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Abstract. The semantic web is becoming a realizable technology due to the ef-
forts of researchers to develop semantic markup languages such as the DARPA 
Agent Markup Language (DAML).  A major problem that faces the semantic 
web community is that most information sources on the web today lack seman-
tic markup.  To fully realize the potential of the semantic web, we must find a 
way to automatically upgrade information sources with semantic markup.  We 
have developed a system based on the STALKER algorithm that automatically 
generates DAML markup for a set of documents based on previously seen la-
beled training documents.  Our rule-learning approach to semantic markup is 
highly effective when dealing with semistructured documents. 

1   Introduction 

Imagine a world-wide information network in which seamlessly integrated intelligent 
agents perform complex tasks by retrieving and processing information from any-
where in the world.  This is the vision of the semantic web (Hendler, 2001).  To make 
this vision a reality, the information stored on the world-wide web must be machine-
understandable.  Ideally, the expensive chore of manually marking up web documents 
with a semantic markup language like DAML (Hendler  McGuinness, 2000) can be 
avoided.  Even hand-crafting rules is essentially an expensive manual approach as 
great effort must be made to write the many rules needed to perform accurate infor-
mation extraction.  Our research consists of finding an alternative to manual markup.  
Our alternative is a machine learning approach. 

Although our system can be applied to any ontology, any semi-structured informa-
tion source, and any semantic markup language, we applied the system to the problem 
of marking up talk announcements from three different domains with DAML.  These 
specifics were chosen to support UMBC’s ITTALKS system.  ITTALKS (Cost et al., 
2002) is an application that utilizes an agent architecture to discover talks that are of 
interest to users. 

Our system uses the Talk ontology developed at UMBC as a guide for hierarchical 
wrapper induction.  An ontology is the structured vocabulary used to semantically 
markup a document.  Given the hierarchical nature of ontologies, it is natural to im-
plement a hierarchical approach to performing semantic markup.  The STALKER 
algorithm (Muslea, Minton,  Knoblach, 2001) uses such a hierarchical approach, 
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meaning that it limits its search within a document for leaves like our and Minute 
according to where their ontological parent egin ime occurs. 

Information agents use wrappers to extract information from documents.  A wrap-
per is a set of extraction rules along with the code required to apply those extraction 
rules to a given document.  Using this terminology, STALKER is a hierarchical 
wrapper induction algorithm.  Using machine learning terminology, STALKER is a 
sequential covering algorithm.  As explained in (Muslea et al., 2001), the STALKER 
algorithm requires up to two fewer orders of magnitude fewer training examples than 
other current wrapper induction algorithms and can handle information sources that 
cannot be wrapped by any other existing techniques.  We have extended STALKER.  
Our implementation is based on the algorithm as it is described in (Muslea et al., 
2001).  As a result, our system applies to semi-structured information sources, mean-
ing that relevant information should be locatable using a formal grammar. 
We first describe a hierarchical characterization of the data in documents and then 
explain how data is extracted from documents using rules.  Moving on, we describe 
the wrapper induction process in detail.  After showing the method we use for ex-
tracting data, we focus in on several enhancements we made to the STALKER algo-
rithm as well as how those enhancements improved our system’s performance.  We 
then provide a statistical discussion of our empirical results.  Finally, we present our 
future considerations. 

2   A ierarchical Characterization of Data 

Ideally, we would like to view each talk announcement as a collection of segments.  
These segments are itle, bstract, Date, egin ime, nd ime, Location, Speaker, 

ost, and ype.  Each of these segments is itself either data (a leaf in the ontology) or 
a collection of other segments.  For example, itle and bstract are data, whereas 

egin ime consists of both egin ime: our and egin ime:Minute.  Notice that we 
have used the notation egin ime: our to convey that the hour we are talking about 
pertains to the talk’s begin time as opposed to the talk’s end time.  We make the as-
sumption that it is most likely to find data pertaining to a single entity, such as Loca-
tion, grouped closely together.  This assumption enables us to view each document as 
a collection of embedded segments, and we can focus our search for data within a 
restricted view of the entire document. 

