
Parsing with Logical Variables

T. W. Finin and M. Stone Palmer

1 Introduction

Logic based programming systems have enjoyed increasing popularity in applied
AI work in the last few years. One of the contributions that the logic programming
paradigm has made to computational linguistics is the Definite Clause Grammar
(DCG). An excellent introduction to this formalism can be found in [9] in which
the authors present the formalism and make a detailed comparison to Augmented
Transition Networks (ATN) as a means of both specifying a language and parsing
sentences in that language.

We feel that the major strengths offered by the DCG formalism arise from its
use of logical variables with unification as the fundamental operation on them.
These techniques can be abstracted from the theorem proving paradigm and
adapted to other parsing systems (see [8] and [2]). We have implemented an experi­
mental ATN system which treats ATN registers as logic variables and provides a
unification operation over them.

The DCG formalism provides a powerful parsing mechanism based on a con­
text free grammar. The grammar rule

S-NPVP

can be seen as the universally quantified logical statement,

"Ix Vy Vz: NP(x) 1\ VP(y) 1\ Concatenate(x,y,z)-S(z).

in which the variables x, y, and z range over strings of words, NP and VP are pred­
icates which are true just in the case their arguments are a string of words repre­
senting a noun phrase and verb phrase, respectively, and Concatenate(x,y,z) is true
if word strings x and y can be concatenated to form word string z. Prolog, a pro­
gramming language based on predicate calculus, allows logical statements to be
input as Hom clauses in the following (reversed) form:

s(Z): - np(X), vp(Y), concatenate(X, Y,Z).

The resolution theorem prover that "interprets" the Prolog clauses would take the
negation of s as the goal and try and produce the null clause. Thus the preceding
clause can be interpreted procedurally as, "To establish goal s, try and establish
subgoals np, vp, and concatenate." DCGs provide syntactic sugar on top of Prolog
so that the arrow can be reversed and the concatenate predicate can be dispensed
with. The words in the input string are examined sequentially each time a

L. Bolc (ed.), Natural Language Parsing Systems
© Springer-Verlag Berlin Heidelberg 1987

34 T. W. Finin and M. Stone Palmer

"[Word]" predicate is executed which implicitly tests for concatenation (see Fig. 1).
DCGs allow grammar rules to be expressed very cleanly, while still allowing
ATN-type augmentation through the addition of arbitrary tests on the contents of
the variables.

Pereira and Warren [9] argue that the DCG formalism is well suited for specify­
ing a formal description of a language and also for use with a parser. In particular,
they assert that it is a significant advance over an ATN approach on both philoso­
phical and practical grounds. Their chief claims are that:

1. DCGs provide a common formalism for theoretical work in computational lin­
guistics and for writing efficient natural language processors.

2. The rule-based nature of a DCG results in systems of greater clarity and modu­
larity.

3. DCGs provide greater freedom in the range of structures that can be built in the
course of analyzing a constituent. In particular, the DCG formalism makes it
easy to create structures that do not follow the structure implied by the rules of
a constituent and to create a structure for a constituent that depends on items
not yet encountered in the sentence.

The first two points have been discussed in the past whenever the ATN formalism
is compared with a rule-based grammar (see [10], [7], [3], or [1]). The outcome of
such discussions varies. It is safe to say that how one feels about these points
depends quite heavily on stylistic considerations and past experience in using the
two formalisms.

We find the third point to be well founded, however. It is clear that the DCG
differs most from previous rule based parsing systems in its inclusion of logical
variables. The use of logical variables results in greater flexibility in building struc­
tures to represent constituents that do not follow the inherent structure determined
by the rules themselves. It also allows one to create structures which refer to items
that have not yet been discovered in the course of analyzing the sentence.

We have built an experimental ATN system which can treat ATN registers as
logical variables and, we feel, capture these important strengths offered by the
DCG formalism in the otherwise standard ATN formalism.

The next section of this paper gives a more detailed description of DCGs and
presents a simple grammar. In the third section we show an ATN grammar which
is "equivalent" to the DCG grammar and discuss the source of its awkwardness.
The fourth section then presents an ATN formalism extended to include viewing
ATN registers as logical variables which are subject to the standard unification
operation. The final section draws a parallel between DCGs and lexical functional
grammars (LFGs) and suggests that logical variables might be fruitfully intro­
duced into other parsing algorithms and systems.

