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Abstract

We present CASIE, a system that extracts information about
cybersecurity events from text and populates a semantic
model, with the ultimate goal of integration into a knowl-
edge graph of cybersecurity data. It was trained on a new
corpus of 1,000 English news articles from 2017–2019 that
are labeled with rich, event-based annotations and that covers
both cyberattack and vulnerability-related events. Our model
defines five event subtypes along with their semantic roles
and 20 event-relevant argument types (e.g., file, device, soft-
ware, money). CASIE uses different deep neural networks
approaches with attention and can incorporate rich linguistic
features and word embeddings. We have conducted experi-
ments on each component in the event detection pipeline and
the results show that each subsystem performs well.

Introduction

Cyberattacks and cybercrimes are common today and their
frequency and severity are only expected to increase. They
are also evolving to exploit new vulnerabilities and environ-
ments, such as the Internet of Things and cyber-physical
systems. People and machines will be better able to de-
fend against attacks if we can keep abreast of current trends
and vulnerabilities. We have developed CASIE (CyberAt-
tack Sensing and Information Extraction) as a tool to help
do this by extracting information about cybersecurity events
from news articles. The results can be used to keep people
informed and also integrated into knowledge graphs of cy-
bersecurity data to help automated systems.

The task of identifying instances of specific events in
text and extracting relevant information from them has been
studied for a long time but remains a challenging task. The
task was introduced in the second Message Understand-
ing Conference in 1989 and has been part of many in-
formation extraction challenges since; see Grishman and
Sundheim (1996) for a history of MUC. Efforts to im-
prove event detection performance have tended to focus on
adding new features or improving pattern matching algo-
rithms (Ji and Grishman 2008; Li, Ji, and Huang 2013),
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or the development of neural networks to better capture in-
formation, such as dependency tree-based CNNs (Nguyen
and Grishman 2018). To overcome the data scarcity of la-
beled data, multiple sources of external knowledge, such as
semantic frame analyses (Liu et al. 2016; Li et al. 2019;
Chen et al. 2017), consistent and complement information
to disambiguation from multilingual data (Liu et al. 2018),
and expert-level patterns from an open-source pattern-based
event extraction system called TABARI (Cao et al. 2018),
have been leveraged.

Most previous event detection research has focused on
common events in a person’s life, such as those defined by
ACE (Walker et al. 2006) or the TAC Knowledge Base Pop-
ulation (Mitamura, Liu, and Hovy 2015). These life events
include things like “being born,” “getting married,” “starting
a job’ and “being charged with a crime.” One core difference
between extracting life events and cybersecurity events is the
required domain-relevant expertise. We share this difficulty
with other types of domain-specific information extraction,
such as extracting information about biomedical events. The
development of these rich event extraction datasets and tasks
has helped to spur innovation in the BioNLP area (Kim et al.
2009). One of our contributions is the analogous creation for
the cybersecurity domain.

A second difference between extracting life events and
cybersecurity events is the inherent complexity of cyberse-
curity events. A cyberattack event can consist of an attack
pattern with multiple actions, attempted or completed. Each
mention of one of these actions can be considered as a sep-
arate cybersecurity event description, which multiplies the
possible choices for a cybersecurity event reference. Com-
paring to life events, the challenge is among the homonym
and synonym sets of an event mention. Our work makes
three main contributions.
• We define and specify five cybersecurity events along

with their semantic roles and 20 types of arguments that
are candidates for role-fillers.

• We present a novel, challenging corpus of newswire ar-
ticles annotated with the cybersecurity events in them.
These annotations will be available upon publication.

• We present CASIE, a neural cybersecurity event extrac-
tion system that combines modern deep learning with lin-
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Figure 1: This example shows text describing an Attack.Ransom event triggered by the event nugget phrase “held for ransom”
in the first sentence. Also annotated are entities (e.g., “computers,” ‘infected with ransomware”), their types (“Device,” “Ca-
pabilities”) and roles (the labeled edges, e.g, “Victim:Arg” connecting the event nugget to the “computers” entity). Notice that
event annotations span sentences.

guistic features, providing a suite of competitive informa-
tion extraction models and tools for developing cyberse-
curity features from background knowledge graphs. We
will also make the code available upon publication.

