

7237_WSSAT_tamma_Titelei 15.4.2005 12:14 Uhr Seite 1

Whitestein Series in Software Agent Technologies

Series Editors:
Marius Walliser
Stefan Brantschen
Monique Calisti
Thomas Hempfling

This series reports new developments in agent-based software technologies and agent-
oriented software engineering methodologies, with particular emphasis on applications in var-
ious scientific and industrial areas. It includes research level monographs, polished notes
arising from research and industrial projects, outstanding PhD theses, and proceedings of
focused meetings and conferences. The series aims at promoting advanced research as well
as at facilitating know-how transfer to industrial use.

About Whitestein Technologies

Whitestein Technologies AG was founded in 1999 with the mission to become a leading
provider of advanced software agent technologies, products, solutions, and services for vari-
ous applications and industries. Whitestein Technologies strongly believes that software agent
technologies, in combination with other leading-edge technologies like web services and
mobile wireless computing, will enable attractive opportunities for the design and the imple-
mentation of a new generation of distributed information systems and network infrastruc-
tures.

www.whitestein.com

7237_WSSAT_tamma_Titelei 15.4.2005 12:14 Uhr Seite 2

Ontologies for Agents:
Theory and Experiences

Valentina Tamma
Stephen Cranefield
Timothy W. Finin
Steven Willmott
Editors

Birkhäuser Verlag
Basel • Boston • Berlin

7237_WSSAT_tamma_Titelei 15.4.2005 12:14 Uhr Seite 3

Editors:

Valentina Tamma
University of Liverpool
Agent Applications,
Research and Technology Group
Department of Computer Science
Chadwick Building
Liverpool L69 7ZF
Great Britain

Stephen Cranefield
University of Otago
Department of Information Science
PO Box 56
Dunedin
New Zealand

2000 Mathematical Subject Classification 68T35, 68U35, 94A99, 94C99

A CIP catalogue record for this book is available from the
Library of Congress, Washington D.C., USA

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

ISBN 3-7643-7237-0 Birkhäuser Verlag, Basel – Boston – Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, re-use of illustrations,
recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data
banks. For any kind of use permission of the copyright owner must be obtained.

© 2005 Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland
Part of Springer Science+Business Media
Cover design: Micha Lotrovsky, CH-4106 Therwil, Switzerland
Printed on acid-free paper produced from chlorine-free pulp. TCF °°
Printed in Germany
ISBN-10: 3-7643-7237-0
ISBN-13: 978-3-7643-7237-8

9 8 7 6 5 4 3 2 1 www.birkhauser.ch

Timothy W. Finin
University of Maryland
329 Information Technology and Engineering
Baltimore County
1000 Hilltop Circle
Baltimore MD 21250
USA

Steven Willmott
Universitat Politècnica de Catalunya (UPC)
Dept. Llenguatges i Sistemes Informatics
Modul C5, 211b
Campus Nord
08034 Barcelona
Spain

7237_WSSAT_tamma_Titelei 15.4.2005 12:14 Uhr Seite 4

Contents

Foreword . vii

Stephen Cranefield, Martin Purvis, Mariusz Nowostawski and Peter Hwang
Ontologies for Interaction Protocols .1

Marian H. Nodine and Jerry Fowler
On the Impact of Ontological Commitment . 19

Maria Teresa Pazienza and Michele Vindigni
Agent to Agent Talk: ”Nobody There?” Supporting Agents Linguistic
Communication . 43

Dejing Dou, Drew McDermott and Peishen Qi
Ontology Translation by Ontology Merging and
Automated Reasoning . 73

Leen-Kiat Soh
Collaborative Understanding of Distributed Ontologies in a
Multiagent Framework: Experiments on Operational Issues 95

Kendall Lister, Maia Hristozova and Leon Sterling
Reconciling Implicit and Evolving Ontologies for Semantic
Interoperability .121

Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia
Query Processing in Ontology-Based Peer-to-Peer Systems145

Chris van Aart, Bob Wielinga and Guus Schreiber
Message Content Ontologies . 169

Muthukkaruppan Annamalai and Leon Sterling
Incorporating Complex Mathematical Relations in Web-Portable
Domain Ontologies . 201

Harry Chen, Tim Finin and Anupam Joshi
The SOUPA Ontology for Pervasive Computing . 233

Stephen Cranefield, Jin Pan and Martin Purvis
A UML Ontology and Derived Dontent Language for a
Travel Booking Scenario . 259

vi Contents

Ian Dickinson and Michael Wooldridge
Some Experiences with the Use of Ontologies in Deliberative Agents . . . 277

Akio Sashima, Noriaki Izumi and Koichi Kurumatani
Location-Mediated Agent Coordination in Ubiquitous Computing299

Roland Zimmermann, S. Käs, Robert Butscher and Freimut Bodendorf
An Ontology for Agent-Based Monitoring of Fulfillment Processes 323

Foreword

There is a growing interest in the use of ontologies for multi-agent system appli-
cations. On the one hand, the agent paradigm is successfully employed in those
applications where autonomous, loosely-coupled, heterogeneous, and distributed
systems need to interoperate in order to achieve a common goal. On the other
hand, ontologies have established themselves as a powerful tool to enable knowl-
edge sharing, and a growing number of applications have benefited from the use of
ontologies as a means to achieve semantic interoperability among heterogeneous,
distributed systems.

In principle ontologies and agents are a match made in heaven, that has
failed to happen. What makes a simple piece of software an agent is its ability
to communicate in a ”social” environment, to make autonomous decisions, and to
be proactive on behalf of its user. Communication ultimately depends on under-
standing the goals, preferences, and constraints posed by the user. Autonomy is
the ability to perform a task with little or no user intervention, while proactiveness
involves acting autonomously with no need for user prompting. Communication,
but also autonomy and proactiveness, depend on knowledge. The ability to com-
municate depends on understanding the syntax (terms and structure) and the
semantics of a language. Ontologies provide the terms used to describe a domain
and the semantics associated with them. In addition, ontologies are often comple-
mented by some logical rules that constrain the meaning assigned to the terms.
These constraints are represented by inference rules that can be used by agents to
perform the reasoning on which autonomy and proactiveness are based.

In practice, the application areas of these technologies often overlap, for ex-
ample: e-commerce, intelligent information integration, and web services. Increas-
ingly, the multi-agent systems and ontology research communities are seeking to
work together to solve common problems. A key focus to this joint working is
emerging in ideas for the semantic web. Both ontologies and agent technologies
are central to the semantic web, and their combined use will enable the shar-
ing of heterogeneous, autonomous knowledge sources in a scalable, adaptable and
extensible manner.

This volume collects the most significant papers of the AAMAS 2002 and
AAMAS 2003 workshop on ontologies for agent system, and the EKAW 2002 work-
shop on ontologies for multi-agent systems. The workshops were taking different
perspectives to the topic of using ontologies in the framework of a multi-agent
system. On the one hand, there is the knowledge modelling perspective; i.e. how
ontologies should be modelled and represented in order to be effectively used in
agent systems. On the other hand, there is the agent perspective; what kind of
capabilities should be exhibited by an agent in order to make use of ontological
knowledge and to perform efficient reasoning with it.

The volume aims at providing a comprehensive review of the diverse efforts
covering the gap existing between these perspectives. The papers cover a wide
range of topics but can mainly be grouped in three categories: modelling principles

viii Foreword

for building and reasoning with ontologies for agents, semantic interoperability
between different agents, and applications of ontologies in agent systems.

Modelling ontologies entails dealing with the problems of building ontologies,
and establishing ontological commitment. Semantic interoperability includes rea-
soning with ontological knowledge that agents may use to proactively overcome
differences in their conceptualisation of the world, and applications of ontologies
concern real life examples of how ontologies can be used in agents.

For what concerns modelling and representing ontologies, Cranefield and col-
leagues in their first contribution propose to reduce the degree of human inter-
pretation currently necessary to understand an interaction protocol, by describing
at an abstract level the required agent actions that must be ‘plugged into’ the
protocol for it to be executed. In particular, this can be done by designing and
publishing ontologies describing the input and output data that are processed
during the protocol’s execution, together with the actions and decisions that the
agents must perform.
Nodine and Fowler concentrate on ontological commitment, or the agreement to
have applications and users conform to a common domain understanding, as en-
capsulated in one or more shared ontologies. They present their experiences in
building ontology-based agent systems in multiple domains and illustrate the prob-
lems arising when a new application aims to locate and conform to some existing
ontology or ontologies within its domain. The authors propose guidelines for on-
tology development and evolution, which should facilitate ontology reuse that may
underpin a usage model for ontologies; one that enables the application designer
to reuse ontological concepts from multiple ontologies in a more flexible manner,
while retaining the essentially good properties of ontology sharing and reuse.
Pazienza and Vindigni also concentrate on ontological commitment, and in par-
ticular, on the lack of a shared knowledge model that can be assumed as a default
ontological commitment. They propose a communication model based on the use of
natural language, that predicates a strong separation among terms and concepts.
In order to support the proposed communication model, the authors present a
novel agent architecture able to deal with possible linguistic ambiguities by focus-
ing on the conversational level.

An important part of this volume is devoted to approaches aimed at finding
an ontological model that is shared by all the agents composing a system. These
approaches become particularly important when agents commit to heterogenous
ontologies. Dou and colleagues present an approach to ontology translation, one
of the hardest problems agents must cope with. In their approach, the merging
of two related ontologies is obtained by taking the union of the terms and the
axioms defining them. Bridging axioms are added, not only as bridges between
terms in two related ontologies, but also to make this merge into a completely new
ontology, which can subsequently be merged with other ontologies. Translation is
implemented using an inference engine (OntoEngine), running in either a demand-
driven (backward chaining or data-driven (forward chaining) mode.

Foreword ix

Leen-Kiat Soh contribution describes a multiagent framework for collaborative un-
derstanding of distributed ontologies. The framework aims to investigate and iden-
tify how agents collaborate to understand each other under resource constraints
and operational setups, and to examine how agents manage and share their dis-
tributed ontologies triggered by various queries. To facilitate collaborative under-
standing, each agent maintains an ontology and a translation table with other
agents or neighbors.
In Lister and colleagues, the authors address the problem of semantic interoper-
ability on the web, and present their research experiments suggesting that as yet
unaddressed issues should be considered; such as reconciling implicit ontologies,
evolving ontologies, and task-oriented analysis. The authors consider the role of
semantic interoperation in multi-agent systems, and describe strategies for achiev-
ing it via the ROADMAP methodology.
Stuckenschmidt and colleagues concentrate on the problem of answering queries
over multiple data sources in a dynamic environment, where it is no longer realis-
tic to assume that the involved data sources act as if they were a single (virtual)
source, modelled as a global schema. In their contribution, they propose an alter-
native approach where they replace the role of a single virtual data source schema
with a peer-to-peer approach relying on limited, shared (or overlapping) vocabu-
laries between peer agents.
Chris van Aart and colleagues present an approach to agent communication, based
on message content ontologies that specify the meaning and intention of messages.
By committing to a shared ontology, several agents can reach an agreement on
different agent communication languages.

With respect to applications, Annamalai and Sterling investigate the possibil-
ity for agent systems aiding with collaboration among Experimental High-Energy
Physics (EHEP) physicists. They argue that a necessary component is an agreed
scientific domain ontology, which must include concepts that rely on mathematical
formulae involving other domain concepts, such as energy and momentum. In this
work, previous efforts on representing mathematical expressions are adapted to
produce a set of representational primitives and supporting definitions for mod-
elling complex mathematical relations.
Chen and colleagues investigate the use of ontologies in a multi-agent system pro-
viding brokering services for pervasive computing. Cranefield and colleagues, in
their second contribution, propose the use of a UML profile for ontology mod-
elling, to represent an ontology for travel booking services, and automatically
derive an object-oriented content language for this domain. This content language
is then used to encode example messages for a simple travel booking scenario,
and it is shown how this approach to agent communication allows messages to be
created and analysed using a convenient object-oriented, agent-specific application
programmer interface. Dickinson and Wooldridge present a belief-desire-intention
(BDI) approach to the problem of developing an agent-assisted travel scenario,
and ask what role ontologies would have in supporting the agent’s activity. To

x Foreword

this end, their contribution discusses the Nuin agent platform, and illustrates var-
ious ways in which ontology reasoning supports BDI-oriented problem solving and
communications by the agents in the system.
Sashima and colleagues focus on the problem of achieving coordination in ubiq-
uitous computing, and in particular. bridging the coordination gap separating
devices, services, and humans. They propose an agent-based coordination frame-
work for ubiquitous computing to solve this human-centered service coordination
issue.
Zimmerman and colleagues present agent-based supply chain monitoring system
for tracking orders, in which communication is enabled through the definition of
a shared ontology. The paper discusses the design of the ontology and its use for
inter-agent communication is illustrated with the help of AUML models of the
agent-interactions in the supply chain monitoring system.

Valentina Tamma

Valentina Tamma
Department of Computer Science
University of Liverpool
Chadwick Building
L69 7ZF Liverpool
Great Britain
e-mail: V.A.M.Tamma@csc.liv.ac.uk

Stephen Cranefield
Department of Information Science
University of Otago
Dunedin
New Zealand
e-mail: scranefield@infoscience.otago.ac.nz

Timothy W. Finin
Information Technology and Engineering
Baltimore County
Baltimore
USA
e-mail: finin@cs.umbc.edu

Steven Willmott
Dept. Llenguatges i Sistemes Informatics
Universitat Politecnica
Barcelona
Spain
e-mail: steve@lsi.upc.es

Ontologies for Interaction Protocols

Stephen Cranefield, Martin Purvis, Mariusz Nowostawski and
Peter Hwang

Abstract. In this paper we propose reducing the degree of human interpreta-
tion currently necessary to understand an interaction protocol by describing
at an abstract level the required agent actions that must be ‘plugged into’ the
protocol for it to be executed. In particular, this can be done by designing and
publishing ontologies describing the input and output data that are processed
during the protocol’s execution together with the actions and decisions that
the agents must perform. An agent (or agent developer) that has previously
defined mappings between the internal agent code and the actions and deci-
sions in an ontology would then be able to interpret any interaction protocol
that is defined with reference to that ontology. The discussion is based on the
use of Coloured Petri Nets to represent interaction protocols and the Unified
Modeling Language (UML) for ontology modelling. An alternative approach
using Agent UML (AUML) is also outlined.

1. Introduction

Agent communication languages (ACLs) such as the Knowledge Query and Manip-
ulation Language (KQML) [11] and the Foundation for Intelligent Physical Agents
(FIPA) ACL [15] are based on the concept of agents interacting with each other
by exchanging messages that specify the desired ‘performative’ (inform, request,
etc.) and a declarative representation of the content of the message. Societies of
agents cooperate to collectively perform tasks by entering into conversations—
sequences of messages that may be as simple as request/response pairs or may
represent complex negotiations. In order to allow agents to enter into these con-
versations without having prior knowledge of the implementation details of other
agents, the concepts of agent conversation policies [17] and interaction protocols
have emerged1. These are descriptions of standard patterns of interaction between

1Some authors treat these terms as synonymous, while others [13] make a distinction between
them in terms of the type and generality of the representation formalism used.

2 S. Cranefield et al.

two or more agents. They constrain the possible sequences of messages that can
be sent amongst a set of agents to form a conversation of a particular type. An
agent initiating a conversation with others can indicate the interaction protocol it
wishes to follow, and the recipient (if it knows the protocol) then knows how the
conversation is expected to progress. A number of interaction protocols have been
defined, in particular as part of the FIPA standardisation process [16].

The specification of the individual messages comprising an interaction proto-
col is necessarily loose: usually only the message performative, sender and receiver
are described. This is because an interaction protocol is a generic description of a
pattern of interaction. The actual contents of messages will vary from one execu-
tion of the protocol to the next. Furthermore, the local actions performed and the
decisions made by agents, although they may be related to the future execution of
the protocol, are traditionally either not represented explicitly (e.g. in an Agent
UML sequence diagram representation [28]) or are represented purely as labelled
‘black boxes’ (e.g. in a Petri net representation [5]).