2 Definite Clause Grammars

Figure 1 shows a simple DCG grammar adapted from [9]. Figure 2 gives a sen­
tence in the language recognized by this grammar together with the associated sur­
face syntactic structure and the semantic structure built by the grammar.

Fig. 1. A simple definite
clause grammar

Parsing with Logical Variables 35

I-let tY be an infix operator :Jigni/YI'ng A ~/

;- op(IOOO,xfy,'&').

s(Sentenee) ~ np(X, VerbCorm, Sentence), vp(X, VerbCorm).

np(X, VerbCorm, Sentence) ~ det(X, Nounpred, VerbCorm, Sentence),
nIX, Noun),
relclause(X, Noun, Nounpred).

np(X, Sentence, Sentence) ~ nnme(X).

relclause(X, Noun, (NOlin & Relverb)) ~ [that.], vp(X, Relverb).
relclause(X, NOlin, Noun)~ [].

det(X,Nounpred,VerbCorm,CorAll(X,(Nounpred -> Verbform))) ~ [every].
det(X,Nounpred,VerbCorm,forSome(X, (Nounpred & Verb form))) ~ [a].

vp(X, Verbform) ~ transv(X, Y, Partverb), np(Y, Partverb, VerbCorm).

vp(X, VerbCorm) ~ intransv(X, Verbrorm).

nIX, man(X)) ~ [man].
nIX, woman(X)) ~ [woman].
nIX, dog(X)) ~[dogl.

name(john) ~ [john].
name(mary) ~ [maryl.
name(fido) ~ [fidol.

transv(X, Y, 10ves(X,Y)) ~ [loves].
transv(X, Y, breathes(X,Y)) ~ [breathesl.

intmnsv(X, 10ves(X)) ~ [loves].
intransv(X, livest Xl) ~ [livesl.
intransv(X, breathes(X)) ~ [breathes].

Sentence

"john loves every woman who breathes"

Syntactic Structure

(S (NP (NAME john»
(VP (TRANSV loves)

(NP (DET every)
(NOUN woman)
(REL (VP (INTRANSV breathes»»»

Semantic Representation

forAll()(l' (woman(X1) I: breathes(X) ~ loves(john,X)

Fig. 2. A sentence, structure, and representation

36 T. W. Finin and M. Stone Palmer

2.1 The DCG Notation

For readers who may be unfamiliar with this notation for DCGs, we will briefly
summarize it here. Each rule in a DCG is of the form:

nt~body.

where nt is a non-terminal symbol and body is a sequence of one or more terms
separated by commas. This specifies a rule in a context free grammar in which the
left hand side corresponds to nt and the right hand side corresponds to body. Note
the following important extensions to the standard notation for context free gram­
mars:

• Terminal symbols (i. e., words) in the right hand side of a rule must be enclosed
in square brackets, as in the following rule:

s~[please], vp.

• Non-terminals can be compound terms rather than simple atomic symbols and
can include variables. The variables are treated as logical variables (i. e., they
may only take on a single value) with a scope equal to the rule in which they
appear. We will follow the standard Edinburgh Prolog convention and consider
any symbol beginning with a capital letter to be a variable. For example:

s(s(Np. VP»~nounPhrase (Np), verbPhrase (Vp).

• Procedural tests may be included in the right hand side of a rule by enclosing
them in braces. These tests are executed when the terms to their left have been
satisfied and cause the rule to fail if they do not succeed. For example, the fol­
lowing rule

noun(W)~[W]. {rootform(W,Root), category (Root, noun)}.

might be used to recognize a word as a noun given a data base consisting of the
rooiform relation which links words to their root forms (e.g., rootform(dogs,
dog» and the category relation which links root forms to their syntactic catego­
ries (e.g., category (dog, noun».