However, it is possible that the city in which the talk is given does not appear near 
the rest of the information about the talk’s location.  Because of this problem, we 
attempt to learn rules for extracting two different entities that represent the same piece 
of data, one which is embedded and one which is not.  We would like it if all talk 
announcements were structured hierarchically in a way that is perfectly consistent 
with the definition of our Talk ontology, but that is not the case.  We might have 
chosen to tailor the talk ontology to each specific domain, but we took a more general 
approach. 
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3   Wrappers 

A wrapper is the set of rules used to extract data along with the code required to per-
form the extraction.  Before describing the extraction process, let us first define some 
terms.  Viewing each document as a long sequence of tokens, let us define a landmark 
to be a sequence of one or more consecutive tokens, that is, a nonempty subsequence 
of the entire document.  At this point, we should agree on what a token is.  We have 
already said that a document is a long sequence of tokens, meaning that each docu-
ment is parsed, or tokenized, into elementary pieces of text.  Such tokens include 
HTML tags, all-lowercase words, two-digit numbers, symbols, alphanumeric words, 
etc.  A rule clause is simply a landmark along with a qualifier indicating how to trav-
erse the landmark.  The two types of rule clauses are: Skip o and Skip ntil.  Let us 
form an example to clarify the distinction between the two possible types of rule 
clauses.  Suppose our rule clause is Skip o( b  SYMBOL), the token sequence “ b  
SYMBOL” of type Skip o.  The meaning of this rule clause would be to skip over 
everything until an HTML bold tag was found, followed immediately by any symbol.  
When this sequence of tokens has been found, then either the data we are searching 
for begins immediately after the symbol or we resume searching immediately after 
the symbol.  On the other hand, suppose our rule clause is Skip ntil( b  SYMBOL).  
The meaning of this rule clause would again be to skip over everything until an 
HTML bold tag was found, followed immediately by any symbol, only this time, 
either the data we are seeking begins immediately at the first token in the Skip ntil 
rule clause or we resume searching at the first token in the Skip ntil rule clause.  
Whether or not we continue searching depends on whether or not the rule clause is 
the last one in its rule. 

Let us define a rule in this context to be an ordered list of rule clauses.  Now, we 
argue that a single rule can always be represented as some sequence of Skip o rule 
clauses possibly followed by one Skip ntil rule clause.  This claim is justified be-
cause any rule containing a Skip ntil rule clause rc in any position within the rule but 
the last is equivalent to that same rule with the Skip ntil rule clause rc replaced by a 
Skip o rule clause containing the same tokens.  Therefore, we have two types of 
rules: ones ending with a Skip o rule clause and ones ending with a Skip ntil rule 
clause. 

Now that we have defined our two types of rules, we can take the next step and see 
how to extract data from a document.  Rules can be applied both backward and for-
ward through a sequence of tokens.  When applied in the backward direction, a rule 
simply acts on a token sequence in reverse order.  To extract data consisting of a 
sequence of tokens, we must locate both the beginning and the end of that sequence.  
For this, we must have some rules that locate the beginning and other rules that locate 
the end.  Given the beginning and end tokens of some piece of data, the entire piece 
consists of the beginning token, the end token, and everything in between. 

Consider the following excerpt from a UC Berkeley talk announcement: “This talk 
will be held in the Main Lecture Hall at ICSI.  1947 Center Street, Sixth Floor, Berke-
ley, CA 94704-1198 (on Center between Milvia and Martin Luther King Jr. Way).” 

Here, we will assume that the location data for the talk has previously been ex-
tracted by some set of rules and that the excerpted passage is the extracted location 
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data.  Suppose our goal is to extract Location:City, the city in which the talk takes 
place.  One way to do this would be to use the forward rule Skip o(,) Skip o(,) to 
find the first token of the city and to use the backward rule Skip o(,) to find the last 
token of the city.  In this case, the first and last tokens are the same; they are both the 
initial-cap word "Berkeley."  There are many other rules that could be used to extract 
the same data.  Now we see why a hierarchical extraction approach is helpful.  It is 
likely that a rule as simple as Skip o(,) could not have been used to help find the city 
if it had been applied to the entire document and not just to the portion of the docu-
ment containing the location. 

