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1 Introduction 

Logic based programming systems have enjoyed increasing popularity in applied 
AI work in the last few years. One of the contributions that the logic programming 
paradigm has made to computational linguistics is the Definite Clause Grammar 
(DCG). An excellent introduction to this formalism can be found in [9] in which 
the authors present the formalism and make a detailed comparison to Augmented 
Transition Networks (ATN) as a means of both specifying a language and parsing 
sentences in that language. 

We feel that the major strengths offered by the DCG formalism arise from its 
use of logical variables with unification as the fundamental operation on them. 
These techniques can be abstracted from the theorem proving paradigm and 
adapted to other parsing systems (see [8] and [2]). We have implemented an experi­
mental ATN system which treats ATN registers as logic variables and provides a 
unification operation over them. 

The DCG formalism provides a powerful parsing mechanism based on a con­
text free grammar. The grammar rule 

S-NPVP 

can be seen as the universally quantified logical statement, 

"Ix Vy Vz: NP(x) 1\ VP(y) 1\ Concatenate(x,y,z)-S(z). 

in which the variables x, y, and z range over strings of words, NP and VP are pred­
icates which are true just in the case their arguments are a string of words repre­
senting a noun phrase and verb phrase, respectively, and Concatenate(x,y,z) is true 
if word strings x and y can be concatenated to form word string z. Prolog, a pro­
gramming language based on predicate calculus, allows logical statements to be 
input as Hom clauses in the following (reversed) form: 

s(Z): - np(X), vp(Y), concatenate(X, Y,Z). 

The resolution theorem prover that "interprets" the Prolog clauses would take the 
negation of s as the goal and try and produce the null clause. Thus the preceding 
clause can be interpreted procedurally as, "To establish goal s, try and establish 
subgoals np, vp, and concatenate." DCGs provide syntactic sugar on top of Prolog 
so that the arrow can be reversed and the concatenate predicate can be dispensed 
with. The words in the input string are examined sequentially each time a 
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"[Word]" predicate is executed which implicitly tests for concatenation (see Fig. 1). 
DCGs allow grammar rules to be expressed very cleanly, while still allowing 
ATN-type augmentation through the addition of arbitrary tests on the contents of 
the variables. 

Pereira and Warren [9] argue that the DCG formalism is well suited for specify­
ing a formal description of a language and also for use with a parser. In particular, 
they assert that it is a significant advance over an ATN approach on both philoso­
phical and practical grounds. Their chief claims are that: 

1. DCGs provide a common formalism for theoretical work in computational lin­
guistics and for writing efficient natural language processors. 

2. The rule-based nature of a DCG results in systems of greater clarity and modu­
larity. 

3. DCGs provide greater freedom in the range of structures that can be built in the 
course of analyzing a constituent. In particular, the DCG formalism makes it 
easy to create structures that do not follow the structure implied by the rules of 
a constituent and to create a structure for a constituent that depends on items 
not yet encountered in the sentence. 

The first two points have been discussed in the past whenever the ATN formalism 
is compared with a rule-based grammar (see [10], [7], [3], or [1]). The outcome of 
such discussions varies. It is safe to say that how one feels about these points 
depends quite heavily on stylistic considerations and past experience in using the 
two formalisms. 

We find the third point to be well founded, however. It is clear that the DCG 
differs most from previous rule based parsing systems in its inclusion of logical 
variables. The use of logical variables results in greater flexibility in building struc­
tures to represent constituents that do not follow the inherent structure determined 
by the rules themselves. It also allows one to create structures which refer to items 
that have not yet been discovered in the course of analyzing the sentence. 

We have built an experimental ATN system which can treat ATN registers as 
logical variables and, we feel, capture these important strengths offered by the 
DCG formalism in the otherwise standard ATN formalism. 

The next section of this paper gives a more detailed description of DCGs and 
presents a simple grammar. In the third section we show an ATN grammar which 
is "equivalent" to the DCG grammar and discuss the source of its awkwardness. 
The fourth section then presents an ATN formalism extended to include viewing 
ATN registers as logical variables which are subject to the standard unification 
operation. The final section draws a parallel between DCGs and lexical functional 
grammars (LFGs) and suggests that logical variables might be fruitfully intro­
duced into other parsing algorithms and systems. 