2.2 Interpreting DCG Rules as Definite Clauses

In order to use a DCG rule it is first transformed into a definite clause. In the pre­
vious section we briefly outlined how the concatenate predicate could be used to
ensure that the constituents on the right hand side of a rule span contiguous por­
tions of the input. A somewhat more efficient technique is to augment the predi­
cates for non-terminals with additional arguments which enforce the contiguity
constraint. Non-terminals corresponding to predicates of arity n and are translated
into predicates of arity n + 2. The two extra arguments are appended to the end of
the argument list and represent the words in the input just before and just after the
constituent corresponding to the non-terminal. For example, the following two
rules:

Parsing with Logical Variables 37

s(s(Np, Vp))-+nounPhrase(Np), verbPhrase(Vp).
noun (Word)-+[Word], {rootform(Word, Root), category (Root, noun)}.

become these two definite clauses:

s(s(Np, Vp), Xo, Xl):- noun Phrase (Np, Xo, X2). verb Phrase (Vp, X2, Xl)'
noun (Word, [WordIXo], Xo):- rootform (Word, Root), category (Root, noun).

where Xo, Xj, and X2 are the system generated names of variables.

In order· to find a parse corresponding to a DCG non-terminal nt of arity n it is
merely necessary to satisfy the new goal nt' formed by appending two extra argu­
ments to nt: the list of words to be parsed and the empty list. For example, to find
a sentence corresponding to the non-terminal s(X) given the words "the dog chased
the cat" we attempt to prove the goal S(X, [the, dog, chased, the, cat}, [J). If we use
a conventional Prolog interpreter to satisfy the top level goal, then the grammar
rules will be applied in a top-down, left to right manner. Alternatives will be
explored via backtracking.

2.3 An Example in More Detail

Let us tum our attention to how the grammar in Figure 1 discovers a parse for the
example sentence in Figure 2. The way in which unification produces the appro­
priate bindings for this example is actually quite subtle, and requires a detailed
analysis. In this grammar, the first determiner encountered in the sentence selects
a quantification form for the entire sentence. In the example sentence "John loves
every woman who breathes"the determiner every selects

forAll (X, Nounpred-+Verbform)

for the overall sentence form. Had the example been "John loves a woman who
breathes ", the determiner a would choose

forSome (X, Nounpred & Verbform)

for the overall sentence form.

Parsing the rest of the sentence will produce predicate representations that will be
slotted into the appropriate places in the sentence pattern. The sentence, "Every
woman breathes," would produce "women (Xl)" for the variable Nounpred and
"breathes (Xl)" for the variable Verb/orm, resulting in a sentence representation of

forall (Xl> woman (Xl)-+ breathes (Xl))'

This is explained in more detail below, using the example, "John loves every
woman who breathes." This discussion is illustrated by the diagram in Figure 3. In
trying to prove the s(Senctence) goal, the only applicable rule is:

s (Sentence)-+np(X, Verbform, Sentence), vp (X, Verbform).

38 T. w. Finin and M. Stone Palmer

B (Sentence)

np (X. Verbform. Sentence) vpCX.Verbform)

~
np(X.Verbform.Sentence) npCX. Sentence. Sentence)

I I
fail name (John)

[JOll
Fig. 3. Finding the subject noun phrase

This rule causes np(X, Verbform, Sentence} to be set up as the first subgoal. There
are two np clauses that match this subgoal:

np(X, Verbform, Sentence)- det(X, Nounpred, Verbform, Sentence).
n(X, Noun),
relclause (X, Noun, Nounpred).

np(X, Sentence)- name (X).

the first of which eventually fails since "John" is not preceded by a determiner.
The second one succeeds, binding X to John, and identifying the original Verbform
variable with the original Sentence variable. The assumption is that the logical
form produced for the verb will be the logical form for the entire sentence.

The second major subgoal in attempting to instantiate a sentence is vp(X, Verb­
form}, where X is now bound to John. Once again there are two possible clauses:

vp(X, Verbform)-transv(X, Y, Partverb), np(Y, Partverb, Verbform).
vp(X, Verbform)-intransv(X, Verbform).

only one of which will succeed, as Figure 4 shows.
Two new subgoals are set up, transv(John, Y, Partverb} and np(Y, Partverb, Verb­

form}. The first one succeeds since "loves" is a transitive verb, and results in Part­
verb being bound to loves(John, y), where Yis still unbound. The binding for Yis
expected to be produced by the successful evaluation of the next subgoal, np(Y,
Partverb, Verbform}. Figure 4 shows the status of the parse at this point.