4   ierarchical Wrapper Induction 

It is now time to describe the STALKER algorithm (Muslea et al., 2001) upon which 
our system is based.  Let us assume we are finding only beginning tokens for data 
since finding end tokens is analogous.  For each element in the talk ontology, we do 
the following: starting with a set  of labeled training documents, we learn a single 
rule based on the documents in  to find the location of the beginning token for the 
current ontology element.  Next, we remove all documents from  whose beginning 
token for the current ontology element is correctly identified by the learned rule.  We 
then repeat the process of learning one rule, only now with a smaller set of docu-
ments, until  contains no documents.  What we are left with is sets of rules that can 
be applied in some optimal ordering to find the beginning tokens for the elements in 
the talk ontology.  For a detailed description of the basic STALKER algorithm, see 
(Muslea et al., 2001). 

Since our system uses supervised machine learning, we should describe how we 
labeled the training documents.  The double angle brackets “ ” and “ ” are used to 
avoid conflicts with HTML tags.  Examples of begin tags are Talk  and 

Talk:Title , and their corresponding end tags are /Talk  and 
/Talk:Title .  Each tag corresponds directly to an element with the same name in 

the Talk ontology, so sometimes we may refer to both DAML tags and ontology 
elements interchangeably. 

When we are learning where to place a DAML tag, we make use of the location of 
that tag’s ontological parent.  To make this possible, we order the learning of tags by 
ontological depth.  Therefore, when we are learning where to place tags for some 
ontology element of depth two, for example, we assume we will know where its onto-
logical parent of depth one is at markup time. When performing DAML markup for 
some element, we can limit our view to only the portion of the document correspond-
ing to the parent of that element.  Let us make this clear with an example.  Say we are 
determining where to place tags for the speaker of a talk.  First, we insert tags for the 
element alk Speaker   Then, we look only in between these tags when determining 
where to insert tags for alk:Speaker: irst ame, alk:Speaker: mail, etc.  If we 
could not insert tags for alk Speaker, then we also fail to insert tags for ontological 
children of alk Speaker.  If we are unable to insert tags for the tag alk, then our 
hierarchical approach is dissolved. 
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To motivate a few items we will address later on, it is convenient for us now to 
discuss one component of the STALKER algorithm.  Rule refinement works as fol-
lows.  Each time we want to learn a single rule for determining some ontology ele-
ment's starting or end location, the rule refinement process occurs.  Each rule starts 
out as a single-token, single-landmark rule, such as Skip ntil( b ).  Then, the rule is 
refined, that is, landmarks are added to the rule and tokens are added to the rule’s 
landmarks, until it has either achieved perfect accuracy (though not necessarily per-
fect recall) on the current set of training documents or arrived at the threshold for the 
maximum allowable rule size.  Applying rule refinement to imperfect rules serves 
three purposes.  First, it serves to increase the accuracy of rules.  Remember that our 
system for learning rules is based on a sequential covering algorithm, so a rule is not 
learned until it has attained perfect accuracy.  Second, by refining a rule, we decrease 
the chance that the rule will match some arbitrary sequence of tokens, and as a result 
our system’s accuracy and recall on unseen documents is improved.  Finally, rule 
refinement allows one rule to be used in marking up many documents.  That is, fewer 
rules are learned because each learned rule has a greater coverage on the training 
documents. 

5   Contributions 

We began with our goal being to implement a system based on the STALKER algo-
rithm to generate DAML markup for talk announcements on the web.  DAML is 
similar in structure to HTML, and it allows us to provide metadata for documents so 
that they become understandable by machine applications.  For instance, in a talk 
announcement marked up with DAML, one might find the following text: 
“ City Berkeley /City .” 

We developed along the way some techniques to increase the accuracy and recall 
of the basic system.  With explanations to follow immediately, our added techniques 
can be referred to as: Minimum Refinements, Rule Score, Refinement Window, and 
Wildcards. 

