
Automatically Generated DAML Markup for
Semistructured Documents

William Krueger, Jonathan Nilsson, Tim Oates, Timothy Finin

CSEE Department, UMBC, 1000 Hilltop Circle,
Baltimore, MD 21250, USA

{wkrueg1, jnilss1, oates, finin}@cs.umbc.edu

Abstract. The semantic web is becoming a realizable technology due to the ef-
forts of researchers to develop semantic markup languages such as the DARPA
Agent Markup Language (DAML). A major problem that faces the semantic
web community is that most information sources on the web today lack seman-
tic markup. To fully realize the potential of the semantic web, we must find a
way to automatically upgrade information sources with semantic markup. We
have developed a system based on the STALKER algorithm that automatically
generates DAML markup for a set of documents based on previously seen la-
beled training documents. Our rule-learning approach to semantic markup is
highly effective when dealing with semistructured documents.

1 Introduction

Imagine a world-wide information network in which seamlessly integrated intelligent
agents perform complex tasks by retrieving and processing information from any-
where in the world. This is the vision of the semantic web (Hendler, 2001). To make
this vision a reality, the information stored on the world-wide web must be machine-
understandable. Ideally, the expensive chore of manually marking up web documents
with a semantic markup language like DAML (Hendler McGuinness, 2000) can be
avoided. Even hand-crafting rules is essentially an expensive manual approach as
great effort must be made to write the many rules needed to perform accurate infor-
mation extraction. Our research consists of finding an alternative to manual markup.
Our alternative is a machine learning approach.

Although our system can be applied to any ontology, any semi-structured informa-
tion source, and any semantic markup language, we applied the system to the problem
of marking up talk announcements from three different domains with DAML. These
specifics were chosen to support UMBC’s ITTALKS system. ITTALKS (Cost et al.,
2002) is an application that utilizes an agent architecture to discover talks that are of
interest to users.

Our system uses the Talk ontology developed at UMBC as a guide for hierarchical
wrapper induction. An ontology is the structured vocabulary used to semantically
markup a document. Given the hierarchical nature of ontologies, it is natural to im-
plement a hierarchical approach to performing semantic markup. The STALKER
algorithm (Muslea, Minton, Knoblach, 2001) uses such a hierarchical approach,
L. van Elst, V. Dignum, and A. Abecker (Eds.): AMKM 2003, LNAI 2926, pp. 276-287, 2003.

 Springer-Verlag Berlin Heidelberg 2003

Automatically Generated DAML Markup for Semistructured Documents 277

meaning that it limits its search within a document for leaves like our and Minute
according to where their ontological parent egin ime occurs.

Information agents use wrappers to extract information from documents. A wrap-
per is a set of extraction rules along with the code required to apply those extraction
rules to a given document. Using this terminology, STALKER is a hierarchical
wrapper induction algorithm. Using machine learning terminology, STALKER is a
sequential covering algorithm. As explained in (Muslea et al., 2001), the STALKER
algorithm requires up to two fewer orders of magnitude fewer training examples than
other current wrapper induction algorithms and can handle information sources that
cannot be wrapped by any other existing techniques. We have extended STALKER.
Our implementation is based on the algorithm as it is described in (Muslea et al.,
2001). As a result, our system applies to semi-structured information sources, mean-
ing that relevant information should be locatable using a formal grammar.
We first describe a hierarchical characterization of the data in documents and then
explain how data is extracted from documents using rules. Moving on, we describe
the wrapper induction process in detail. After showing the method we use for ex-
tracting data, we focus in on several enhancements we made to the STALKER algo-
rithm as well as how those enhancements improved our system’s performance. We
then provide a statistical discussion of our empirical results. Finally, we present our
future considerations.

2 A ierarchical Characterization of Data

Ideally, we would like to view each talk announcement as a collection of segments.
These segments are itle, bstract, Date, egin ime, nd ime, Location, Speaker,

ost, and ype. Each of these segments is itself either data (a leaf in the ontology) or
a collection of other segments. For example, itle and bstract are data, whereas

egin ime consists of both egin ime: our and egin ime:Minute. Notice that we
have used the notation egin ime: our to convey that the hour we are talking about
pertains to the talk’s begin time as opposed to the talk’s end time. We make the as-
sumption that it is most likely to find data pertaining to a single entity, such as Loca-
tion, grouped closely together. This assumption enables us to view each document as
a collection of embedded segments, and we can focus our search for data within a
restricted view of the entire document.