The variable Partverb is also passed as a parameter, so that it can be included in
the Verbform structure. This time the first np clause is applicable, and the presence
of the determiner "every" results in the Verbform variable, now renamed as Sen­
tence, being bound to forAll(y, Nounpred-loves (John, Y». This is the complete
Verbform structure, which for this sentence is also the Sentence structure (Fig­
ure 5). It does, however, still have some unbound variables, namely Yand Noun­
pred, which will be filled in as the rest of the noun phrase is processed. The bind­
ing for Nounpred will be supplied during the evaluation of the other two subgoals

Parsing with Logical Variables 39

vp(X, Vsrbform)

vp(X, Verbform) vp(X,Verbform)

I ~
transv(X,Y,Partverb) np(Y,Partverb,Verbform) intrans(X,Verbform)

tran!cX,Y,lOVeS(X,Y» I I
fail

I
[loves]

Fig. 4. Finding the verb phrase

np(Y, Partverb, Verbform)

I
np(Y, loves (John,Y), Sentence)

det(Y, Nounpred,

I
~) .. , loves (John, Y), Sentence '"

det(Y, Nounpred, loves (John, Y), forAll(Y, Nounpred -> loves(John,Y»)

I
[every]

Fig. 5. Determining the sentence form

np(Y, loves (John,Y), Santence)

<ii'" 'Ub~
n(Y, Noun) relclause(Y, woman(Y), Nounpred)

I I
n(Y. woman(Y» relclause(Y. woman(Y). woman(Y) t Relverb) , ~
[woman] / _ "-

[that] vpCY. Relverb) ,
intrans(Y. Relverb)

I
intransCY. breathesCY»

\
[breathes]

Fig. 6. Finding the relative clause

40 T. W. Finin and M. Stone Palmer

associated with np, noun and relclause. The evaluation of the noun goal produces
women(Y) which is passed to relclause as something to be included in Nounpred.
The final binding for Nounpred is woman(Y) & breathes(Y) (Figure 6). The variable
Y stays unbound, since it is universally quantified.

Th~ result of this processing is that the relclause goal is satisfied, with Nounpred
bound to:

woman (Y) & breathes (Y)

which caused the np goal be completed with Sentence bound to:

forAll (Y, woman (Y) & breaths (Y)-loves (John, Y»
which satisfies the vp goal with Verbform bound to:

forAll (Y, woman (Y) & breaths (Y)-loves (John, Y»
and yields a satisfied s goal with the ultimate binding for Sentence of:

forAll (Y, woman (Y) & breaths (Y)-loves (John, Y»

In following the application of this grammar it becomes clear that very strong pre­
dictions are made about which parts of the parse will be supplying particular types
of information. Determiners provide the quantifiers for the propositional structure
of the sentence. The first noun phrase and the noun phrase following the verb are
the two participants in the predicate implied by the verb. Obviously the rules given
here are part of a toy grammar, but the power of the logical variables can only be
made use of through the encoding of these strong linguistic assumptions. DCGs
provide a mechanism well qualified for expressing such assumptions and then
executing them. The same type of assumptions can be found in LFGs as discussed
in the conclusion.

3 Comparing DC and ATN Grammars

Figure 7 shows an ATN grammar which is the "equivalent" of the DCG grammar
given in Figure 1. The format used to specify the grammar is the one described in
[4] and [5]. There are only two minor ways in which this particular formalism dif­
fers from the standard ATN formalism described in [11] or [1]. First, the dollar sign
character (i. e., $) followed by the name of a register stands for the contents of that
register. Second, the function DEFATN defines a set of arcs, each of which is rep­
resented by a list whose first element is the name of the state and whose remaining
elements are the arcs emanating from the state.

In addition, this example uses a very simple lexical manager in which a word
has (1) a set of syntactic categories to which is belongs (2) an optional set of fea­
tures, and (3) an optional root form for the word. These attributes are associated
with a word using the function LEX, which supplies appropriate default values
for unspecified arguments. Thus the expression

(LEX dogs n (animate (number plural» dog)

Parsing with Logical Variables 41

could be used to indicate that the word dogs belongs to the syntactic category n
(for noun), has the two features animate and number plural, and has the word dog
as its root word.

One immediate difference between the DCG and ATN formalism has to do
with communication between different levels of processing. In the DCG formal­
ism, the application of each rule involves a different level of processing. The argu­
ments to the predicates representing a non-terminal serve as communication chan­
nels between the levels. As is standard in logic programming languages, each of
these variables can be used either for input or output or both.