While there has been previous work in cyberattack event
analysis (Qiu, Lin, and Qiu 2016; Khandpur et al. 2017), to
the best of our knowledge, our research covers the largest
range and complexity of cybersecurity events. We first pro-
vide the cybersecurity event definitions and common termi-
nology used in our event detection task. Then we present
CASIE’s overall architecture along with each of its compo-
nents, and provide details of our corpus and annotations. We
then discuss our evaluation and experimental results and out-
line ongoing and future work.

Cybersecurity Event Extraction

We borrow common event detection terminology from TAC,
including the following.

• An event nugget is a word or phrase that most clearly
expresses the event occurrence. These differ from event
triggers in that they can be multi-word phrases.

• An event argument is an event participant or property
value. They can be taggable entities involved in the event,
such as person or organization, or attributes that specify
important information, such as time or amount.

• A role is a semantic relation between an event nugget and
an argument. Each event type specifies the roles it can
have and constraints on the arguments that can fill them.

• A realis value specifies whether or not an event occurred
and can be one of the three values: Actual (event actually
happened), Other (failed event, future event), or Generic
(an undetermined/non-specific event, such as referring to
the concept of phishing attacks).

To develop our approach, we chose an initial set of fre-
quently occurring, high impact, and distinct events from cy-
bersecurity news that involve cyberattacks or vulnerability-
related events. The basic roles and arguments that can fill
them of each event type are defined in Table 1. We further
subcategorized these two event types into five event sub-
types: Attack.Databreach, Attack.Phishing, Attack.Ransom,
Discover.Vulnerability, and Patch.Vulnerability. Each event
subtype comes with specific roles in addition to the ba-
sic roles. Full details can be found in (Satyapanich 2019b).
Specifically we define the following events:

• Attack.Databreach, an attacker compromises a system
and removes data, e.g., to sell or publish it. The specific

roles for the Attack.Databreach are Compromised-Data
and Number-Of-Data.

• Attack.Phishing, an attacker imitates another entity, in
an attempt to get a victim to access malicious materials,
such as a website or attachments. The additional role for
the Attack.Phishing is Trusted-Entity.

• Attack.Ransom, an attacker breaks into a system and
encrypts data, and will only decrypt the data for a ran-
som payment. The specific role for the Attack.Ransom are
Ransom-Price and Payment-Method.

• Discover.Vulnerability, a security expert or other entity,
like a company, finds a software vulnerability. The addi-
tional roles of Discover.Vunerability consist of Discov-
erer, Capabilities, and VS-Owner.

• Patch.Vulnerability, a software company addresses a
known vulnerability by releasing or describing an ap-
propriate update. The extra roles of Patch.Vulnerability
are Releaser, Issue-Addressed, Patch, Patch-Number, and
Supported-Platform.

An example of an event is shown in Figure 1. The event
nugget and arguments are shown in shaded text, with the
types indicated by the colored labels above the text and roles
indicated by the labeled arcs. The phrase ‘held for ransom’ is
identified as an event nugget for an Attack.Ransom event.
Event arguments consist of ‘computers’ which is a type of
Device and fills the Victim role; ‘Colorado’ which is a GPE
and fills the Place role; ‘Colorado Department of Trans-
portation’ which is an Organization filling the Victim role;
and ‘infected with ransomware’ which has type Capabilities
filling the Attack Pattern role; and ‘Wednesday’ which is a
Time expression that fills the Time role.

CASIE’s Design and Architecture

CASIE’s architecture, shown in Figure 2, includes six steps:
event nugget detection, event argument detection, event ar-
gument and role linking, event realis identification, event
coreference, and mapping the results to a knowledge graph.
In this targeted work, we focus on the first four steps, for-
malizing each as a multi-class classification task, leaving
the complex tasks of event coreference and full knowledge
graph integration to future work.

