound to the value POPped.

2 The variable LEX is bound to the new current word.

3 The variable STRING is bound to the rest of the input string.

PQPATN simulates .a POP

(POPATN <value>)

eg: (POPATN (buildquestion))

35

The POPATN function is similar to the POP arc. It causes control to

return to the most recent PUSH arc or PUSHATN function call. As with

the POP arc, the POP will only succeed if nothing has been placed on

the HOLD list at the current level.

111.5. C Controlling Backtracking and Failure

FAIL controls backtracking

(FAIL <where>)

The FAIL function is almost identical to the FAIL arc. It causes the

ATN interpreter to backtrack to a point specified by the argument

<where>. The options for this argument are:

ARC : fail from the current arc
* : fail from the current state
PUSH : fail from current level (i.e. to most recent PUSH)
TOP : fail from entire network (i.e. give up completely)
<state>: fail back to the state named <state>

111.5. d Suspending and Resuming Computations

Suppose that we wanted to parse a sentence like:

How many planes were there which required no repairs in April?

In this sentence, the relative clause "which required no repairs in

April" has been extraposed to the right (or the head "how many

36

planes" extraposed to the left, if you like). We would like to be

able to parse these two sub-strings as if they occurred together, as

is usually the case:

...planes which required no maintenance in April...

Using RESUME and RESUMETAG, one can "remember" where one stopped

parsing a noun phrase (e.g. in "How many planes") and, at some later

point in the input string, resume parsing the same noun phrase in the

same state and with the same register environment.

BE&UME1AQ .saves configuration

(RESUMETAG ' <state name>)

(RESUMETAG)

The RESUMETAG function returns a "tag" which encodes a state name and

a register environment. With this "tag", one can later resume

computation in this state with the same register environment. If the

<state name> argument is not given, the current state is used.

BESUMS resumes a suspended computation

(RESUME <tag> . f<register names>)

eg: (RESUME $nptag verb)

The RESUME function resumes the subcomputation which generated <tag>

(i.e. with a call to RESUMETAG) in the current position in the input

37

string. Optional arguments to RESUME specify registers whose

contents should be "sent" to the lower computation. The value

returned by RESUME is the value POPped by the lower level.

III.5.e £h£ HOLD/VIRTUAL facility

The HOLD action together with the VIR arc provide a natural mechanism

for handling constituents which are parsed "out of place" in a

sentence. The HOLD action allows one to place a parsed constituent

on the HOLD list. At some later time, the VIR arc can be used to

retrieve the held object and process it as if it were found at that

point in the input string.

An example may show the usefulness of this facility. English syntax

allows for the "fronting" of the "unknown element" in a question.

One would probably like a grammar to locate the place from which the

"unknown" element was fronted. One strategy, then, is to place the

"unknown" constituent on the HOLD list (via the HOLD action) and then

write the grammar such that it checks the HOLD list whenever it can't

find a constituent in the input string.

For example, consider the following sentences:

Who did John see?
Who did John sit next to?
Who did John believe that Harry saw?
Who does John think the FBI wanted to arrest?

38

These sentences can be handled by placing the constituent generated

by the "who" on the HOLD list indexed as a Noun Phrase. At each

point in the grammar where a NP is sought as either the subject of a

sentence, the object of a sentence, or the object of a preposition,

we include a VIR arc which examines the HOLD list for a held NP.

The HOLD action

(HOLD <form> <cat> <features>)

eg: (HOLD * 'np nil)

The HOLD action places the expression <form> on the HOLD list indexed

under the category <cat>. An optional third argument, <features> is

a list of features to be associated with the entry. In addition, the

level at which this action is being done is recorded with the entry.

This allows a VIR arc to select only those constituents held at a
particular level.

Xhg VIRtual arc

The VIR arc allows the grammar to retrieve an element from the HOLD

list. In retrieving the element, the user can specify:

1 The lexical category under which the element was held.

2 A limit on the number of levels above the current one at which
the element was held.

3 An arbitrary test which the element or its features must pass.

The syntax frame for the VIR arc is:

39

(VIR <head> <test> __ <actions> ... <destination>)

where <head> can have either of the following two forms:

<cat>
(<cat> <level>)

The first form will match any item on the HOLD list indexed under the

category <cat> regardless of the level at which it was held. In the

second form, <level> specifies the level(s) at which a candidate item

was held. This argument should be a number (0 or positive) which

limits the number of levels above the current one at which the item

was held. Thus:

(VIR (PP 0) ...)

will match items indexed as a PP which were held at the current level

only. Similarly,

(VIR (ADV 2) ...)

would find ADV's held at the current level or the next two higher

levels.

Once a candidate match has been found, the <test> argument is

evaluated in an environment where * is bound to the candidate

constituent and FEATURES is bound to the (optional) features list

associated with it. If <test> is non-NIL, then the VIR arc is taken

and the item is removed from the HOLD list.

III.6 Useful Actions

40

III.6.a Actions which test the current word

A number of functions are provided for testing the current word.

These are typically used as further conditions on an arc, for

example:

(PUSH pp (CAT prep) (TO s:end))

or as a condition in one of the actions in an arc:

(CAT det T (and (GETF question)(LIFTR type ' q)) ...)

WRD compares the current word

(WRD '<word(s)>)
eg: (WRD who)

(WRD (which that who))

The WRD function returns T if the current word (i.e. *) matches its

single argument. If this argument is an atom then the current word

must be identical to it. If it is a list of atoms, then the current

word must be a member of this list.

CAT checks the lexical category of the current word

(CAT ’<category>)
eg: (CAT pro)

(CAT (n pro npr))

The CAT function tests the current word to see if it can be a member

of the lexical category <category>. As with the WRD function, the

argument can be an atomic category name or a list of atomic category

names.

41

ROOT checks the root form of the current word

(ROOT '<root(s)>)
(ROOT ’<root(s)> ’<category>)
eg: (ROOT be)

(ROOT (be have))

The ROOT function compares the root form of the current word to its

argument. Again, the argument can be an atom or a list of atoms. It

returns T if and only if the current word has one of the specified

root forms. Thus the expression (ROOT be) would be true if the

current word were be, is, am, are, was,etc. Note that if the current

word is homomorphic between two words with different root forms, both

possibilities will be explored. Thus, if the current word were LIE,

both (ROOT lay) and (ROOT lie) would be true.

The ROOT function takes an optional second argument which can be used

to limit the lexical categories that are considered in determining

the root form of the current word.

GETF gets an inflectional fe.atucs
(GETF '<feature name>)
eg: (GETF tense)

GETF returns the value associated with the feature <feature name> for

the current word. If the current word has no such feature, then NIL

is returned. These features come from three sources:

1 Features on the dictionary entry for the current word.

For example, the tense and number features for the word IS are

coded as:

42

(IS (BE (tense present)(number 3sg))

2 Features generated by the Dictionary Manager

For regularly inflected words, certain features are

automatically generated.

3 The FEATURES property of the word

Each word can have a FEATURES property associated with it.

For example, the word GIVE might have the features property:

(TRANSITIVE INDIRECTOBJECT PASSIVE)

where these features might mean that GIVE is a transitive verb

which can take an indirect object and can be used in a passive

sentence.