In this paper we argue that the traditional models of interaction protocols are
suitable only as specifications to guide human developers in their implementation
of multi-agent systems, and even then often contain a high degree of ambiguity
in their intended interpretation. Here we are not referring to the necessity for
an interaction protocol to have formal semantics (although that is an important
issue). Rather, we see a need for techniques that allow the designers of interaction
protocols to indicate their intentions unambiguously so that a) other humans can
interpret the protocols without confusion, and b) software agents can interpret
protocols for the purposes of generating conversations. Ideally, an agent would be
able to download an interaction protocol previously unknown to it, work out where
and how to ‘plug in’ to the protocol its own code for message processing and for
domain-specific decision making, and begin using that protocol to interact with
other agents.

We propose reducing the degree of human interpretation currently necessary
to understand an interaction protocol by describing at an abstract level the re-
quired agent actions that must be plugged into the protocol for it to be executed.
In particular, this can be done by designing and publishing ontologies describing
the input and output data that are processed during the protocol’s execution to-
gether with the actions and decisions that the agents must perform. An agent (or
agent developer) that has previously defined mappings between the internal agent
code and the actions and decisions in an ontology would then be able to interpret
any interaction protocol that is defined with reference to that ontology.

For example, consider a protocol describing some style of auction. Inherent in
this protocol are the concepts of a bid and response and the actions of evaluating
a bid (with several possible outcomes). There are also some generic operations
related to any interaction protocol such as the parsing of a message to check that
it has a particular performative and that its content can be understood by the
agent in the current conversational context, and the creation of a message.

Ontologies for Interaction Protocols 3

In the next section, we motivate our work by discussing an example: the FIPA
Request Interaction Protocol, as specified by FIPA using Agent UML (AUML).
This specification lacks a number of important details that would be required for
an agent to use the protocol without additional human interpretation. In Section 3
we illustrate how a more detailed model of this interaction protocol can be defined
using a coloured Petri net, and explain the role that an ontology plays in the defi-
nition. Section 4 then presents two approaches to defining the internal operations
that an agent must implement in order to play a particular role in an interaction
protocol. In Section 5 we return to consider the use of AUML for interaction pro-
tocol modelling, due to the current effort underway in FIPA to enhance and fully
specify the language. We give an overview of our recent work on the development
of an agent conversation controller that directly interprets AUML sequence dia-
grams, based on techniques similar to those discussed in Sections 3 and 4 in the
context of coloured Petri nets. Section 6 concludes the paper.

2. Example: the FIPA Request Interaction Protocol

Figure 1 shows the FIPA Request Interaction Protocol2 [14] using AUML [28].
This protocol defines a simple interaction between two agents. One agent plays
the Initiator role and sends a request for an action to be performed to another
agent which plays the Participant role. The protocol illustrates that there are three
alternative responses that the participant can make after receiving the request: it
can refuse or agree to the request or it may signal that it did not understand the
request message. If it agreed, it subsequently sends a second response: a message
indicating that its attempt to fulfil the request action failed, a message signalling
that the action has been performed, or a message containing the result of perform-
ing the requested action.

There are some aspects of this protocol that are not specified. For example,
it is not specified that each of the not-understood, agree and refuse messages
should contain part of the original request in their content tuple, along with an
additional proposition (representing respectively an error message, a precondition
for the action to be performed, and a reason for refusal). To make the specification
more precise there needs to be a way of annotating the protocol with constraints on
the contents of the messages and the relationships between them. These constraints
would need to be expressed in terms of a vocabulary relating to the structure of
messages, i.e. an ontology for messages.

Furthermore, the underlying intention of this protocol is not explicitly spec-
ified. In order to customise this protocol to a particular domain, a request ini-
tiator agent must ‘plug in’ domain-specific procedures at six different points: the
handling of not-understood, refuse and failure messages, analysing an agree

2The figure shows Version F of the protocol. Since this paper was written a more recent version

of the protocol has been released by FIPA and promoted to standard status. The new version
has removed the not-understood message and made the agree message optional.

4 S. Cranefield et al.

FIPA-Request-Protocol

Initiator Participant

request

refuse

not-understood

agree

Initiator, Participant,
request, refuse*, not-

understood*, agree, failure*,
inform-done : inform*,

inform-ref : inform*

x

x

failure

inform-done

inform-ref

[agreed]

Figure 1. The FIPA Request Interaction Protocol defined using
AUML

message to check if a precondition is specified by the participant, and the handling
of the two different types of response that indicate the action was successfully per-
formed. Similarly, there are three pieces of domain-specific functionality that an
agent wishing to play the role of participant must supply: the parsing of the ac-
tion being requested (possibly resulting in a failure to understand the message),
choosing whether to agree to the request, and the choice between an inform-done
response or an inform-ref message describing the action’s result. We believe that
an interaction protocol is not completely specified until the interface between the
domain-specific agent-supplied code and the generic interaction protocol is defined.
Clearly, interaction protocols should remain as generic as possible, making no com-
mitment to any particular agent platform or implementation language. Thus the
specification of this interface should be in terms of a programming-language inde-
pendent representation. Furthermore, the agent operations related to a particular
protocol will be related to the types of entity involved in the execution of that

Ontologies for Interaction Protocols 5

protocol, e.g. the notion of a bid in a ‘call for proposals’ protocol. This model
of protocol-related concepts and the operations that act on them is an ontology
that needs to be supplied along with the interaction protocol to give it a full
specification.

3. A Coloured Petri Net approach

The discussion above was based on an analysis of an interaction protocol expressed
as an AUML sequence diagram. However, the version of AUML used in the current
FIPA standards has some shortcomings for further investigation of these ideas.
First, this version of AUML is underspecified and the intended interpretation of an
AUML sequence diagram is not always clear. Second, there are no graphical editors
that directly support the use of AUML. Finally, these AUML sequence diagrams
do not have a way of explicitly modelling the internal actions of agents3—which
are exactly the points of the protocol at which we need to attach annotations
refering to an ontology. We therefore adopted an alternative modelling language
for our initial research in this area: coloured Petri nets.

Petri Nets [24] are a formalism and associated graphical notation for mod-
elling dynamic systems. The state of the system is represented by places (denoted
by hollow circles) that can contain tokens (denoted by symbols inside the places).
The possible ways that the system can evolve are modelled by defining transi-
tions that have input and output arcs (denoted by arrows) connected to places.
The system dynamics can be enacted non-deterministically by determining which
transitions are enabled by the presence of tokens in the input places, selecting one
and firing it, which results in tokens being removed from its input places and new
tokens being generated and placed in its output places.

Coloured Petri nets (CPNs) [18] are an elaboration of ordinary Petri nets. In
a coloured Petri net, each place is associated with a ‘colour’, which is a type (al-
though the theory of CPNs is independent of the choice of type system). Places can
contain a multiset of tokens of their declared type. Each input arc to a transition
is annotated with an expression (possibly containing variables) that represents a
multiset of tokens. For a transition to be enabled, it must be possible to match
the expression on each input arc to a sub-multiset of the tokens in the associated
input place. This may involve binding variables. In addition, a Boolean expression
associated with the transition (its guard) must evaluate to true, taking into ac-
count the variable bindings. When a transition is fired, the matching tokens are
removed from the input places and multiset expressions annotating the output
arcs are evaluated to generate the new tokens to be placed in the output places.
If the expression on an output arc evaluates to the empty multiset then no tokens
are placed in the connected place.

3UML activity diagrams have this capability and can be used on their own or in conjunction
with sequence diagrams to specify the internal agent processing [28, 20].

6 S. Cranefield et al.

Out

In Receive
request
result

Result

Failed Done

Start

Send
request

Request
sent

Not
understood

Receive request
answer

Refused

Agreed

Process
refusal

Process
not understood Process

failure Process
done

Process
result

Process
precondition

Agreed
(processed)

Figure 2. The Initiator role for the Request protocol as a CPN
(outline only)

The coloured Petri net formalism provides a powerful technique for defining
system dynamics and has previously been proposed for use in modelling interaction
protocols [5, 19]. In this paper we take a different approach from our previous work
[26, 25, 31] in the application of CPNs to interaction protocol modelling. We choose
to model each side of the conversation (a role) using a separate CPN (we have also
discussed this approach elsewhere [34, 35, 33, 32], and a variety of approaches have
been used by other researchers [30, 23, 21]). Figure 2 shows an overview of the
net for the Initiator role of the FIPA Request protocol (the ‘colours’ of places, the
arc inscriptions and the initial distribution of tokens are not shown). In the figure,
places are represented by circles and transitions are represented by squares. No
tokens are shown. The places labelled In and Out are fusion places: they are shared
between all nets for the roles the agent can play (in any interaction protocol). The
agent’s messaging system places tokens representing received messages in the In
place and removes tokens from the Out place (these represent outgoing messages)
and sends the corresponding messages.

The fully detailed version of this Petri net encodes the following process.
The Initiator begins the conversation by sending a request with its reply-with
parameter set to a particular value. When an answer with a matching in-reply-to
parameter value is received, the Receive request answer transition is enabled and can
subsequently fire at the agent’s discretion. This transition generates a single token
that is placed in one of the Agreed, Refused or Not understood places, depending on
the communicative act of the reply (the remaining two output arcs each generate
an empty multiset of tokens, i.e. no tokens are placed in their output places). In the
case that the other agent agreed to the request, another message is subsequently
expected from that agent, containing the result of the requested action. This is
handled by the right hand side of the net in a similar fashion.

Ontologies for Interaction Protocols 7

Request sent :
FIPAMessage

reply

Guard:
reply.inReplyTo->notEmpty() and
reply.inReplyTo = req.replyWith

Refused :
Pair<FIPARequestMessage,

 Reason >

if reply.oclIsKindOf(FIPARefuseMessage)
then Bag{Pair.create(
 req, Reason.createFromProposition(
 reply.oclAsType(FIPARefuseMessage).reason))}
else Bag{}
endif

req

In : FIPAMessage

Agreed :
Pair<FIPARequestMessage,
 Precondition >

Receive
request
answer

Not understood :
Pair<FIPARequestMessage,
 Reason >

Not understood :
Pair<FIPARequestMessage,
 Reason >

if reply.oclIsKindOf(FIPANotUnderstoodMessage)
then Bag{Pair.create(
 req, Reason.createFromProposition(
 reply.oclAsType(FIPANotUnderstoodMessage).reason))}
else Bag{}
endif

if reply.oclIsKindOf(FIPAAgreeMessage)
then Bag{Pair.create(
 req, Precondition.createFromProposition(
 reply.oclAsType(FIPAAgreeMessage).precondition))}
else Bag{}
endif

Figure 3. Details of the ‘Receive request answer’ transition

In this Petri net we have included transitions that correspond to internal ac-
tions of the agent, such as those labelled Process refusal and Process not understood.
These are not part of the protocol when it is viewed in the pure sense of simply
being a definition of the possible sequences of messages that can be exchanged.
However, we believe these ‘internal’ transitions communicate the underlying intent
of the protocol: there are a number of points at which the agent must invoke par-
ticular types of computation to internalise and/or react to the different states that
can occur. In the example shown, most of these internal transitions occur after
the final states of the protocol. However, this is not necessarily the case, e.g. the
Process precondition transition gives the agent a chance to reason about the pre-
condition that may be specified by the other agent when it agrees to the request.
This precondition must become true before the other agent will fulfil the request
(in the simple case it can just be the expression true). Although the Request

8 S. Cranefield et al.

interaction protocol does not allow for any extra communication between the two
agents regarding this precondition, an agent might wish to do something outside
the scope of the conversation to help satisfy the precondition (e.g. perform an
action). Therefore, the initiator needs an opportunity to notice the precondition.

replyWith : String [0..1]

inReplyTo : String [0..1]

 . . .

FIPAMessage

FIPARefuseMessage FIPANotUnderstoodMessage FIPAAgreeMessage . . .

ActionDescription

CommunicativeActionDescription
0..1

1

Proposition

0..1

action

1

0..1

reason

1

0..1

precondition

1

0..1

action

1

0..1

action
1

0..1

reason
1

«create» createFromProposition(p : Proposition)

Reason

0..1

1

«create» createFromProposition(p : Proposition)

Precondition

1

0..1

Figure 4. A partial ontology for the Request interaction protocol

Figure 3 shows the details of the Receive request answer transition. This is
where we make the connection with ontologies: the types used as place colours and
within arc expressions are concepts in an associated ontology (a portion of which is
shown in Figure 4). We use the object-oriented Unified Modeling Language (UML)
[3] to represent the ontology and UML’s associated Object Constraint Language
(OCL) [36] as our expression language. For brevity, we adopt the convention that
a variable x appearing on an input arc represents the singleton multiset Bag{x}
(Bag is the OCL type corresponding to a multiset).

In the case of the Request protocol, the concepts that need to be defined
in the associated ontology are message types. Figure 4 therefore defines an in-
heritance hierarchy of FIPA ACL message types4 (generalisation relationships are
represented by arrows with triangular heads, while associations are represented
by arrows with open heads). In addition, we have chosen to explicitly model the
concepts of a reason and a precondition that are associated with the Request pro-
tocol. Within a FIPA ACL message these are both represented as propositions, but

4A more complex UML model for FIPA messages has been presented elsewhere [6], but that

serves a different purpose. The model in this paper is not intended as an update of that previous
work, but instead provides a different view of FIPA message types.

Ontologies for Interaction Protocols 9

here the Reason and Precondition classes can be used (via their constructors) to
achieve an additional level of interpretation of a proposition. Note that although
the ontology is shown here as being a monolithic model, in practice some of the
classes shown would be imported from a separate UML package.

Process refusal
Guard: true
Operation: processRefusal(request: FIPARequestMessage,
 reason: Reason)
Inputs: { request = p.get(1), reason = p.get(2) }
Outputs: { }

Refused : Pair<FIPARequestMessage,
 Reason >

p

Figure 5. Details of the ‘process request refusal’ transition

In addition to the classes shown, the ontology is assumed to include a UML
class template called Pair. A class template is a class that is defined in terms of
one or more other classes, which are specified only as parameter names. When it is
used (as in Figure 3) specific types must be supplied to instantiate the parameters.
Pair represents a pair of elements with the type of each argument being the
corresponding supplied parameter.

The arc expressions in Figure 3 use the operations oclIsKindOf and
oclAsType. These are predefined OCL operations used for run-time type checking
and type casting respectively.

4. Modelling Internal Agent Operations

In Figure 3, all processing represented by the transition is performed by the guard
and the output arc expressions. This is not always the case. Consider the Process
request refusal transition from Figure 2 (shown in detail in Figure 5). This repre-
sents the computation that an agent must do to react to the participant’s refusal
of the request. Although any future actions of the initiator agent are outside the
scope of the Request protocol, in order for the protocol model to act as a stand-
alone specification (without relying on implicit assumptions about the meaning of
certain places) it should define the way in which the agent transfers information
from the Petri net to its own internal processes. To support this, we optionally
associate an operation with each transition, specifying the inputs to the operation
as OCL expressions and providing a list of variables to which the outputs should
be assigned (note that UML allows multiple output parameters in an operation).
Figure 5 illustrates this for the Process request refusal transition.

The operations required to interface an agent with the CPN for a given role
constitute part of the ontology for the protocol. In this section we describe two

10 S. Cranefield et al.

createPendingRequest() : FIPARequestMessage

processRefusal(req : FIPARequestMessage, rsn : Reason)

processRequestNotUnderstood(req : FIPARequestMessage, rsn : Reason)

processAgreementPrecondition(req : FIPARequestMessage, pre : Precondition)

processRequestedActionFailure(req : FIPARequestMessage, rsn : Reason)

processRequestDone(req : FIPARequestMessage)

processRequestResult(result : GroundTerm)

«role»

Initiator

Figure 6. ‘Static’ specification of the Initiator role for the
Request protocol

approaches for using UML to model the operations required for particular roles: a
simple ‘static’ approach and a more flexible but complex ‘dynamic’ approach.