2 Definite Clause Grammars 

Figure 1 shows a simple DCG grammar adapted from [9]. Figure 2 gives a sen­
tence in the language recognized by this grammar together with the associated sur­
face syntactic structure and the semantic structure built by the grammar. 



Fig. 1. A simple definite 
clause grammar 
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I-let tY be an infix operator :Jigni/YI'ng A ~/ 

;- op(IOOO,xfy,'&'). 

s(Sentenee) ~ np(X, VerbCorm, Sentence), vp(X, VerbCorm). 

np(X, VerbCorm, Sentence) ~ det(X, Nounpred, VerbCorm, Sentence), 
nIX, Noun), 
relclause(X, Noun, Nounpred). 

np(X, Sentence, Sentence) ~ nnme(X). 

relclause(X, Noun, (NOlin & Relverb)) ~ [that.], vp(X, Relverb). 
relclause(X, NOlin, Noun)~ []. 

det(X,Nounpred,VerbCorm,CorAll(X,(Nounpred -> Verbform))) ~ [every]. 
det(X,Nounpred,VerbCorm,forSome(X, (Nounpred & Verb form))) ~ [a]. 

vp(X, Verbform) ~ transv(X, Y, Partverb), np(Y, Partverb, VerbCorm). 

vp(X, VerbCorm) ~ intransv(X, Verbrorm). 

nIX, man(X)) ~ [man]. 
nIX, woman(X)) ~ [woman]. 
nIX, dog(X)) ~[dogl. 

name(john) ~ [john]. 
name(mary) ~ [maryl. 
name(fido) ~ [fidol. 

transv(X, Y, 10ves(X,Y)) ~ [loves]. 
transv(X, Y, breathes(X,Y)) ~ [breathesl. 

intmnsv(X, 10ves(X)) ~ [loves]. 
intransv(X, livest Xl) ~ [livesl. 
intransv(X, breathes(X)) ~ [breathes]. 

Sentence 

"john loves every woman who breathes" 

Syntactic Structure 

(S (NP (NAME john» 
(VP (TRANSV loves) 

(NP (DET every) 
(NOUN woman) 
(REL (VP (INTRANSV breathes»»» 

Semantic Representation 

forAll()(l' (woman(X1) I: breathes(X) ~ loves(john,X) 

Fig. 2. A sentence, structure, and representation 
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2.1 The DCG Notation 

For readers who may be unfamiliar with this notation for DCGs, we will briefly 
summarize it here. Each rule in a DCG is of the form: 

nt~body. 

where nt is a non-terminal symbol and body is a sequence of one or more terms 
separated by commas. This specifies a rule in a context free grammar in which the 
left hand side corresponds to nt and the right hand side corresponds to body. Note 
the following important extensions to the standard notation for context free gram­
mars: 

• Terminal symbols (i. e., words) in the right hand side of a rule must be enclosed 
in square brackets, as in the following rule: 

s~[please], vp. 

• Non-terminals can be compound terms rather than simple atomic symbols and 
can include variables. The variables are treated as logical variables (i. e., they 
may only take on a single value) with a scope equal to the rule in which they 
appear. We will follow the standard Edinburgh Prolog convention and consider 
any symbol beginning with a capital letter to be a variable. For example: 

s(s(Np. VP»~nounPhrase (Np), verbPhrase (Vp). 

• Procedural tests may be included in the right hand side of a rule by enclosing 
them in braces. These tests are executed when the terms to their left have been 
satisfied and cause the rule to fail if they do not succeed. For example, the fol­
lowing rule 

noun(W)~[W]. {rootform(W,Root), category (Root, noun)}. 

might be used to recognize a word as a noun given a data base consisting of the 
rooiform relation which links words to their root forms (e.g., rootform(dogs, 
dog» and the category relation which links root forms to their syntactic catego­
ries (e.g., category (dog, noun». 