Event Nugget and Event Argument Detection

Both the event nugget detection system and event argument
detection system employ a hybrid Bidirectional LSTM neu-
ral network. Each event nugget classifier and event argu-
ment classifier uses its own features, which include both
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Types Roles Arguments

Attacker Organization; Person
Device; Organization;

Victim Person; Product;
Website

Attack-Pattern Capabilities
Cyber

Tool
File; Malware;

Attack Website
Damage-Amount Money
Number-of-Victim Number
Purpose Purpose
Place GPE
Time Time
CVE CVE

Vulner- Vulnerability Vulnerability
ability-

VS
Device; Product;

related Website
VS-Version Version
Time Time

Table 1: Basic roles and arguments that can filled them for
each event types. VS means Vulnerable-System.

linguistically-inspired features and a continuous word em-
bedding for every word in an input sentence. We use a BIO
scheme to tag each token.

Event nugget features. The feature extraction starts by
applying CoreNLP (Manning et al. 2014) to the raw text
for tokenization, lemmatization, part of speech tagging, and
named entity recognition. After that all stopwords were re-
moved. We also introduced two external knowledge bases—
DBpedia Spotlight (Mendes et al. 2011) and Wikidata
(Vrandečić and Krötzsch 2014)—to find additional named
entities, such as instances of software and malware. We used
these external sources to overcome the lack of appropriate
types in CoreNLP. Using these resources followed by our
post-processing, we create the following linguistic features
sets.
1. Part of speech labels for each word (e.g., NN, VBD, etc.);
2. Entity types from CoreNLP (e.g., Person, Organization,

etc.), DBpedia (e.g., Network, System, etc.);
3. Relevant Wikidata classes for an entity (e.g., software

company, computer system, etc.);
4. The set of syntactic dependency relations extracted from

the sentences (e.g., nsubj, dobj, etc.); and
5. Shallow syntactic chunking type (e.g., S, NP, VP, etc.)

and its depth (the highest level in a constituency parse
tree) for every word.

Event argument features. We combine the following fea-
tures with the feature (1)-(4) from the event nugget features

Figure 2: CASIE can populate a knowledge graph with data
about cybersecurity events extracted from text.

defined above. For each word in a sentence we record:
6. the shallow syntactic chunking type (e.g., S, NP, VP,

etc.) and its depth, selecting the lowest level in parse
tree;

7. the type of the nearest event (i.e., our five event types);
8. the distance in the dependency tree (number of relation

hops) to the nearest event nugget head;
9. the relative position with the nearest event nugget head

(i.e., after-same-sentence, before-same-sentence, after-
differ-sentence, before-differ-sentence);

10. the dependency parse path to the nearest event nugget
head (e.g., conj-nmod-nsubj, etc.); and

11. the common constituency parse tree node with the near-
est event nugget head (e.g., NP, PP, VP, etc.).

The nearest event nugget is from comparing the distance
between the target token to every event nugget in the de-
pendency tree. The event nugget head is the word with the
highest level in the dependency tree compared to the other
words in the same nugget. We find additional named entities
by linking nominal mentions to the nearby named entity of
the same type. For example, the word ‘company’ is labeled
as Organization if we can find a nearby Organization named
entity.

Word Embeddings. There are currently many word em-
beddings techniques that are built from different sized col-
lections and genres. We experimented with four different
embedding types: Transfer-Word2vec, Domain-Word2vec,
Cyber-Word2vec, and Pre-built BERT. We consider these
four approaches to be either context-free (e.g., Word2vec
(Mikolov et al. 2013)) or context-dependent embeddings.
For the context-free embeddings, we trained with two
different Word2vec embeddings: Transfer-Word2vec and
Domain-Word2vec.
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Figure 3: A bidirectional LSTM network is used to classify
event nugget and event argument types. The attention layer
is applied only to the event argument detection system. The
word embedding layer is either a Pre-Built BERT network
or the Word2vec embedding.