In cases one and two above, a feature can be:

1 A tuple whose first element is the name of the feature and
whose second is the value.

2 A list of just the feature name. The value of this feature is
taken as T.

3 An atomic feature name. The value is assumed to be T.

Ill.6.b Actions which Test Arbitrary words

CHECKF checks an inflectional feature

(CHECKF ’<feature> <word> ’<cat>)

43

The CHECKF function is analogous to GETF, differing only in that it

applies to an arbitrary word given as its argument. CHECKF returns

the value of the feature <feature> associated with the word <word>.

An optional third argument, <cat>, determines the lexical category

assumed for the word. Thus:

(CHECKF transitive (GETR verb) ’v)

returns the value of the TRANSITIVE feature for the word in the VERB

register when it is interpreted as a verb. Similarly,

(CHECKF tns * ’v)

returns the TNS feature for the current input word when interpreted

as a verb.

III.6.C Miscellaneous Actions

The BUILDQ function provides a convenient method for constructing

arbitrary trees which contain values held in registers. It is

modeled after the function described in [Woods 71], its syntax being:

(BUILDQ '<structure> . '<fillers>)

The first argument, <structure>, is an arbitrary list structure which

can contain special symbols at its leaves. The function returns a

similar structure by replacing these symbols by values computed from

the remaining elements, <fillers>.

In filling the structure, BUILDQ traverses the structure in

"preorder". If the symbol "+" is encountered, then the next filler

44

argument is taken as the name of an ATN register and its contents are

substituted for the ,,+ H. If the symbol "*n is encountered, it is

replaced by the current value of the atom On encountering the

symbol the next filler argument is evaluated and the resulting

value used to replace the "#". If the symbol "6" is found as the

first element of a list, then the remaining elements of that list are

interpreted as above and the results are APPENDed together.

A few examples may make the operation of BUILDQ clear. Suppose we

have the following register context:

DET the
NOUN man
PRE-MODIFIERS (large heavy)
POST-MODIFIERS ((PP (in the park)))

Then if we evaluate:

(BUILDQ (NP # (N +) (DET +)) (gensym) noun det)

we would get:

(NP G0027 (N man) (DET the))

Evaluating the expression:

(BUILDQ (NP # (N +) (§ (MOD) + +))
(gensym) noun pre-modifiers post-modifiers)

would yield the expression:

(NP (N man)
(MOD large heavy (PP (in the park))))

(NEXTWRD)

45

The NEXTWRD function returns the "on deck" input word (i.e. the CAR

of STRING). If STRING is empty, it returns NIL.

III.7 Tracing Facilities

Every programming language should provide adequate debugging tools to

enable the user to perfect his programs. Since the ATN should be

viewed as a kind of programming language, we have provided powerful

tracing facilities which we have found to be useful and necessary to

build and debug large grammars.

Functions are provided which will print a trace of the developing

parse and allow the user to specify arbitrary points at which to

suspend computation and enter a "break point". A facility is also

provided by which the user can monitor the values being assigned to

particular registers.

TRACE-STATE traces UN. sfratea

The function TRACE-STATE allows the user to trace the flow of control

thru specified states and optionally break upon entering them. If a

state is being traced, the message:

in state <state name>
will be displayed on the TTY when the state is entered. If the state

fails, i.e. no arcs from the state lead to a final state, the

following message will be displayed:

46

failing from state <state name>

If the user associates a BREAKPOINT with a state, then the message:

;BKPT <state name>

will be typed on the TTY, computation suspended, and a LISP

breakpoint entered. Typing an "$P" will resume the ATM computation.

The syntax of the TRACE-STATE function is:

(TRACE-STATE '<arg1> ’<arg2> ... *<argn>)

where each argument specifies one or more states to be traced and

optionally associated with a breakpoint. The arguments are

interpreted as follows:

<state name> : trace the named state
* : trace all states
(<state name> BREAK <test>) : trace the state and enter

a breakpoint if <test> is true.
(* BREAK <test>) : trace all states and enter

a breakpoint if <test> is true.

UNTRACE untraces M R states

The function UNTRACE-STATE removes states from the set of ATN states

to be traced. Its syntax is:

(UNTRACE-STATE ’<arg1> ... ’<argn>)

where each argument specifies one or more states to be nuntracedn.

If an argument is the name of an ATN state being traced, then that

state is removed from the list. The argument * causes all states to

be removed from the list of states to be traced.

47

Registers .can be traced as well

We provide a similar feature whereby one can monitor the values

assigned to registers. The function TRACE-REG causes a specified ATN

register to be "traced”. Whenever a value is assigned to that

register with a SETR, the message:

setting register <register name> to <value>

will be typed on the TTY. Similar messages are displayed when a

register is set via the functions LIFTR or SENDR.

The syntax of the function TRACE-REG is similar to that of TRACE-

STATE, being:

(TRACE-REG '<arg1> ’<arg2> ... *<argn>)

An argument can be the name of a register, the special "wildcard" *,

or a three-tuple (<register name> BREAK <test>). The last case

allows one to trace the setting of a register and enter a BREAKPOINT

if the arbitrary lisp expression <test> is true.

The function UNTRACE-REG is used to remove specified registers from

the list of registers being traced. Its argument convention is

similar to that of UNTRACE-STATE.

III.8 Global variables

The following is a list of the most important global variables in the

interpreter.

48

The current constituent

The global variable * is always bound to the "current

constituent. Precisely what this is depends on the context.

Within a CAT arc, it is bound to the root form of the

current word. Within a PUSH arc it is bound to the

constituent POPped by the sub-computation (except in the

"preactions" where * is the current word). In a VIR arc, *

is bound to the element being removed from the HOLD list.

For the other arc types, it is bound to the current word

(i.e. LEX).

In several other contexts, * is temporarily bound to other

elements. For example, when evaluating the <test> in a VIR

arc or in a (GETR <register> NEAREST <test>), * is bound to

the candidate element.

LEX The current word

The atom LEX is always bound to the current word, exactly as

it appears in the input string. If the input string is

exhausted, then LEX is bound to NIL.

STRING The input string

The atom STRING is always bound to a list of the words

remaining in the input string.

STACK

49

STACK is a list of the names of states PUSHed to which have

not POPped. This can be used to determine how deeply

embedded the current computation is. For example, the

following POP arc will only be taken if we will be returning

to the top level and the input is exhausted:

(POP (buildnp)
(AND (NULL stack)(NULL *)(NULL string)))

The following additional global variables may be of some use to the

user:

ALIST An association list which encodes the contents of the

registers, both current and past. Elements of ALIST are

tuples whose CAR is the name of a register and whose CDR is

a value associated with that register.

STATE In the interpreter, STATE is bound to the current state that

the ATN is in.

ARC Bound, in the interpreter, to the current arc being

followed.

USE-ALL-WORDS? This variable controls the ability to POP to the

TOP-LEVEL when words remain in the input string. This is

permitted only when USE-ALL-WORDS? is bound to NIL.

ALIST-STACK A stack of the values of ALIST for higher levels of

computation.

50

ARC-STACK A stack of pending actions on any active PUSH arcs (i.e.

those which have not yet been popped to).

POPSTACK A stack of tags to the active PUSH arcs.