2.2 Interpreting DCG Rules as Definite Clauses 

In order to use a DCG rule it is first transformed into a definite clause. In the pre­
vious section we briefly outlined how the concatenate predicate could be used to 
ensure that the constituents on the right hand side of a rule span contiguous por­
tions of the input. A somewhat more efficient technique is to augment the predi­
cates for non-terminals with additional arguments which enforce the contiguity 
constraint. Non-terminals corresponding to predicates of arity n and are translated 
into predicates of arity n + 2. The two extra arguments are appended to the end of 
the argument list and represent the words in the input just before and just after the 
constituent corresponding to the non-terminal. For example, the following two 
rules: 
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s(s(Np, Vp))-+nounPhrase(Np), verbPhrase(Vp). 
noun (Word)-+[Word], {rootform(Word, Root), category (Root, noun)}. 

become these two definite clauses: 

s(s(Np, Vp), Xo, Xl ):- noun Phrase (Np, Xo, X2 ). verb Phrase (Vp, X2, Xl)' 
noun (Word, [WordIXo], Xo):- rootform (Word, Root), category (Root, noun). 

where Xo, Xj, and X2 are the system generated names of variables. 

In order· to find a parse corresponding to a DCG non-terminal nt of arity n it is 
merely necessary to satisfy the new goal nt' formed by appending two extra argu­
ments to nt: the list of words to be parsed and the empty list. For example, to find 
a sentence corresponding to the non-terminal s(X) given the words "the dog chased 
the cat" we attempt to prove the goal S(X, [the, dog, chased, the, cat}, [J). If we use 
a conventional Prolog interpreter to satisfy the top level goal, then the grammar 
rules will be applied in a top-down, left to right manner. Alternatives will be 
explored via backtracking. 

2.3 An Example in More Detail 

Let us tum our attention to how the grammar in Figure 1 discovers a parse for the 
example sentence in Figure 2. The way in which unification produces the appro­
priate bindings for this example is actually quite subtle, and requires a detailed 
analysis. In this grammar, the first determiner encountered in the sentence selects 
a quantification form for the entire sentence. In the example sentence "John loves 
every woman who breathes"the determiner every selects 

forAll (X, Nounpred-+Verbform) 

for the overall sentence form. Had the example been "John loves a woman who 
breathes ", the determiner a would choose 

forSome (X, Nounpred & Verbform) 

for the overall sentence form. 

Parsing the rest of the sentence will produce predicate representations that will be 
slotted into the appropriate places in the sentence pattern. The sentence, "Every 
woman breathes," would produce "women (Xl)" for the variable Nounpred and 
"breathes (Xl)" for the variable Verb/orm, resulting in a sentence representation of 

forall (Xl> woman (Xl)-+ breathes (Xl))' 

This is explained in more detail below, using the example, "John loves every 
woman who breathes." This discussion is illustrated by the diagram in Figure 3. In 
trying to prove the s(Senctence) goal, the only applicable rule is: 

s (Sentence)-+np(X, Verbform, Sentence), vp (X, Verbform). 
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B (Sentence) 

np (X. Verbform. Sentence) vpCX.Verbform) 

~ 
np(X.Verbform.Sentence) npCX. Sentence. Sentence) 

I I 
fail name (John) 

[JOll 
Fig. 3. Finding the subject noun phrase 

This rule causes np(X, Verbform, Sentence} to be set up as the first subgoal. There 
are two np clauses that match this subgoal: 

np(X, Verbform, Sentence)- det(X, Nounpred, Verbform, Sentence). 
n(X, Noun), 
relclause (X, Noun, Nounpred). 

np(X, Sentence)- name (X). 

the first of which eventually fails since "John" is not preceded by a determiner. 
The second one succeeds, binding X to John, and identifying the original Verbform 
variable with the original Sentence variable. The assumption is that the logical 
form produced for the verb will be the logical form for the entire sentence. 