The non-contextual embedding types were trained on a
collection of 5,000 cybersecurity news articles, and differed
in their initialization and dimensions. The 5,000 articles
contain 2,531,577 tokens (separated by spaces). Transfer-
Word2vec was initialized with the publicly available
300-dimension Google-News-vectors-negative300 model
(Mikolov et al. 2013). After training, 14,960 terms were
added. Domain-Word2vec used 100-dimension randomly
initialized vectors and required words to occur at least twice
in the corpus. The vocabulary size of the Domain-word2vec
embedding was 28,283 words. The Cyber-Word2vec em-
beddings were produced by Padia et al. (2018). It has 100-
dimension which trained on a large corpus of approximately
one million cybersecurity-related webpages. The Cyber-
Word2vec contains 6,417,554 vocabularies.

For the context dependent embeddings, we used the pre-
trained “BERT-Base Uncased” model (Devlin et al. 2018),
doing fine-tuning in our neural networks. This model is a
12-layer, 12-attention head network that produces a context-
dependent 768 dimension embedding for each word to-
ken. Because BERT is context-dependent, the same word in
different sentences produces different vectors. BERT used
WordPiece tokenization, breaking word into pieces and gen-
erates embeddings for them. We computed the average of
embeddings for a word’s pieces as its embedding; we call
this Pre-built BERT. We kept all of the word embeddings as
input and experimentally found that using the fourth-to-last
hidden layer gave the best development performance.

Approach. We used a Bi-Directional LSTM network with
CRF loss to classify event nugget types and event argument
types. This architecture was selected both because it can use
information from both the left context and right context in
predicting a target word, and because full sequence decod-

Figure 4: Our neural network for assigning roles to argu-
ments.

ing can be done. We use five types of layers: embedding lay-
ers, a Bi-LSTM layer, an attention layer, a fully-connected
layer, and a CRF layer. The number of nodes of every layer
is equal to a half of the number in the previous layer, except
for the attention layer (where the output and input sizes are
equal) and the CRF layer (where the output size is equal to
the number of output classes). The network architecture is
shown in Figure 3.

We form embedding layers by concatenating embedding
layers of each linguistic feature, including the word em-
bedding layer. We treat each linguistic feature as a cate-
gorical variable. Each category of a feature is used as the
index into a table containing randomly initialized weight
vectors for all categories. Each feature embedding layer’s
output size is equal to half of the total number of its cat-
egories. For the word embedding layer, unique word types
are categories and we select initial weights using the word
vector obtained from each embedding (Transfer-Word2vec,
Domain-Word2vec, Cyber-Word2vec). The embedding lay-
ers are then concatenated to form the first layers of the Bi-
LSTM-CRF networks. When we use BERT embeddings, we
add two additional Bi-LSTM layers before concatenating
them with the feature embedding layers. The first layer has
input from Pre-built BERT. The size of each Bi-LSTM addi-
tional layer is equal to half its input size. Concatenating the
embedding layers yields a single Bi-LSTM hidden layer.

Attention mechanisms have been used with great success
in neural machine translation, where they learn to highlight
important parts of the text. We applied a location-based at-
tention mechanism (Zheng et al. 2018; Luong, Pham, and
Manning 2015) as an attention layer following the Bi-LSTM
layer. Early experiments showed that an attention size of five
gave the best performance, which was further improved by
using a tanh activation function. We found that adding an
attention layer improved event argument detection but it did
not improve event nugget detection. After the attention layer,
we have a dense layer. Finally, we applied a CRF to predict
the output sequence labels.
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Event Argument and Role Linking

A role will be assigned to an event argument that is consis-
tent with the type constraints defined by our event frames.
These requirements are listed in Table 1. For example, if a
mention of a Person argument was found in the context of an
Attack.Phishing event, its possible role could be Attacker,
Victim, or Trusted-Entity.

Features. The following features are computed after the
event nuggets and event arguments are predicted.

• Word vectors of the argument surface words

• Features (2), (3), and (8) from the event nugget and event
argument features defined above;

• The target event argument type and the types of the im-
mediate left and right event argument of the target event
argument.