«powertype»
OpType

Operation

ProcessRefusal

: OpType

FIPARequestMessage Reason

0..1

req 1

«parameter» 0..1

reason
1

«parameter»

Context

* before
1

*
after

1

«powertype»
RoleType

{ in } { in }

Role

Initiator

Agent

* *

: RoleType

* *

Binding

Object

*

0..1

name: String

execute(in b : Binding) : Binding

OpExecutor

r: RoleType
o: OpType

1

1

Figure 7. Specifying operations as first-class objects

4.1. The Static Approach

Figure 6 illustrates the static approach to including a role’s operations in a UML
ontology. This figure shows a class (annotated with the ��role�� stereotype) repre-
senting the role and containing all required operations. Although this looks like the
specification of an application programmer interface rather than an ontology, it is
not intended that an agent must implement operations with the same signatures
as shown here. Instead an agent may be able to map these operations into those
it does possess. To do this, the description of the role’s required operations would

Ontologies for Interaction Protocols 11

need to include some information about their semantics, possibly using OCL pre-
and postcondition expressions. This is a subject for future research.

The representation in Figure 6 does not model the operations required for a
given role as first class objects in UML, but as features of a class representing the
role. Although this has the benefit of simplicity, it has a number of shortcomings.
Essentially it treats a role as an interface that an agent must implement if it wants
to act in that role. We call this the static approach because it does not accommo-
date in a straightforward way the possibility of agents dynamically changing the
roles they support. The UML object model does not allow classes (or agent types
in this scenario) to change their set of implemented interfaces at run time. Also,
the notation does not show graphically the relationships between the operations
and the ontological concepts on which they depend.

4.2. The Dynamic Approach

Figure 7 shows an alternative approach that addresses the concerns raised above.
The majority of the figure represents a base ontology containing classes to which a
specific role ontology would make reference. Only the four classes at the bottom of
the figure represent a specific ontology: a portion of the ontology for the Request
interaction protocol.

Modelling both entities and the operations that act on them as first class
objects is difficult to do in a straightforward way without departing from a “strict
metamodelling architecture” where there is a firm distinction between instances
and classes [1]. In this case, to allow the use of associations to define the types of
operation arguments, each operation must be defined as a class. The abstract class
Operation represents the concept of an operation that is associated with a role
and which relates two contexts: the relevant local states of the world before and
after the operation is performed. Particular operations are modelled as subclasses
of Operation with their input and output arguments represented by associations
labelled with the UML stereotype ��parameter�� and one of the Boolean ‘tagged
values’ in or out

If operations are classes, we need to consider what their instances are. The
answer is that the instances represent snapshots of the operation’s execution in
different contexts and with different arguments, in the same way that a mathemat-
ical function can be regarded as the set of all the points on its graph. However,
the operation class only serves as a description of the operation: it will not be
instantiated by an agent. Instead we model an agent as containing a collection of
OpExecutor objects, each being an instance of some class that implements an oper-
ation. These objects are indexed by role and operation (this is shown using UML’s
qualified association notation). Roles and operations are both modelled as classes,
so the types for these association qualifiers must be powertypes of Operation and
Role. A powertype is a class whose instances are all the subclasses of another class
[22, Chapter 23].

To invoke an operation, an agent calls execute on an OpExecutor object.
The arguments to this method must be completely generic, so a binding structure

12 S. Cranefield et al.

is provided as an argument. This maps the operation’s argument names to ob-
jects. The operation returns another binding list specifying values for any output
parameters.

5. AUML Revisited

Section 3 motivated our use of coloured Petri nets by discussing some shortcomings
of AUML as used in the FIPA interaction protocols. Recently FIPA has formed the
Modeling Technical Committee [12] which is developing a new version of AUML,
based on UML 2.0 and various UML-inspired modelling notations that have been
defined by researchers in the area of agent-based software engineering. To date,
work has focussed on the graphical notation, with a metamodel to be developed
later. In parallel with (and informed by) the FIPA work on notation, we have
have undertaken a preliminary investigation of how interaction protocols can be
represented by sequence diagrams in sufficient detail to allow them to be directly
interpreted by agents (once the application-specific code has been ‘plugged in’ to
the appropriate points in the protocol) [9]. This required developing a mechanism
for specifying the connection between the contents of incoming messages, the pa-
rameters and results of agents’ internal operations, and the contents of outgoing
messages—similar to the technique presented in Section 4 for use with coloured
Petri nets. We also developed a metamodel for AUML sequence diagrams (based
on a subset of the UML 2.0 metamodel), and implemented a library5 for the Opal
agent platform [29] that allows an agent to read an interaction protocol sequence
diagram encoded in the XMI format, plug in methods that correspond to the in-
ternal actions specified in the protocol, and take part in a conversation according
to that protocol by directly interpreting the sequence diagram.

Figure 8 illustrates the sequence diagram notation handled by our tool. The
rectangles appearing on the lifelines represent the operations performed by agents
when processing incoming messages and generating responses. These are specified
by an operation name (not shown in the figure) and start and end constraints,
denoted by dog-eared rectangles. These constraints specify how the inputs and
outputs of the operations are related to the contents of the messages and variables
of the protocol. In general, we believe that OCL would be the apppropriate lan-
guage for expressing these constraints. However, as our tool is based on the Eclipse
Modelling Framework (EMF) [8], and an OCL interpreter for EMF [27] was not
yet available at the time this work was done, we used Java statements (interpreted
by BeanShell [2]) for our prototype AUML interpreter. Figure 9 shows the decla-
ration of the inputs and outputs of the createProposal operation from Figure 8:
the operation’s inputs are the two expressions in the content of the incoming CFP
message (an action description and a referential expression describing a property
that any responding proposal should satisfy), and the outputs are the action the

5The current library is an early prototype that supports only two-party conversations and a
subset of sequence diagram features.

Ontologies for Interaction Protocols 13

sd: contract

boolean accept

ALT

customer seller

CFP()

Interaction constraint

accept=false

accept=true

Global variable

Agree()

Propose()

Refuse()

Action start and end
constraints

Message
creation

and
processing

actions

Figure 8. An executable AUML interaction protocol

m2 (PROPOSE)()

{ createProposal.add(0,m1.getAction());
 createProposal.add(1,m1.getRefExp()); }

createProposal

{ m2.setAction(createProposal.get(0));
 m2.setProposition(createProposal.get(1)); }

m1 (CFP)()

input specification

output specification

Figure 9. Declaring operation inputs and outputs in AUML

seller will propose to do (probably the same as that requested) and a proposition
expressing the terms of the bid.

6. Conclusion

In this paper we have identified two weaknesses in traditional mechanisms for
specifying agent interaction protocols: a lack of precision in defining the form of
messages that are exchanged during the protocol and the relationships between
them, and the lack of any explicit indication of where and how the protocol in-
terfaces with an agent’s internal computation. We have proposed the use of an
ontology associated with a protocol to define the relevant concepts and the in-
ternal operations that an agent needs in order to partake in a conversation using
that protocol, and have illustrated how this information can be represented in
interaction protocols defined using coloured Petri nets and an extended version of
AUML.

14 S. Cranefield et al.

We note that some uses of interaction protocols are not concerned with the
internal actions of agents, e.g. external monitoring of conversations for the purpose
of compliance testing or debugging multi-agent systems [30]. For this type of ap-
plication it may be beneficial to provide a simpler view of protocols that abstracts
away the transitions representing internal actions.

Two techniques were proposed for modelling the agent internal actions nec-
essary to use an interaction protocol: a static model and a dynamic model. We
believe the dynamic model, although more complex, is more flexible and has more
scope for adding semantic annotations to define the operations—an extension nec-
essary to enable agents to deduce how to use their existing operations to implement
those required by an interaction protocol.

The type of ontology discussed in this paper combines descriptions of concepts
and operations that act on them in a single model. In the knowledge acquisition
research community there has been considerable study of techniques for building
libraries of reusable problem-solving methods, and work has been done on combin-
ing such libraries and ontologies in a single system [10]. This research may provide
some insights into the problems of integrating action descriptions into ontologies.

The aim of the work described in this paper is to reduce the degree of hu-
man interpretation required to understand an interaction protocol. The solution
proposed here achieves this by including more detailed information about the ac-
tions that participating agents must perform. The use of an associated ontology
provides terminology for describing how the messages received and sent by agents
are related to each other, and also allows signatures to be defined for the oper-
ations that agents must be able to perform in order to use the protocol for its
intended purpose. These signatures provide a syntactic specification for the points
in the protocol at which the agents must provide their own decision-making and
information-processing code, and agent developers could use this to bind internal
agent code to these points in the protocol. There is further work to be done to
find ways of defining the meaning of these operations so that this binding can be
performed on a semantic rather than syntactic basis. This will provide the ability
for agents to engage in previously unknown interaction protocols by interpreting
the specifications of the protocol and its associated ontologies.

References

[1] C. Atkinson and T. Kühne. Processes and products in a multi-level metamodelling
architecture. International Journal of Software Engineering and Knowledge Engi-
neering, 11(6):761–783, 2001.

[2] Beanshell: Lightweight scripting for Java. http://www.beanshell.org, 2003.

[3] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

[4] C. Castelfranchi and W. L. Johnson, editors. Proceedings of the 1st International
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002).
ACM Press, 2002.

Ontologies for Interaction Protocols 15

[5] R. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Using colored Petri nets for
conversation modeling. In Dignum and Greaves [7], pages 178–192.

[6] S. Cranefield and M. Purvis. A UML profile and mapping for the generation of
ontology-specific content languages. Knowledge Engineering Review, 17(1):21–39,
2002.

[7] F. Dignum and M. Greaves, editors. Issues in Agent Communication, volume 1916
of Lecture Notes in Artificial Intelligence. Springer, 2000.

[8] Eclipse modeling framework. http://www.eclipse.org/emf, 2004.

[9] L. Ehrler and S. Cranefield. Executing agent UML diagrams. In Proceedings of the
3rd International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2004). ACM Press, 2004. To appear.

[10] D. Fensel, M. Crubezy, F. van Harmelen, and M. I. Horrocks. OIL
& UPML: A unifying framework for the knowledge web. In Proceedings
of the Workshop on Applications of Ontologies and Problem-Solving Meth-
ods, 14th European Conference on Artificial Intelligence (ECAI 2000), 2000.
http://delicias.dia.fi.upm.es/WORKSHOP/ECAI00/14.pdf.

[11] Tim Finin, Yannis Labrou, and James Mayfield. KQML as an agent communica-
tion language. In J. M. Bradshaw, editor, Software Agents. MIT Press, 1997. Also
available at http://www.cs.umbc.edu/kqml/papers/kqmlacl.pdf.

[12] FIPA Modeling Technical Committee Web site. http://www.auml.org/
auml/modelingtc, 2004.

[13] R. A. Flores and R. C. Kremer. To commit or not to commit: Modelling agent
conversations for action. Computational Intelligence, 18(2):120–173, 2002.

[14] Foundation for Intelligent Physical Agents. FIPA request interaction protocol spec-
ification, version F. http://www.fipa.org/specs/fipa00026, 2001.

[15] Foundation for Intelligent Physical Agents. FIPA ACL message representation in
string specification. http://www.fipa.org/specs/fipa00070, 2002.

[16] Foundation for Intelligent Physical Agents. FIPA interaction protocol library.
http://www.fipa.org/repository/ips.html, 2002.

[17] M. Greaves, H. Holmback, and J. Bradshaw. What is a conversation policy? In
Dignum and Greaves [7], pages 118–131.

[18] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practi-
cal Use, Volume 1: Basic Concepts. Monographs in Theoretical Computer Science.
Springer, 1992.

[19] F. Lin, D. H. Norrie, Weiming Shen, and Rob Kremer. A schema-based approach to
specifying conversation policies. In Dignum and Greaves [7], pages 193–204.

[20] J. Lind. Specifying agent interaction protocols with standard UML. In
M. Wooldridge, G. Weiß, and P. Ciancarini, editors, Agent-Oriented Software En-
gineering II, volume 2222 of Lecture Notes in Computer Science, pages 136–147.
Springer, 2002.

[21] S. Ling and S. W. Loke. A formal compositional model of multiagent interaction. In
Castelfranchi and Johnson [4], pages 1052–1053.

[22] J. Martin and J. J. Odell. Object-Oriented Methods: A Foundation. Prentice Hall,
Englewood Cliffs, NJ, UML edition, 1998.

16 S. Cranefield et al.

[23] H. Mazouzi, Amal El Fallah Seghrouchni, and S. Haddad. Open protocol design for
complex interactions in multi-agent systems. In Castelfranchi and Johnson [4], pages
517–526.

[24] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4), 1989.

[25] M. Nowostawski, M. Purvis, and S. Cranefield. A layered approach for mod-
elling agent conversations. In Proceedings of the 2nd International Workshop on
Infrastructure for Agents, MAS, and Scalable MAS, 5th International Conference
on Autonomous Agents, 2001. http://www.cs.cf.ac.uk/User/O.F.Rana/agents2001/
papers/06 nowostawski et al.pdf.

[26] M. Nowostawski, M. Purvis, and S. Cranefield. Modelling and visualizing agent
conversations. In Proceedings of the Fifth International Conference on Autonomous
Agents, pages 234–235. ACM Press, 2001.

[27] Object constraint language library. http://www.cs.kent.ac.uk/projects/ocl, 2003.

[28] J. J. Odell, H. Van Dyke Parunak, and B. Bauer. Representing agent interaction pro-
tocols in UML. In Paolo Ciancarini and Michael Wooldridge, editors, Agent-Oriented
Software Engineering, volume 1957 of Lecture Notes in Computer Science, pages 121–
140. Springer, 2001. (Draft version at http://www.auml.org/auml/working/Odell-
AOSE2000.pdf).

[29] Opal agent platform. http://sourceforge.net/projects/nzdis, 2004.

[30] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging multi-agent systems using
design artifacts: the case of interaction protocols. In Castelfranchi and Johnson [4],
pages 960–967.

[31] M. Purvis, S. Cranefield, M. Nowostawski, and D. Carter. Opal: A multi-level
infrastructure for agent-oriented software development. Discussion Paper 2002/01,
Department of Information Science, University of Otago, PO Box 56, Dunedin,
New Zealand, 2002. http://www.otago.ac.nz/informationscience/publctns/
complete/papers/dp2002-01.pdf.gz.

[32] M. Purvis, M. Nowostawski, S. Cranefield, and M. Oliveira. Multi-agent interac-
tion technology for peer-to-peer computing in electronic trading environments. In
G. Moro, C. Sartori, and M. Singh, editors, Proceedings of the 2nd International
Workshop on Agents and Peer-to-Peer Computing, 2nd International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, pages 103–114, 2003.

[33] M. Purvis, M. Nowostawski, M. Oliveira, and S. Cranefield. Multi-agent interaction
protocols for e-business. In Proceedings of the 2003 IEEE/WIC International Con-
ference on Intelligent Agent Technology (IAT 2003), pages 318–324. IEEE Press,
2003.

[34] M. K. Purvis, S. J. S. Cranefield, M. Nowostawski, and M. A. Purvis. Multi-agent
system interaction protocols in a dynamically changing environment. In T. Wagner,
G. Vouros, and S. Smith, editors, Proceedings of the Workshop – Toward an Appli-
cation Science: MAS Problem Spaces and their Implications to Achieving Globally
Coherent Behavior, 1st International Joint Conference on Autonomous Agents and
Multi-Agent Systems, 2002.

[35] M. K. Purvis, P. Hwang, M. A. Purvis, S. J. Cranefield, and M. Schievink. Inter-
action protocols for a network of environmental problem solvers. In Proceedings of

Ontologies for Interaction Protocols 17

the 2002 iEMSs International Meeting: Integrated Assessment and Decision Support
(iEMSs 2002), volume 3, pages 318–323. The International Environmental Mod-
elling and Software Society, 2002. http://www.iemss.org/iemss2002/proceedings/
pdf/volume%20tre/214 purvis.pdf.

[36] J. B. Warmer and A. G. Kleppe. The Object Constraint Language: Getting your
models ready for MDA. Addison-Wesley, 2nd edition, 2003.