The st;mdard A TN model adopts a more functional approach. A PUSH arc
invokes a sub-computation which takes no arguments and, if successful, returns a
single value. One can achieve the effect of passing parameters to a sub-computa­
tion by giving a register an initial value via a SENDR action. There are two meth­
ods by which one can achieve the effect of returning more than one value from a
sub-computation. The first is for the sub-computation to POP with a value which
is a list of the items to be passed back to the higher level. Actions on the invoking
PUSH arc would then be responsible for decomposing the list into its constituent
items. The second method is to use the LIFTR action to directly set registers in the
higher level computation. The grammar in Figure 7 makes use of SENDR and
LIFTR to pass parameters into and out of ATN computations and thus mimic the
actions of the DCG example.

Consider what must happen when looking for a noun phrase. The representa­
tion for an NP will be a predicate if the noun phrase is indefinite (i. e., "a man"
becomes (man X))l or a constant if the noun phrase is a name (i.e., "John"
becomes John). In this simple language, a NP is dominated by a either a sentence
(if it is the subject) or by a verb phrase (if it is the object). In either case, the NP
determines, or must agree with, the overall structure used to represent the domi­
nating constituent. If the NP is definite2, then it exerts no additional constraint on
the representation of its dominator. If the NP is indefinite it will eventually result
in a quantified expression for the dominating sentence or verb phrase. In this case
we need to tell the dominating computation what the predicate, quantifier, connec­
tive, and variable name must be. In this ATN grammar, this is done by having the
NP network return a value to represent the NP predicate and lift values for the
quantifier, connective, and variable names.

Similarly, when we are looking for a verb phrase, we must know what token
(i. e., variable name or constant) represents the subject (if the verb phrase is domi­
nated by an S) or the head noun (if the verb phrase acts as a relative clause). This
is done by sending the subjvar register in the sub-computation the appropriate
value via the SENDR function. The techniques used to handle quantification and
build an overall sentence structure in this A TN grammar are similar to those used
in the BBN Lunar Grammar [12].

This heavy use of SENDR and LIFTR to communicate between levels in the
grammar violates many accepted programming maxims and results in an A TN

1 Note that we are switching to a lispy syntax for representing the meanings.
2 Which in this toy grammar reduces to it being a name.

42 T. W. Finin and M. Stone Palmer

(defatn

(s (push np t (setr subj .) (to s/subj»)

(s/subj (push vp t (oetr vp *) (Bendr subjvar $var) (to s/end»)

(s/end (pop (list $quant $var (list $connect $subj $vp» $subj)
(pop $vp (null $subj»)

(np (wrd a t (liftr quant 'ForSome) (liftr connect 'And) (to np/det»
(wrd every t (liftr quant 'ForAll) (liftr connect '-+) (to np/dot»
(cat name t (setr var .) (to np/np»)

(np/det (cat n t (setr var (gensym» (setr n (list. $var» (to np/n»)

(np/n (wrd (who that which) t (to np/n/who»
(jump np/np t»

(np/np (pop $n t (liftr var»)

(np/n/who
(push vp t (sendr sUbjvar $var) (sutr n (list 'And $n .» (to np/np»)

(vp (cat v t (setr v .) (to vp/v»)

(vp/v (push np (getf trans $v) (setr obj *) (satr objvar $var) (to vp/vp»
(pop "(list $v $subjvar) (getf intrans $v»)

(vp/vp (pop (list $quant $objvar (list $connect
$obj
(list $v $subjvar $objvar»)

$obj)
(pop (list $v $oubjvar $objvar) (null $obj»»

The Lexicon
(lex <word> <category> <features> <rootform»

(lex man n)
(lex woman n)
(lex ioves v (intrano trans»
(lex breathes v (intrans trans»
(lax lives v (intrans»
(lex John name)

... etc ...

Fig. 7. An equivalent ATN grammar

Parsing with Logical Variables 43

grammar which is cumbersome and difficult to understand. In the next section we
investigate treating ATN registers as logic variables and providing a unification
operation on them.

4 Replacing ATN Registers with ATN Variables

Although the previous ATN grammar does the job, it is clearly awkward. We can
achieve much of the elegance of the DCa example by treating the ATN registers
as logical variables and including a unification operation on them. We will call
such registers ATN variables.