Approach. We have developed a fully-connected neural
network to assign a role to an argument. The neural networks
consist of an embedding layer and three fully-connected lay-
ers. The embedding layer was built for each feature (in-
cluding word embeddings). The word embedding layer was
passed through two fully-connected layers and then concate-
nated with the embedding layers of the other features. The
last layer is another fully-connected layer with the number of
output node specified by the event type. The neural network
architecture is shown in Figure 4. Each layer’s dimension is
half of the previous layer’s dimension.

The neural networks will be used to predict the argu-
ments which can be filled by more than one role, other-
wise, no prediction is needed. We built a neural network for
each event type. The role that links an event argument to
an event nugget is determined by its event type. Since the
event type is known before predicting the argument role, it
can be used to eliminate irrelevant roles. The number of out-
put layer nodes is reduced to the number of roles of each
event instead of the total number of roles in the system. For
example, in the Patch.Vulnerability event, the Attacker and
Victim are not included in the output classes. We found that
this improved performance significantly. The performances
of two system settings: specific and non-specific event type,
are compared in the Table 7.

Event Realis Identification

We identified the realis value for event nuggets. Each event
nugget is annotated with a realis value to give information
whether an instance of an event actually happened (Actual),
did not occur (Other), or the event is referenced as a concept
(Generic). Examples of events with the three possible realis
values are:

• Actual: Facebook have admitted they were connedActual

out of an alleged $100 million in a phishing scamActual.

• Other: Apple has not yet clarifiedOther whether the latest
versions of macOS and iOS are vulnerableOther.

• Generic: PhishingGeneric has grown to be one of the most
serious threats to healthcare organizations.

Figure 5: Our network for event realis property classifica-
tion. We use this for predicting both steps with different out-
put tags, i.e., Generic vs. Non-generic, and Actual vs. Other.

Event realis identification features. When the event
nugget was found, the feature vector for realis is the con-
catenation of the word vectors of the event nugget and its
surrounding lexical context. We found through initial devel-
opment that a context window of seven words resulted in
the best performance. All stopwords are included in the re-
alis identification component as they contain important in-
formation. For example, modal verbs (may, can) and nega-
tives (not, no) are evidence of a failed event.

Approach. Realis identification has two steps: (i) Clas-
sify the event nugget as Generic or Non-generic; and (ii) if
Non-generic, further classify as Actual or Other. Both clas-
sifiers are binary and use the same neural network architec-
ture (Figure 5) with three layers: an embedding layer and
two fully-connected layers. The embedding layer is the size
of word vector, the numbers of nodes of the fully-connected
layers are half the size of their previous layers.

Related Work on Cybersecurity Event Extraction

Related work falls into two categories: event definitions and
its data collection, and methods for event detection. We draw
inspiration from ACE 2005 (Walker et al. 2006), a widely-
used set of event definitions annotated on 599 newswire
documents, and the Rich ERE-based TAC KBP event track.
Whereas 70% of ACE’s event types have fewer than 100 in-
stances, all of ours have more than 1,000. Lim et al. (2017)
built an annotated malware database based on MAEC vo-
cabularies from 39 APT reports but that effort did not anno-
tate rich event annotations as done here. While there are a
number of research, community, and commercial efforts to
create repositories of reports and timelines of cybersecurity
events (Hackmageddon 2019; PrivacyRight 2019, i.a.), there
is no, to our knowledge, prior work that labels cybersecurity
events with the rich annotation scheme as our work.

Techniques used to detect events, in general, include
hand-crafted rich features (Liao and Grishman 2010; Huang
and Riloff 2012; Li, Ji, and Huang 2013), applied deep learn-
ing such as GRU (Chen et al. 2015; Ghaeini et al. 2018;

8753



Event Type Events Nuggets Roles/Event

Attack.Databreach 916 1780 2.90
Attack.Phishing 955 1,564 2.34
Attack.Ransom 944 1,585 2.23

Discover.Vulnerability 560 2,122 2.93
Patch.Vulnerability 528 1,419 2.79

Table 2: Number of cyber event instances in our corpus, and
the average number of annotated roles per event.