Stephen Cranefield, Martin Purvis, Mariusz Nowostawski
Department of Information Science
University of Otago
PO Box 56
Dunedin, New Zealand
e-mail: {scranefield,mpurvis,mnowostawski}@infoscience.otago.ac.nz

Peter Hwang
Knowledge Engineering and Discovery Research Institute
AUT Technology Park, 581-585 Great South Road
Penrose, Auckland, New Zealand
e-mail: peter.hwang@aut.ac.nz

On the Impact of Ontological Commitment

Marian H. Nodine and Jerry Fowler

Abstract. Ontological commitment, or the agreement to have your applica-
tions and users conform to a common domain understanding as encapsulated
in one or more shared ontologies, is a noble goal and essential for open agent
systems. Our experiences building ontology-based agent systems in multiple
domains have shown us that the intention for a new application to locate and
conform to some existing ontology or ontologies within its domain has many
impediments to its success. For instance, the goals of the designer of a domain
ontology include developing a complete and comprehensive domain descrip-
tion; however, the application developer may only require a small fragment
of that ontology. Multiple applications that conform to the ontology may, in
fact, use completely orthogonal fragments of the ontology, and not be able to
interact at all. Users may insist on importing into the ontology sets of terms
that are neither logically consistent nor easily modelable.

With these issues in mind, we propose here some guidelines for ontol-
ogy development and evolution that should facilitate ontology reuse. These
guidelines could underpin a usage model for ontologies; one that enables the
application designer to reuse ontological concepts from multiple ontologies in
a more flexible manner, while retaining the essentially good properties of on-
tology sharing and reuse. These guidelines affect both the design and use of
ontology-based applications, as well as the way applications advertise them-
selves to other agents with which they may interoperate.

Mathematics Subject Classification (2000). 68U35 Information Systems.

Keywords. Ontologies, ontological commitment.

1. Introduction

The goal of knowledge representation is to make explicit the semantics of a partic-
ular domain of interest for the purposes of sharing the knowledge among humans
and computer artifacts. Sowa [21] subdivides knowledge representation into cate-
gories:

EDEN was funded jointly by the DOD, DOE and EPA.

20 Marian H. Nodine and Jerry Fowler

Logic provides the formal structure and rules of inference.
Ontology defines the kinds of things that exist in the application do-
main.
Computation supports the applications that distinguish knowledge rep-
resentation from pure philosophy.”

There is a strong relationship between some specific ontology and the log-
ical rules and computational artifacts that use that ontology, in that when they
communicate among themselves, they have some level of assurance that the same
terms have the same meanings to all. However, this use requires that the logi-
cal rules and the computational artifacts have explicit linkages with the ontology;
often in the form of hard-coding the ontological terms into the rules and/or the
application code itself.

In an agent-based system, common ontologies specify the ontological com-
mitments of a set of participating agents [10]. An ontological commitment is an
agreement to use a vocabulary in a way that is consistent with an ontology. An
agent or human committed to an ontology understands (some subset of) the ontol-
ogy and agrees to use it in a manner consistent with the semantics of the ontology.
Agents and humans committed to the same ontology can share knowledge among
themselves with some confidence that they share an underlying understanding of
what is being said. Commitment to common, shared ontologies facilitates openness
in an agent-based system.

We examine the conflicting requirements and goals of ontology designers,
ontology-committed applications, and ontology-aware users, and their respective
impact on the problem of ontology commitment and reuse. This conflict is ev-
ident, but unresolved, in the guide for the OWL Web Ontology Language [24],
which states at one point, “... the development of an ontology should be firmly
driven by the intended usage”, and at another, “in order for ontologies to have
the maximum impact, they need to be widely shared”. The first statement implies
that application designers and users need to have an impact on the development
of an ontology, and the second implies that application designers and users should
use pre-existing ontologies, which were designed without considering their needs.
As ontological sharing and reuse increases, the gap between the ontology designers
and the ontology users grows larger.

Our goal is to analyze what issues inhibit reuse and to propose strategies
for facilitating reuse. In particular, we consider the problem of reuse of ontolo-
gies whose specification is complete, for applications whose requirements were not
considered during the design of the ontology. This problem is not addressed in
the ontology design methodologies summarized in [8]. We develop guidelines and
approaches for agents to use existing ontologies in a more flexible manner.

We seek to relate the issues to real issues we have encountered within the
context of one of our applications, EDEN [5]. EDEN is an agent-based system de-
veloped for the purpose of inter-organizational sharing of environmental data col-
lected, stored and monitored by multiple government agencies and non-government

On the Impact of Ontological Commitment 21

scientists spread throughout the US and Europe, and relating information from
these disparate data sources and schemas at a semantic level as needed by the
users. EDEN uses ontologies to represent the semantics of the underlying infor-
mation in several large, diverse production databases to populate those ontologies
with instances.

2. Ontological Commitment

Because ontologies are meant to facilitate sharing and reuse of knowledge, it is
important that the ontology and its collection of users (both human and agent)
align themselves to a shared view of the domain during the process of designing
and evolving the ontology for that domain. However, many existing ontologies have
been developed either by designers attempting to characterize a domain (with no
real computational applications that use them) or by application developers to
support individual applications (with no real sharing of the ontology with other
applications). The plethora of existing ontologies argues that many concepts are
already represented within some ontology, so reuse of these ontologies, increasing
the ontological commitment level, is now feasible. For example, some ontologies
such as the Unified Medical Language System (UMLS) Metathesaurus [14] have
achieved a higher level of commitment.

There are several issues that impede this sharing and knowledge. First are
issues related to the conflicting goals and objectives of ontology definers, ontology-
committed applications, and users of such applications. Second are issues of the
mutual conflict between ontological commitment and ontological evolution. Third
are issues of conceptual mismatches between ontologies and the applications and
users that use them. Unfortunately, these issues stem from fundamental issues
and characteristics of the problem of sharing ontologies so broadly. We discuss
the first two issues in the remainder of this section, and the third (which has a
more evident impact on the application designers and users) in a later section,
“Impedance Mismatch”.

2.1. Conflict: Definer, Application, User

The commitment to ontologies is hampered by the conflicting goals of ontology
definers, developers of ontology-committed applications and ontology-committed
application users, and often by the confusion of users and definers over the de-
mands of ontology-committed applications. Here, we use the adjective “ontology-
committed” to mean that something purports to use the terms in the ontology(-ies)
in a manner consistent with its (their) definitions.

The goal of the ontology designer, working towards maximizing the useful-
ness of his ontology to a wide variety of applications, is to completely characterize
a particular domain at the semantic level. The ontology designer needs expertise
in knowledge representation and in the domain of the ontology. His intent is to
develop a comprehensive and up-to-date ontology, with a broad set of acceptable

22 Marian H. Nodine and Jerry Fowler

terms. His job is hampered by the fact that the different domain experts have dif-
ferent viewpoints of the domain, and these viewpoints must be reconciled within
the ontology itself, placing pressure on the designer either to take a commonly
agreed-upon but consistent subset of the domain, or to attempt to placate every-
one by including everything. The likely result is either the ontology will express
concepts at a higher level than can be used effectively by an application that
seeks to attach suitable labels to real data, or the terminology within the ontology
will not be logically consistent and thus will not be easy to incorporate into an
application.

The goal of the application designer is to use the ontology to support an appli-
cation. The application designer has expertise in building applications, especially
within given domains. His intent is to develop an efficient and useful application.
It is likely that the application will not cover the whole domain; conversely, it may
span multiple domains. Also, application designers need to focus on some issues
that are unimportant to the ontology designer. For instance, a failure to take suffi-
cient care of value representation issues in the ontology may force the application
designer to code this information directly into the application, even though it is
really domain-related knowledge. For example, within the Environmental Data
Registry [1], it was difficult to relate measurements of chemicals between different
representations because the measurement ontology was “well understood,” and of-
ten explicit in the data representations themselves. Even terms such as “milligrams
per kilogram” were sometimes represented inconsistently in text fields. This posed
a problem in extracting values for computation in this “well understood” measure-
ment system.

The desire of the application user is to be able to do his job well and easily.
Application users have expertise in their own jobs and potentially in the domain of
the application, but may have minimal understanding of knowledge representation
or application design issues. Typical users want an understandable, natural, easy-
to-use interface to the application that facilitates their work. This implies that
they want the scope of the ontology restricted to the exact area within the domain
that they are specifically concerned with. Another issue is that a user may have
a comfortable vocabulary of domain-related terms that do not map well to the
ontology representation model, to the domain model that the ontology developer
had in mind or to the needs of the application itself.

2.2. Conflict: Commitment, Evolution

A second hampering factor when considering ontological commitment itself is the
fact that ontological commitment impedes ontology evolution, and vice versa. Yet,
both of these are necessary for an ontology to be successful. As Mark Tuttle et.al.
say, “if you don’t use it, it won’t improve, if you don’t improve it, it won’t get
used.” [22]. In other words, use brings out the need to change, change is required
for continued use.

On the Impact of Ontological Commitment 23

As stated before, a measure of ontological commitment is the number of
agents and humans that are committed to using the ontology. Each of these com-
mitted entities has made the effort to learn the ontology and to use its concepts in
a manner consistent with their definition. However, the ontology itself may have
problems, or may be incomplete in some aspect, or not reflect changes in the do-
main itself. In these situations, it becomes desirable at some point to evolve the
ontology, providing an updated version. Initially, there is no real commitment to
the updated version; rather, the entities committed to the old ontology must ex-
plicitly learn the new ontology, and adapt to the changes therein. This leads to the
observation that, as commitment to an ontology rises, so does the level of effort
required to accommodate an evolutionary step.

To put this more concretely, assume that an ontology has n applications that
are ontologically committed to it. Each change in the ontology is likely to cause
subsequent changes in the applications; thus, the one change will result in up
to n application changes. Some of these may be easier, and some harder, but the
impact is widespread. Making the further assumption that each application has, on
average, m users, then the single ontology change has the prospect of additionally
impacting mn users. The application designer may be able to shield the user from
these changes, however.

Development of an application represents a strong degree of ontological com-
mitment. The incorporation of an ontology into an application may require specific
coding with respect to the ontology, so application developers tend not to appre-
ciate it when the ontology evolves. This tends to discourage users from employing
the precision they need to express their views of the data in an application. In
EDEN, the first version of our ontology easily evolved into the second, because
there were only three small database fragments and a single user view in the initial
demonstration. As the complexity of the user interface increased to make multi-
ple views possible, and as we added larger, more complex resources, the task of
evolving the ontology from version two to version three became more demanding
due simply to the numbers of agents impacted.

3. Setting: The EDEN Application

The examples of this paper are set within the context of the Environmental Data
Exchange Network (EDEN) application. application. EDEN is a joint effort of the
Environmental Protection Agency (EPA), Department of Defense (DOD), and De-
partment of Energy (DOE) along with the European Environment Agency (EEA)
whose goal is to develop ontology-based methods of sharing data. Among the ongo-
ing efforts coming out of EDEN have been the Open Forum on Metadata Registries
and the EDEN for Inland Water project of the European Community 5th Research
Framework [12].

24 Marian H. Nodine and Jerry Fowler

An important early component of EDEN, and the work from which we gained
our experience, was the EDEN Demonstration System, an application of the In-
foSleuth agent system [18] that used software agents to provide ontology-based
integration of data from several databases of varying sizes, schemas, database
management system software, and location. Included were resource agents that
wrapped small locally mounted MS-Access database files, flat file databases served
via HTTP, a moderate-sized Sybase database, and several very large Oracle data-
bases, no two of which shared the same schema, and which were scattered across
a half-dozen states.

Agents in the EDEN system communicated over an application domain re-
lating to hazardous waste measurement and remediation, using a global domain
ontology that had roughly two dozen concepts relating physical facilities with the
locations of contaminated sites within their boundaries, the chemical contaminants
that appeared at those sites, the measurements and the methods used to measure
levels of compounds, and remediation projects at those sites and the technologies
used in remediation. At one end of the EDEN agent community stood a User
Agent whose task was to translate a query from a user’s local ontology into the
global ontology and then translate results from the global ontology back into the
user’s ontology. Similarly, at the other end of the agent community stood Resource
Agents whose task was to translate from the global ontology into the resource’s
local ontology and then translate results back. Both User and Resource Agents
made use of a Value Mapping Agent to provide conversions for instances of con-
cepts between local value domains and the canonical global value domains used in
the EDEN ontology.

While the EDEN ontology was limited in scope, the EDEN application itself
was targeted towards a diversity of users spread across multiple agencies, each with
their own ontologies and terminologies. The EDEN application itself was a forcing
factor, encouraging this diverse community to converge on a common ontology so
that they could share information. Thus, it serves as an abundant source of good
examples for the issues we address.

4. Impedance Mismatch and its Consequences

By analogy with electrical systems, we use the term “impedance mismatch” to refer
to circumstances in which conflicts between two ontologies, or between ontology
and data, decrease the efficiency of an application that seeks to convey information
in terms of ontologies. There are several areas where impedance mismatches crop
up. This problem has been studied extensively within the heterogeneous database
community in much greater depth than we present here [13, 16].

All of these issues conspire to make ontology sharing challenging. Some are
manifested in the purely logical realm of relationships between ontologies, some
in the realm of human-computer interaction, and some in the social environment

On the Impact of Ontological Commitment 25

of human political interaction. The first of these, terminology mismatch, is a de-
clared target of the creation and development of ontologies, and is therefore easily
addressed within the abstract world of the ontology developer, but frequently
leads to friction during application development between developers and the user
community. Others have straightforward logical resolutions that have significant
computational demands in implementation, while still others affect the application
developer’s ability to resolve ontology conflict at all.
Terminology mismatch: This occurs either in the situation when different sets
of users use the same term for different concepts, or in the situation when the
term best suited to the user is already present in the ontology with a different
meaning. The latter form of terminology mismatch can cause subtle difficulties to
ontology developers, in that necessary concepts are sometimes omitted because
the lexical terms needed to express them in human language are all present in
other usages. In this situation, the meaning for the term already established in the
ontology effectively trumps the new usage. For instance, the UMLS set of Semantic
Relations was slow to develop the concept of genetic relationship because the terms
parent and child existed for their use in logical tree structures.

With respect to the first situation, as an example we note that many termi-
nology disagreements in the EDEN application resulted from the use of the same
lexical term by different members of the application user community. For instance,
what the EPA refers to as a “site” the DOD calls a “facility.” What the EPA calls
an “operable unit” (a specific location contained in an EPA “site”) the DOD calls
a “site.” We initially thought that we could address this by synonymy, masking the
preferred lexical term for one concept behind an application-level lexical mapping
for one user group or the other. However, the term, “site,” eventually became a
controversial term that had to be avoided altogether in the ontology. Since the
whole purpose of the application was to facilitate communication between these
different user communities, we were compelled to resolve the problem in the on-
tology itself, by choosing a lexically distinct term, “eden site,” for the ontology,
and adding mappings for each of the user communities, for political reasons.

Computationally, at a minimum, this kind of terminology mismatch demands
extra layers of mapping during communication between users who require special
terminology adaptation and agents that must necessarily use the terms of the ap-
plication ontology itself to communicate. Once the political controversy in EDEN
was resolved, the application was able to address this in a straightforward manner
by lexical mappings in the user interface and the resource wrappers.
Uneven concept granularity: Some ontologies and other dictionaries have been
developed with a focus on one particular aspect of a target domain. This aspect
was well-developed and well-tested, but other aspects of the same domain were
ignored. As a result, merging two such ontologies is likely to lead to differences in
granularity between terms of the two.

For instance, most of the resources upon which the EDEN ontology was de-
signed had very strong and detailed concepts relating to concentrations of specific
contaminant compounds in hazardous waste sites on land and in bodies of water

26 Marian H. Nodine and Jerry Fowler

within the confines of a single region; another small experimental resource ad-
dressing the Basel Convention on transboundary shipment of contaminants was
more concerned with quantities and broad classes of contaminants as they crossed
territorial boundaries. This produced an almost orthogonal set of relationships for
contaminants, measures, and locations.

Concept granularity mismatch often manifests itself in situations where the
same physical sources of data have users with different perspectives. Several of
the systems that were to be integrated in EDEN had been created to support
scientific investigation into the application of remediation techniques. One of the
goals of EDEN, however, was to provide a way of reconciling different agencies’
views of data for the purpose of meeting statutory reporting requirements. This
management goal had a very different purpose and perspective from the scientific
one. A critical consequence was that the management model tended to oversimplify
the characterization of a site, reducing the concept of “observed contamination”
to a site-wide average of contamination using a shallow ontology of contaminated
media, while the scientific viewpoint demanded a more rigorous determination of
such factors as soil structure, slope, water table (over time), and plume shape and
motion in which the concept of average concentration made little sense. Reconciling
these views involved more than just computation.