The second major subgoal in attempting to instantiate a sentence is vp(X, Verb­
form}, where X is now bound to John. Once again there are two possible clauses: 

vp(X, Verbform)-transv(X, Y, Partverb), np(Y, Partverb, Verbform). 
vp(X, Verbform)-intransv(X, Verbform). 

only one of which will succeed, as Figure 4 shows. 
Two new subgoals are set up, transv(John, Y, Partverb} and np(Y, Partverb, Verb­

form}. The first one succeeds since "loves" is a transitive verb, and results in Part­
verb being bound to loves(John, y), where Yis still unbound. The binding for Yis 
expected to be produced by the successful evaluation of the next subgoal, np(Y, 
Partverb, Verbform}. Figure 4 shows the status of the parse at this point. 

The variable Partverb is also passed as a parameter, so that it can be included in 
the Verbform structure. This time the first np clause is applicable, and the presence 
of the determiner "every" results in the Verbform variable, now renamed as Sen­
tence, being bound to forAll(y, Nounpred-loves (John, Y». This is the complete 
Verbform structure, which for this sentence is also the Sentence structure (Fig­
ure 5). It does, however, still have some unbound variables, namely Yand Noun­
pred, which will be filled in as the rest of the noun phrase is processed. The bind­
ing for Nounpred will be supplied during the evaluation of the other two subgoals 
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vp(X, Vsrbform) 

vp(X, Verbform) vp(X,Verbform) 

I ~ 
transv(X,Y,Partverb) np(Y,Partverb,Verbform) intrans(X,Verbform) 

tran!cX,Y,lOVeS(X,Y» I I 
fail 

I 
[loves] 

Fig. 4. Finding the verb phrase 

np(Y, Partverb, Verbform) 

I 
np(Y, loves (John,Y), Sentence) 

det(Y, Nounpred, 

I 
~) .. , loves (John, Y), Sentence '" 

det(Y, Nounpred, loves (John, Y), forAll(Y, Nounpred -> loves(John,Y») 

I 
[every] 

Fig. 5. Determining the sentence form 

np(Y, loves (John,Y), Santence) 

<ii'" 'Ub~ 
n(Y, Noun) relclause(Y, woman(Y), Nounpred) 

I I 
n(Y. woman(Y» relclause(Y. woman(Y). woman(Y) t Relverb) , ~ 
[woman] / _ "-

[that] vpCY. Relverb) , 
intrans(Y. Relverb) 

I 
intransCY. breathesCY» 

\ 
[breathes] 

Fig. 6. Finding the relative clause 
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associated with np, noun and relclause. The evaluation of the noun goal produces 
women(Y) which is passed to relclause as something to be included in Nounpred. 
The final binding for Nounpred is woman(Y) & breathes(Y) (Figure 6). The variable 
Y stays unbound, since it is universally quantified. 

Th~ result of this processing is that the relclause goal is satisfied, with Nounpred 
bound to: 

woman (Y) & breathes (Y) 

which caused the np goal be completed with Sentence bound to: 

forAll (Y, woman (Y) & breaths (Y)-loves (John, Y» 
which satisfies the vp goal with Verbform bound to: 

forAll (Y, woman (Y) & breaths (Y)-loves (John, Y» 
and yields a satisfied s goal with the ultimate binding for Sentence of: 

forAll (Y, woman (Y) & breaths (Y)-loves (John, Y» 

In following the application of this grammar it becomes clear that very strong pre­
dictions are made about which parts of the parse will be supplying particular types 
of information. Determiners provide the quantifiers for the propositional structure 
of the sentence. The first noun phrase and the noun phrase following the verb are 
the two participants in the predicate implied by the verb. Obviously the rules given 
here are part of a toy grammar, but the power of the logical variables can only be 
made use of through the encoding of these strong linguistic assumptions. DCGs 
provide a mechanism well qualified for expressing such assumptions and then 
executing them. The same type of assumptions can be found in LFGs as discussed 
in the conclusion. 