Orr, Tadepalli, and Fern 2018), LSTM (Sha et al. 2018),
CNN (Nguyen and Grishman 2016; 2018), RNN (Ghaeini
et al. 2018), and LSTM-CNN (Feng, Qin, and Liu 2018).
These event detection efforts are based on the ACE 2005 cor-
pus and task. More recent work on event detection has used
social media data, as Twitter or Flickr (Mittal et al. 2016;
Saeed et al. 2019; Hasan, Orgun, and Schwitter 2019). Most
relevant to CASIE are Khandpur et al. (2017), who detect
ongoing cyberattacks on Twitter but without considering the
event’s participants as we do, and Qiu, Lin, and Qiu (2016),
who detect events in Chinese newswire.

Data and Annotations

We collected about 5,000 cybersecurity news articles (Cy-
berwire 2019). These news articles were published in 2017-
2019. About 1,000 of them which mention our five events
were annotated by three experienced computer scientists, us-
ing majority vote to select the final annotations. Multiple cy-
bersecurity events were almost always present in an article,
and multiple event types were typically found as well. Our
annotation guidelines required that an event argument could
only be annotated if an event nugget had been identified in
its context, which was set to be the sentence along with its
preceding and following sentences. No such constraint was
applied to annotation of event nuggets, which could be an-
notated whenever they appeared, whether or not any event
arguments were nearby.

We did not limit the number of words in each annotation
label—every event nugget and event argument could be a
phrase of any length. Long phrase annotation is important
in the cybersecurity domain to properly represent some ar-
guments that cannot be captured in a few words. For ex-
ample, the phrase “injected into memory using PowerShell
commands” should be labeled as an argument of type Capa-
bilities. See Table 2 for high-level corpus statistics.

The event annotation process was complicated by many
challenges, which we illustrate by examples involving anno-
tating nuggets, arguments and event coreference relations. A
description of a cyber attack can include several distinct ac-
tions that may be thought of as part of the same event. For
example, in

The hackers have stolen the important files. These were
posted for sale on the dark web.

both “have stolen” and “posted” would be labelled as At-
tack.Databreach events, even though they have different
meanings and represent different constituent actions mak-
ing up a single Attack.Databreach event. An event argument

Labels Confused as % of confusion

None 16.82%
Purpose PII 7.66%

Attack.Databreach 3.83%
None 22.83%

Capabilities Attack.Databreach 2.91%
Data 2.74%
None 13.31%

PII Person 5.45%
Data 5.41%

Table 3: Percentages of the highest confusion between labels
in our corpus, with ’None’ for no label.

can sometimes be interpreted as another, separate event. In
the sentence

Facebook discovered a security issue that allowed
hackers to access sensitive information

mentions a Discover.Vulnerability event with a ‘Capabili-
ties’ argument of “allowed hackers to access sensitive in-
formation”. This ‘Capabilities’ argument by itself can be
misunderstood as an Attack.Databreach event with the word
“access” as its event nugget. A final example involves in-
volves deciding when a set of atomic events co-refer and be
part of the same event hopper. The opportunity for confu-
sion arises when an attack event can consist of several steps,
each of which is expressed as an action. For example, in the
sentence

Media Prima did not, however, confirm the attack,
though sources indicated that the publicly listed com-
pany paid the ransom.

the same Attack.Ransom is mentioned twice. The first
nugget is “the attack” and the second is “paying the ran-
som”. These two event nuggets appear to have different re-
alis values that conflict about whether the event happened
or not. However, they should be annotated as being corefer-
ential. Additional information on the annotation process can
be found in Satyapanich (2019b).

Inter-annotator Agreement

Before starting the annotation, each annotator was given
a group of annotation exercises to help them understand
rules and follow the annotation guidelines. We measured the
inter-annotator agreement using Cohen’s Kappa score (Co-
hen 1968). The score is 0.81 which is considered to be at the
low end of the near-perfect agreement range, which is typ-
ically defined as between 0.81 and 0.99. We also reviewed
the annotation disagreement at the level of individual labels
by constructing a label confusion matrix, including the five
event types and the twenty event arguments. We found that
the least confused labels were CVE, Time, and Money. The
most highly confused labels are shown in Table 3.