However, it is possible that the city in which the talk is given does not appear near
the rest of the information about the talk’s location. Because of this problem, we
attempt to learn rules for extracting two different entities that represent the same piece
of data, one which is embedded and one which is not. We would like it if all talk
announcements were structured hierarchically in a way that is perfectly consistent
with the definition of our Talk ontology, but that is not the case. We might have
chosen to tailor the talk ontology to each specific domain, but we took a more general
approach.

278 William Krueger et al.

3 Wrappers

A wrapper is the set of rules used to extract data along with the code required to per-
form the extraction. Before describing the extraction process, let us first define some
terms. Viewing each document as a long sequence of tokens, let us define a landmark
to be a sequence of one or more consecutive tokens, that is, a nonempty subsequence
of the entire document. At this point, we should agree on what a token is. We have
already said that a document is a long sequence of tokens, meaning that each docu-
ment is parsed, or tokenized, into elementary pieces of text. Such tokens include
HTML tags, all-lowercase words, two-digit numbers, symbols, alphanumeric words,
etc. A rule clause is simply a landmark along with a qualifier indicating how to trav-
erse the landmark. The two types of rule clauses are: Skip o and Skip ntil. Let us
form an example to clarify the distinction between the two possible types of rule
clauses. Suppose our rule clause is Skip o(b SYMBOL), the token sequence “ b
SYMBOL” of type Skip o. The meaning of this rule clause would be to skip over
everything until an HTML bold tag was found, followed immediately by any symbol.
When this sequence of tokens has been found, then either the data we are searching
for begins immediately after the symbol or we resume searching immediately after
the symbol. On the other hand, suppose our rule clause is Skip ntil(b SYMBOL).
The meaning of this rule clause would again be to skip over everything until an
HTML bold tag was found, followed immediately by any symbol, only this time,
either the data we are seeking begins immediately at the first token in the Skip ntil
rule clause or we resume searching at the first token in the Skip ntil rule clause.
Whether or not we continue searching depends on whether or not the rule clause is
the last one in its rule.

Let us define a rule in this context to be an ordered list of rule clauses. Now, we
argue that a single rule can always be represented as some sequence of Skip o rule
clauses possibly followed by one Skip ntil rule clause. This claim is justified be-
cause any rule containing a Skip ntil rule clause rc in any position within the rule but
the last is equivalent to that same rule with the Skip ntil rule clause rc replaced by a
Skip o rule clause containing the same tokens. Therefore, we have two types of
rules: ones ending with a Skip o rule clause and ones ending with a Skip ntil rule
clause.

Now that we have defined our two types of rules, we can take the next step and see
how to extract data from a document. Rules can be applied both backward and for-
ward through a sequence of tokens. When applied in the backward direction, a rule
simply acts on a token sequence in reverse order. To extract data consisting of a
sequence of tokens, we must locate both the beginning and the end of that sequence.
For this, we must have some rules that locate the beginning and other rules that locate
the end. Given the beginning and end tokens of some piece of data, the entire piece
consists of the beginning token, the end token, and everything in between.

Consider the following excerpt from a UC Berkeley talk announcement: “This talk
will be held in the Main Lecture Hall at ICSI. 1947 Center Street, Sixth Floor, Berke-
ley, CA 94704-1198 (on Center between Milvia and Martin Luther King Jr. Way).”

Here, we will assume that the location data for the talk has previously been ex-
tracted by some set of rules and that the excerpted passage is the extracted location

Automatically Generated DAML Markup for Semistructured Documents 279

data. Suppose our goal is to extract Location:City, the city in which the talk takes
place. One way to do this would be to use the forward rule Skip o(,) Skip o(,) to
find the first token of the city and to use the backward rule Skip o(,) to find the last
token of the city. In this case, the first and last tokens are the same; they are both the
initial-cap word "Berkeley." There are many other rules that could be used to extract
the same data. Now we see why a hierarchical extraction approach is helpful. It is
likely that a rule as simple as Skip o(,) could not have been used to help find the city
if it had been applied to the entire document and not just to the portion of the docu-
ment containing the location.