A prime example of granularity mismatch that had an enormous impact on
feasibility of a computation occurred in a scenario in which we wished to ask
the question, “What chemical contaminants are observed in the ‘eden sites’ in a
particular city and state?” Our data domain encompassed, at the extremes, one
very small and simple database (ITT) designed to track remediation techniques
and their application at a small set of “eden sites,” and one very large and complex
database (OR) designed to monitor numerous kinds of environmental pollution and
track remediation projects at many different points within a single “eden site.” The
ITT data model simply listed contaminants per “eden site.” The OR data model
listed numerous observations of detailed physical and chemical assays for many
different specific compounds in several media at several depths for hundreds of
monitoring locations in its single “eden site.”

The simple-minded query joins a constraint on the “eden site” concept with
the entire contents of the “observed contamination” concept. ITT would return
a handful of rows relevant to the constrained “eden site” and its few hundred
rows for “observed contamination.” Meanwhile, when the database behind OR
was not busy, and the Internet permitted the timely return of large volumes
of data, this query would return around a million rows of data related to “ob-
served contamination,” and (for a majority of the queries) no data for the con-
strained “eden site.” The multi-resource query agent would then join on the con-
strained “eden site.” usually eliminating all the rows returned by OR. However,
when OR’s database was at all loaded, or bandwidth was scarce along the Internet
route involved, the OR agent would time out or fail because of inadequate tempo-
rary space. The fact that most times the final answer was coincidentally correct
concealed the egregious abuse of the OR resource from the user.

On the Impact of Ontological Commitment 27

This situation forced us to remove the offending OR resource from the avail-
able query set, or to restrict queries over these concepts to constrain one or more
other concepts as well, such as medium of contamination, contaminant, and con-
centration. The undesirable result of this was to make it trivially easy to over-
constrain the query and receive no matching results.

Our long-awaited solution to this problem was to give the multi-resource
query agent the capability of performing a distributed semi-join in which the iden-
tifiers that matched the constraint on “eden site” were resolved and delivered as
constraints on “observed contamination.” When this was implemented, the query
agent now delivered, OR was immediately able to return an empty set to the
queries for which it had no data relevant to the concept, and the query returned
with an appropriate response time. Suddenly a whole range of queries of which this
is but one example, were transformed from infeasible due to granularity mismatch
into feasible queries that promised interesting answers.
Concept modeling mismatch: Some applications and information sources model
individual concepts differently from others, thus it was hard to develop a single
ontological concept that would relate well to all the ways it could be represented.
For instance, the concept of a set of measurements of observed contaminant levels
could be represented in the ontology and/or the data itself either with a class of
measurement vectors, with one instance per observation, or a class of measure-
ments, with one instance per measurement type per observation, specialized on
measurement type. In some representations, a sampling point was specified as a
geographic location further refined by depth; in others, a sampling point was a
geographic location, and samples for measurement were taken along a vector of
depths.

Another interesting issue in these measurements was reconciling what a value
near zero meant, since the measurement’s precision depended not only on what
assay was performed but also on what equipment was used. A sample that reads
“below detectable levels” on one apparatus might register a precise non-zero read-
ing on a more refined piece of equipment. Yet this level of distinction, crucial
though it might be to a scientific investigation, would be lost in comparison with
another resource for which presence of the contaminant is all that is indicated.

In another dimension, the scientifically precise characterization may be of
little importance at the level of policy making and triage of hazardous conditions,
where proximity of the contaminated site to human habitation and the physical
states of its contaminants may be a much more important factor in a decision than
its precise concentration.

A computational impact of modeling mismatch that we experienced involved
relating remediation technologies to contaminants, with the hope of providing a
catalog of suitable technologies. The ITT resource sought to do this explicitly.
In attempting to emulate this behavior by speculatively associating remediation
technologies applied at “eden sites” to the contaminants found there, we found
ourselves traversing a query path, from technology to site to contaminant, that

28 Marian H. Nodine and Jerry Fowler

proved to yield infeasible queries for reasons essentially similar to the granularity
mismatch discussion above.
Value representation mismatch: Many ontologies we have found do not even con-
sider the representation of the values of the attributes in the instances of a concept,
a requirement for many applications. For instance, it would be easy to say that
“area” was a floating point number; therefore setting its range as the range of
positive numbers. In EDEN, however, it should be no surprise that the Americans
expressed area using English measure, while the Europeans (including the English)
used metric measure. The application needed to know in which unit the value in
a particular instance of the area is represented, and how the units relate. These
concepts should therefore exist in the domain ontology.

In a more complex example, one information source in the EDEN application
had “soil” as one of the media that could be polluted; but a second had “topsoil”
and “subsoil” as separate concepts. A third site had multiple, more fine-grained
classifications for soil. These did not all map easily onto any single ontological rep-
resentation for soil, as mapping between the different concepts required additional
knowledge (e.g. the depth of the soil), and sometimes was lossy (e.g. if everything
was just mapped to “soil”).

Attempting to resolve these differences in value representations led us to a se-
ries of design decisions that stood up well in retrospect. We identified three classes
of value-mapping problem: general ones for which a global solution is appropriate
because the map is of central importance to the domain, and will be susceptible
to change over time, such as names, abbreviations, and boundaries of countries
of the world; general ones that amount to computations of unchanging accepted
truths, such as conversion of grams to kilograms; and particular ones of applica-
tion to a single agent or set of agents, such as a preferred set of lexical terms for a
given user. The first of these, the global class, we handled by creating a specialized
value mapping agent that could handle either singular mapping requests or bulk
requests to change entire columns of a data set from one value-domain to another.
The remaining two we handled (within the value-mapping library) by invocation
of the appropriate routines.

This approach resulted in an increase in response time of about 30% on
our usual set of queries, because the original user query, each extracted database
query, each non-null result set, and the final result-set delivered to the user all were
likely to require a call to the same value mapping agent. However, the resulting
improvement in flexibility of the system (a query for contamination in “soil” no
longer returned null from the resource that identified soil with the letter “S” or
the one that supported “topsoil” and “subsoil”), and the increased adaptability
of being able to modify the mappings in a single location, were invaluable. The
deployment of the value mapping agent, however, uncovered the following category,
application mismatch.
Application mismatch: In certain cases, existing functional applications provide a
direct and useful ontological structure from which another application can extract
the information desired by its user community, but at a computational cost that

On the Impact of Ontological Commitment 29

needs to addressed in the implementation. An example of practical impact in
the EDEN system was the design of value mapping across conceptual domains.
The Environmental Data Registers (EDR) [1] had an ontological model entirely
adaptable to the needs of EDEN, but the implementation of its value domain
model was fully normalized. This produced response times that were suitable for
lookup and mapping of individual terms, which was the original application. In
EDEN, on the other hand, the goal was to use the EDR for large-scale term
conversions for multiple columns of entire tables. The performance of the database
used to implement this mapping was completely inadequate when only a handful
of agents performed simultaneous mapping requests during a multi-resource query
(analysis of the SQL query used to perform this mapping on an Oracle database
yielded a query plan that required roughly 300 lines to print). To obtain tolerable
performance, we were compelled to revise the ontology of the conceptual domain
to support a flatter, non-normal data structure.

We made no attempt to characterize the computational complexity of the
two different approaches; however, we observed in practice that a distributed query
that involved requests made by a half-dozen agents to a single value mapping agent
would either time out (independently of timeout interval) at the user agent or re-
turn partial results (depending on the timing of Internet-bound queries) when us-
ing the original application’s ontological model — whereas when using our adapted
non-normalized model, we saw complete results reliably returned.

The unfortunate but clear conclusion is that real-world data management
issues must intrude even into ontology development when dealing with the large
scales of data that many integrated applications require.

5. Ontology Development Issues

For ontological commitment to become real, ontology designers, application de-
signers and users within a domain need all to be attracted to the same ontol-
ogy. This affects not only the original design, but also the process of evolving
the ontology. However, because of the issues of impedance mismatch discussed in
the previous section, there also needs to be a nimble methodology for incorpo-
rating, excluding and supplementing standard ontological information into more
application-oriented ontologies. This allows for the application designer to main-
tain appropriate tradeoffs between the responsibility of ontological commitment
and the requirements of the application.

5.1. Design and Representation

Ideally, the design and representation of an ontology should be done in collabora-
tion with users and applications; the applications then can incorporate the ontol-
ogy as designed, and the users can validate the concepts, relationships and axioms
that they access in the ontology via the application. These interrelationships are
shown in Figure 1.

30 Marian H. Nodine and Jerry Fowler

Figure 1. Ontological Interactions

Partly because of the desire to maximize ontological commitment, it is nor-
mally the goal of the ontology designer to represent the domain as completely as
possible. Ontologies such as UMLS or environmental thesauri such as the General
Multilingual Environmental Thesaurus (GEMET) [20] or the Terminology Ref-
erence System (TRS) [2] provide a broad base for discourse over their relative
domains, medicine and the environment. Their definition has largely been driven,
not by the implementors of the computer systems that use the ontologies, but
rather by the practitioners within the domain itself. Practically, this can have
significant effects on computational complexity.

5.2. Evolution and Versioning

As application developers develop applications using ontologies, and users use
those applications, they identify weaknesses, missing concepts, and different issues
that need to be addressed. For instance, when we developed our initial environ-
mental ontology, some of the users who were used to the terminology in GEMET
requested that we evolve our own ontology to be consistent with GEMET, or
otherwise incorporate its terms. This request mandated an incorporation of that
ontology into the environmental ontology. Once this incorporation was complete,
all agents had to be adapted to the new ontology (this required a varying amount
of effort depending on how closely the agent was hardwired to the ontology). Some
of the users who were not used to the GEMET terminology also had to learn it.
Thus, the evolution of the ontology caused much work for both users and develop-
ers. One could envision that the evolution of an ontology that has a higher level
of ontological commitment, such as UMLS, could get very complex.

On the Impact of Ontological Commitment 31

Clearly, the evolution of an ontology to a new version must be done carefully
and collaboratively, involving the same types of as were involved in the original
design. This indicates a slower, more coarse-grained type of evolution, which in
turn affects the contents of the ontology.

An ontology may contain several types of information useful to the domain
that it represents. These include:
• Concepts/classes, their attributes, and the types of representations their at-

tributes can take.
• Relationships between concepts, including subclassing, synonyms, and con-

tainment.
• Axioms and functions over those concepts.
• Instances of those concepts the relationships between them, and axioms over

the instances.
The first three of these are referred to as the schema information (also known

as the conceptual model or meta-knowledge) and the last is referred to the instance
knowledge.

Experience has shown us that instances, because they represent changing
objects in the real world, tend to evolve much faster than the concepts them-
selves. Because of this, it is easier to factor the ontology into two pieces, the
schema and the instances. Within the EDEN application, the environmental on-
tology itself only contained schema-level domain information, and we populated
the schema using information from different environmental databases. Because the
agents themselves naturally were written only against the schema concepts, and
the schema-level ontology information evolved more slowly, ontology evolution did
not create as significant a problem as it could have. This experience has carried
over into numerous other applications developed using the InfoSleuth agent sys-
tem [18, 5]; thus, we recommend this factoring unless the instance information is
guaranteed to be stable (e.g., constants).

Ontological representation systems maintain this natural factoring between
schema and instances, including OIL [19] and OWL [24]. OKBC [17] clearly dis-
tinguishes between schema and instances in its own vocabulary. Therefore, there
is no real barrier to this factoring approach.

6. Compositional Ontologies

Given that the best approach to ontology design and use is a collaborative one
among ontology designers, application developers and users, let us now turn our
attention to the issue of reuse. Consider an application developer, developing an ap-
plication to fulfill some of the needs of a specific class of users in a given application
domain. The developer has decided to reuse as much already-defined ontological
information as he can within his application, tagging the imported concepts back
to the ontologies from which they were taken to facilitate the process of evolving
the application within the ontology. Unfortunately, up to this point the application

32 Marian H. Nodine and Jerry Fowler

Figure 2. A Compositional Ontology

developer has had no input whatsoever into the ontological design, though he has
been working closely with the prospective application users. Thus, the necessary
collaboration between the ontology designer, the application developer and the
users is missing in this situation. Furthermore, the users input into the application
design is much more direct than that of the ontology designer. The result often is
that there is no good existing ontological “match” to the application and/or its
users.

Our experiences with our own ontology-based agent applications has led us
to the following observations:

1. Reusing ontologies is necessary for acceptance by domain specialists, but
many mature ontologies specify a lot more than current agent systems can
actually use.

2. Most of the applications we have developed require concepts from multiple
ontologies.

3. Most of the applications that we have developed require some concepts de-
fined in no ontologies, because of mismatch issues.

In order to facilitate reuse, we have designed our applications to use a com-
positional notion of ontologies, where we select concepts from different ontologies
as needed, and supplement the result with any new concepts that we cannot locate
elsewhere. This leads us to support three operations over ontologies themselves,
which we term subset, compose and extend, as shown in Figure 2.

6.1. Subset

Agents are frequently coded as specialists, understanding a focused subset of the
domain itself. For example, an agent that is interfacing with information reposi-
tories on environmental remediation techniques would not necessarily understand
the information related to companies and their responsibilities for cleaning up
specific toxic waste sites; yet the scope of the domain encompasses both areas.
These agents need not incorporate entire ontologies; in fact, this may not even be
possible for lightweight agents using large ontologies. Standards such as FIPA [7]

On the Impact of Ontological Commitment 33

allow agents to advertise the ontologies they understand, However, such an adver-
tisement may be misleading to other agents if the agent only understands a subset
of the ontology, in that two agents advertising the same ontology may in fact un-
derstand orthogonal subsets of the ontology, rendering communication impossible.

Furthermore, too much ontology information may confuse users. As a prac-
tical matter, users of several of our agent applications including EDEN were con-
fused by the presence of ontological terms for which no agent had advertised any
knowledge. The presence of the term implied to them that they should be able to
extract information (other than definition and ontological relationships) relevant
to the term. That no agent had advertised the term was an unsatisfying explana-
tion. Because of this, the agents themselves that implement the ontology must be
careful how they present themselves to their users.

We define this subsetting using ontological fragments. An ontological frag-
ment consists of:

• The name of the ontology.
• The classes or entities in the ontology that are supported within the appli-

cation, and their superclasses.
• Constraints on those classes including such things as ranges of values allowed

for specific slots.
• The axioms that reference the supported classes/ attributes.

The fragment can be expressed as a set of constraints over the classes and
attributes. As an example from the EDEN system, each agent that provided a
wrapper for a data resource advertised only a fraction of the domain ontology –
precisely that portion for which it could provide data instances. In some cases, a
wrapper agent advertised only a fraction of the slots of a class, and further placed
semantic constraints on the content of the slots based on knowledge of the data
instances about which it could report. In other cases, an agent might fill a slot with
a static value from the canonical data representation for that slot. For example,
because there was no record in a particular remediation database for land use,
one of the attributes of a site, certain government database wrappers returned
the generic value “Federal Facility” which was one of the values used in other
databases.

Another decision that needs to be made on any system is whether a request
for everything matching a query should return an empty set if an agent does
not advertise all elements of a class, or should return nulls for the unadvertised
elements. This provoked strong disagreement on our team between those who felt
that the former was algebraically preferable and those who felt that the latter was
more intuitive to users already intimidated by the challenge of understanding the
nature of the results produced by a dynamic distributed information system. The
disagreement was resolved to favor users over beauty.

34 Marian H. Nodine and Jerry Fowler

6.2. Compose

Another issue that is brought about by ontological commitment is the issue that an
agent often requires access to terms from multiple ontologies. There exist a growing
number of useful and public ontologies, and it often seems more appropriate to
pick and choose terms from those ontologies than to build a new one from scratch,
with just the terms that you need for your ontology. The result is a virtual ontology
that imports fragments of other ontologies, into some sort of unified and useful
whole. For example, within the EDEN application the diverse ways of representing
values relating to various concepts such as chemical or geographic identifiers made
it necessary to compose the domain ontology incorporating terminology from the
field of hazardous waste pollution and remediation with the EDR ontology for
value representation.