We found that the highest disagreement is the decision
of whether to label a token or not (None). The disagree-
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System P R F1

Nugget
w/o (1-5) 74.56 54.36 62.88
w/ (1-5) 70.79 68.50 69.63

Argument

w/o (1-4, 6-11) 59.13 43.61 50.20
w/ (1-4, 6), w/o (7-11) 60.51 51.80 55.82
w/o (1-4, 6), w/ (7-11) 67.56 65.16 66.34

w/ (1-4, 6-11) 69.08 68.38 68.73

Table 4: Ablation study on the feature sets of the event
nugget and argument detection systems.

System Methods P R F1

Nugget Pre-built BERT 79.60 80.28 79.94

without Transfer Word2vec 80.43 70.12 74.93
Attention Domain Word2vec 85.00 70.78 77.24

Cyber-Word2vec 78.19 68.17 72.84
Argument Pre-built BERT 72.88 76.74 74.76

with Transfer Word2vec 67.78 69.51 68.64
Attention Domain Word2vec 73.82 67.45 70.50

Cyber-Word2vec 73.35 64.17 68.45

Table 5: CASIE event detection scores for different methods

ment mostly happened at the boundaries of the annotation
phrase. For example, “an attempt to sell these”, annotator A
chose to annotate only “an attempt to sell” as Purpose and
excluded “these”, while annotator B chose to annotate the
entire phrase as Purpose. We saw this type of disagreement
occurring with every label. Another frequent annotation dis-
agreement involved the Purpose argument, which was easily
confused with PII and Attack.Databreach. For example, in
“harvest the sensitive information”, one annotator chose to
tag “harvest” as an event nugget of type Attack.Databreach
and “the sensitive information” as an event argument of type
PII, while another chose to label the entire phrase.

Experimental Results

Our evaluation used metrics developed for the TAC Event
Task (NIST 2015) to find the best mapping between
CASIE’s output and the correct labels. We used the types
metric, which computes the score using the overlap in an
event nugget or argument mention-span and the ground truth
span. We developed CASIE using 8-fold cross validation of
900 articles of training data set, using 100 articles for test-
ing. We tested our sub-systems by averaging scores for five
runs.

Event Nugget and Event Argument Detection. To eval-
uate the effectiveness of features for nugget and argument
detection (features (1)-(11) defined above), we performed
ablation experiments by grouping features to three feature
sets. For nuggets, we included or excluded all features (1)-
(5) (features 6-11 were not applicable). For argument detec-
tion, we created two sets of grouped features; the first was
features (1)-(4) and (6), and the second features (7)-(11).

Arg P R F1 Arg P R F1

Money 93.9 92.8 93.3 GPE 76.0 31.7 44.7
CVE 86.8 89.3 88.0 Capa. 45.2 59.1 51.2
Patch 81.4 81.2 81.3 Pur. 65.2 53.7 58.8

Table 6: High (left) and low (right) scores for event argu-
ments; Capa. means Capabilities and Pur. means Purpose.

This experiment was performed on the 8-fold cross valida-
tion of training set with the Domain-Word2vec word embed-
dings. Experimental results are shown in Table 4. Nugget
detection scores with the feature set (1)-(5) are higher than
without, suggesting that even with expressive neural meth-
ods, the feature set provides benefits in detecting nuggets.
From the large differences on arguments, it is clear that the
features defined for argument detection are also beneficial.

We evaluated CASIE’s performance on the test set by
including all features (as defined previously). We experi-
mented with the four different word embeddings described
previously. The resulting scores, shown in Table 5, are the
best performance from development hyperparameter tuning.