Since our ATN variables must not be tampered with between unifications,
assignment operations such as SETR, LIFfR, and SENOR are precluded. Thus
the only operations on ATN Registers are access and unify. It is possible to pro­
vide operations similar to the standard SENOR and LIFfR by defining unifica­
tion operations which do the unification in another environment, but we have not
explored these possibilities.

The scheduler component of the ATN parser has been modified to be sensitive
to the success or failure of attempted unifications. If a unification operation on an
arc fails, the are is blocked and may not be taken.

Figure 8 shows a grammar in the extended ATN formalism. A symbol preceded
by a "$" represents an ATN Variable and "*,, will again stand for the current con­
stituent. Thus in the state S in the grammar:

(S (PUSH NP (UNIFY '($SUBN AR $VP $S) *) (TO S/SUBJ)))

the parser pushes to the state NP to parse a noun phrase. If one is found, it will
pop back with a value which will then be unified with the expression ($SUBN AR
$VP $S). If this unification is successful, the parser will advance to state S/SUBJ.
If it fails, the arc is blocked causing the parser to backtrack into the NP network.
Figure 9 shows the results of applying this A TN grammar to a number of simple
sentences.

Although our grammar succeeds in paralleling the behavior of the DCa, there
are some open questions involving the use of unification in parsing natural lan­
guages. An examination of this ATN grammar shows that we are really using
unification as a method of passing parameters. The full power of unification is not
needed in this example since the grammar does not try to find "most-general
unifiers" for complicated sets of terms. Most of the time it is simply using unifica­
tion to bind a variable to the contents of another variable. The most sophisticated
use involves binding a variable in a term to another copy of that term which also
has a variable to be bound as in the "a man loves a woman" example in Figure 9.
But even this binding is a simple one-way application of standard unification. It is
not clear whether this is due to the simple nature of the grammars involved or
whether it is an inherent property of the directedness of natural language parsing.

A situation where full unification might be rquired would arise when one is look­
ing for a constituent matching some partial description. For example, suppose we
were working with a syntactic grammar and wanted to look for·a singular noun
phrase. We might do this with the following PUSH arc:

44 T. W. Finin and M. Stone Palmer

(defatn

(. (push np (unify '(Ssubjvar Svp S.) .) (to s/.ubj»)

(s/.ubj (push vp t (unify 'Svp.) (to .1.»)
(sIs (pop $a t»

(np (wrd a t (unify 'Snp '(ForSome Svar (And Spred Shole») (to np/det»
(wrd every t (unify 'Snp '(ForAll Svar (-+ Spred Shole») (to np/det»
(cat name t (unify 'Snp 'Shole) (unify 'Svar.) (to np/np»)

(np/det (cat n t (unify 'Svar (gensym» (unify 'Spred '(. $var» (to np/n»)

(np/n (wrd (who that which) t (to np/n/who»
(j UIIIp np/np t»

(np/np (pop (list Svar 'Shole Snp) t »

(np/n/who
(push vp t (unify 'S.ubjvar 'Svar) (unify 'Spred '(And Spred .» (to np/np»)

(vp (cat v (getf trans .) (unify 'Sv '(. Saubjvar Sobjvar» (to vp/vtrans»
(cat v (getf intrans .) (unify 'Sv '(. Ssubjvar» (to vp/vp»}

(vp/vtrana (push np t (unify '($objvar Sv $vp) .) (to vp/vp»)

(vp/vp (pop $vp t»

Fig.S. An equivalent ATN grammar with ATN variables

(PUSH NP T (UNIFY * '(NP (DET $DEl) (NUMBER SINGULAR) (ADJ
$ADJS) ...))
...)

If we follow the usual schedule of interpreting ATN grammars the unification will
not occur until the NP network has found a noun phrase and popped back with a
value. This would require a fully symmetric unification operation since there are
variables being bound to values in both arguments. It is also highly inefficient
since we may know immediately that the noun phrase in the input is not singular.
What we would like is to be able to do the unification just after the push is done,
which would more closely parallel a Prolog-based DCG parse. Then an attempt to
"unify" the number register with anything other than singular would fail immedi­
ately.