4 ierarchical Wrapper Induction

It is now time to describe the STALKER algorithm (Muslea et al., 2001) upon which
our system is based. Let us assume we are finding only beginning tokens for data
since finding end tokens is analogous. For each element in the talk ontology, we do
the following: starting with a set of labeled training documents, we learn a single
rule based on the documents in to find the location of the beginning token for the
current ontology element. Next, we remove all documents from whose beginning
token for the current ontology element is correctly identified by the learned rule. We
then repeat the process of learning one rule, only now with a smaller set of docu-
ments, until contains no documents. What we are left with is sets of rules that can
be applied in some optimal ordering to find the beginning tokens for the elements in
the talk ontology. For a detailed description of the basic STALKER algorithm, see
(Muslea et al., 2001).

Since our system uses supervised machine learning, we should describe how we
labeled the training documents. The double angle brackets “ ” and “ ” are used to
avoid conflicts with HTML tags. Examples of begin tags are Talk and

Talk:Title , and their corresponding end tags are /Talk and
/Talk:Title . Each tag corresponds directly to an element with the same name in

the Talk ontology, so sometimes we may refer to both DAML tags and ontology
elements interchangeably.

When we are learning where to place a DAML tag, we make use of the location of
that tag’s ontological parent. To make this possible, we order the learning of tags by
ontological depth. Therefore, when we are learning where to place tags for some
ontology element of depth two, for example, we assume we will know where its onto-
logical parent of depth one is at markup time. When performing DAML markup for
some element, we can limit our view to only the portion of the document correspond-
ing to the parent of that element. Let us make this clear with an example. Say we are
determining where to place tags for the speaker of a talk. First, we insert tags for the
element alk Speaker Then, we look only in between these tags when determining
where to insert tags for alk:Speaker: irst ame, alk:Speaker: mail, etc. If we
could not insert tags for alk Speaker, then we also fail to insert tags for ontological
children of alk Speaker. If we are unable to insert tags for the tag alk, then our
hierarchical approach is dissolved.

280 William Krueger et al.

To motivate a few items we will address later on, it is convenient for us now to
discuss one component of the STALKER algorithm. Rule refinement works as fol-
lows. Each time we want to learn a single rule for determining some ontology ele-
ment's starting or end location, the rule refinement process occurs. Each rule starts
out as a single-token, single-landmark rule, such as Skip ntil(b). Then, the rule is
refined, that is, landmarks are added to the rule and tokens are added to the rule’s
landmarks, until it has either achieved perfect accuracy (though not necessarily per-
fect recall) on the current set of training documents or arrived at the threshold for the
maximum allowable rule size. Applying rule refinement to imperfect rules serves
three purposes. First, it serves to increase the accuracy of rules. Remember that our
system for learning rules is based on a sequential covering algorithm, so a rule is not
learned until it has attained perfect accuracy. Second, by refining a rule, we decrease
the chance that the rule will match some arbitrary sequence of tokens, and as a result
our system’s accuracy and recall on unseen documents is improved. Finally, rule
refinement allows one rule to be used in marking up many documents. That is, fewer
rules are learned because each learned rule has a greater coverage on the training
documents.

5 Contributions

We began with our goal being to implement a system based on the STALKER algo-
rithm to generate DAML markup for talk announcements on the web. DAML is
similar in structure to HTML, and it allows us to provide metadata for documents so
that they become understandable by machine applications. For instance, in a talk
announcement marked up with DAML, one might find the following text:
“ City Berkeley /City .”

We developed along the way some techniques to increase the accuracy and recall
of the basic system. With explanations to follow immediately, our added techniques
can be referred to as: Minimum Refinements, Rule Score, Refinement Window, and
Wildcards.

5.1 Minimum Refinements

Consider the case where an initial one-landmark, one-token rule matches only one
document in the training set of documents and where that match is correct according
to the labeling. Having learned a perfect rule, the document covered by that rule is
removed, and the system continues learning more rules. This case can occur quite
frequently and is highly undesirable. For instance, to learn the first name of a
speaker, the rule SkipUntil(George) might be found to be perfect. When applied to
unseen documents, however, this rule would probably be very ineffective in general
for finding the speaker’s first name. Our system, unlike the original STALKER algo-
rithm, forces rules to be refined at least a certain number of times, and we usually
choose that number to be five. In this way, we allow rules to be generalized with the

Automatically Generated DAML Markup for Semistructured Documents 281

hope that they will ultimately more closely reflect the structure of the documents
rather than the attributes of the data being extracted.