The ability to compose ontologies has an immediate benefit in modular ontol-
ogy design. For instance, if you look within the EDR tags, there are tags relating
to location (street address, postal code) as well as geographic (latitude and lon-
gitude). These tags are not specific to the environmental domain, but are shared
among other domains such as address books and GPS positioning systems. Fur-
thermore, such structures seem relatively stable. This indicates that it may be
much more useful to have, say, a single ontology for geographic positions, their
representations, and the relationships between them that can be incorporated into
environmental applications as well as those in other domains.

Many existing ontological languages provide a primitive form of composition
by allowing ontologies to import other ontologies, and providing namespaces or
name resolution policies for accessing terms and concepts in these imported on-
tologies. Importing is a similar notion to composition, but has some drawbacks
that composition does not have – because composition works in conjunction with
subsetting. These drawbacks include the following:

1. Controlling the size and quality of the resulting ontology may be difficult.
For instance, the imported ontology may be very large, yet the importing
ontology may only require a few terms from it. As a result, the importing
ontology may end up to be far more complex than is required.

2. Importing is a transitive operation. That is, if ontology A imports ontology
B, and ontology B imports ontology C, then the concepts available through
ontology A include those of ontologies B and C as well. This can propagate
in a relatively unconstrained manner, especially in open ontological systems
such as is anticipated by OWL [24]. Such importation can also lead to impor-
tation of axioms, and will affect the size and complexity of any rule sets being
reasoned over. Therefore, it is desirable to be able to control and truncate
these chains of importation.

3. It is possible for ontologies to reference each other cyclically. For example, a
“soil” ontology on soil types may reference geographic areas; a “geography”
ontology on geographic areas may reference sites of pollution in different

On the Impact of Ontological Commitment 35

areas, and a “pollutants” ontology may reference soil types when describ-
ing how pollutants spread under different conditions. This circularity causes
problems if imports of ontologies are processed naively. One way of resolv-
ing this is to union the ontologies involved in the cycle, rather than naively
following include statements, as was done in Ontolingua [6].
Composition used in conjunction with subsetting helps address these issues.

For the first issue, the solution is to import only the subset of the imported ontology
that is needed by the importing ontology. To address the second issue, the subset
of the imported ontology can be truncated to avoid transitive references to other
ontologies, as appropriate. Thus, the impact of the transitivity can be minimized.
For the third issue, using composition in conjunction with subsetting makes it
possible to refine and avoid many circularities, as long as the included parts of the
different ontologies do not in and of themselves form a cycle.

6.3. Extend

Unfortunately, applications frequently need to incorporate concepts that are not
represented in any ontology, or they may need to “glue” concepts from different
ontologies together using new concepts. Thus, it is not sufficient to compose subsets
of ontologies; frequently it is necessary also to add some new concepts. For example,
within the setting of our EDEN application, the domain ontologies covered the
concepts for which users wanted to retrieve information; for instance, they enabled
the user to answer questions such as, “What toxic waste sites are within 10 miles of
Houston, TX?” However, the agent-based system that supported the application
also was able to ask higher- level, more abstract questions such as “Are the number
of toxic waste sites within 10 miles of Houston increasing faster than they can be
remediated?” These higher-level questions used concepts present neither in the
domain ontology, nor in any other ontology available at the time.

The important issue with extension is to do it in a manner that will not create
further problems later. There are two ways to extend an ontology; extensions that
are safe and can easily be incorporated into other applications, and extensions
that are unsafe and should eventually be agreed upon and then folded back by
consensus into the ontology. We define safe and unsafe extensions with respect
to the permissible definitional changes to the underlying ontology(-ies). A safe
extension can be characterized as follows:
Safe extension: an extension incorporating existing concepts from one or more
ontologies, where any new concepts are defined axiomatically against the existing
concepts in such a way that instances of the new concepts can be determined com-
putationally from instances of the existing concepts. The transformation axioms
must be invertible; the conversion of any instance between its view in the existing
concept(s) and its view in the new concept must be lossless in both directions.

Safe extensions are “safe” primarily because they can be shared among the
agents easily, simply by sharing the axioms that allow for conversion from the
existing classes to the extended classes. We note that new concepts within such a
safe extension cannot have new attributes that would need to be present in any

36 Marian H. Nodine and Jerry Fowler

instance of that concept, as this would violate the lossless conversion property.
So, for example, “milliliters per liter” would be a safe extension for a concept if
the concepts “liquid” and “parts per million” were already present in the ontology
being extended.

In contrast, unsafe extensions are “unsafe” because they are harder to share
with other agents, as the other agents may not maintain the information necessary
to populate instances of the unsafe classes. For example, adding a new concept,
“Water pollutant” with a new property, “concentration” would not be a safe ex-
tension if there were no concept of containing medium in the original ontology.
Other agents, committed to the ontology, may not have the information necessary
to provide a concentration for each pollutant they have, or may have different ways
of modeling the concept of how badly the pollutant is contaminating the water.

Because unsafe extensions allow agents to instantiate classes that have been
extended unsafely and thus cannot easily be shared; these extensions limit the
openness of the agent. However, unsafe extensions are sometimes necessary; for in-
stance, they are often required to deal with some of the impedance mismatch issues
discussed earlier. Allowing unsafe extensions increases the possibility that different
agents will create divergent extensions to the ontology, and become incompatible
with one another. Therefore, unsafe extensions should be treated with caution.
One approach is to limit such extensions to those that are monotonic [10] – not
requiring modifications to existing ontological elements. Idealistically, the need for
specific unsafe extensions should be propagated to the ontology designers, who
can determine whether or not there is a consensus on the need for the particular
extension, and whether they should be incorporated into the next version.

6.4. An Example

Figure 3 shows a fragment of an example compositional environmental ontology
closely related to the one we used in the EDEN application. This ontology used
subsets of the GPS and Measurement ontologies, composed together with a frag-
ment of the environmental ontology. The necessary concepts for this particular
application span all three ontologies. The gray boxes indicate the three ontologies,
and the white boxes within indicate the classes taken from the individual ontol-
ogy into the compositional ontology. Note that the attributes from the “Sampling
Point” class refer to concepts in the other ontologies.

7. Implementation Issues

Given that we allow the operations of subsetting, composition and (safe) extension
over ontologies within an agent system, the agents themselves need to be able to
represent exactly what combination they are committed to, in order to ensure that
they do not mislead others with respect to their capabilities.

There are three issues with representation and implementation. The first
is that the agent needs to be able to represent internally the full set of details
on how the ontology fragments it is using fit together. This can be done with

On the Impact of Ontological Commitment 37

Figure 3. A part of the EDEN compositional ontology.

a suitable abstract ontology representation. Secondly, the agent must be able to
converse in some detail with other agents about the parts of the ontologies that
they understand. This must be done using a suitable exchange representation.
Thirdly, messages should be able to represent the ontology fragments that the
message covers. While we do not discuss this third issue in this paper, we note
that representing ontology fragments in an ACL requires a more specific ontology
field within the agent communication language.

7.1. Internal Representation

Internally, an agent needs to understand in detail the specific schema-level knowl-
edge to which it is committed. This understanding may be complicated by the fact
that ontological knowledge may be represented using many different representa-
tional models; for instance, there are subject-verb-object models such as DAML [4]
and OWL [24], frame-oriented models such as OKBC [17], and object-oriented
models such as UML [9, 3]. These all differ in key issues such as whether or not
attributes are first-class objects, whether or not multiple inheritance is allowed,
and how strongly-typed classes must be. Further complicating this, if the opera-
tions of subsetting, composition and extension are used, a single application may
look into a set of ontologies whose underlying ontological models may diverge.

38 Marian H. Nodine and Jerry Fowler

Recent discussions have included the notion of developing abstract ontol-
ogy representations for the internal representation of ontological knowledge. As
with all applications that attempt to span multiple viewpoints, key choices in
specifying an abstract ontology representation revolve around whether it should
incorporate every modeling feature present in some ontology representation, or
it should only look at the modeling features used by every representation, or it
should take some path in the middle. Wilmott et.al. [25] discuss in depth some
of the issues associated with the specification and implementation of an abstract
ontology representation from a theoretical standpoint. Fortunately, an abstract
ontology representation is implemented within an ontology service, and thus only
needs to incorporate the requirements of the agents that it serves. In the InfoS-
leuth system, our ontology service focused on frame-based ontologies, as they were
most compatible with the databases with which we were working.

Internally, an agent that is using ontologies need only store the subsets of the
ontology that it needs, and the glue that puts them together. So, for instance, in
the ontology of Figure 2, the agent itself only needs to understand the concepts in
the shaded areas of the GEMET, GPS Positioning, Facility and EDR ontologies, as
well as the additional information associated with their composition and extension.
Managing this information in an efficient way is the work of the ontology service.

Our experience has shown us that a good abstract ontology representation
and a good ontology service are essential to cope with the incorporation of exist-
ing ontologies and their evolutionary steps. The abstract ontology representation
engenders a unified methodology by which the agent can absorb existing ontol-
ogy information and its particular use within the application. Agent implementors
then use the ontologies in a more declarative and less hard-wired manner, which
in turn facilitates the incorporation of new ontological information.

7.2. External Representation

Agents need to be able to share which parts of the different ontologies that they
use or require, and how they put them together, with their other collaborating
agents. This happens when the agent advertises its capabilities to another agent,
when an agent is looking to locate another agent that can help it with some
task, or when agents are negotiating over who is responsible for what subtasks.
We have identified three basic ways that ontologies may be adapted dynamically:
subsetting, composition, and extension:
Subsetting: The notion of subsetting an ontology is not reflected in the definition
of the ontology itself, but rather in artifacts related to the use of the ontology.
For example, fragments may be advertised from one agent to another, so that
agents can inform other agents within their community of their exact capabilities.
Alternatively, an application may be supported at the user end by an agent that
interfaces with the user, ensuring that the user is presented only with the fragments
of the ontology that are supported within the underlying agent community. Any
user interfaces can then be tailored to the ontology fragment.

On the Impact of Ontological Commitment 39

Composition: As with subsetting, composition should be specified at the time
of use, however, there are some representational difficulties at this point. While
subsetting can be defined as a set of axioms that overlays a single ontology, compo-
sition spans multiple ontologies and thus presents different representational chal-
lenges. For instance, a composition may wish to state that the values of the “Lati-
tudeMeasure” slot for the “FacilityIdentification” in the EDR may be understood
by the agent as represented in the “LatLongCoordinate” units defined in the “GPS
Coordinates” ontology. In EDEN, we defined a geographic location as comprising
a (selectable) coordinate scheme and a coordinate value.

OKBC [17] and OWL [24] present different challenges with respect to com-
position. Within OKBC, composition must be done by explicitly importing the
component ontologies. Existing tools do not necessarily facilitate importing on-
tologies from remote locations, or ones that are represented in different languages
(e.g., DAML). The resulting new ontology, even if it can be defined is a poten-
tially huge superset of what is actually needed by the agent. Furthermore, it may
be difficult to relate the terms in the new ontology back to the ontologies that
it imported, and so to re-relate terms imported from the same ontology into two
such composed ontologies. OWL, on the other hand, uses namespaces to facilitate
the combination of ontologies and the relating of concepts among multiple ontolo-
gies. Due to the open nature of OWL ontologies, namespaces are explicitly rooted
in URLs; thus, tracing the pedigree of the different elements in the ontology is
not difficult. however, OWL suffers from a potentially severe problem with bound-
ing ontology size due to the combination of the ease and the transitive nature
of ontology importing, and the lack of an ability to subset or truncate unneeded
concepts.
Extension: Safe extensions by definition should be able to be specified in terms of
logical axioms over existing concepts in the ontology. While axioms are strongly
considered among ontology designers, many ontology exchange languages hardly
consider them at all; for instance, DAML+OIL at the moment has no good foun-
dation for representing axioms and is thus unsuitable for exchanging knowledge
concerning safe extensions. In EDEN, we prepared a number of ad hoc lexical
translation processes to translate between an old version and an extended version
of the ontology. This did not yield a reusable method.

8. Conclusions

Ontological commitment is the decision by a particular group of applications or
users within an application domain to use the terms defined in a given ontology.
High ontological commitment occurs when many users and/or applications within
an application domain commit to sharing the same vocabulary of concepts, mean-
ings and relationships defined within a specific ontology. Ontological commitment
to a common set of ontologies is a key feature to provide for openness in an agent
system, as it provides a common vocabulary over which agents can converse.

40 Marian H. Nodine and Jerry Fowler

This paper focused mainly on two areas relating to ontological commitment
and use. The first area is the clash of goals between ontology definers, applica-
tion developers and users. Ontology definers are concerned with the completeness
and purity of their ontological design. Application developers are often concerned
only with specific subsets of the ontology that relate directly to the application,
and with application-specific representational and computational issues. Users are
concerned mainly with sticking with known and familiar terminology and vocab-
ularies, which may not be logically structured and therefore may not be amenable
to being reformulated into computationally-accessible concepts. This clash is com-
plicated by the widening gap between these groups – developers, for instance, may
be using ontologies that are already well-established. Thus, while several good
design paradigms involving ontology designers, application developers, and users,
exist for initial ontology development [10, 8, 11], none of these seem to encompass
these more long-term concerns. We recommend the development of an extended
ontology lifecycle that fosters evolution. Components required to support this life-
cycle should include long-term ontology design support, a widely-available feed-
back channel from developers and users back to designers, and an open forum for
discussing issues and extensions to the ontology.

An application committed to reuse existing ontologies may encounter several
difficulties, as search for the perfect ontology for the application – one that is
acceptable to both the application and its users – is not necessarily fruitful. We
described a compositional approach to ontological use. Compositional ontologies
base themselves in existing ontologies as much as possible, using the operations of
ontological subsetting, ontological composition and ontological extension to tailor
them to the specific needs of the applications. Compositional ontologies fit well
with the needs of the application, and the approach has the potential to raise the
level of ontological commitment to existing ontologies. However, they require more
sophisticated ontology- related exchanges among collaborating agents. In order to
incorporate these compositional ontologies, further work needs to be done on the
development of a more formal algebra to support the subset, compose and extend
operations over ontologies (in contrast to our current ad-hoc methods). Visser
and Cui [23] attacked a related problem of heterogeneous ontology structures, and
this may provide further insight into this formal algebra. Also, Jannink et.al. [15]
provide a set of algebraic concepts rooted in the notions of the congruence of an
ontology with an application and the similarity of ontologies, which relate to this
effort.

As a second task, we need to develop a methodology for ensuring the cor-
rectness and consistency of these compositional ontologies.

Many approaches to the representation and specification of ontologies exist;
some common ones for the exchange of ontological information include OKBC,
DAML+OIL, OWL and UML. Each of these has features amenable to their adop-
tion as a means to exchange information on ontological components and extensions,
though none cover all of the issues addressed in this paper. Therefore, the exchange
of such information using these standards is still problematic.

On the Impact of Ontological Commitment 41

References

[1] Environmental Protection Agency. EPA environmental data registry.
http://www.epa.gov/edr, 2002.

[2] Environmental Protection Agency. EPA terminology reference system.
http://www.epa.gov/trs/index.htm, 2002.

[3] S. Cranefield, S. Haustein, and M. Purvis. UML-based ontology modelling for soft-
ware agents. In Proceedings of the Workshop on Ontologies in Agent Systems, 5th
International Conference on Autonomous Agents, 2001. http://CEUR-WS.org/Vol-
52/oas01-cranefield-1.pdf.

[4] DAML.org. The DAML agent markup language homepage. http://www.daml.org,
2003.

[5] Larry M. Deschaine, Richard S. Brice, and Marian H. Nodine. Use of InfoSleuth to
coordinate information acquisition, tracking and analysis in complex applications.
In Proceedings of Advanced Simulation Technologies Conference, April 2000.

[6] Adam Farquhar, Richard Fikes, and James Rice. Tools for assembling modular on-
tologies in ontolingua. In Proceedings of the National Conference on Artificial Intel-
ligence, 1997.

[7] Foundation for Intelligent Physical Agents. Agent communication language specifi-
cations. http://www.fipa.org/repository/aclspecs.html, 2003.

[8] A. Gomez-Perez. Ontological engineering: A state of the art. Expert Update, 1999.

