
Desiderata for Agent Communication Languages

James Mayfield Yannis Labrou Tim Finin

Computer Science Department
University of Maryland Baltimore County

Baltimore MD 21228-5398 USA
{mayfield,jklabrou,finin}@cs.umbc.edu

Abstract

This paper offers some opinions on the desir-
able features of languages and protocols for com-
munication among intelligent information agents.
These desiderata are divided into seven cate-
gories: form, content, semantics, implementa-
tion, networking, environment, and reliability.
The Knowledge Query and Manipulation Lan-
guage (KQML), is a new language and protocol
for exchanging information and knowledge. This
work is part of a larger effort, the ARPA Knowl-
edge Sharing Effort, which is aimed at developing
techniques and methodologies for building large-
scale knowledge bases which are sharable and
reusable. KQML is both a message format and a
message-handling protocol to support run-time
knowledge sharing among agents. KQML is de-
scribed and evaluated as an agent communication
language relative to the desiderata.

Introduction

The computational environment which is emerging in
such programs as the National Information Infrastruc-
ture (NII) is characterized by being highly distributed,
heterogeneous, extremely dynamic, and comprising a
large number of autonomous nodes. An information
system operating in such an environment must handle
several emerging problems:

¯ The predominant architecture on the Internet, the
client-server model, is too restrictive. It is diffi-
cult for current Internet information services to take
the initiative in bringing new, critical material to a
user’s attention. Some nodes will want to act as both
clients and servers, depending upon with whom they
are interacting.

¯ Several forms of heterogeneity need to be handled,
e.g. different platforms, different data formats, the
capabilities of different information services, and the

*This work was supported in part by the Air Force Office
of Scientific Research under contract F49620-92-J-0174,
and the Advanced Research Projects Agency monitored
under USAF contracts F30602-93-C-0177 and F30602-93-
C-0028 by Rome Laboratory.

different standards (CORBA, OLE, LINDA, ISIS,
ZIRCON, OpenDoc, etc.) used by those services.

¯ Many software technologies such as event simulation,
applied natural language processing, knowledge-
based reasoning, advanced information retrieval,
speech processing, etc. have matured to the point
of being ready to participate in and contribute to an
NII environment. However, there is a lack of tools
and techniques for constructing intelligent clients
and servers or for building agent-based software in
general.

A community of intelligent agents can address the first
two of the problems mentioned above. When we de-
scribe agents as intelligent, we refer to their ability to:
communicate with each other using an expressive com-
munication language; work together cooperatively to
accomplish complex goals; act on their own initiative;
and use local information and knowledge to manage
local resources and handle requests from peer agents.

Desiderata

In this section we identify requirements for agent com-
munication languages. We divide these requirements
into seven categories: form, content, semantics, im-
plementation, networking, environment, and reliabil-
ity. We believe that an agent communication language
will be valuable to the extent that it meets these re-
quirements. At times, these requirements may be in
conflict with one another. For example, a language
that can be easily read by people might not be as con-
cise as possible. It is the job of the language designer
to balance these various needs.

Form

A good agent communication language should be
declarative, syntactically simple, and readable by peo-
ple. It should be concise, yet easy to parse and to
generate. To transmit a statement of the language to
another agent, the statement must pass through the bit
stream of the underlying transport mechanism. Thus,
the language should be linear or should be easily trans-
lated into a linear form. Finally, because a communi-

122

From: AAAI Technical Report SS-95-08. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved. 



cation language will be integrated into a wide variety
of systems, its syntax should be extensible.

Content

A communication language should be layered in a way
that fits well with other systems. In particular, a dis-
tinction should be made between the communication
language, which expresses communicative acts, and the
content language, which expresses facts about the do-
main. Such layering facilitates the successful integra-
tion of the language to applications while providing
a conceptual framework for the understanding of the
language.

The language should commit to a well defined set
of communicative acts (primitives). Although this set
could be extensible, a core of primitives that capture
most of our intuitions about what constitutes a com-
municative act irrespective of application (database,
object-oriented system, knowledge base, elc.) will en-
sure the usability of the language by a variety of sys-
tems. The choice of the core set of primitives also
relates to the decision of whether to commit to a spe-
cific content language. A commitment to a content
language allows for a more restricted set of commu-
nicative acts because it is then possible to carry more
information at the content language level. The disad-
vantage is that all applications must then use the same
content language; this is a heavy constraint.