51

IV

The ATN Compiler

IV.1 Introduction

The purpose of the ATN Compiler is to translate ATN networks into

pure LISP code which can be executed directly. This code can

subsequently be translated into machine language code by a standard

LISP compiler. In fact, the ATN compiler has been written in such a

way as to facilitate the direct compilation of ATN networks into

machine language by the MacLISP compiler [Moon 74].

Advantages of compilation

The advantages of compiling an ATN network are the same as those of

any compilation process: reduced execution time and storage space.

We have applied our compiler on a modified version of the LUNAR

English grammar [Woods 72] and found that the execution time for the

resulting LISP code was decreased by about a factor of 2. The

resultant machine language code achieved a speed up factor of 5 to

10.
The compiler is able to preserve all of the features available under

the interpreter. A grammar writer need take no special steps or

52

considerations if he intends to compile his network. In other words,

if one has a system of ATN networks which behave correctly in the

interpreter, then compiling these networks without modifications will

result in compiled code which also behaves correctly

Special Features of the Compiler

A compiled ATN network is more efficient mainly because the

interpretation stage is by-passed. This compiler also achieves

greater efficiency thru four additional processes:

1 The resulting LISP code is locally "optimized" by a simple

pattern matching scheme.

2 Certain common actions and arc conditions are "open coded"

into more primitive LISP code.

3 The compiler automatically detects local contexts in which

certain ATN features are not being used (e.g. explicit failure

via the FAIL function). IN these contexts, code to handle

these features need not be generated.

4 The user is able to globally "turn off" a number of general

ATN features which he is not using. This causes the compiler

not to produce the code necessary to implement these features.

53

IV.1.a Compilation of a state

The basic organization of the ATN compiler is shown in figure 4. The

function C0MPILESTATE1 is applied to each state in the network. It

produces a LISP function which will simulate the action of the state

when called. In doing so, it applies the function COMPILEARC to each

arc in the state. The resulting code for each arc is combined with

additional code to produce the function.

The basic frame for an ATN state function is:

(DEFUN (<state name> ATNEXPR ATNSUBR) NIL
<tracing code>
(CATCH (PROGN <code for arc 1>

<code for arc 2>
. . .)

<state name>)
Cmore tracing code>
’FAIL)

The (CATCH ... <state name>) construct is included to implement the

ability to fail to a named state from a later point. The inclusion

of the tracing code and the (CATCH ... <state name>) expression is

under the control of the user thru switches described in a later

section.

Once this code has been produced, an optimization procedure is

applied to the function. The result is then evaluated if we are in

the LISP interpreter or passed to the MacLISP compiler if it is

resident.

54

compile-statel

Figure 4
Overview of the ATN Compiler

55

IV.1.b Compilation of an individual .arc

The function COMPILEARC is responsible for writing an expression for

an individual arc. Its job is to:

1 verify that the arc is in a legal format.

2 dispatch the arc to the appropriate specialist for
compilation.

Currently the verification is a simple check on the last action of an

arc. For arc types POP, TO, JUMP and DO this action should not

specify a destination (i.e. call TO or JUMP). For the rest of the

arc types, the terminal arc should be a destination. If this

condition is not met a warning message is displayed.

Each arc compiler specialist compiles one type of arc. It examines

the condition and actions and produces a LISP expression which

simulates that arc. The general form of the code for an arc is given

below:
(CATCH ((LAMBDA (ALIST) (AND <arc dependent code>

<test>
(PROGN . <actions>)))

ALIST)
ARCFAILURE)

The (CATCH ... ARCFAILURE) construction is necessary to handle a

possible (FAIL ’ARC) in the <actions> or the <test>. The ((LAMBDA

(ALIST)) ALIST) is required to isolate the possible side

effects caused by the arc.

56

Before adding these two fragments, the arc compiler checks to see if

they are really necessary. The <test> and <actions> are examined to

see if they might contain a call to a function with a side effect

(e.g. a call to SETR) or a call to the FAIL function. In examining

the expressions, the compiler must be aware of which expressions are

’'executable” and which are potentially "data".

The following conservative algorithm is used to determine whether

evaluating an s-expression will generate a side effect.

1 Trivial case
Atoms, of course, can't cause side-effects. Return NIL.

2 Known offenders
Some functions are known to cause side effects (e.g. SETR).
Return T.

3 Guilty until proven innocent
If the function is unknown (i.e. one which the user has written)
then assume it might generate a side effect. Return T.

4 Fexpers, etc.
If the function has no arguments or is known not to evaluate any
of its arguments, then return NIL.

5 Recurse
Recursively apply this procedure to those arguments which are
evaluated. If any generates a side-effect, then return T, else
return NIL. Here the compiler must know how a function
evaluates its arguments. For the standard built-in LISP
functions and the built-in ATN functions and actions this
information is stored for each function in an "evaluation
template".

An analogous procedure is used to determine if evaluating an

expression might generate a failure.

If the arc contains no expressions which might have a side effect

57

then the LAMBDA expression is omitted. If no FAIL action is found,

then the CATCH is omitted.

Another trick used by the compiler to increase efficiency is to delay

the CATCH (if any) and LAMBDA binding (if any) until the last

possible moment. Thus, the following WRD arc:

(WRD because (getr objMsetr conj *)(to s:conjoined))

is compiled as:

(AND (EQ * ’because)
(GETR obj)
((LAMBDA (ALIST) (SETR conj *)(T0 s:conjoined))
ALIST))

Note that the LAMBDA binding is done only if the arc is actually

taken and that no CATCH was generated since no FAIL action was

contained in the arc.

IV.1.c Optimization

The optimization phase of the compiler was originally added to make

the compiler easier to write and debug. The idea was to simplify the

code generation process for each of the arcs. In compiling an arc,

we needn’t produce efficient code, but merely straightforward code

which is guaranteed to work properly. Once the code has been

generated, a standard "optimizing” routine is applied to it to

simplify the expression.

The General Procedure

58

The basic procedure to optimize a LISP s-expression it to traverse

the expression (which is just a tree, after all) in "post order",

applying a simplification algorithm at each node. Thus the

expression is optimized "from the bottom up", i.e. the arguments to a

function are optimized before the function call itself is optimized.

We must take care, however, that the optimization procedure is only

applied to "executable" nodes and not to "data nodes". An

"executable" node is one which is known to be evaluated as a LISP

expression. All other nodes are assumed to be "data" nodes.

Thus, the optimizer does not attempt to optimize a function call

unless that function is:

1 known to be a EXPR, SUBR, LEXPR or LSUBR

2 known to be a FEXPR or FSUBR which evaluates all of its
arguments (e.g. AND, OR, etc.)

3 a special FEXPR or FSUBR that the optimizer "understands".

The functions covered above under point three are those which are

known to evaluate some of these arguments in a special manner. For

example, the optimizer knows that the function PROG evaluates all but

its first argument and that the arguments to the COND function are

lists of expressions to be optimized.

Simplification

Once the arguments to a function have been optimized, the function

call is simplified. This simplification is driven by a set of

59

production-like rules which specify code transformations. These

transformations simplify the code but do not change its behavior.

These rules are three-tuples which have the form:

(<pattern> <result> <restrictions>)

Each rule states that if a LISP expression matches <pattern> and

<restrictions> evaluates to non-NIL, then it can always be replaced

by the simpler s-expression <result>.