[9] Object Management Group. OMG unified modeling language specification, v. 1.3.
http://www.omg.org/technology/documents/formal/unified modeling language.htm,
2000.

[10] T. R. Gruber. Translation approach to portable ontology specifications. Knowledge
Acquisition, 5(2), 1993.

[11] M. Gruninger and M.S. Fox. Methodology for the design and evaluation of ontologies.
In Proceedings of the Workshop on Basic Ontological Issues and Knowledge Sharing,
1995.

[12] Palle Haastrup et al. The environmental data exchange network for inland water,
2004. http://www.eden-iw.org/contents/home.html.

[13] J. Hammer and D. McLeod. An approach to resolving semantic heterogeneity in a
federation of autonomous, heterogeneous database systems. International Journal of
Intelligent and Cooperative Information Systems, 2(1), 1993.

[14] B. L. Humphreys et al. Assessing and enhancing the value of the umls knowledge
sources. In Proceedings of the 15th Annual Symposium on Computer Applications in
Medical Care, pages 78–82, November 1991.

[15] J. Jannink, P. Mitra, E. Neuhold, S. Pichai, R. Struder, and G. WIederhold. An
algebra for semantic interoperation of semistructured data. In Proceedings of the
IEEE Knowledge and Data Engineering Exchange Workshop (KDEX ’99), 1999.

[16] W. Kent. The many forms of a single fact. In Proceedings of IEEE Computer Society
International Conference, 1998.

[17] SRI Knowledge Systems Laboratory. OKBC home page.
http://www.ksl.stanford.edu/software/OKBC, 2002.

42 Marian H. Nodine and Jerry Fowler

[18] Marian Nodine et al. Active information gathering in InfoSleuth. International Jour-
nal of Cooperative Information Systems, 9(1/2):3–28, 2000.

[19] Welcome to the OIL page. http://www.ontoknowledge.org/oil, 2002.

[20] European Topic Centre on Catalogue of Data Sources. General Multi-
lingual Environmental Thesaurus. http://www.nu.niedersachsen.de/cds/etc-
cds neu/library/software.html, 2001.

[21] John F. Sowa. Knowledge Representation. Brooks/Cole, 2000.

[22] M. S. Tuttle et al. Merging terminologies. Medinfo, 8(1):162–166, 1995.

[23] Pepjin R. S. Visser and Zhan Cui. Heterogeneous ontology structures for distributed
architectures. In Proceedings of the ECAI-98 Workshop on Applications of Ontologies
and Problem-Solving Methods, pages 112–119, 1998.

[24] W3C. OWL web ontology language guide. http://www.w3.org/TR/2004/REC-owl-
guide-20040210/, 2004.

[25] S. Willmott, I. Constantinescu, and M. Callisti. Multilingual agents: Ontologies,
languages and abstractions. In Proceedings of the First International Workshop on
Ontologies in Agent Systems (Held in conjunction with Agents 2001), 2001.

Marian H. Nodine
Telcordia Technologies
106 E. 6th Street, Suite 415
Austin, TX 78701
USA
e-mail: nodine@alum.mit.edu

Jerry Fowler
Human Genome Sequencing Center
Baylor College of Medicine
One Baylor Plaza
Houston, TX 77030
USA
e-mail: gfowler@acm.org

Agent to Agent Talk: “Nobody There?”
Supporting Agents Linguistic Communication

Maria Teresa Pazienza and Michele Vindigni

Abstract. World-Wide Web technologies and the vision of Semantic Web have
pushed for adaptive SW applications to scale up information technologies to
the Web, where information is organized following different underlying knowl-
edge and/or presentation models. Interoperability among heterogeneous in-
telligent agents has become an important research topic in the context of dis-
tributed information systems. Communication among heterogeneous agents
involves several dimensions. “Ontological commitment” on a shared knowl-
edge model cannot be assumed as a default.

To overcome this problem, we will describe in this article a communica-
tion model that bases on the use of natural language. We will argue on main
topics involved in using natural language to achieve semantic agreement in
agents communication. The model foresees a strong separation among terms
and concepts, this difference being often undervalued in the literature, where
terms play the ambiguous role of both concept labels and of communication
lexicon. For agents communicating through the language, lexical information
embodies instead the possibility to “express” the underlying conceptualiza-
tions thus agreeing to a shared representation. We will examine in details
the different layers involved in agents communication and we will focus on
a the different roles played by each element. A novel agent architecture able
to tackle with possible linguistic ambiguities by focusing on the conversa-
tional level will be deeply described. Three different agent typologies will be
presented: Resource agents, embodying the target knowledge, Service agents,
providing basic skills to support complex activities and control agents, sup-
plying the structural knowledge of the task, with coordination and control
capabilities. NL communication is supported by two dedicated Service agents:
a Mediator, that will handle conceptual mismatches arising during communi-
cation, and a Translator, dealing with lexical misalignments due to different
languages/idioms.

Keywords. Intelligent agents, NLP, semantic web, ontology sharing.

44 Maria Teresa Pazienza and Michele Vindigni

1. Introduction

The demand for World-Wide Web technologies and the vision of Semantic Web
have pushed for researches on heterogeneous multi-agent systems able to exchange
information in a distributed environment. Building more adaptive SW applications
becomes a crucial issue to scale up information technologies to the Web, where
information is organized following different underlying knowledge and/or presen-
tation models. Several different architectures already exist that implement models
of communities with at least two kinds of entities involved: information agents
(providing access to information sources) and application agents (consumers of
information for application specific tasks) [22, 25]. In such architectures, informa-
tion providers are often built as (sometime complex) wrappers of the underlying
sources into formats suitable for being exchanged (and reasoned over) by more
sophisticated entities, with roles of knowledge mediators or information brokers.

The adoption of agent paradigm in web information systems aims to inherit
concepts and techniques from agents theory that offers an high level of abstrac-
tion and suitable mechanisms to address conceptual modeling of complex issues
as Knowledge representation and reasoning, communication, coordination and co-
operation among heterogeneous and autonomous parties.

Agent theory [32] goes in the direction of developing entities with a suitable
amount of both competencies and knowledge to autonomously interact with oth-
ers. Multi-agents societies (MAS) [29] constitute the most advanced model for a
dynamic and unstructured framework in which specialized agents could interact
and communicate through messages.

Interoperability among agents is an important research topic for information
systems, as most of them foresee widespread architectures involving heterogeneous
entities, based on different knowledge models and presentation paradigms. As a
consequence, it should be useful to introduce specific intelligent agents that could
work jointly while interacting with document management systems, for finding,
extracting and presenting relevant information whenever needed. In such a context
cooperating entities will share their knowledge and exchange information, being
able (at least) to communicate in any way. This pushes for heterogeneous agents
able to share a language, domain related ontologies (conceptual structures) and
cooperating to task resolution.

The goal of a complete “interoperability” suddenly revealed difficult to pursue
due to the continue innovations in the market of tools and applications: looking at
the current state of art, except for low-level protocols that are more standardized
and accepted, each system speaks its own language, uses its own communication
protocol and adopt its own ontology.

Despite a few standards have been introduced for supporting intelligent agents
communication (KQML [11], FIPA-ACL [12]), they seem to spread very slowly in
this area.

Agent to Agent Talk: “Is Anybody out There?” 45

In our opinion, there is a main reason for such a lack of a common framework
for information agents today: heterogeneous agents do not commit to one fun-
damental assumption of any software system. In traditional software, semantics
entailed in interactions is well defined in programs since the design and, in any
case, involved entities share communication language and knowledge representa-
tion model. As a straight example, let us consider a key identifier in a database
table (something as a UserID). Its meaning is well agreed and shared between
the database and the specific application that uses it. Thus when it appears in a
query, its symbolic value (let it be, USR004517) is referring to something (an in-
stance in the DB) that maintains its own identity through the whole system both
for functional and for denotational purposes. The used symbol does not need to
explicit its meaning, as its referential role is already agreed and well understood
since design time.

On the contrary, if we consider heterogeneous entities in an agent commu-
nity, symbols in the knowledge of individuals are no more implicitly referring to
same concepts/instances and should carry by themselves their meaning. Identifiers
cannot be simply shared as their semantics is not entailed by the communication.
Such an aspect introduces further dimensions to the complexity of the communi-
cation: terminology mediation, ontology sharing, context disambiguation, etc. For
different entities interacting on the web it is impossible to guarantee they share
concept meanings either in an early design phase or during implementation. This
is a major issue for sharing document contents, where recognition of texts and
identification of values base heavily on a shared/common knowledge model. This
aspect of agents communication is still neglected due to the difficulty in defining “a
priori” the quality and quantity of needed background (i.e. widely agreed) knowl-
edge. Nevertheless, as the ability to access autonomous and dynamic information
currently on the Web is vital for an agent society, we have to deeply cover this
matter.

It is clear that in each agent community, even the most “open” to new com-
ers, a level of semantic agreement must exist to bridge (or at least narrow) the
gap between proprietary knowledge representations in the different participating
systems. Relevant question here is how to build intelligent components requiring a
minimal amount of shared knowledge for participating in a cooperation, in order
to minimize commitments the designers must “a priori” agree upon.

In this article we will examine in detail the different layers involved in agent
communication and we will focus on a communication model that considers the
different roles played by each element. In the next chapter we provide a short
overview of different places where this gap can be seen. Section three describes a
model for communication that explicitly reckon the role of the language. Section
four describes a proposal for a novel agent architecture able to tackle with possible
linguistic ambiguities focusing on the conversational level. Then in section five we
conclude by highlighting further improvements on the described architecture for
intelligent agent communication.

46 Maria Teresa Pazienza and Michele Vindigni

2. How many ways can we misunderstand?

Whatever the adopted representation formalism, communicating agents can be
modelled as entities exchanging messages to transmit information. Complex inter-
actions could be seen as conversation sequences, that is policies and protocols for
routing messages with appropriate contents among two or more agents, each with
a specific role.

This framework involves several layers where semantic agreement among par-
ticipants should be enforced, while communication can fail at each of them. Start-
ing from simple message exchange, and going bottom-up we can identify at least
the following levels:
Transport levels: quite standardized through TCP or ISO/OSI stack protocols.
Generally these layers are seen by agents through abstractions provided by appli-
cation level protocols, even if nothing in theory inhibit from using directly them
for communication purposes.
Application Level: Application level protocols provide the message passing frame-
work for agent communication. Several standards exist here, like for instance
HTTP, SMTP or even RMI and CORBA protocols. This is usually the lowest
relevant level involved in agent communication, providing basic mechanisms to
allow platform independency and message delivery.
Speech Acts: Speech act theory [26] provides a formal background for agent in-
teraction defining a few performatives that define semantics of different commu-
nicative actions like ask, tell, inform etc. These constitute a methodological effort
to identify a backbone as much declarative as possible for communicating inten-
tions about exchanged messages. Two resulting standards emerged, KQML [11]
and FIPA-ACL [12]. Though both of them address the same communication layer,
they lightly differ in the syntax, strongly in semantics: the first is not committed to
a particular Content Language (CL) with respect to the message content, while the
latter assumes a specific Semantic Language (SL) for composing new structured
primitives from the core language (see for instance, KIF [13]). Aim of a content
language is to express the target information, while performatives expressed in the
query language are used to inform about meaning of the operations that content
should undergo. This layer is crucial to ensure that agents understand each other
intentions. While the application layer provide a shared abstraction of the com-
munication channel, this level guarantees an explicit understanding of (what to do
with) the exchanged messages.

The layers introduced so far account for the “syntactic” dimension of the
communication /footnoteSpeech Acts entail semantics about performatives not
about content. Agreement on a coherent use of them is a necessary (but not suffi-
cient) condition for the communication to take place in the community. Although
fundamental, this does not guarantee that the communication will be successful at
both semantic and pragmatic levels. These latter involve semantic agreement on
contents, as well as conversation policies (i.e. modalities to route the information

Agent to Agent Talk: “Is Anybody out There?” 47

flow through the community) that could prove crucial issues in building intelligent
web agents. Content languages provide a first level of standardization for encoding
contents, while here the lack of a uniform standard is more evident.

The problem here is that even if two agents agree upon using the same content
language, they still may not be able to understand each other due to different
vocabularies or different ontologies. Semantic misunderstandings (similarly as what
happens for people) add a overwhelming complexity to agent communication, are
very difficult to recognize and require a lot of competencies and capabilities from
agents side.

2.1. It’s Greek to me: the role of language in agent communication

Whichever the content language of choice, the problem that heterogeneous agents
willing to communicate face is directly tied to the lack of a total “ontological com-
mitment”, that is the implicit agreement to rely on the same knowledge model
(or at least for the concepts involved in the communication). In the context of
knowledge sharing we refer to ontology as the means for specifying a conceptual-
ization. An ontology is a description of concepts and relationships: in ontologies,
definitions associate entities in the universe of discourse to symbols that declare
what they mean, while formal axioms constrain both the interpretation and the
well-formed use of these symbols. A shared ontology embodies the vocabulary with
which queries and assertions are exchanged among agents; conversely agents shar-
ing a vocabulary need not to share a knowledge base; each one knows things the
other does not, and an agent that commits to an ontology is not required to answer
all queries that can be formulated in the shared vocabulary. A commitment to a
common ontology is a guarantee of consistency, but not completeness, with respect
to queries and assertions by using the vocabulary defined in the ontology. Ontolo-
gies are seen as a means for “real” semantic integration, but current approaches
do not consider linguistic insights to an appropriate extent.

In case of a shared knowledge representation, agent communication should be
totally effective, as reference to any concept could be realized by direct referring
to related symbols in the ontology without misunderstanding or mistakes. This
kind of agent could communicate with others in its internal language, being its
knowledge organized exactly the same of all the others.

In real world applications, this is often unfeasible as agents have instead “lo-
cal” world representations, on which they base their goals and their assumptions;
for instance, a seller and a buyer could have very different views of a marketplace,
perceiving the same reality with respect to their objectives: an income for the seller
becomes a cost for the buyer and although being both situated in the same en-
vironment/domain, their knowledge models could greatly differ as reflecting their
different behaviors; then, to communicate, they must agree upon some other sort
of shared (or better, “conventional”) representation to be transmitted to other
partners.

Many researches in this area are devoted to tackle this problem by defining
ontological frameworks sufficiently expressive to fit application specific needs while

48 Maria Teresa Pazienza and Michele Vindigni

remaining representational neutral and general enough to span over a broad range
of domains. While a number of results show well sound theories one can build
upon, there is no general consensus neither towards a representational formalism
neither on widely adopted so called “upper ontologies”.

We approach here this problem with a strongly different perspective: we al-
ready showed that agents cannot assume “a priori” that concepts in their “minds”
could be directly communicated to others (as most of the symbols an agent uses
have no common semantics) [23]. However, if ontological commitment does not
hold at all for an open agent community, agents willing to communicate can be
effectively designed so that the subset of symbols they will use in the communica-
tion “maximizes” the expectations to be coherent with the rest of the community.
Let’s call such attitude “linguistic commitment” (opposite to OC). We strongly
believe that shifting emphasis from a “common ontology” towards a “coherent
terminology” helps to tackle the problem of communication basing the process
on weaker assumptions that are more “at hands” for the community. Without a
complete “a priori” agreement, natural language is the only representation tool to
be used to carry semantics. Linguistic communication, both in human and agent
societies, supports a common representation level and enables a synthetic trans-
mission of the information: discourse participants use mutually understandable
terms to build phrases in order to communicate propositions.

2.2. Mapping, merging and messing up with knowledge: different approaches to
reconcile heterogeneity

A known symbol (i.e. a word in the agent language) denotes a concept for an
agent. This concept is related to others in whatever structured representation the
agent adopts for its own knowledge (whatever this be, a taxonomy, a semantic
network, etc.). We usually assume as word meaning the position its concept has
in the ontology, by means of its relations with the rest of the ontology. Neverthe-
less, the difference between word and concept has been often underestimated, as
usually terms play both the roles of concept labels and communication vocabu-
lary. As a consequence, all agents willing to communicate need much more than
to share the same vocabulary. By making more explicit the semiotic separation
among terms, concepts and domain referents, it allows for a better modeling of
the communication process.