Semantics

Semantics is an issue that has often been neglected
during the design of communication languages. Such
neglect is the direct result of the obscurity that sur-
rounds the purpose and the desired features of com-
munication languages. Although the semantic descrip-
tion of communication languages and their primitives
is often limited to natural language descriptions, a well-
defined semantic description is anything but a luxury.
This is especially true if the communication language
is intended for interaction among a diverse range of ap-
plications. Applications designers should have a shared
understanding of the language, its primitives and the
protocols associated with their use, and abide by that
shared understanding.

The semantics of a communication language should
exhibit those properties expected of the semantics of
any other language. It should be grounded in the-
ory, and it should be unambiguous. It should exhibit
canonical form (similarity in meaning should lead to
similarity in representation). Because a communica-
tion language is intended for interaction that extends
over time amongst spatially dispersed applications, lo-
cation and time should be carefully addressed by the
semantics. Finally, the semantic description should
provide a model of communication, which would be
useful for performance modeling, among other things.

Implementation

The implementation should be efficient, both for speed,
and for bandwidth utilization. It should provide a good
fit with existing software technology. The interface
should be easy to use; details of the networking layers
that lie below the primitive communicative acts should
be hidden from the user. Finally, the language should
be amenable to partial implementation, because sim-
ple agents may only need to handle a subset of the
primitive communicative acts.

Networking
An agent communication language should fit well with
modern networking technology. This is particularly
important because some of the communication will
be about concepts involving networked communica-
tions. The language should support all of the ba-
sic connections--point-to-point, multicast and broad-
cast. Both synchronous and asynchronous connections
should be supported. The language should contain a
rich enough set of primitives that it can serve as a sub-
strate upon which higher-level languages and protocols
can be built. Moreover, these higher-level protocols
should be independent of the transport mechanisms
(e.g., TCP/IP, email, http, etc.) used.

Environment

The environment in which intelligent agents will be
required to work will be highly distributed, heteroge-
neous, and extremely dynamic. To provide a commu-
nication channel to the outside world in such an en-
vironment, a communication language must provide
tools for coping with heterogeneity and dynamism.
It must support interoperability with other languages
and protocols. It must support knowledge discovery in
large networks. Finally, it must be easily attachable to
legacy systems.

Reliability

A communication language must support reliable and
secure communication among agents. Provisions for se-
cure and private exchanges between two agents should
be supported. There should be a way to guarantee
authentication of agents. We should not assume that
agents are infallible or perfect--they should be robust
to inappropriate or malformed messages. The language
should support reasonable mechanisms for identifying
and signaling errors and warnings.

The Knowledge Sharing Effort

The ARPA Knowledge Sharing Effort (KSE) is a con-
sortium to develop conventions facilitating sharing and
reuse of knowledge bases and knowledge-based sys-
tems. Its goal is to define, develop, and test infras-
tructure and supporting technology, to enable partic-
ipants to build larger and more broadly functional
systems than could be achieved working alone. The

123



KSE is organized around four working groups, each of
which addresses a complementary problem identified
in current knowledge representation technology: In-
terlingua, Knowledge Representation System Specifica-
lion, Shared, Reusable Knowledge Bases, and External
Interfaces.

The Interlingua Group is developing a common lan-
guage for expressing the content of a knowledge-base.
This group has published a specification document
describing the Knowledge Interchange Formalism or
KIF (Genesereth ~: Fikes 1992), which is based on first
order logic with extensions to support non-monotonic
reason and definitions. KIF provides both a specifica-
tion for the syntax of a language, and a specification
for its semantics. KIF can be used to support trans-
lation from one content language to another, or as a
common content language between two agents that use
different native representation languages. Information
about KIF and associated tools is available from http:-
llwww, ca. umbc. edulkse/kif/.

The Knowledge Representation System Specification
Group (KRSS) focuses on defining common constructs
within families of representation languages. It has re-
cently finished a common specification for terminolog-
ical representations in the KL-ONE family. This doc-
ument and other information on the KRSS group is
available as http://www, cs. tmbc. edu/kse/krss/.