The <pattern> and <result> elements of a rule are general s-

expressions in which the characters * and ? have special

significance The atom t l 9 I f is allowed to match any single s-

expression. The atom "*" may match zero or more "sibling" s-

expressions. Any atom whose first character is <a "?" or a n * i i

behaves in a similar manner except that that atom is bound to the the

s-expression(s) matched.

As an example, consider the pattern:

(PROG ?A *B (RETURN *))

when matched against the following expression:

(PROG (A B C)
(SETQ A (TIMES X X))
(SETQ B (TIMES X A))
(RETURN (LIST AB)))

The match succeeds and has the side effects of setting the variables

?A and *B to (A B C) and ((SETQ A (TIMES X X))(SETQ B (TIMES X A))),

respectively.

(AND) NIL

60

(AND *A T *B) (AND *A *B) (OR *A *B)
(AND ?A) ?A
(AND *A (AND *B) *C) (AND *A *B *C)

(APPEND *A (LIST *B)(LIST #C) *D) (APPEND *A (LIST *B *C) *D)

(CAR (CAR ?A)) (CAAR ?A)
•••6tC•••

(COND) NIL
(COND *A (NIL *) *B) (COND *A *B))
(COND *A (T *B) *C) (COND *A (T *B)) *C
(COND (?A ?B)) (AND ?A ?B)
(COND (T *A)) (PROGN *A)
(COND (?A)) ?A
(COND *E (?A *B (PROGN *C) *D) *F)(COND *E (?A *B *C *D) *F)))

(CONS ?A NIL) (NOONS ?A)

(DEFUN ?A ?B *C (PROGN *D) *E) (DEFUN ?A ?B *C *D *E)
(DEFUN ?A ?B *C NIL *D) (DEFUN ?A ?B *C *D)

(DO ?A ?B *C (PROGN *D) *E) (DO ?A ?B *C *D *E)

(EQ ?A NIL) (NULL ?A)

(EQUAL '?A ?B) (EQ ’?A ?B) (ATOM ?A)
(EQUAL ?A ’?B) (EQ ?A '?B) (ATOM ?B)

(LAMBDA ?A *B (PROGN *C) *D) (LAMBDA ?A #B *C *D)

(LIST ?A) (NOONS ?A)

(PROG ?A *B (PROGN *C) *D) (PROG ?A *B *C *D)

(PROGN ?A) ?A
(PROGN *A (PROGN *B) *C) (PROGN *A *B *C)

(OR) NIL
(OR ?A) ?A
(OR *A T #) (OR *A)
(OR *A NIL *B) (OR *A *B)

Figure 5

Simplification Rules

61

Figure 5 gives a list of some of the simplification rules used in the

ATN compiler.

Application of the simplification rules

The simplification rules are applied according to the following

algorithm:

1 Collect the rules which may apply.
The rules are indexed by function name (i.e. the CAR of the
expression).

2 Find a rule which matches the expression.
The matcher compares the <pattern> and <restriction> of each
rule against the data until a match is found.

3 If no matching rule was found, then stop else continue.

4 Replace the expression.
Replace the expression with the instantiation of the <result>
element of the rule found in step 2.

5 Continue with step 1.
Since the function being called may have changed, we must start
from the top.

Figure 6 shows an example of the simplification process.

IV.2 Using the ATN Compiler

The ATN compiler can easily be used to produce executable LISP code

in the LISP interpreter or to produce machine language code in

conjunction with the standard MacLISP compiler. In either case, the

user can selectively disable unused features to achieve faster

execution time. This is discussed in section IV.3.c.

(PROGN (AND T (COND ((> X 10.)(SETQ X 10.))))
T
i

!__(cond (?a ?b)) ==> (and ?a ?b)

(PROGN (AND T (AND (> X 10.)(SETQ X 10.))))
T
I

!__(and *a (and *b) *c) ==> (and * a *b *c)

(PROGN (AND T (> X 10.)(SETQ X 10.)))|
j__(and *a t *b) ==> (and *a *b)

(PROGN (AND (> X 10.)(SETQ X 10.)))
1* i
!__(progn ?a) ==> ?a

(AND (> X 10.)(SETQ X 10.))

Figure 6

An Example of Simplification

63

IV.2.a Compiling networks into LISP Code

This section describes how one can compile networks into LISP code

given he has a LISP into which the ATN interpreter has been loaded

and the networks defined. The ATN compiler can be loaded by

evaluating the expression:

(FASLOAD ATNCOMPILER FAS COM)

The user can then set whatever switches he wants (using SETQ). A

single ATN state can be compiled with the function COMPILESTATE.

This function takes one (unevaluated) argument, the name of the ATN

state to be compiled. The function defines an equivalent function

which will be called whenever control is transferred to that ATN

state.

The function COMPILEATN can be used to compile an entire ATN network.

Its single (unevaluated) argument should be the name of the ATN

network to be compiled. It simply applies COMPILESTATE to each of

the states found in the network.

IV.2.b Compilation in the compiler

To compile a file of ATN networks with the standard MacLISP compiler

one need only ensure that the ATN compiler is loaded into the MacLISP

compiler. The easiest way to do this is to include the following

expression at the top of the file:

64

(DECLARE (FASLOAD ATNCOMPILER FAS COM))

This will cause the ATN compiler to be automatically loaded when the

file is compiled.

Switches may be set in a similar manner. For example, one might

include the expression:

(DECLARE (FASLOAD ATNCOMPILER FAS COM)
(SETQ ATNTRACE? NIL) ;no tracing
(SETQ FAILARC? NIL)) ;no (FAIL ’ARC) actions

in the file containing the networks.

Interactions with NCQMPLg

If the ATN networks call any user defined functions they may have to

be declared to NCOMPLR. Auxiliary functions must be declared if they

are FEXPRs, FSUBRs, LEXPRs LSUBRs, or MACROS. For an explanation of

how to do this, consult [MOON 74].

IV.2.c Switches

The following switches control the generation of code by the ATN

compiler. For each switch the default value is given after its name.

[1] ATNTRACE? T

If ATNTRACE? is T then code which allows states to be traced

(i.e. via TRACE-STATE) will be generated. A NIL value supresses

65

the generation of this code. Thus, this switch might be set to

NIL if the network is fully debugged or a production module is
desired.

[2] ATNFAILARC? T

If ATNFAILARC? is T then code will be generated which allows one

to use the (FAIL ’ARC) action. If NIL, then this code is not
generated.

[3] ATNFAILSTATE? T

Code which allows one to fail to a named state is generated if

this switch is T. If NIL, then the code is not generated.

Recall that one can fail to a named state with the FAIL arc or
the FAIL action.

[4] ATNFAILPUSH? T

If T, then code will be generated which allows one to fail from a

sub-computation (i.e. to the last PUSH arc or PUSHATN action).

If NIL, then the code will not be generated

[5] ATNFAIL? T

This switch has no effect if it has the value T, but a NIL value

disables all explicit failure. Thus if ATNFAIL? is NIL, this

implies that ATNFAILARC = ATNFAILSTATE = ATNFAILPUSH = NIL.

[6] ATNSIMPLECAT? NIL

This switch controls the code generated for a CAT arc and the CAT

66

action. If it is T, then it is assumed that each word will have

at most one entry for a particular lexical category in the

dictionary. If this is so, the compiler need not set up a

decision point for each CAT arc or action.