Nugget detection scores show that Pre-built BERT gave
the best recall and F1. However, it is not significantly dif-
ferent from the second-ranked method, Domain-Word2Vec,
which had the best precision for detecting event nuggets
even though its vector size was the smallest. This suggests
that cybersecurity-related text has terms that are uncommon
or have different senses than in general text. Training with
Transfer-Word2vec did not give much benefit. For argument
detection, the pre-trained BERT models gave the best per-
formance, likely due to their larger vector size and context-
sensitivity.

Table 6 shows the event argument performance. Due to
space constraints and the large number of types, we show
three with high performance and three with low. We note
that identifying Capabilities and Purpose arguments is dif-
ficult because they are often long phrases with technical
terms. Another difficult task involved the GPE argument
type, which had relatively few instances with high variety,
with half of them used with the sense of a government orga-
nization rather than a place.

Event Argument and Role Linking. Table 7 shows met-
rics for assigning arguments to roles by comparing two sys-
tem settings—if the event type that the arguments partici-
pated in was specified or not. The scores show the higher
performance when specifying the event type. The largest im-
provement is for the Vulnerable-System-Owner role which
can be filled by the same set of arguments (Person and Or-
ganization) for the Attacker, Discoverer, Releaser, Trusted-
Entity, and Victim. The argument and role linking system
when specifying the event type performs very well, espe-
cially in predicting a role for Person or Organization argu-
ments. The argument with lowest linking scores is Version,
due to difficulties in detecting this argument and the simi-
larity of the Patch-Number and Vulnerable-System-Version
roles, as in:

• The new vulnerability affects Xen 4.8.x, 4.7.x,4.6.x,
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Role
Event

Specific
Not Event

Specific

Attacker 0.79 0.80
Discoverer 0.75 0.85
Number-of-Data 0.89 1.00
Number-of-Victim 0.91 1.00
Patch-Number 0.74 0.55
Ransom-Price 0.98 0.99
Releaser 0.69 0.84
Tool 0.87 0.80
Trusted-Entity 0.42 0.76
Victim 0.77 0.88
VS 0.98 0.94
VS-Version 0.69 0.62
VS-Owner 0.09 0.75

Table 7: Argument and role linking scores of two system
settings (specify and non-specify) for the associated event
type. VS means Vulnerable-System

Realis P R F1

Micro Avg 77.59 77.70 77.65

Table 8: Scores for identifying event realis attributes.

4.5.xVS-Version.

• Users of Struts 2.3VS-Version are advised to upgrade to
2.3.35Patch-Number.

The first contains only Vulnerable-System-Version whereas
the second also has Patch-Number. A heuristic like
“Vulnerable-System-Version should be lower than Patch-
Number” may help for the second, but not for the first.

Event Realis Identification. Table 8 shows scores of re-
alis identification using embedding features from Domain-
Word2vec. The scores are from averaging among three realis
types. It shows that the realis identification system performs
well.

Conclusion and Future Work

We defined a new cybersecurity event extraction task and
provided definitions of five event types, their semantic roles,
and argument types that can fill them. Our focused work
targets the key tasks in an event detection system: detect-
ing event nuggets and arguments, predicting event realis
and linking arguments and nuggets with roles. We collected
a corpus of 5,000 news articles discussing cybersecurity
events and annotated 1,000 of them with our rich event
schema. We developed CASIE as an information extrac-
tion system trained using the annotated data and evaluated
its performance. We show that neural methods with linguis-
tic and word embedding features can extract cybersecurity

event information with high accuracy. Additional details can
be found in Satyapanich (2019b) and Satyapanich, Finin,
and Ferraro (2019). We make our corpus, annotations and
code publicly available (Satyapanich 2019a).

Ongoing work includes improving event argument detec-
tion, especially for the Capabilities and Purpose roles, and
mapping arguments to event roles. We are developing com-
ponents to link event arguments to Wikidata entities and
for computing coreference and sequence relations between
events. Future work will support additional event types (e.g.,
DDoS attacks), will align and map the events, arguments,
and roles to the Unified Cybersecurity Ontology (Syed et al.
2016) and STIX CTI schema (OASIS 2019), and export ex-
tracted information as an integrated knowledge graph.
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