The Shared, Reusable Knowledge Bases Group
(SRKB) is concerned with facilitating consensus on the
content of sharable knowledge bases, with sub-interests
in shared knowledge for particular topic areas and in
topic-independent development tools and methodolo-
gies. It has established a repository for sharable on-
tologies and tools, which is available over the Internet
as http : llwww, cs.umbc, edu/kse/srkb/.

The scope of the External Interfaces Group is the
run-time interaction between knowledge-based sys-
tems and other modules. Special attention has been
given to two important cases--communication be-
tween two knowledge-based systems and communica-
tion between a knowledge-based system and a conven-
tional database management system (Pastor, McKay,
& Finin 1992). The KQML language is one of the main
results to come out of the external interfaces group of
the KSE. General information is available from http:-
//www. ca. umbc. edu/kqml.

The KQML Language
Knowledge Query and Manipulation Language
(KQML) is a language that is designed to support in-
teraction among intelligent software agents. It was de-
veloped by the AI~PA-supported Knowledge Sharing
Effort (Neches et al. 1991; Patil et al. 1992) and in-
dependently implemented by several research groups.
It has been successfully used to implement a variety of
information systems using different software architec-
tures.

Communication takes place on several levels. The

content of the message is only a part of the communi-
cation. Being able to locate and engage the attention
of another agent with which an agent wishes to commu-
nicate is a part of the process. Packaging a message
in a way that makes clear the purpose of an agent’s
communication is another.

When using KQML, a software agent transmits con-
tent messages, composed in a language of its own
choice, wrapped inside of a KQML message. The con-
tent message can be expressed in any representation
language and written in either ASCII strings or one
of many binary notations (e.g. network independent
XDR representations). KQML implementations ignore
the content portion of a message except to recognize
where it begins and ends.

The syntax of KQML is based on a balanced-
parenthesis list. The initial element of the list is the
performative; the remaining elements are the perfor-
mative’s arguments as keyword/value pairs. Because
the language is relatively simple, the actual syntax is
not significant and can be changed if necessary in the
future. The syntax reveals the roots of the initial im-
plementations, which were done in Common Lisp; it
has proven to be quite flexible.

KQML is expected to be supported by a software
substrate that makes it possible for agents to locate
one another in a distributed environment. Most cur-
rent implementations come with custom environments
of this type; these are commonly based on helper
programs called routers or facilitators. These envi-
ronments are not a part of the KQML specification.
They are not standardized and most of the current
KQML environments will evolve to use one or more of
the emerging commercial frameworks, such as OMG’s
CORBA or Microsoft’s OLE2.

The KQML language simplifies its implementation
by allowing KQML messages to carry any useful infor-
mation, such as the names and addresses of the send-
ing and receiving agents, a unique message identifier,
and notations by any intervening agents. There are
also optional features of the KQML language which
contain descriptions of the content: its language, the
ontology it assumes, and some type of more general de-
scription, such as a descriptor naming a topic within
the ontology. These optional features make it possible
for supporting environments to analyze, route and de-
liver messages based on their content, even though the
content itself is inaccessible.

The forms of these parts of the KQML message may
vary, depending on the transport mechanism used to
carry the KQML messages. In implementations which
use TCP streams as the transport mechanism, they
appear as fields in the body of the message. In an
earlier version of KQML, these fields were kept in re-
served locations, in an outer wrapper of the message, to
emphasize their difference from other fields. In other
transport mechanisms the syntax and content of these
message may differ. For example, in the E-mail im-

124



plementation of KQML, these fields are embedded in
KQML mail headers.

The set of performatives forms the core of the lan-
guage. It determines the kinds of interactions one can
have with a KQML-speaking agent. The primary func-
tion of the performatives is to identify the protocol to
be used to deliver the message and to supply a speech
act that the sender attaches to the content. The per-
formative signifies that the content is an assertion, a
query, a command, or any other mutually agreed upon
speech act. It also describes how the sender would like
any reply to be delivered (i.e., what protocol will be
followed).