5.1   Minimum Refinements  

Consider the case where an initial one-landmark, one-token rule matches only one 
document in the training set of documents and where that match is correct according 
to the labeling.  Having learned a perfect rule, the document covered by that rule is 
removed, and the system continues learning more rules.  This case can occur quite 
frequently and is highly undesirable.  For instance, to learn the first name of a 
speaker, the rule SkipUntil(George) might be found to be perfect.  When applied to 
unseen documents, however, this rule would probably be very ineffective in general 
for finding the speaker’s first name.  Our system, unlike the original STALKER algo-
rithm, forces rules to be refined at least a certain number of times, and we usually 
choose that number to be five.  In this way, we allow rules to be generalized with the 
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hope that they will ultimately more closely reflect the structure of the documents 
rather than the attributes of the data being extracted. 

5.2   Rule Score 

For each DAML tag, the system generates both a forward rule and a backward rule.  
When it is time to mark up a new document, the forward and backward rules will 
sometimes disagree on the location of the tag.  The system must have a way to resolve 
these disagreements.  In the original STALKER algorithm, forward rules were always 
used for begin tags and backward rules were always used for end tags.  With the rule 
score system both forward rules and backward rules are generated for every tag and 
evaluated based on how well they perform on a validation set of documents.  The 
validation set consists of documents that have been marked up by hand but are not 
used by the system to generate rules.  Whenever forward and backward rules disagree 
on the location of a tag, the system will use the rule with the highest score.  Rules 
with lower scores are only used when higher scored rules fail to find the locations for 
tags. 

5.3   Refinement Window 

The system learns rules that find the position of tags relative to the position of their 
ontological parents.  This means that the system only has to consider information that 
is contained within the ontological parent when looking for the location of a DAML 
tag.  Consider the tag egin ime our.  Its ontological parent is the egin ime tag 
which will likely contain only a few tokens.  However, for a tag like alk itle that 
has the entire talk as its parent the system will consider all of the tokens in the talk 
announcement to learn a rule.  Many of these tokens will be far enough away from 
the title to be considered irrelevant.  At best the system will consider many irrelevant 
tokens.  At worst it will actually use some of them in the rules and as a result generate 
a rule that will work on one training document and nothing else.  The refinement 
window limits the number of tokens the system will consider when learning rules to 
the n nearest tokens on each side of the tag.  We usually use n  10 in our system.  
This not only improves the quality of the rules the system learns, but also signifi-
cantly decreases the running time.  For example, in the UCSB domain the time re-
quired to learn the forward and backward rules for all tags was reduced from 246 
seconds to 66 seconds after adding the token window to the basic system.  In this 
experiment, we used a training set of 20 documents.  Using the same training set, the 
full system produced rules in 117 seconds. 

5.4   Wildcards 

The domain-independent wildcards used in the system are based on the structure of 
tokens.  For example, the INITIAL CAP WORD wildcard matches any token that 
consists of an uppercase letter followed by zero or more lower case letters.  We in-
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cluded one domain-independent wildcard for each elementary token type as well as 
some more general wildcards such as ANY, which matches any token.  In addition to 
domain-independent wildcards, sometimes domain-specific wildcards can improve 
the system’s performance.  In determining the location of the Date Month tag, the 
system might use the INITIAL CAP WORD wildcard in a rule because it will match 
every month.  Notice, though, that there may be many tokens in the document that 
match this wildcard.  For instance, even when the system is restricted to the date 
information, not only the month but also the day of the week will match the 
INITIAL CAP WORD wildcard.  Because this wildcard is too general, the system 
would have to use a literal landmark like September instead.  “September” is too 
specific, though.  Our solution to this dilemma is to use domain-specific wildcards.  
Adding the wildcard MONTH that matches any of the twelve months of the year 
gives the system a wildcard that is exactly as general as it needs to be.  Our system 
includes several domain-specific wildcards. 

6   perimental Results 

To test the contribution of each technique when added to the basic system we formed 
six different systems.  One was the basic system which only used the STALKER 
algorithm.  One used the minimum refinement threshold.  One used the refinement 
window.  One used domain specific wildcards.  One used a rule score for marking up 
documents.  The full system used all of these components. 