67

V

The Lexicon

V.1 Introduction

The lexicon consists of two parts: the DICTIONARY which contains

words and certain features associated with them and the DICTIONARY

MANAGER which is a package of procedures for accessing, maintaining,

and updating the dictionary.

A dictionary entry for a word typically consists of the syntactic

category that the word belongs to and a list of syntactic features

for the word when interpreted under that category. It is a fact of

English, as in most other languages, that many words allow multiple

senses for a single word. In these cases, multiple entries can be

made in the Dictionary. For example the word CRASH might have the

following entries:

CRASH N -es
CRASH V -es-ed (intransitive)

This says that crash can be interpreted as a noun (N) whose plural is

formed be adding the suffix "es" or as an intransitive verb (V) whose

inflectional forms can be generated by adding the suffixes "es" or

"ed".

68

Initially, no entries need exist for the regularly inflected forms of

words. Such forms are discovered and entries for them generated as

they are needed. For example, if the input contains the word

CRASHED, a set of programs (Morphology Specialists) are invoked which

discover that CRASHED is the past tense form of the root word CRASH.

These programs insert the lexical entry:

CRASHED V (CRASH) (tense past)(intransitive)

The words CRASHES and CRASHING are similarly recognized and their

lexical entries generated.

V.2 The Dictionary Format

The dictionary entry for a word is stored on the LISP property list

for that atom (i.e. the word). The standard property names which

might be used are atoms representing lexical categories (e.g. N for

noun, DET for determiner, etc), and three special atoms: COMPOUNDS,

SUBSTITUTE, and FEATURES.

For each lexical category, <C>, a word might have a property indexed

under the indicator <C>. The value of this property depends on the

particular category and the relationship between the word and its

root form. These are discussed in the next section.

The value of the COMPOUNDS property for a word is a tree which

69

represents pre-defined compound phrases which that word may start.

Associated with each phrase in the tree is a word which that phrase

should be mapped into. The user need not concern himself with the

exact representation of this tree as the functions DEFPHRASE and DEFP

(described later) can be used to create it.

The value of the SUBSTITUTE property for a word is a list of phrases

which should replace that word. Thus it forms a kind of inverse to

the COMPOUNDS mechanism. This property is discussed further under

the functions DEFSUBSTITUTE and DEFSUB.

The value of the FEATURES property is a list of atoms or sublists

which name "features" to be associated with the word. These features

may be accessed in several ways within the ATN interpreter (see, for

example, the functions GETF and CHECKF).

The value of a lexical category property for a word specifies the

root form(s) of the word and a set of inflectional features to be

associated with the word. The exact encoding of this information is

as follows:
1 If the value is a list whose first element is atomic, then the
first element is the root form of the word and the remaining
elements are the inflectional features. For example:

BLEW V (blow (tns past))

says that the word BLEW is the past tense of the verb BLOW.

2 If the value is a list whose first element is a sub-list, then
the word has two possible root forms when interpreted under this
lexical category. Each sub-list should be of the form discussed
in point one above. AN example is:

70

SAW V ((see (tns past))
(saw (tns present)(untensed))))

This property states that the word SAW is either the past tense
form of the verb SEE or the presentuntensed form of the verb SAW
(what we do to a board).

3 If the value is atomic, then the word itself is taken as the
root form and the inflectional features are supplied by the
dictionary manager. Exactly what features are supplied is
described in the next section. Some examples are:

COOK V s-ed
N -s

FAST ADJ er-est
V s-ed
N -s

The meaning of atomic category values

The lexical categories N (noun), V (verb), ADJ (adjective), and ADV

(adverb) are treated in a special manner by the dictionary manager.

An atomic value for one of these properties can specify that the word

fits one of a number of regularly inflected paradigms.

For nouns, the following possibilities exist:

* the noun is irregular.

-s the plural is formed by adding an "s".

-es the plural is formed by adding an "es" or, if the noun ends
in a "y", by deleting the "y" and adding an "ies".

For verbs, we have the following:

* The verb is irregular.

s-ed The third person singular is formed by adding an "s" and
the pastpast-participle is formed by adding an "ed".

71

es-ed The third person singular is formed by adding an "es" and
the pastpast-participle is formed by adding an "ed".

For adjectives (ADJ) and adverbs (ADV) we have the following

possibilities:

* The word has no regularly inflected comparative or
superlative (e.g. UNSUCCESSFUL).

ER-EST The comparative and superlative are formed by adding an ER
and EST, respectively (e.g. LONG). If the word ends in a
Y, then it is first changed to an I (e.g. HAPPY).

R-ST Add an R or ST to form the comparative and superlative
(e.g. WIDE).

V.3 lbs Dictionary Manager

The Dictionary Manager

The Dictionary Manager is a collection of programs which access,

maintain, and update the Dictionary. They also act as a filter

between the Parser and the user’s input suggesting alternative words

as the 'next word'. As each word of the input is needed by the

parser, the Dictionary Manager checks to see if there is an entry in

the Dictionary for that word or if the word belongs to certain

categories which are recognized procedurally, such as numbers. If an

entry exists, then the word is passed on to the parser with a list of

features associated with the word. These features are those found in

the dictionary together with any others suggested by the Morphology

Specialists.

72

If the word does not have a lexical entry, then a series of

Morphology Specialists are invoked to see if the word is a regularly

inflected form of a known word. These specialists use their

knowledge of typical English affixes to propose candidate 'roots’ for

the word. Each candidate is then looked up in the Dictionary and, if

found, checked to see if it accepts the affix removed.

If this process fails then the Punctuation Checker is called which

examines the word to see if it might contain any embedded

punctuation. For example, if the input is TAIL-NUMBER, the

Punctuation Checker would suggest that the two words TAIL and NUMBER

be substituted.

Finally, if the word is still unknown, control is passed to the New

Word Learner. This module interacts with the user and attempts to

create a lexical entry for the word.

Two other subsystems generate alternative suggestions for the 'next

word': a Compound Word Recognizer and a Word Substituter. The

Compound Word Recognizer is used to map short phrases into single

"words". For example, we might map the phrases UNITED STATES and

UNITED STATES OF AMERICA into the single "word" USA. Just before a

new word is passed to the parser, the Compound Word Recognizer checks

to see if that word can begin a phrase that it knows. If so, then it

checks the rest of the sentence, and if it matches, suggests the

alternative 'next word'.

73

The Word Substituter provides a similar mechanism - one which can

expand a single word in the input into a sequence words. For

example, the word DIDN’T could be expanded into the sequence DID NOT.

The sequence of words substituted can be of zero length, which

provides a facility for ignoring words. This facility might be used,

for example, to ignore extraneous punctuation.

V.4 Auxiliary Functions

Several functions are provided which simplify creating dictionary

entries and loading and manipulating dictionary files.

V.4.a Creating Dictionary Entries

DEFINEWORD and DEFW create dictionary entries for a word

(DEFINEWORD <word> <definition>)

(DEFW '<word> . '<definition>)

These functions are used to create a dictionary entry for the word

<word> or to add information to the dictionary entry for <word> if an

entry is already in the dictionary.

The function DEFINEWORD takes two arguments: a word and a "property

list fragment". It adds the property list fragment to the property

list of the word.