This could be done automatically if we constrain a network to have only one
state which does a pop and place some additional constraints on the forms that
can be used as values to be popped. Although we have not explored this idea at
any length, it appears to lead to some interesting possibilities.

Parsing with Logical Variables 45

"John loves every woman who breathes"

"John loves a woman"

"a man loves a woman"

(ForSome Xl

(And (man Xl)

(ForSome X2 (And (woman X2) (loves Xl ~»»)

".very man who lives loves"

"every man who lovls mary lovls a woman who loves John"

(ForAll Xl

(-+ (And (man Xl) (loves Xl mary»
(ForSome X2 (And (And (womzn X2) (loves X2 John»

(loves Xl X2»»)

"every man who loves a woman who loves Ivery dog loves every dog"

(ForAll Xl

(-- (And (man Xl)
(ForSome X2

(And (And (woman X2)

(ForAll X3 (-+ (dog~) (lovos X2 X3»»
(loTes Xl X2»»

(ForAll X4 (-- (dog X4) (loves Xl X4»»)

Fig. 9. Example parses with the ATN grammar

46 T. W. Finin and M. Stone Palmer

5 Conclusions

The particular DCG example we have used in this paper illustrates the similarity
between the use of logical variables in DCGs and the evaluation of equations in
lexical functional grammars (LFGs). The passing of logical variables in the DCG
from the det clause to the np clause to the vp clause corresponds to equating the
variables from different parts of the syntactic structure being built by an LFG.
LFGs also produce functional representations of the sentence at the same time as
a syntactic parse is being built, another important similarity. However, they do not
build the quanification into the functional structure in the way illustrated by the
DCG example. This is done later by the semantic component. Also, in the current
implementation of LFG, the functional structure is actually built after the syntac­
tic parsing is completed, but a new implementation designed to build the struc­
tures in parallel is in progress.

The DCG example is really a toy example based on Montague grammars.
DCGs are a powerful tool for encoding grammar rules that support a particular
theory. DCGs do not represent a linguistic theory in themselves, whereas LFGs
do. The purpose of this comparison is to simplify the explanation of equating vari­
ables in LFGs, and to indicate the suitability of DCGs for implementing this type
of approach.

LFGs have two components: 1) grammar rules with associated equations for
building up a functional description of the sentence and 2) the lexical rules. The
lexical rules consist of rules for the individual lexical entries of words as well as
redundancy rules that take advantage of cross-word generalizations such as active­
passive forms of verbs. The grammar rules are context free rules that generate
several possible syntactic structures, many of which are not grammatical. The reso­
lution of the equations associated with the grammar rules is intended to eventually
exclude the ungrammatical structures. The equations contain variables that must
be filled in by information supplied by the lexical entries. There are arrows asso­
ciated with the equations as well as with the lexical entries to guide the instantia­
tion of the variables. The LFG grammar rule in Figure 10 is the standard one for
doubly transitive verbs:

GRAMMAR RULE:

VP --> Verb (NP (NP)).
t l (<1 Object1)=l (<1 Object2)=l»

LEXICAL ENTRY:

handed VERB <1 Tense) = Past
(t Predicate) = 'Hand«t Subject),(t Object1),(t Object2»

Fig. 10. An LFG rule

Parsing with Logical Variables 47

VP--Verb NP NP

and the equation associated with it indicates which components the NPs will
instantiate in the function structure, namely the Objectj and Object2'

The arrow notation has a somewhat involved explanation. LFGs first generate a
tree from the context free grammar rules, filling in the leaf nodes with the appro­
priate lexical items. Every node on the tree is then assigned a variable. The arrows
give directions for the instantiation of the variables. Sometimes instantiations are
passed upwards in the tree, and sometimes downwards. Tense, for instance is
passed up to the parent of VERB node. Not surprisingly, Object1 will eventually
get instantiated with the value of the NP corresponding to the direct object of the
sentence, and Object2 will eventually be given the value of the indirect object.
Objectj and Object2 are the arguments to the verb predicate, and in the final func­
tional description, the verb predicate itself will be assigned a unique identifier, say
j3, and the Objectj of that predicate will be assigned another unique identifier, /4.
The use of an equation such as (tObjectj) = ! can now be demonstrated, since (j3
Objectt) = /4 represents just that information, namely, that the Objectj of j3 is /4.
The upward arrow indicated that j3 was the node immediately above in the tree,
and the downward arrow indicated that /4 is associated with the node the equa­
tion is associated with.