5.2 Rule Score

For each DAML tag, the system generates both a forward rule and a backward rule.
When it is time to mark up a new document, the forward and backward rules will
sometimes disagree on the location of the tag. The system must have a way to resolve
these disagreements. In the original STALKER algorithm, forward rules were always
used for begin tags and backward rules were always used for end tags. With the rule
score system both forward rules and backward rules are generated for every tag and
evaluated based on how well they perform on a validation set of documents. The
validation set consists of documents that have been marked up by hand but are not
used by the system to generate rules. Whenever forward and backward rules disagree
on the location of a tag, the system will use the rule with the highest score. Rules
with lower scores are only used when higher scored rules fail to find the locations for
tags.

5.3 Refinement Window

The system learns rules that find the position of tags relative to the position of their
ontological parents. This means that the system only has to consider information that
is contained within the ontological parent when looking for the location of a DAML
tag. Consider the tag egin ime our. Its ontological parent is the egin ime tag
which will likely contain only a few tokens. However, for a tag like alk itle that
has the entire talk as its parent the system will consider all of the tokens in the talk
announcement to learn a rule. Many of these tokens will be far enough away from
the title to be considered irrelevant. At best the system will consider many irrelevant
tokens. At worst it will actually use some of them in the rules and as a result generate
a rule that will work on one training document and nothing else. The refinement
window limits the number of tokens the system will consider when learning rules to
the n nearest tokens on each side of the tag. We usually use n 10 in our system.
This not only improves the quality of the rules the system learns, but also signifi-
cantly decreases the running time. For example, in the UCSB domain the time re-
quired to learn the forward and backward rules for all tags was reduced from 246
seconds to 66 seconds after adding the token window to the basic system. In this
experiment, we used a training set of 20 documents. Using the same training set, the
full system produced rules in 117 seconds.

5.4 Wildcards

The domain-independent wildcards used in the system are based on the structure of
tokens. For example, the INITIAL CAP WORD wildcard matches any token that
consists of an uppercase letter followed by zero or more lower case letters. We in-

282 William Krueger et al.

cluded one domain-independent wildcard for each elementary token type as well as
some more general wildcards such as ANY, which matches any token. In addition to
domain-independent wildcards, sometimes domain-specific wildcards can improve
the system’s performance. In determining the location of the Date Month tag, the
system might use the INITIAL CAP WORD wildcard in a rule because it will match
every month. Notice, though, that there may be many tokens in the document that
match this wildcard. For instance, even when the system is restricted to the date
information, not only the month but also the day of the week will match the
INITIAL CAP WORD wildcard. Because this wildcard is too general, the system
would have to use a literal landmark like September instead. “September” is too
specific, though. Our solution to this dilemma is to use domain-specific wildcards.
Adding the wildcard MONTH that matches any of the twelve months of the year
gives the system a wildcard that is exactly as general as it needs to be. Our system
includes several domain-specific wildcards.

6 perimental Results

To test the contribution of each technique when added to the basic system we formed
six different systems. One was the basic system which only used the STALKER
algorithm. One used the minimum refinement threshold. One used the refinement
window. One used domain specific wildcards. One used a rule score for marking up
documents. The full system used all of these components.

Let us define recall to be the number of correctly extracted data items divided by
the total number of data items that existed in the documents. Recall, defined in this
way, measures the system’s precision because only correctly extracted data items are
considered successes. In the discussion that follows, what we mean by the “perform-
ance” of some system is its recall for either one particular ontology element or all
ontology elements, depending on the context.

Three domains, each contributing a corpus of talk announcements, were chosen
fairly arbitrarily. The criterion we used in selecting two of these domains was that
within each domain there should be a plentiful supply of talk announcements having a
generally consistent structure. These two will be referred to as the UC Berkeley and
UCSB (University of California, Santa Barbara) domains, reflecting the origins of the
documents. The UC Berkeley and UCSB corpuses each contain 60 documents. We
will refer to the third domain as the ITTALKS domain, for this domain contains talk
announcements from UMBC’s ITTALKS system. This third domain was chosen
specifically because it had a very consistent structure and could serve as a sanity
check for our system. The ITTALKS corpus contains 30 documents.