Conceptually, a KQML message consists of a perfor-
mative, its associated arguments which include the real
content of the message, and a set of optional transport
arguments, which describe the content and perhaps the
sender and receiver. For example, a message represent-
ing a query about the price of a share of IBM stock
might be encoded as:

(ask-one
:content (PRICE IBM ?price)
: receiver stock-server
: language LPROLOG
: ontology NYSE-TICKS)

In this message, the KQML performative is ask-one,
the content is (price ibm ?price), the ontology assumed
by the query is identified by the token nyse-ticks, the
receiver of the message is to be a server identified as
stock-server and the query is written in a language
called LPROLOG. A similar query could be conveyed
using standard Prolog as the content language in a
form that requests the set of all answers as:

(ask-all
:content "price(IBM, [?price, ?time])"
:receiver stock-server
: language standard_prolog
: ontology NYSE-TICKS)

The first message asks for a single reply; the second
asks for a set as a reply. If a query is to be issued that
is likely to have large number of replies, the replies
can be requested one at a time using the stream-all
performative. (To save space, we will no longer repeat
fields which are the same as in the above examples.)

(stream-all
;;?VL is a large set o~ symbols
: content (PRICE ?VL ?price))

The stream-all performative asks that a set of answers
be turned into a set of replies. To exert control of this
set of reply messages, the standby performative can be
wrapped around the preceding message:

(standby
: content (stream-all

: content (PRICE ?VL ?price)))

The standby performative expects a KQML language
content; it requests that the agent receiving the request

hold the stream of messages and release them one at
a time. The sending agent requests a reply with the
next performative. The exchange of next/reply mes-
sages can continue until the stream is depleted or until
the sending agent sends either a discard message (i.e.
discard all remaining replies) or a rest message (i.e.
send all of the remaining replies now). This combina-
tion is so useful that it can be abbreviated:

(generate
:content (PRICE ?VL ?price)))

A different set of answers to the same query can be
obtained (from a suitable server) with the query:

(subscribe
: content (stream-all

:content (PRICE IBM ?price)))

This performative requests all future changes to the
answer to the query (i.e. it is a stream of messages
which are generated as the trading price of IBM stock
changes). An abbreviation for subscribe/stream com-
bination is known a monitor.

(monitor
:content (PRICE IBM ?price)))

Though there is a predefined set of reserved per-
formatives, it is neither a minimal required set nor a
closed one. A KQML agent may choose to handle only
a few (perhaps one or two) performatives. The set 
extensible; a community of agents may choose to use
additional performatives if they agree on their interpre-
tation and the protocol associated with each. However,
an implementation that chooses to implement one of
the reserved performatives must implement it in the
standard way.

Some of the reserved performatives are shown in
Figure 1. In addition to standard communication
performatives such as ask, tell, deny, delete, and
more protocol-oriented performatives such as sub-
scribe, KQML contains performatives related to the
non-protocol aspects of pragmatics, such as adver-
tise(which allows an agent to announce what kinds of
asynchronous messages it is willing to handle) and re-
cruit (which can be used to find suitable agents for
particular types of messages). For example, the server
in the above example might have earlier announced:

(advertise
: ontology NYSE-TICKS
: language LPROLOG
: content (monitor

:content (PRICE ?x ?y)))

Which is roughly equivalent to announcing that it is a
stock ticker and inviting monitor requests concerning
stock prices. This advertise message is what justifies
the subscriber’s sending the monitor message.

125



Basic query performatives:
¯ evaluate, ask-if, ask-in, ask-one, ask-all, ...

Multl-response query performatives:

¯ stream-in, stream-all, ...
Response performatives:

, reply, sorry, ...

Generic informational performatives:

¯ tell, achieve, cancel, untell, unachieve, ...

Generator performatives:
¯ standby, ready, next, rest, discard, generator, ...

Capability-definition performatives:
¯ advertise, subscribe, monitor, import, export, ...

Networking performatives:
¯ register, unregister, forward, broadcast, route, ...

Figure 1: There are about two dozen reserved per-
formative names which fall into seven basic cate-
gories.

How KQML Stacks Up

In this section, we evaluate the KQML language as
it stands today, relative to our desiderata for agent
communication languages.