74

The function DEFW takes an indefinite number of arguments, none of

which are evaluated. The first is the word and the remaining ones

are alternating property names and values. The name-value pairs are

added the the word's property list.

Examples of these functions in use are:

(DEFINEWORD 'fly '(v * n -es features (intrans trans)))
(DEFINEWORD 'i ’(pro *))
(DEFW ship n -s v -s-ed features (trans passive))
(DEFW ? punct *)

DEFINEPHRASE and DEEP Create Compounds properties

(DEFINEPHRASE <phrase> <word>)

(DEFP '<phrase> '<word>)

These functions create COMPOUNDS entries for a word. A COMPOUNDS

entry will cause the ATN interpreter to map a sequence of words in

the input string into a single word. These functions will cause the

input sequence <phrase> (which should be a list of atoms) to be

replaced by the single word <word>.

For example:

(DEFP (how much) howmuch)

would create or modify the COMPOUNDS entry for the word HOW such that

if the ATN interpreter encounters the two word sequence "HOW MUCH" in

the input string, it will replace these two words with the single

75

word HOWMUCH. Note that if subsequent parsing fails, the interpreter

will also try parsing the string as containing the two individual

words HOW and MUCH.

Several COMPOUNDS entries can be created at once by including sub­

lists in the first argument. For example, (DEFP (how (much many))

howmuch) is the equivalent to:

(DEFP (how much) howmuch)
(DEFP (how many) howmuch)

Thus, a sublist in the <phrase> argument specifies that one of its

elements be in the compound phrase.

DEFSUBSTITUTE and DEFSUB create SUBSTITUTE entries

(DEFSUBSTITUTE <word> <phrase>)

(DEFSUB '<word> ’<phrase>)

These functions create or modify SUBSTITUTE properties for a word.

The first argument is an atom and the second argument is an atom or

list of atoms which should be substituted for the first whenever it

occurs in the input string. The following example will explain the

various possibilities:

(DEFSUB aircraft plane)
If the second argument is an atom (but not the atom NIL),
then it will replace the first argument in the input
string. Thus, PLANE will replace instances of the word
AIRCRAFT in the input string.

(DEFSUB don’t (do not))
If the second argument is a list of atoms, then that list

76

will replace the first argument in the input string. Thus,
occurances of the word DON'T will be replaced by the two
words DO and NOT.

(DEFSUB please NIL)
If the second argument is NIL, than the first argument will
be deleted from the input string. Thus instances of the
word PLEASE will be deleted from the input string. This
provides a simple method for ignoring certain words (such
as "extraneous" punctuation).

As with the COMPOUNDS mechanism, if a substitution is made and

failure later backs up to that point, the ATN interpreter will

attempt to continue the parse without making the substitution.

V.4.b Dictionary Files

If one is dealing with a large number of words it is convenient to

store them in a file in a special simplified format. Two functions

are provided to manipulate such dictionary files.

The format of a dictionary file is a sequence of lists. The first

element of each list is an atom or a list. If it is an atom, then

the list is taken as the argument list to the function DEFW. In

other words, the first element is a word and the remaining elements

are alternating property-names and associated values. If the first

element is a sub-list, then the entire list is used to supply

arguments to the function DEFP. In this case, the first element is a

phrase and the remaining element (there should be only one) is the

77

word that the phrase gets mapped into. The following might be the

beginning of such a dictionary file:

(a det *)
(about prep *)
(an det *)
((and or) and-or)
(and-or conj *)
(ask v s-ed features (trans indobj thatcomp tocomp))

LOADDIC loads a Dictionary File

(LOADDIC . f<file specifications)*)

eg: (LOADDIC navy die dsk (1000 130))

The function LOADDIC is used to read a dictionary file and create the

specified entries. Its syntax is similar to that for the MacLISP 10

functions ("old 10" functions, that is). It takes from one to four

arguments where the first is the file name, the second the file

extension, the third the device and the fourth is the PPN.

Unsupplied arguments are defaulted as follows:

arg 1 : <file name>
arg 2 : <file extension>
arg 3 : <device>
arg 4 : <ppn>

must be supplied
defaults to DIC
defaults to current device
defaults to the current ppn

■GBIND.DIC reformat? a .dictionary file

(GRINDDIC . '<file specifications>)

eg: (GRINDDIC navy die)

78

This function sorts and grinds (i.e. pretty-prints) a dictionary

file. The sorting function sorts each top level list in the file by

the "leftmost" atom in the list only. The argument syntax and

meaning is identical to the function LOADDIC. The function GRINDDIC

is useful in maintaining growing dictionaries in an easily readable

format.

Miscellaneous dictionary managing functions are provided

Currently, one other auxiliary function is supplied for managing a

dictionary. The function SHOWWORD "pretty-prints" the dictionary

entry for a word. It's syntax is:

(SHOWWORD ’<word>)

79

VI

Auxiliary Functions

VI.1 Interfacing with the LISP Editor

The functions EDITATN and EDITSTATE allow one to apply the LISP

Editor [Gabriel 75] to ATN networks and individual states. These

functions do not normally reside in the ATN system but are

automatically loaded if they are called. In addition, this subsystem

modifies appropriate Editor variables so that the editor can

recognize ATN network definitions in files. Thus, one can say (EDIT

<network name> <file specifications)*) and expect the editor to find

the network definition in the specified file. This also allows one

to use the REFILE editor command to update the file once the networks

have been edited.

EDITATN applies the Editor _£o an ATN network

This function sets up an ATN network for editing and then invokes the

LISP Editor. It takes one or no arguments, the syntax being:

(EDITATN <network name>)
(EDITATN <state name>)
(EDITATN *)
(EDITATN)

80

If EDITATN is called with the name of a network, then that network is

set up for editing. If called with the name of an individual state,

then the editor is invoked on the network which includes that state.

If called with the argument *, then the network which includes the

current state is edited. If no argument is given, then the network

which was last edited is set up for re-editing.

EDITSTATE invokes the editor on _an individual ATN state

The function EDITSTATE is similar to EDITATN except that it applies

the editor to an individual ATN state. If an argument is given, it

can be the name of the state to be edited or the special atom * which

refers to the state that the interpreter is currently in. If no

argument is given, the editor is primed with the last edited ATN

state. The syntax is:

(EDITSTATE ’<state name>)
(EDITSTATE *)
(EDITSTATE)

VI.2 Displaying ATN networks and states

SflQMAXM. displays an U N network

The function SHOWATN is used to display an entire ATN network in

"pretty print" format. The optional argument is interpreted in a

manner identical to that for the function EDITATN. The options are:

(SHOWATN f<network name>)
(SHOWATN '<state name>)
(SHOWATN *)

81

(SHOWATN)

SHOWSTATE displays an individual ATN state

The SHOWSTATE function "pretty prints" an individual ATN state. Its

optional argument is interpreted like that of EDITSTATE. The syntax

is:

(SHOWSTATE ’<state name>)
(SHOWSTATE *)
(SHOWSTATE)

APPENDICE?

83

APPENDIX A

A Sample ATN Network

The following three ATN networks comprise a simple grammar to a small

subset of English. Note that most features of English syntax are not

handled. Two auxiliary functions, BUILDSENTENCE and BUILDNP, are

used to construct the parse trees.