We randomly chose ten ways to partition the sixty labeled training documents
from UC Berkeley into equal training, validation, and testing sets. Then we ran each
system on each of the partitions. We ran the same experiments on the UCSB and
ITTALKS domains, but first we will present our results from what proved to be our
most challenging domain, UC Berkeley. Because we ran each system on 10 different
partitions, we will typically refer to a system’s performance as average recall, which
is the average recall achieved over all 10 partitions.

Automatically Generated DAML Markup for Semistructured Documents 283

6.1 UC Berkeley Results

For most ontology elements the full system performed the best and the basic system
performed the worst. There was only one DAML tag for which the basic system had
better average recall than the full system. In several cases the differences between the
average performances on an element was dramatic. Examining those cases will show
what each component adds to the full system.

In attempting to extract date information, it makes sense to use domain specific
wildcards. There are only seven possible days of the week so it is simple to add a
wildcard to the system that matches any day. This improved average recall for the
day of the week over the basic system from 87.5 to 91.5 . However, using score
to select the best rule for mark up yielded a 94 average recall even without the
wildcards. The full system which made use of both achieved a 96 average recall
for day of the week.

In most documents the title occurs near the beginning. Since the title’s ontological
parent is the entire talk the system has almost the entire document to look at to deter-
mine a rule for the end of the title. Most of this information is far enough away from
the title to be worthless. However, the basic system is allowed to use it to develop a
rule that works on the training data but probably not on any unseen documents. By
only allowing the system to use the 10 closest tokens in refinement we force it to use
the most relevant information surrounding data to learn new rules. The refinement
window improved average recall for title from 22 on the basic system to 49.5 .
The full system achieved 60.5 average recall for the title.

It is hard for the system to learn rules to extract names because it is easy to learn
rules that will work on one document but not any others. For instance it may learn
that George indicates the speaker’s first name, but that only works for a small fraction
of speakers. Including a minimum refinement threshold forces the system to ignore
initial candidates that are too specific. The basic system only had 2.5 average recall
for the speaker’s first name, but with the minimum refinement threshold it reached
50 .

The most effective component was using the score to mark up documents. With
this system, the rules are tried on a validation set and ordered based on effectiveness.
Then when the system is given new documents to mark up, the most effective rules
take precedence over less effective rules. In the basic system begin tags are always
found using forward rules and end tags are always found using backward rules.
Unlike the basic system the score system will always use the most historically accu-
rate rule. The score system did better than the basic system on almost all tags.

The full system’s average recall over all tags was 83.1 with a standard deviation
of 2.7 . These numbers are statistically significant when compared to those of the
basic system. The basic system’s average recall over all tags was 69.6 with a stan-
dard deviation of 2.1 . See figure 1 for a comparison of the recall of the two sys-
tems.

The average recall for several tags was significantly improved by the features pre-
sent in the full system. These instances are displayed in figure 2.

UC Berkeley was our most challenging domain due to a higher degree of inconsis-
tency in the documents. For instance, the begin time appeared as “2:00” in one docu-

284 William Krueger et al.

document and “2pm” in another. Such inconsistencies were abundant in the UC
Berkeley domain.

Fig. 1. Average recall for all tags in the UC Berkeley domain. The error bars represent 95
confidence intervals

Fig. 2. Average recall for selected tags in the UC Berkeley domain. An entire bar represents
the average recall achieved by the full system for that tag. The black and white portions of a
bar represent the average recall achieved by the basic system and the improvement made by the
full system, respectively

Automatically Generated DAML Markup for Semistructured Documents 285

6.2 UCSB and ITTALKS Results

The results from the UCSB domain were similar to those from the UC Berkeley do-
main. See figure 3 for a comparison between the basic and full systems. The average
recall for several tags was significantly improved by the features present in the full
system, and these instances are displayed in figure 4.