Form

The only primitives of the languages, i.e., the perfor-
lnatives, convey the communicative act and the ac-
tions to be taken as a result. Thus the form should
be deemed to be declarative. In format, KQML mes-
sages are linear streams of characters with a Lisp-like
syntax. Although this formatting is irrelevant to the
functions of the language, it makes the messages easy
to read, to parse and to convert to other formats. The
syntax is simple and allows for the addition of new pa-
rameters, if deemed necessary, in a future revision of
the language.

Content

The KQML language can be viewed as being divided
into three layers: the content layer, the message layer
and the communication layer. KQML messages are
oblivious to the content they carry. Although in cur-
rent implementations of the language there is no sup-
port for non-ASCII content, there is nothing in the
language that would prevent such support. The lan-
guage offers a minimum set of performatives that cov-
ers a basic repertoire of communicative acts. They
constitute the message layer of the language and are
to be interpreted as speech acts. Although there is no
"right" necessary and sufficient set of communicative
acts, KQML designers tried to find the middle ground
between the two extremes: 1) providing a small set of
primitives thereby requiring overloading at the content
level; and 2) providing an extensive set of acts, where

inevitably acts will overlap one another and/or embody
fine distinctions. The communication layer encodes a
set of features to the message which describe the lower
level communication parameters, such as the identity
of the sender and recipient, and a unique identifier as-
sociated with the communication.

Semantics
KQML semantics is still an open issue. For now there
are only natural language descriptions of the intended
meaning of the performatives and their use (proto-
cols). An approach that emphasizes the speech act
flavor of the communication acts is a thread of ongo-
ing research (Labrou & Finin 1994).

Implementation
The two implementations of KQML currently avail-
able, the Lockheed KQML API and the UNISYS
KQML API, each provides a content-independent mes-
sage router and a facilitator. Facilitators are special-
ized KQML agents that maintain information about
other agents in their domain and those agents’ query-
answering capabilities (existing versions of facilitators
supply only simple registration services). The applica-
tion must provide handler functions for the performa-
tives in order for the communication acts to be pro-
cessed by the application and eventually return the
proper response(s). It is not necessary that an ap-
plication should handle all performatives since not all
KQML-speaking applications will be equally powerful.
Creating a KQML speaking interface to an existing ap-
plication is a matter of providing the handler functions.
The efficiency of KQML communication has been in-
vestigated. Various compression enhancements have
been added which cut communication costs by reduc-
ing message sizes and also by eliminating a substantial
fraction of symbol lookup and string duplication.

Networking
KQML-speaking agents can communicate directly
with other agents (addressing them by symbolic name),
broadcast their messages or solicit the services of fel-
low agents or facilitators for the delivery of a message
by using the appropriate performatives. KQML al-
lows for both synchronous/asynchronous interactions
and blocking/non-blocking message sending on behalf
of an application through assignment of the appropri-
ate values for those parameters in a KQML message.

Environment
KQML can use any transport protocol as its transport
mechanism (http, smtp, TCP/IP etc.). Also, because
KQML messages are oblivious to content, there are no
restrictions on the content language beyond the pro-
vision of functions that handle the performatives for
the content language of the application. Interoperabil-
ity with other communication languages remains to be
addressed as such languages appear. One such attempt

126



has been made by Davis, whose Agent-K attempts to
bridge KQML and Shoham’s Agent Oriented Program-
ming. The existence of facilitators in the KQML en-
vironment can provide the means for knowledge dis-
covery in large networks, especially if facilitators can
cooperate with other knowledge discovery applications
available in the World Wide Web.

Reliability

The issues of security and authentication have not been
addressed properly thus far by the KQML community.
No decision has been made on whether they should be
handled at the transport protocol level or at the lan-
guage level. At the language level, new performatives
or message parameters can be introduced that allow for
encryption of either the content or the whole KQML
message. Since KQML speaking agents might be im-
perfect, there are performatives (error and sorry) that
can be used as responses to messages that an applica-
tion cannot process or comprehend.