3 Comparing DC and ATN Grammars 

Figure 7 shows an ATN grammar which is the "equivalent" of the DCG grammar 
given in Figure 1. The format used to specify the grammar is the one described in 
[4] and [5]. There are only two minor ways in which this particular formalism dif­
fers from the standard ATN formalism described in [11] or [1]. First, the dollar sign 
character (i. e., $) followed by the name of a register stands for the contents of that 
register. Second, the function DEFATN defines a set of arcs, each of which is rep­
resented by a list whose first element is the name of the state and whose remaining 
elements are the arcs emanating from the state. 

In addition, this example uses a very simple lexical manager in which a word 
has (1) a set of syntactic categories to which is belongs (2) an optional set of fea­
tures, and (3) an optional root form for the word. These attributes are associated 
with a word using the function LEX, which supplies appropriate default values 
for unspecified arguments. Thus the expression 

(LEX dogs n (animate (number plural» dog) 
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could be used to indicate that the word dogs belongs to the syntactic category n 
(for noun), has the two features animate and number plural, and has the word dog 
as its root word. 

One immediate difference between the DCG and ATN formalism has to do 
with communication between different levels of processing. In the DCG formal­
ism, the application of each rule involves a different level of processing. The argu­
ments to the predicates representing a non-terminal serve as communication chan­
nels between the levels. As is standard in logic programming languages, each of 
these variables can be used either for input or output or both. 

The st;mdard A TN model adopts a more functional approach. A PUSH arc 
invokes a sub-computation which takes no arguments and, if successful, returns a 
single value. One can achieve the effect of passing parameters to a sub-computa­
tion by giving a register an initial value via a SENDR action. There are two meth­
ods by which one can achieve the effect of returning more than one value from a 
sub-computation. The first is for the sub-computation to POP with a value which 
is a list of the items to be passed back to the higher level. Actions on the invoking 
PUSH arc would then be responsible for decomposing the list into its constituent 
items. The second method is to use the LIFTR action to directly set registers in the 
higher level computation. The grammar in Figure 7 makes use of SENDR and 
LIFTR to pass parameters into and out of ATN computations and thus mimic the 
actions of the DCG example. 

Consider what must happen when looking for a noun phrase. The representa­
tion for an NP will be a predicate if the noun phrase is indefinite (i. e., "a man" 
becomes (man X))l or a constant if the noun phrase is a name (i.e., "John" 
becomes John). In this simple language, a NP is dominated by a either a sentence 
(if it is the subject) or by a verb phrase (if it is the object). In either case, the NP 
determines, or must agree with, the overall structure used to represent the domi­
nating constituent. If the NP is definite2, then it exerts no additional constraint on 
the representation of its dominator. If the NP is indefinite it will eventually result 
in a quantified expression for the dominating sentence or verb phrase. In this case 
we need to tell the dominating computation what the predicate, quantifier, connec­
tive, and variable name must be. In this ATN grammar, this is done by having the 
NP network return a value to represent the NP predicate and lift values for the 
quantifier, connective, and variable names. 

Similarly, when we are looking for a verb phrase, we must know what token 
(i. e., variable name or constant) represents the subject (if the verb phrase is domi­
nated by an S) or the head noun (if the verb phrase acts as a relative clause). This 
is done by sending the subjvar register in the sub-computation the appropriate 
value via the SENDR function. The techniques used to handle quantification and 
build an overall sentence structure in this A TN grammar are similar to those used 
in the BBN Lunar Grammar [12]. 

This heavy use of SENDR and LIFTR to communicate between levels in the 
grammar violates many accepted programming maxims and results in an A TN 

1 Note that we are switching to a lispy syntax for representing the meanings. 
2 Which in this toy grammar reduces to it being a name. 
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(defatn 

(s (push np t (setr subj .) (to s/subj») 

(s/subj (push vp t (oetr vp *) (Bendr subjvar $var) (to s/end») 

(s/end (pop (list $quant $var (list $connect $subj $vp» $subj) 
(pop $vp (null $subj») 