Fig. 3. Average recall for all tags in the UCSB domain. The error bars represent 95 confi-
dence intervals

Fig. 4. Average recall for selected tags in the UCSB domain. An entire bar represents the
average recall achieved by the full system for that tag. The black and white portions of a bar
represent the average recall achieved by the basic system and the improvement made by the
full system, respectively

286 William Krueger et al.

As depicted in figure 5, the full system provided no significant increase in average
recall in the ITTALKS domain. Notice, however, that the basic system performed
much better in the ITTALKS domain than in the other two domains. This is because
the ITTALKS domain contains talk announcements that have regularly appearing
HTML comments that serve as useful landmarks. Since high-accuracy rules were
often learned using these HTML comments as landmarks, the rules learned by the full
system were often the same as those learned by the basic system.

Fig. 5. Average recall for all tags in the ITTALKS domain. The error bars represent 95 con-
fidence intervals

6.3 Mi ing the Domains

Up to this point, our system was tested only on one domain at a time. To test our
system’s ability to generate a single set of rules for two unrelated domains, we ran an
experiment in which the UC Berkeley and UCSB corpuses were combined.

Three results were possible. First, the learned rules that cover the UC Berkeley
domain could have poor coverage on the UCSB domain, and vice versa. Second, the
learned rules that accurately cover one of the domains could also inaccurately cover
the other domain. Finally, the learned rules that accurately cover one of the domains
could also accurately cover the other domain. This last case would occur if the two
domains shared a common structure. The first case would occur if the landmarks
used to locate tags in one domain were disjoint from the landmarks used to locate tags
in the other domain. In either case one or case three, the system would maintain a
performance on the mixed domains similar to the performance on each of the individ-
ual domains.

In our experiment, however, the second case occurred. As a result, the perform-
ance on the mixed domains was much worse than the performance on each individual
domain. Because the rules that covered one domain contained many landmarks that
appeared throughout the other domain in different contexts, those rules were refined
to the point where they ultimately suffered from overfitting. That is, when applied to
the testing set, the rules were too specific to achieve a high recall.

Automatically Generated DAML Markup for Semistructured Documents 287

 Conclusion and Future Considerations

In an effort to support the development of the semantic web, we have developed a
system that performs automatic DAML markup on talk announcements. Our system
is general enough to be applied to other domains as well. We plan to build upon our
current system in several ways. First, we plan to incorporate active learning. Not
only does active learning decrease the number of training examples needed when
learning rules, but also the number of rules learned is reduced, resulting in greater
coverage for individual rules. The number of rules learned is reduced because we can
select documents for our training set according to which ones produced rules with the
greatest coverage. When rules have greater coverage, we feel more confident that
they have discovered the regularity that exists in the documents. Our second goal is
to expand our system to support ontology elements that are found in lists in the
documents. For example, a talk might have several speakers. Another goal is to
incorporate into our system more linguistic information so that we can better handle
domains in which documents are less structured. By using a system that performs an
additional level of markup, labeling things like names, dates, and places, we could
take advantage of the additional tokens (the additional markup) available for land-
marks when learning rules. Finally, in order to increase the accuracy of learned rules,
we have explored using the internet, in particular the Google API, to tell us whether
or not our tagged data makes sense.

References

1. Ciravegna, F.: (LP)2, an Adaptive Algorithm for Information Extraction from Web-related
Texts. In Proceedings of the IJCAI-2001 Workshop on Adaptive Text Extraction and Min-
ing held in conjunction with 17th International Joint Conference on Artificial Intelligence
(IJCAI) (2001)

2. Cost, R. S., T. Finin, A. Joshi, Y. Peng, C. Nicholas, I. Soboroff, H. Chen, L. Kagal, F.
Perich, Y. Zou, and S. Tolia.: ITtalks: A Case Study in the Semantic Web and DAML OIL.
IEEE Intelligent Systems (2002) 17(1):40-47

3. Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems (2001) 16(2):30-37
4. Hendler, J. and D. L. McGuinness: The Darpa Agent Markup Language. IEEE Intelligent

Systems (2000) 15(6):67-73
5. Knoblock, C. A., K. Lerman, S. Minton, and I. Muslea: Accurately and reliably extracting

data from the web: A machine learning approach. Data Engineering Bulletin
6. Muslea, I., S. Minton, and C. Knoblock: Hierarchical wrapper induction for semistructured

information sources. Journal of Autonomous Agents and Multi-Agent Systems (2001)