(defatn sentence
((s: (cat aux t (setr v #) (to s:aux))

(push np: t (setr subj *) (to srsubj))
(vir np t (setr subj *) (to srsubj)))

(sraux (push np: t (setr subj *) (to s:v)))
(srsubj (cat v t (setr v *) (to srv)))
(srv (cat v

(getf pastpart)
(cond ((eq $v ’be)

(hold $subj 'np nil)
(setr subj ’someone))

((eq $v ’have)
(setr aspect ’perfect))

(t (fail ’arc)))
(setr v *)
(to srv))

(push npr (getf transative $v) (setr obj *) (to srobj))
(vir np (getf transative $v) (setr obj #) (to srobj))
(and (wrd to (getf strans $v))

(push srsubj
t
(sendr subj $obj)
(setr obj *)
(to srend)))

(and (wrd that (getf strans $v))
(push sr t (setr obj *) (to srend)))

(jump srend (getf intrans $v)))
(srobj (push np:

(getf indobj $v)
(setr indobj $obj)
(setr obj *)
(to srend))

(vir np

84

(getf indobj $v)
(setr indobj $obj)
(setr obj *)
(to s:end))

(and (wrd to)
(push s:subj

t
(sendr subj $obj)
(setr obj *)
(to s:end)))

(jump s:end))
(s:end (push pp: (cat prep) (addr pps *))

(pop (buildsentence)))))

(defatn noun-phrase
((np: (cat det t (setr det *) (to nprdet)) (jump np:det))
(nprdet (cat adj t (addr adj *) (to nprdet))

(cat n t (addr adj *) (to np:det))
(cat n t (setr n *) (to np:n)))

(np:n (push pp: (cat prep) (addr modifiers *) (to np:n))
(and (wrd (which who that whom)

t
(hold (buildnp) ’np nil))

(push s: t (addr modifiers *) (to nprend)))
(jump nprend))

(nprend (pop (buildnp)))))

(defatn prep-phrase
((ppr (cat prep t (setr prep *) (to pprprep)))
(pprprep (push npr t (setr np *) (to pprend))

(vir np t (setr np #) (to pprend)))
(pprend (pop (buildq (pp + +) prep np)))))

(defun buildsentence nil
(buildq (s (verb +) (subj +) (obj +) (indobj +) (pps +))

v
subj
obj
indobj
pps))

(defun buildnp nil
(buildq (np (n +) (det +) (§ (adj) +) (§ (modifiers) +))

n
det
adj
modifiers))

86

APPENDIX B

A Sample Dictionary

This example shows a small dictionary which was used with the example

network to parse the sentences in this appendix. Only the lexical

features used by the simple grammar are included for these words.

(a det *)
(aircraft substitute ((plane)))
(by prep *)
(electrical adj *)
(engine n -s)
(extensive adj *)
(for prep *)
(good adj #)
(has v (have (tns present)))
(have v irr features (transative))
(I n *)
(in prep *)
(list n -s v s-ed features (transative))
(maintenance n -s)
(me n (i))
(of prep *)
(plane n -s)
(poor adj er-est)
(record n -s)
(repair n -s v s-ed features (transative))
(require v s-d features (transative))
(see v irr features (transative intransative))
(show v s-ed features (transative indobj))
(that det *)
(the det *)
(to prep *)
(very adj *)
(want v s-ed n -s features (transative indobj strans))
(were v (be (tns past)))
(which det *)
(which det *)
(you n *)
(? substitute (nil))
(. substitute (nil))

87

APPENDIX C

Examples of Operation

Given below are the results of applying the example ATN network to

six sentences. For each, the sentence is given exactly as it was

typed, preceded by a n>>". Following that, the list POPed by the ATN

network is given.

>> which planes required engine maintenance?

(S (VERB REQUIRE)
(SUBJ (NP (N PLANE) (DET WHICH) (ADJ) (MODIFIERS)))
(OBJ (NP (N MAINTENANCE) (DET NIL) (ADJ ENGINE) (MODIFIERS)))
(INDOBJ NIL)
(PPS NIL))

>> electrical repairs were required.

(S (VERB REQUIRE)
(SUBJ SOMEONE)
(OBJ (NP (N REPAIR) (DET NIL) (ADJ ELECTRICAL) (MODIFIERS)))
(INDOBJ NIL)
(PPS NIL))

>> I want a list of those planes

(S (VERB WANT)
(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ (NP (N PLANE) (DET THOSE) (ADJ) (MODIFIERS)))
(INDOBJ (NP (N YOU)

(DET NIL)
(ADJ)
(MODIFIERS (PP TO

(NP (N LIST)
(DET NIL)
(ADJ)
(MODIFIERS))))))

(PPS NIL))

>> I want you to list those planes.

88

(S (VERB WANT)
(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ (S (VERB LIST)

(SUBJ (NP (N YOU) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ (NP (N PLANE) (DET THOSE) (ADJ) (MODIFIERS)))
(INDOBJ NIL)
(PPS NIL)))

(INDOBJ NIL)
(PPS NIL))

>> I want to see a list of the planes that required
extensive engine repairs.

(S
(VERB WANT)
(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ
(S (VERB SEE)

(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ (NP (N LIST)

(DET A)
(ADJ)
(MODIFIERS (PP OF

(NP (N PLANE)
(DET THE)
(ADJ)
(MODIFIERS (S (VERB REQUIRE)

(SUBJ (NP (N PLANE)
(DET THE)
(ADJ)

(MODIFIERS)))
(OBJ (NP (N REPAIR)

(DET NIL)
(ADJ
EXTENSIVE
ENGINE)

(MODIFIERS)))
(INDOBJ NIL)
(PPS NIL))))))))

(INDOBJ NIL)
(PPS NIL)))

(INDOBJ NIL)
(PPS NIL))

>> I want you to show me the planes which have poor
maintenance records.

(S (VERB WANT)
(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))

89

(OBJ (S (VERB SHOW)
(SUBJ (NP (N YOU) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ (NP (N PLANE)

(DET THE)
(ADJ)
(MODIFIERS (S (VERB HAVE)

(SUBJ (NP (N PLANE)
(DET THE)
(ADJ)
(MODIFIERS)))

(OBJ (NP (N RECORD)
(DET NIL)
(ADJ POOR MAINTENANCE)
(MODIFIERS)))

(INDOBJ NIL)
(PPS NIL)))))

(INDOBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))
(PPS NIL)))

(INDOBJ NIL)
(PPS NIL))

90

APPENDIX D

Examples of tracing States

The following example shows a trace of the action of the ATN network

in parsing a sentence. This trace was generated by evaluating

(TRACE-STATES *). Again, the input string is preceded by ">>" and

the final value POPed by the network is displayed at the end. Values

POPed by final states have been abbreviated.

>> Which aircraft have very poor maintenance records?

in state S:
pushing to state NP:

in state NP:
in state NP:DET
in state NP:DET
failing from state NP:DET
in state NP:N
jump to state NP:END
in state NP:END
pop from state NP: with value (NP (N PLANE) ...)

jump to state S:SUBJ
in state S:SUBJ
in state S:V
pushing to state NP:

in state NP:
jump to state NP:DET
in state NP:DET
in state NP:DET
in state NP:DET
in state NP:DET
in state NP:DET
failing from state NP:DET
in state NP:DET
failing from state NP:DET
in state NP:N
jump to state NP:END
in state NP:END
pop from state NP: with value (NP (N RECORD) __)

jump to state S:0BJ

in state S:OBJ
jump to state S:END
in state S:END
pop from state TOPLEVEL with value (S (VERB HAVE) ...