(np (wrd a t (liftr quant 'ForSome) (liftr connect 'And) (to np/det» 
(wrd every t (liftr quant 'ForAll) (liftr connect '-+) (to np/dot» 
(cat name t (setr var .) (to np/np») 

(np/det (cat n t (setr var (gensym» (setr n (list. $var» (to np/n») 

(np/n (wrd (who that which) t (to np/n/who» 
(jump np/np t» 

(np/np (pop $n t (liftr var») 

(np/n/who 
(push vp t (sendr sUbjvar $var) (sutr n (list 'And $n .» (to np/np») 

(vp (cat v t (setr v .) (to vp/v») 

(vp/v (push np (getf trans $v) (setr obj *) (satr objvar $var) (to vp/vp» 
(pop "(list $v $subjvar) (getf intrans $v») 

(vp/vp (pop (list $quant $objvar (list $connect 
$obj 
(list $v $subjvar $objvar») 

$obj) 
(pop (list $v $oubjvar $objvar) (null $obj»» 

The Lexicon 
(lex <word> <category> <features> <rootform» 

(lex man n) 
(lex woman n) 
(lex ioves v (intrano trans» 
(lex breathes v (intrans trans» 
(lax lives v (intrans» 
(lex John name) 

... etc ... 

Fig. 7. An equivalent ATN grammar 
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grammar which is cumbersome and difficult to understand. In the next section we 
investigate treating ATN registers as logic variables and providing a unification 
operation on them. 

4 Replacing ATN Registers with ATN Variables 

Although the previous ATN grammar does the job, it is clearly awkward. We can 
achieve much of the elegance of the DCa example by treating the ATN registers 
as logical variables and including a unification operation on them. We will call 
such registers ATN variables. 

Since our ATN variables must not be tampered with between unifications, 
assignment operations such as SETR, LIFfR, and SENOR are precluded. Thus 
the only operations on ATN Registers are access and unify. It is possible to pro­
vide operations similar to the standard SENOR and LIFfR by defining unifica­
tion operations which do the unification in another environment, but we have not 
explored these possibilities. 

The scheduler component of the ATN parser has been modified to be sensitive 
to the success or failure of attempted unifications. If a unification operation on an 
arc fails, the are is blocked and may not be taken. 

Figure 8 shows a grammar in the extended ATN formalism. A symbol preceded 
by a "$" represents an ATN Variable and "*,, will again stand for the current con­
stituent. Thus in the state S in the grammar: 

(S (PUSH NP (UNIFY '($SUBN AR $VP $S) *) (TO S/SUBJ))) 

the parser pushes to the state NP to parse a noun phrase. If one is found, it will 
pop back with a value which will then be unified with the expression ($SUBN AR 
$VP $S). If this unification is successful, the parser will advance to state S/SUBJ. 
If it fails, the arc is blocked causing the parser to backtrack into the NP network. 
Figure 9 shows the results of applying this A TN grammar to a number of simple 
sentences. 

Although our grammar succeeds in paralleling the behavior of the DCa, there 
are some open questions involving the use of unification in parsing natural lan­
guages. An examination of this ATN grammar shows that we are really using 
unification as a method of passing parameters. The full power of unification is not 
needed in this example since the grammar does not try to find "most-general 
unifiers" for complicated sets of terms. Most of the time it is simply using unifica­
tion to bind a variable to the contents of another variable. The most sophisticated 
use involves binding a variable in a term to another copy of that term which also 
has a variable to be bound as in the "a man loves a woman" example in Figure 9. 
But even this binding is a simple one-way application of standard unification. It is 
not clear whether this is due to the simple nature of the grammars involved or 
whether it is an inherent property of the directedness of natural language parsing. 