Let us define recall to be the number of correctly extracted data items divided by 
the total number of data items that existed in the documents.  Recall, defined in this 
way, measures the system’s precision because only correctly extracted data items are 
considered successes.  In the discussion that follows, what we mean by the “perform-
ance” of some system is its recall for either one particular ontology element or all 
ontology elements, depending on the context. 

Three domains, each contributing a corpus of talk announcements, were chosen 
fairly arbitrarily.  The criterion we used in selecting two of these domains was that 
within each domain there should be a plentiful supply of talk announcements having a 
generally consistent structure.  These two will be referred to as the UC Berkeley and 
UCSB (University of California, Santa Barbara) domains, reflecting the origins of the 
documents.  The UC Berkeley and UCSB corpuses each contain 60 documents.  We 
will refer to the third domain as the ITTALKS domain, for this domain contains talk 
announcements from UMBC’s ITTALKS system.  This third domain was chosen 
specifically because it had a very consistent structure and could serve as a sanity 
check for our system.  The ITTALKS corpus contains 30 documents. 

We randomly chose ten ways to partition the sixty labeled training documents 
from UC Berkeley into equal training, validation, and testing sets.  Then we ran each 
system on each of the partitions.  We ran the same experiments on the UCSB and 
ITTALKS domains, but first we will present our results from what proved to be our 
most challenging domain, UC Berkeley.  Because we ran each system on 10 different 
partitions, we will typically refer to a system’s performance as average recall, which 
is the average recall achieved over all 10 partitions. 
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6.1   UC Berkeley Results  

For most ontology elements the full system performed the best and the basic system 
performed the worst.  There was only one DAML tag for which the basic system had 
better average recall than the full system.  In several cases the differences between the 
average performances on an element was dramatic.  Examining those cases will show 
what each component adds to the full system. 

In attempting to extract date information, it makes sense to use domain specific 
wildcards.  There are only seven possible days of the week so it is simple to add a 
wildcard to the system that matches any day.  This improved average recall for the 
day of the week over the basic system from 87.5  to 91.5 .  However, using score 
to select the best rule for mark up yielded a 94  average recall even without the 
wildcards.  The full system which made use of both achieved a 96  average recall 
for day of the week. 

In most documents the title occurs near the beginning.  Since the title’s ontological 
parent is the entire talk the system has almost the entire document to look at to deter-
mine a rule for the end of the title.  Most of this information is far enough away from 
the title to be worthless.  However, the basic system is allowed to use it to develop a 
rule that works on the training data but probably not on any unseen documents.  By 
only allowing the system to use the 10 closest tokens in refinement we force it to use 
the most relevant information surrounding data to learn new rules.   The refinement 
window improved average recall for title from 22  on the basic system to 49.5 .  
The full system achieved 60.5  average recall for the title. 

It is hard for the system to learn rules to extract names because it is easy to learn 
rules that will work on one document but not any others.  For instance it may learn 
that George indicates the speaker’s first name, but that only works for a small fraction 
of speakers.  Including a minimum refinement threshold forces the system to ignore 
initial candidates that are too specific.  The basic system only had 2.5  average recall 
for the speaker’s first name, but with the minimum refinement threshold it reached 
50 . 

The most effective component was using the score to mark up documents.  With 
this system, the rules are tried on a validation set and ordered based on effectiveness.  
Then when the system is given new documents to mark up, the most effective rules 
take precedence over less effective rules.  In the basic system begin tags are always 
found using forward rules and end tags are always found using backward rules.  
Unlike the basic system the score system will always use the most historically accu-
rate rule.  The score system did better than the basic system on almost all tags. 

The full system’s average recall over all tags was 83.1  with a standard deviation 
of 2.7 .  These numbers are statistically significant when compared to those of the 
basic system.  The basic system’s average recall over all tags was 69.6  with a stan-
dard deviation of 2.1 .  See figure 1 for a comparison of the recall of the two sys-
tems. 

The average recall for several tags was significantly improved by the features pre-
sent in the full system.  These instances are displayed in figure 2. 

UC Berkeley was our most challenging domain due to a higher degree of inconsis-
tency in the documents.  For instance, the begin time appeared as “2:00” in one docu-
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document and “2pm” in another.  Such inconsistencies were abundant in the UC 
Berkeley domain. 
 