(S (VERB HAVE)
(SUBJ (NP (N PLANE) (DET WHICH) (ADJ) (MODIFIERS)))
(OBJ (NP (N RECORD)

(DET NIL)
(ADJ VERY POOR MAINTENANCE)
(MODIFIERS)))

(INDOBJ NIL)
(PPS NIL))

92

APPENDIX E

Examples of Tracing Registers

This example shows a trace of the values assigned to ATN registers as

well. This was achieved by evaluating (TRACE-STATES *) and (TRACE-

REG *).

>> I want you to list those planes

in state S:
pushing to state NP:

in state NP:
jump to state NP:DET
in state NP:DET
setting register ADJ to (I)
in state NP:DET
failing from state NP:DET
setting register N to I
in state NP:N
jump to state NP:END
in state NP:END
pop from state NP: with value (NP (N I) ...)

setting register SUBJ to (NP (N I) ...)
jump to state S:SUBJ
in state S:SUBJ
setting register V to WANT
in state S:V
pushing to state NP:

in state NP:
jump to state NP:DET
in state NP:DET
setting register ADJ to (YOU)
in state NP:DET
failing from state NP:DET
setting register N to YOU
in state NP:N
jump to state NP:END
in state NP:END
pop from state NP: with value (NP (N YOU) ...)

setting register OBJ to (NP (N YOU) ...)
jump to state S:OBJ
in state S:OBJ

93

pushing to state NP:
in state NP:
jump to state NP:DET
in state NP:DET
failing from state NP:DET
failing from state NP:

sending register SUBJ to (NP (N YOU) ...)
pushing to state S:SUBJ

in state S:SUBJ
setting register V to LIST
in state S:V
pushing to state NP:

in state NP:
setting register DET to THOSE
in state NP:DET
setting register ADJ to (PLANE)
in state NP:DET
failing from state NP:DET
in state NP:DET
failing from state NP:DET
in state NP:DET
failing from state NP:DET
setting register N to PLANE
in state NP:N
jump to state NP:END
in state NP:END
pop from state NP: with value (NP (N PLANE) ...)

setting register OBJ to (NP (N PLANE) (DET THOSE) ...)
jump to state S:0BJ
in state S:OBJ
jump to state S:END
in state S:END
pop from state S:SUBJ with value (S (VERB LIST) ...)

setting register OBJ to (S (VERB LIST) ...)
jump to state S:END
in state S:END
pop from state TOPLEVEL with value (S (VERB WANT) ...)

(S (VERB WANT)
(SUBJ (NP (N I) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ (S (VERB LIST)

(SUBJ (NP (N YOU) (DET NIL) (ADJ) (MODIFIERS)))
(OBJ (NP (N PLANE) (DET THOSE) (ADJ) (MODIFIERS)))
(INDOBJ NIL)
(PPS NIL)))

(INDOBJ NIL)
(PPS NIL))

INDEX

94

* 18, 19, 20, 39, 48

0INITIALSTATE 15

AGAIN 15, 16
ALIST 49
ALIST-STACK 49
AND arc 25
ARC 49
ARC-STACK 50
ATNFAIL? 65
ATNFAILARC? 65
ATNFAILPUSH? 65
ATNFAILSTATE? 65
ATNSIMPLECAT? 65
ATNTRACE? 64

BREAKPOINT 46
BUILDQ 43

CAT action 66
CAT arc 18, 65
CAT function 40
CHECKF 43, 69
COMPILEATN 63
COMPILESTATE 63
COMPOUNDS 74
COMPOUNDS property 68

DEFARC 27
DEFATN 26
default-arc 26
default-register 26
DEFINEWORD 73
DEFINTERUPT 28
DEFSTATE 27
DEFSUB 75
DEFSUBSTITUTE 75
DEFW 73, 74
degenerate arcs 27
dictionary entry 68
DO arc 24
dollar sign 32
DOLLARMACRO 32

EDITATN 79
EDITSTATE 79, 80

95

FAIL action 65
FAIL arc 22, 65
FAIL function 35
FEATURES 24, 39
FEATURES property 69

GETF 41, 69
GETR 31

HOLD action 38
HOLD list 21, 23, 37, 38, 39

initial state 15

JUMP arc 22
JUMP function 34

LEX 48
lexical categories 68
LIFTLIST 31
LIFTR 30
LISP Editor 79

MacLISP compiler 51

NEXTWRD 45
NULLR 32

PARSE 14
PARSE1 14
PHRASE arc 19
POP arc 20
POP! arc 21
POPATN 35
POPSTACK 50
post-actions 20
preactions 20
Punctuation 72
PUSH arc 20
PUSHATN 34

READTEXT 14, 16
register 29
RESUME 36
RESUMETAG 36
ROOT arc 18
ROOT function 41

SENDLIST 30
SENDR 30

96

SETR 29
SHOWATN 80
SHOWSTATE 81
STACK 48, 49
STATE 49
STRING 48
sub-computation 20
SUBSTITUTE properties 75
SUBSTITUTE property 69
syntax frame 5

TO arc 22
TO function 33
TRACE-REG 47
TRACE-STATE 45
tracing facilities 45
TST arc 24

UNTRACE-REG 47
UNTRACE-STATE 46
USE-ALL-WORDS? 21 , 49

VIR arc 38
virtual arc 23

WRD arc 17
WRD function 40

97

REFERENCES

[Burton 76] Burton,R. and Brown,J.; "Multiple Representation of
knowledge for World Reasoning" in Representation and
Understanding, Bobrow and Collins (eds.); Academic Press,
1975

[Gabriel 75]Gabriel, R.P. and Finin, T.W.; "The LISP Editor"; Working

[Kay 75]

Paper 1, Advanced Automation Group, Coordinated Science
Lab, University of Illinois; February 1975.

Kay, M."Syntactic Processing and Functional Sentence
Perspective"; Proceedings of the Conference on
theoretical Issues in Natural Language Processing : June
1975.

[Lozano 76] Lozano-Perez,T.; "Parsing Intensity Profiles"; M.I.T. AI

[Moon 74]

Memo 329; May 1975.

Moon, D.A.; "MacLISP Reference Manual"; Project MAC,
M.I.T.; April 1974.

[Simmons 73]Simmons, R.F.; "Semantic Networks: Their Computation and

[Waltz 75]

Use for Understanding English Sentences" in Computer
Models of Thought and Language, R.C. Shank and K . M . C o lhy
(Eds.); Freeman and Co; 1973.

Waltz, D.L.; "Natural Language Access to a Large Data
Base: an Engineering Approach"; Advanced Papers of the
Fourth International Joint Conference on Artificial
Intellegence; 1975.

[Woods 70] Woods, w.A.; "Transition Network Grammars for Natural
Language Analysis"; Communications of the ACM; October
1970.

[Woods 72] Woods, W.A., Kaplan, R.M., Nash-Webber; The Lunar
Sciences Natural Language Information System: Final
report; Bolt Beranek and Newman report No. 2378; June
1972.