A situation where full unification might be rquired would arise when one is look­
ing for a constituent matching some partial description. For example, suppose we 
were working with a syntactic grammar and wanted to look for·a singular noun 
phrase. We might do this with the following PUSH arc: 
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(defatn 

(. (push np (unify '(Ssubjvar Svp S.) .) (to s/.ubj») 

(s/.ubj (push vp t (unify 'Svp.) (to .1.») 
(sIs (pop $a t» 

(np (wrd a t (unify 'Snp '(ForSome Svar (And Spred Shole») (to np/det» 
(wrd every t (unify 'Snp '(ForAll Svar (-+ Spred Shole») (to np/det» 
(cat name t (unify 'Snp 'Shole) (unify 'Svar.) (to np/np») 

(np/det (cat n t (unify 'Svar (gensym» (unify 'Spred '(. $var» (to np/n») 

(np/n (wrd (who that which) t (to np/n/who» 
(j UIIIp np/np t» 

(np/np (pop (list Svar 'Shole Snp) t » 

(np/n/who 
(push vp t (unify 'S.ubjvar 'Svar) (unify 'Spred '(And Spred .» (to np/np») 

(vp (cat v (getf trans .) (unify 'Sv '(. Saubjvar Sobjvar» (to vp/vtrans» 
(cat v (getf intrans .) (unify 'Sv '(. Ssubjvar» (to vp/vp»} 

(vp/vtrana (push np t (unify '($objvar Sv $vp) .) (to vp/vp») 

(vp/vp (pop $vp t» 

Fig.S. An equivalent ATN grammar with ATN variables 

(PUSH NP T (UNIFY * '(NP (DET $DEl) (NUMBER SINGULAR) (ADJ 
$ADJS) ... )) 
... ) 

If we follow the usual schedule of interpreting ATN grammars the unification will 
not occur until the NP network has found a noun phrase and popped back with a 
value. This would require a fully symmetric unification operation since there are 
variables being bound to values in both arguments. It is also highly inefficient 
since we may know immediately that the noun phrase in the input is not singular. 
What we would like is to be able to do the unification just after the push is done, 
which would more closely parallel a Prolog-based DCG parse. Then an attempt to 
"unify" the number register with anything other than singular would fail immedi­
ately. 

This could be done automatically if we constrain a network to have only one 
state which does a pop and place some additional constraints on the forms that 
can be used as values to be popped. Although we have not explored this idea at 
any length, it appears to lead to some interesting possibilities. 
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"John loves every woman who breathes" 

"John loves a woman" 

"a man loves a woman" 

(ForSome Xl 

(And (man Xl) 

(ForSome X2 (And (woman X2) (loves Xl ~»») 

".very man who lives loves" 

"every man who lovls mary lovls a woman who loves John" 

(ForAll Xl 

(-+ (And (man Xl) (loves Xl mary» 
(ForSome X2 (And (And (womzn X2) (loves X2 John» 

(loves Xl X2»») 

"every man who loves a woman who loves Ivery dog loves every dog" 

(ForAll Xl 

(-- (And (man Xl) 
(ForSome X2 

(And (And (woman X2) 

(ForAll X3 (-+ (dog~) (lovos X2 X3»» 
(loTes Xl X2»» 

(ForAll X4 (-- (dog X4) (loves Xl X4»») 

Fig. 9. Example parses with the ATN grammar 
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5 Conclusions 

The particular DCG example we have used in this paper illustrates the similarity 
between the use of logical variables in DCGs and the evaluation of equations in 
lexical functional grammars (LFGs). The passing of logical variables in the DCG 
from the det clause to the np clause to the vp clause corresponds to equating the 
variables from different parts of the syntactic structure being built by an LFG. 
LFGs also produce functional representations of the sentence at the same time as 
a syntactic parse is being built, another important similarity. However, they do not 
build the quanification into the functional structure in the way illustrated by the 
DCG example. This is done later by the semantic component. Also, in the current 
implementation of LFG, the functional structure is actually built after the syntac­
tic parsing is completed, but a new implementation designed to build the struc­
tures in parallel is in progress. 

The DCG example is really a toy example based on Montague grammars. 
DCGs are a powerful tool for encoding grammar rules that support a particular 
theory. DCGs do not represent a linguistic theory in themselves, whereas LFGs 
do. The purpose of this comparison is to simplify the explanation of equating vari­
ables in LFGs, and to indicate the suitability of DCGs for implementing this type 
of approach. 