 
Fig. 1. Average recall for all tags in the UC Berkeley domain. The error bars represent 95  
confidence intervals 

 

 
Fig. 2. Average recall for selected tags in the UC Berkeley domain.  An entire bar represents 
the average recall achieved by the full system for that tag.  The black and white portions of a 
bar represent the average recall achieved by the basic system and the improvement made by the 
full system, respectively 
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6.2   UCSB and ITTALKS Results 

The results from the UCSB domain were similar to those from the UC Berkeley do-
main.  See figure 3 for a comparison between the basic and full systems.  The average 
recall for several tags was significantly improved by the features present in the full 
system, and these instances are displayed in figure 4. 

 
Fig. 3. Average recall for all tags in the UCSB domain. The error bars represent 95  confi-
dence intervals 
 

 
Fig. 4. Average recall for selected tags in the UCSB domain.  An entire bar represents the 
average recall achieved by the full system for that tag.  The black and white portions of a bar 
represent the average recall achieved by the basic system and the improvement made by the 
full system, respectively   
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As depicted in figure 5, the full system provided no significant increase in average 
recall in the ITTALKS domain.  Notice, however, that the basic system performed 
much better in the ITTALKS domain than in the other two domains.  This is because 
the ITTALKS domain contains talk announcements that have regularly appearing 
HTML comments that serve as useful landmarks.  Since high-accuracy rules were 
often learned using these HTML comments as landmarks, the rules learned by the full 
system were often the same as those learned by the basic system. 

 

 
Fig. 5. Average recall for all tags in the ITTALKS domain. The error bars represent 95  con-
fidence intervals 

 

6.3   Mi ing the Domains 

Up to this point, our system was tested only on one domain at a time.  To test our 
system’s ability to generate a single set of rules for two unrelated domains, we ran an 
experiment in which the UC Berkeley and UCSB corpuses were combined. 

Three results were possible.  First, the learned rules that cover the UC Berkeley 
domain could have poor coverage on the UCSB domain, and vice versa.  Second, the 
learned rules that accurately cover one of the domains could also inaccurately cover 
the other domain.  Finally, the learned rules that accurately cover one of the domains 
could also accurately cover the other domain.  This last case would occur if the two 
domains shared a common structure.  The first case would occur if the landmarks 
used to locate tags in one domain were disjoint from the landmarks used to locate tags 
in the other domain.  In either case one or case three, the system would maintain a 
performance on the mixed domains similar to the performance on each of the individ-
ual domains.   

In our experiment, however, the second case occurred.  As a result, the perform-
ance on the mixed domains was much worse than the performance on each individual 
domain.  Because the rules that covered one domain contained many landmarks that 
appeared throughout the other domain in different contexts, those rules were refined 
to the point where they ultimately suffered from overfitting.  That is, when applied to 
the testing set, the rules were too specific to achieve a high recall. 
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   Conclusion and Future Considerations 

In an effort to support the development of the semantic web, we have developed a 
system that performs automatic DAML markup on talk announcements.  Our system 
is general enough to be applied to other domains as well.  We plan to build upon our 
current system in several ways.  First, we plan to incorporate active learning.  Not 
only does active learning decrease the number of training examples needed when 
learning rules, but also the number of rules learned is reduced, resulting in greater 
coverage for individual rules.  The number of rules learned is reduced because we can 
select documents for our training set according to which ones produced rules with the 
greatest coverage.  When rules have greater coverage, we feel more confident that 
they have discovered the regularity that exists in the documents.  Our second goal is 
to expand our system to support ontology elements that are found in lists in the 
documents.  For example, a talk might have several speakers.  Another goal is to 
incorporate into our system more linguistic information so that we can better handle 
domains in which documents are less structured.  By using a system that performs an 
additional level of markup, labeling things like names, dates, and places, we could 
take advantage of the additional tokens (the additional markup) available for land-
marks when learning rules.  Finally, in order to increase the accuracy of learned rules, 
we have explored using the internet, in particular the Google API, to tell us whether 
or not our tagged data makes sense. 
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