The point to be made here is simply that the logical variables in DCGs can be
used to accomplish the same end as the arrow notation. The example of a DCG
parse showed how logical variables could be passed values from other parts of the
parse. The DCG also used context free grammar rules to parse a clause while
building up a functional structure at the same time. The main difference is that
unification offers an advantage in providing a capability for instantiating variables
while in the middle of the parse, instead of waiting until the parse is finished to
"resolve the equations." The arrows in the original equation, (t Objectt) = !, can
be replaced by logical variables such as F3 and F4. These variables would have to
be explicitly bound to the variables assigned to the nodes in the tree. Then, when
the node variables are assigned unique identifiers, those same identifiers would
automatically instantiate the variables in the equations. An extra pass to "resolve"
the equations would no longer be necessary.

We have found the use of logical variables and unification to be a powerful
technique in parsing natural language. It is one of the main sources of the
strengths of the Definite Clause Grammar formalism. In attempting to capture this
technique for an ATN grammar we have come to several interesting conclusions.
First, the strength of the DCG comes as much from the skillful encoding of lin­
guistic assumptions about the eventual outcome of the parse as from the powerful
tools it relies on. Second, the notion of logical variables (with unification) can be
adapted to parsing systems outside of the theorem proving paradigm. We have
successfully adapted these techniques to an ATN type parser and are beginning to
embed them in an existing parallel bottom-up parser [6]. The similarities between a
DCG and the LFG formalism have been sketched out and we have sugested that
DCGs might be a good vehicle for implementing an LFG system. Third, the full
power of unification may not be necessary to successfully use logical variables in
natural language parsers.

48 T. W. Finin and M. Stone Palmer

References

1. Bates, M.: Theory and Practice of Augmented Transition Network Grammars. In: Bole, L.
(ed.): Natural Language Communication with Computers. Berlin-Heidelberg-New York:
Springer 1978

2. Bossie, S.: A Tactical Component for Text Generation: Sentence Generation Using a Func­
tional Grammar. Technical report MS-CIS-1982-26. Computer and Information Science, Uni­
versity of Pennsylvania, 1982

3.Codd, E.F., Arnold, RS., Cadiou, J-M., Chang, C.L., and Roussopoulos, N.: RENDEZ­
VOUS Version 1: An Experimental English-Language Query Formulation System for Casual
Users of Relational Data Bases. Report RJ2144. IBM Research Laboratory, San Jose, January,
1978

4: Finin, T.: An Interpreter and Compiler for Augmented Transition Networks. Technical report
T-48. Coordinated Science Laboratory, University of Illinois, 1977

5. Finin, T.: Parsing with ATN Grammars. In: Bole, L. (ed.): Data Base Question Answering Sys­
tems. Berlin-Heidelberg-New York: Springer 1982

6. Finin, T. and Webber, B.: BUP - A Bottom Up Parser. Technical Report MS-CS-83-12.
Department of Computer and Information Science, University of Pennsylvania, 1983

7. Heidorn, G.: Augmented Phrase Structure Grammar. TINLAP-1, Theoretical Issues in Natu­
ral Language Processing, August, 1975

8. Kay, M.: Functional Grammar. Proceedings of the Fifth Annual Meeting of the Berkeley Lin­
guistic Society, Berkeley Linguistic Society, Berkeley, CA, 1979

9. Pereira, F. and Warren, D.: Definite Clause Grammars for Language Analysis - A Survey of
the Formalism and a Comparison with Augmented Transition Networks. Artificial Intelli­
gence 13, 231-289 (1980)

10. Pratt, V.: LINGOL, A Progress Report. Proceedings of the 4th International Joint Conference
on Artificial Intelligence, IlCAI, 4 (1975)

11. Woods, w.: Transition Network Grammars for Natural Language Analysis. Communications
of the ACM 13 (10), 591-606 (1970)

12. Woods, W.A., Kaplan, RM., and Webber, B.L.: The Lunar Sciences Natural Language Infor­
mation System: Final Report. Report 2378. Bolt, Beranek, and Newman, Inc., Cambridge,
Mass., 1972