LFGs have two components: 1) grammar rules with associated equations for 
building up a functional description of the sentence and 2) the lexical rules. The 
lexical rules consist of rules for the individual lexical entries of words as well as 
redundancy rules that take advantage of cross-word generalizations such as active­
passive forms of verbs. The grammar rules are context free rules that generate 
several possible syntactic structures, many of which are not grammatical. The reso­
lution of the equations associated with the grammar rules is intended to eventually 
exclude the ungrammatical structures. The equations contain variables that must 
be filled in by information supplied by the lexical entries. There are arrows asso­
ciated with the equations as well as with the lexical entries to guide the instantia­
tion of the variables. The LFG grammar rule in Figure 10 is the standard one for 
doubly transitive verbs: 

GRAMMAR RULE: 

VP --> Verb ( NP ( NP )). 
t l (<1 Object1)=l (<1 Object2)=l» 

LEXICAL ENTRY: 

handed VERB <1 Tense) = Past 
(t Predicate) = 'Hand«t Subject),(t Object1),(t Object2» 

Fig. 10. An LFG rule 
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VP--Verb NP NP 

and the equation associated with it indicates which components the NPs will 
instantiate in the function structure, namely the Objectj and Object2' 

The arrow notation has a somewhat involved explanation. LFGs first generate a 
tree from the context free grammar rules, filling in the leaf nodes with the appro­
priate lexical items. Every node on the tree is then assigned a variable. The arrows 
give directions for the instantiation of the variables. Sometimes instantiations are 
passed upwards in the tree, and sometimes downwards. Tense, for instance is 
passed up to the parent of VERB node. Not surprisingly, Object1 will eventually 
get instantiated with the value of the NP corresponding to the direct object of the 
sentence, and Object2 will eventually be given the value of the indirect object. 
Objectj and Object2 are the arguments to the verb predicate, and in the final func­
tional description, the verb predicate itself will be assigned a unique identifier, say 
j3, and the Objectj of that predicate will be assigned another unique identifier, /4. 
The use of an equation such as (tObjectj) = ! can now be demonstrated, since (j3 
Objectt) = /4 represents just that information, namely, that the Objectj of j3 is /4. 
The upward arrow indicated that j3 was the node immediately above in the tree, 
and the downward arrow indicated that /4 is associated with the node the equa­
tion is associated with. 

The point to be made here is simply that the logical variables in DCGs can be 
used to accomplish the same end as the arrow notation. The example of a DCG 
parse showed how logical variables could be passed values from other parts of the 
parse. The DCG also used context free grammar rules to parse a clause while 
building up a functional structure at the same time. The main difference is that 
unification offers an advantage in providing a capability for instantiating variables 
while in the middle of the parse, instead of waiting until the parse is finished to 
"resolve the equations." The arrows in the original equation, (t Objectt) = !, can 
be replaced by logical variables such as F3 and F4. These variables would have to 
be explicitly bound to the variables assigned to the nodes in the tree. Then, when 
the node variables are assigned unique identifiers, those same identifiers would 
automatically instantiate the variables in the equations. An extra pass to "resolve" 
the equations would no longer be necessary. 

We have found the use of logical variables and unification to be a powerful 
technique in parsing natural language. It is one of the main sources of the 
strengths of the Definite Clause Grammar formalism. In attempting to capture this 
technique for an ATN grammar we have come to several interesting conclusions. 
First, the strength of the DCG comes as much from the skillful encoding of lin­
guistic assumptions about the eventual outcome of the parse as from the powerful 
tools it relies on. Second, the notion of logical variables (with unification) can be 
adapted to parsing systems outside of the theorem proving paradigm. We have 
successfully adapted these techniques to an ATN type parser and are beginning to 
embed them in an existing parallel bottom-up parser [6]. The similarities between a 
DCG and the LFG formalism have been sketched out and we have sugested that 
DCGs might be a good vehicle for implementing an LFG system. Third, the full 
power of unification may not be necessary to successfully use logical variables in 
natural language parsers. 
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