Conclusion
A good agent communication language has many
needs, some of which are in competition. KQML is
a new communication language that addresses many
(although not all) of these needs. Additional infor-
mation on KQML, including papers, language spec-
ifications, access to APIs, information on email dis-
cussion lists, elc., can be obtained via the world wide
web as http ://www. cs. umbc. edu/kqml/and via ftp from
ftp. cs. umbc. edu in pub/kqml/.

References
ARPA Knowledge Sharing Initiative. 1992. Specifi-
cation of the KQML agent-communication language.
AIZPA Knowledge Sharing Initiative, External Inter-
faces Working Group working paper. Available as
http ://www. cs. umbc. edu/kqml/papers/kqml-spec, ps.

Finin, T.; McKay, D.; Fritzson, R.; and McEn-
tire, R. 1993. KQML: an information and knowl-
edge exchange protocol. In International Con-
ference on Building and Sharing of Very Large-
Scale Knowledge Bases. A version of this paper
will appear in Kazuhiro Fuchi and Toshio Yokoi
(Ed.), "Knowledge Building and Knowledge Shar-
ing", Ohmsha and IOS Press, 1994. Available as
http ://www. cs. umbc. edu/kqml/papers/kbks, ps.

Finin, T.; McKay, D.; Fritzson, R.; and McEntire,
R. 1994. The KQML information and knowledge
exchange protocol. In Third International Conference
on Information and Knowledge Management.

Finin, T.; Nicholas, C.; and Yesha, Y., eds. 1993.
Information and Knowledge Management, Expanding
the Definilion of Database. Lecture Notes in Com-
puter Science 752. Springer-Verlag. (ISBN 3-540-
57419-0).

Genesereth, M., and Pikes, R. 1992. Knowledge inter-
change format, version 3.0 reference manual. Techni-
cal report, Computer Science Department, Stanford
University.
Genesereth, M. 1993. An agent-based approach to
software interoperability. Technical Report Logic-91-
6, Logic Group, CSD, Stanford University.

Kuokka, D. R.; McGuire, J. G.; Weber, J. C.; Tenen-
baum, J. M.; Gruber, T. R.; and Olsen, G. R. 1993.
Shade: Technology for knowledge-based collabora-
tive. In AAAI Workshop on AI in Collaborative De-
sign.

Labrou, Y., and Finin, T. 1994. A semantics ap-
proach for KQML--a general purpose communica-
tion language for software agents. In Third Inter-
national Conference on Information and Knowledge
Management. Available as http ://www. cs .umbc. edu/-
kqml/papers/kqml-semant ics. ps.

McGuire, J. G.; Kuokka, D. R.; Weber, J. C.; Tenen-
baum, J. M.; Gruber, T. R.; and Olsen, G. R. 1993.
Shade: Technology for knowledge-based collaborative
engineering. Journal of Concurrent Engineering: Ap-
plications and Research (CERA) 1(2).

M.Tenenbaum; Weber, J.; and Gruber, T. 1993. En-
terprise integration: Lessons from shade and pact. In
Petrie, C., ed., Enterprise Integration Modeling. MIT
Press.

Neehes, lZ.; Pikes, R.; Finin, T.; Gruber, T.; Patil, lZ.;
Senator, T.; and Swartout, W. 1991. Enabling tech-
nology for knowledge sharing. AI Magazine 12(3):36-
56.

Pan, J. Y.-C., and Tenenbaum, J. M. 1991. An in-
telligent agent framework for enterprise integration.
IEEE Transactions on Systems, Man and Cybernet-
ics 21(6). (Special Issue on Distributed AI).
Pastor, J.; McKay, D.; and Finin, T. 1992. View-
concepts: Knowledge-based access to databases. In
First International Conference on Information and
Knowledge Management.
Patil, R.; Pikes, R.; Patel-Schneider, P.; McKay, D.;
Finin, T.; Gruber, T.; and Neches, R. 1992. The
DARPA knowledge sharing effort: Progress report.
In Principles of Knowledge Representation and Rea-
soning: Proceedings of the Third International Con-
ference. Available as http://ww~, cs. umbc. edu/kqml/-
papers/kr92 .ps.
Wiederhold, G.; Wegner, P.; and Ceri, S. 1992.
Toward megaprogramming. Communications of the
ACM 33(11):89-99.

127