The goal of Semantic Web is to have data defined on the web and linked in a
way that is explicitly interpretable by autonomous agents (rather than just being
implicitly interpretable by humans). Ontologies may be considered as the way “to
cut” reality in order to understand and process it. Reasoning with terms from
deployed ontologies is important for the Semantic Web, but reasoning support is
also extremely valuable at the ontology design phase, where it can be used to
detect logically inconsistent classes and to discover implicit subclass relations.

Using ontologies for the Semantic Web requires rules governing proper inter-
pretation of the structure, as formal representations and constraints (semantics or
meanings), and content, as ontology ground terms.

Agent to Agent Talk: “Is Anybody out There?” 49

However, what exists by now is a multitude of specific ontologies managed
by local authorities. Several questions have still to be addressed. Who could be
made responsible for their integration? Who could provide knowledge support for
such an operation? Who could maintain consistency across several realizations of
the same conceptualization? Who could be responsible of it during application life
cycle?

There are several different approaches to the problem of how to define a map-
ping among concepts belonging to different knowledge bases. Three main groups
can well represent the proposed solutions:
Manual Mapping: the research is focused on concept representation; this kind of
approach is usually followed by database researchers, that emphasize the role of
ontology as a scheme for the application knowledge base, where concepts are con-
sidered as data types; among others, we remember here the use of conditional
rules [6], functions [7, 1], first order logics [16], declarative representations [14]
where mappings themselves are organized in an ontology. Unfortunately, manual
specification of mappings is an expensive and error prone task for real scale prob-
lems. Moreover, this approach requires one to define a mapping for each couple
of involved ontologies, thus making difficult to scale up this approach when the
number of involved ontologies increases; as an alternative a mapping between local
ontologies and a general one is proposed in [18], but this require to agree upon a
common general purpose knowledge layer.
Adoption of a Formal Theory as description layer: instead of building mappings in
a bottom-up fashion (by integrating “local” resources), the resources themselves
are built accordingly to common assumption that guarantees the overall consis-
tence. This approach is followed by a number of systems aimed to help human
experts during the integration of DB schemes [3, 20, 10].
Automatic Mapping: this is driven by the assumption that equivalent concepts in
different ontologies must show similar observable properties; in this area, classical
ML techniques have been adopted, to provide similarity measures with respect to
a few relevant attributes, for instance:

• by identifying similar attributes, through the use of neural networks [21]
• by using relationships defined in a thesaurus and a measure of “semantic

distance” [4];
• by activating an heuristic search on the candidate mappings among value

tuples [8].

Although several works discuss different qualities of ontological mappings,
they focus the analysis on the mapping itself. Among the others, we mention here
[19], where the semantic distance of two concepts is defined by a tuple of their
contexts, the values they assume over a domain, their relations, and the data base
states. Their analysis produces a hierarchy of semantic nearness, ranging over
equivalence, correlation, relevance, similarity and incompatibility.

The previously mentioned approaches could be resumed in two distinct trends
with respect to the problem of knowledge sharing:

50 Maria Teresa Pazienza and Michele Vindigni

• all parts willing to interact must adhere to the same ontology. In such a frame-
work, they could refer to shared concepts, being implicit a common semantics
for the exchanged information. This solution provides a strict coupling for the
system components, and doesn’t ask for specific inferential capabilities to the
involved participants. It becomes unfeasible for open architectures, where a
common sharing of the conceptual model for the environment could not be
forced at design time, and thus it could not be adopted in highly dynamic
scenarios, as the Web is, where the information model is inherently hetero-
geneous.

• a set of correspondences across each involved ontology is defined either manu-
ally or automatically. Resulting mappings are used during the communication
process by a third part when semantic translation is required: this kind of
interaction foresees that an exhaustive analysis over the involved ontologies
is carried on before the interaction starts.

Most of the analyzed approaches require either shared instances, or shared con-
cepts, or shared relations among ontologies or schemas, manually defined or deriv-
able by the use of a shared formalism.

This kind of assumptions strongly reduces the applicability of these methods
in an open environment. To let autonomous agents working in a dynamic environ-
ment to interact, a more free approach is needed, with the less possible “a priori”
constraints, able to derive them at run time according to the situation emerging
from the interaction.

2.3. One for all and all for one: on the ambiguity among terms and concepts

Agents have indeed a “local” world representation; but for communication pur-
poses, interacting partners have to “agree” upon some sort of shared (i.e. conven-
tional) representation of concepts to be transmitted.

We believe that a deep semantic “agreement” is totally inconceivable in most
agent applications. On the Web, interaction happens on asynchronous bases while
needed information may be found on unknown unexpected sites. In such a frame-
work, to avoid a complete failure, we should relax some functional requirements;
agents (as humans do in new unknown environments) will base their interaction on
a weaker “agreement”: the language. Without a stronger “a priori” commitment,
the use of the natural language could represent the only tool to carry on semantics
in communication processes. Linguistic communication, in humans as well as in
agents, brings in a common representation level and enables a synthetic transmis-
sion of the information: discourse participants use mutually understandable terms
to build phrases in order to communicate propositions.

Also in very degraded frameworks (low level in language comprehension)
communication could be successful at a certain extent. For example, as in human
interactions, also in case of partners adopting different jargons, comprehension
could happen at least at terminological level as well as at proper names level.
Sharing this kind of linguistic knowledge will be enough for both comprehension of
discourse topic and related levels of interest. Similar considerations could be done

Agent to Agent Talk: “Is Anybody out There?” 51

in an agent framework. The adoption of natural language as representation support
introduces some further complexity in reasoning mechanisms. Nevertheless, a part
the case of lack in any other kind of shared knowledge in which our linguistic choice
becomes mandatory, our approach supports agents communication and reasoning
on a wider number of not strictly predefined interactions.

2.4. A rose is a rose is a rose: symbols and meaning

Whichever the formalism to represent knowledge, we agree with John F. Sowa in
[27] that “the primary connections are not in the bits and bytes that encode the
signs, but in the minds of the people who interpret them. The goal of various
metadata proposals is to make those mental connections explicit by tagging the
data with more signs. Those metalevel signs by themselves have further intercon-
nections, which can be tagged with “metametalevel” signs. But meaningless data
cannot acquire meaning by being tagged with meaningless metadata. The ultimate
source of meaning is the physical world and the agents who use signs to represent
entities in the world and their intentions concerning them”.

According to this statement, we could suppose a concept be completely spec-
ified only by an “interpretation function” that maps it to those real world entities
it refers to, that is:

Definition 2.1. Given two concepts C1 and C2, we will say that they are ideally
equivalent iff they conceptualize the same real world entities.

We use “ideal” to highlight that this kind of equivalence is never available to
software agents. An ontology approximates the domain conceptualization in the
designer mind, and thus a concept equivalence could not be formally verified inside
the model, but only externally postulated. The entire ontology by itself represents
the maximal degree of description an agent could provide for a concept: which
relations are involved in, among which concepts, and so on. We will call the set of
all these information the ontological context of a concept. In a real open framework
we assume that different agents could adopt different ontologies, while sharing
their linguistic knowledge (if any). The lexicon becomes the main tool to express
concept semantics. Possible mappings between concepts in different ontologies are
thus implicitly constrained to be linguistically plausible (that is, represented in
a coherent way by shared terms) and to adopt lexical descriptions of ontological
structural constraints. The most these descriptions will be similar, the greater will
be the confidence in the similarity of the expressed concepts. We thus rewrite the
equivalence definition 2.1:

Definition 2.2. Given two concepts C1 and C2, belonging respectively to agents A1

and A2, they are equivalent with respect to A1 and A2, when the lexical descriptions
of their ontological contexts are the same.

This is the same that happens with people: a speaker trying to communi-
cate an unknown concept to an hearer, will use other concepts to better define
it, assuming language uncertainty to be localized, that is, that the probability

52 Maria Teresa Pazienza and Michele Vindigni

of a misalignment between lexicon and ontology will decrease by increasing the
number of words in the description. This is driven by the hypothesis that, if both
participants know a term, both of the them use it to denote the same concept,
that is:

Definition 2.3. If T is a term that denotes C1 for agent A1 and C2 for agent A2,
then C1 and C2 are supposed to be equivalent for A1 and A2.

This is often referred as “one sense per domain” hypothesis [31], (i.e., in
case of agents linguistically interacting on the same domain, used terms could
unambiguously express concepts). When trying to apply this criterion in agent
communication, two main problems are faced:

1. ontologies built for specific tasks couldn’t have so much shared terms, or use
morphological variants of the same word

2. either the involved agents could adopt broader ontologies, or the two domains
could not totally overlap. This is the case, for instance, of agents devoted to in-
formation retrieval on the web, that will adopt a “general purpose” reference
ontology, where a broad knowledge is expressed with unknown granularity

In these cases, the above assumption 2.3 doesn’t hold, and we need a more re-
strictive rule to keep into account the new situation (that is the ambiguity of the
lexical information). This suggests a new equivalence definition:

Definition 2.4. Given T1..Tn terms common to both A1 and A2 agent lexicons, if
T1..Tn univocally denote concept C1 for A1 and C2 for A2, then C1 and C2 are
supposed to be equivalent for A1 and A2.

In other words, a concept can be referred by a set of terms (synonyms): in
case there is a subset of synonyms that univocally identifies a concept in both
agent ontologies, then we suppose they are equivalent for the two agents. This rule
extends the previous one, as in absence of polysemy, a single term will be sufficient
to univocally identify a concept in both the ontologies.

It is emerging the role ontologies assume in agents communication. Let us
discuss a little bit more on them.

3. Agent ontologies

Let us define an agent ontology O as the tuple < C, T,R,L > where C is a set of
concepts, T a set of language terms , R a set of relationships among concepts and
L : CxT the correspondence relation between terms and concepts.

Relations in R have structural meanings. Different kinds of semantic relation-
ships could share the same meaning, as IS−A, Ownership, Part−of , Reference,
etc: the correspondence between these relation types and the used relationships
depends on the different domains [15]. To be able to rebuild portions of a concept
ontological context, it is necessary that semantics of the involved relations is made
explicit and agreed. In an ontology there are different kinds of relationships and

Agent to Agent Talk: “Is Anybody out There?” 53

while they all participate to structurally define a concept, their contribution could
be different. For instance, Part− of relationship that explains the structural for-
mation of concepts (a brick is part− of an house, a wheel is part− of a car, etc,)
has a denotational contribute greater than the generic Related− to, that doesn’t
clarify the correlation meaning. Unfortunately, the kind of relationships active in
an ontology depends strongly on structure’s production objective. In [5], from a
study about 40 different ontologies derived from the shared Ontolingua Frame on-
tology [9], postulating the existence of 85 different relationships, only 58% of them
is used at least one time in any ontology, and of these, less than 20% is used more
than 10 times (and none in all the ontologies). 1

The lack of standard representations makes difficult to assume relationships
as shared features for a structural definition of the ontological context of a con-
cept. This analysis shows as set of closed theories exist, that are not meant to be
compared or expressed in an automatic way.

The only relation type broadly shared, even if sometime implicitly expressed
in the ontology, or implemented by using different relationships, is taxonomic de-
scription. In most of the ontologies, a taxonomic hierarchy is structured as a tree,
where any concept could have at least a single concept as its generalization. How-
ever, there are ontologies where multiple inheritance is allowed.

Luckily, a taxonomy is strongly definitory for concepts. It is the case of dic-
tionaries, where a concept is defined in terms of its genus and its differentia, that
are its direct super class, and the features that discriminate it from others belong-
ing to the same genus. The existence of a shared taxonomy makes it possible to
compare concepts by their positions in hierarchies: more these are similar, less will
be the uncertainty on their equivalence.

3.1. Ontological similarity evaluation

A communication act could be seen as the activity of sending some information
from a sender to a receiver (being this encoded as a message through a commu-
nication language) and decoded when received. Several components contribute at
different degree in this process. The communication context of two agents (S in the
role of a speaker/sender and H in the role of a hearer/receiver) could be sketched
as being composed in a number of dimensions orthogonal to the communication
flow 2 : these are, the sender conceptual plane O(S), the sender lexical plane V (S),
the receiver lexical plane V (H) and the receiver conceptual plane O(H) (see Fig.
1).

1It is worth noticing how the preference for several relationships is often biased by the formalism
of the adopted implementation framework: the relation Subclass − of is used more often than
Superclass − of (that is not in the first twenty). Adding a new class to the ontology is easier
in a top down than in a bottom up fashion, as new concepts are usually related to pre-existing
relations by inheritance, and in most of the ontology editing tools this relation is implemented
by a meta attribute in the child concept pointing to the parent class.
2We use here a geometrical representation as a metaphor to highlight the role the different
components have in communication.

54 Maria Teresa Pazienza and Michele Vindigni

t1

t3

t4 t6

t2

t8
t9

t10

t5
t7

t1

t12

t13

t3
t14

t9

t10

t5
t7

O(S) O(H)V(S) V(H)

Figure 1. A graphical representation of the communication context

Conceptual planes O(S) and O(H) contain concepts C and relationships R:
they are the “interior” components of agent minds, resulting from domain con-
ceptualizations made by designers, and expressed in some logic formalism. Lexical
planes V (S) and V (H) contain words of T agent lexicons. For (natural language)
speaking agents, information in their lexicons represents the way they “express”
underlying conceptualizations, thus a (weak) agreement to a shared formalism.
Relation L among concepts and terms in the language correlates what the agent
can represent in its mind with what it can express. This is represented in figure
by light arrows, going from the conceptual plane to the lexical one. The mapping
between lexicons V (S) and V (H) is shown by dashed lines, depicting the linguis-
tic equivalence relation between the two agents terms: if S and H speak the same
language, these lines represent the (partial) identity relation between symbols in
V (S) and V (H); lines in the upper part of the figure point to the “true” mapping
among agent concepts that in our hypothesis is unavailable to the communication.
Agent S, willing to transmit a concept C to agent H, must go by first from its
conceptual plane O(S) through its lexical plane V (S), then send some information
to the hearer H that will map it to its lexical plane V (H), and finally project it to
its conceptual plane O(H). This makes the communication complex, as in the gen-
eral case, the relationship between different planes is not bijective, and each step
can lead away from the target. As a consequence, it is often unfeasible a straight
approach where an agent chooses a word in its lexicon as the message content;
there is no guarantee that the receiving agent will be able to invert the encoding
process to catch the right concept in its own ontology. In the following paragraphs
we will use this model to make it clear the role the different components play in
the communication process, trying to provide an accurate analysis of each of them.

3.1.1. Conceptual similarity among planes O(S) and O(H). Similarity among the
conceptual planes is crucial for the communication. Topological differences could
reveal deep differences in conceptualizations (and then in concept meaning, see

Agent to Agent Talk: “Is Anybody out There?” 55

Fig. 2). Of course not all ontological misalignments imply conceptual misalign-
ments (even if the opposite holds: different conceptualizations will have different
models). Unfortunately, conceptual misalignments could not be directly derived in
communication as direct mapping is unfeasible by hypothesis; anyway, it is useful
for our analysis to characterize the different typologies that could emerge when
comparing concepts in two ontologies.

Given two equivalent concepts CS in O(S) and CH in O(H), each of them is
involved, more or less directly, in a few relationships with other concepts inside its
own ontology. For sake of simplicity, let us consider only the subsumption relation
class-subclass (�). Let C ′

S ∈ O(S) be a concept subsumed by CS , that is C ′
S � CS .

A number of cases could happen:
Equivalence: ∃C ′

H ∈ O(H) | C ′
S ≡ C ′

H ∧ C ′
H � CH , that is, there is a concept in

O(H) that is equivalent to C ′
S and is subsumed by CH . For instance, in both the

ontologies there is a <dog> concept and an <animal> concept and <dog>�<
animal> (as in case of Fig. 2-1).
Contradiction: ∃C ′

H ∈ O(H) | C ′
S ≡ C ′

H ∧ ¬(C ′
H � CH), that is, the concept in

O(H) equivalent to C ′
S is not reachable through the subsumption relation from CH .

For instance, both the ontologies have a concept for <circle> and <polygon>,
but one of them declares that <circle>�<polygon>, whilst the other one does
not. This reflects a deep difference in their conceptualization (as in case of Fig.
2-2).
Indetermination: ∀C ′

H ∈ O(H) | C ′
H �≡ C ′

S that is, there is no concept in O(H)
equivalent to C ′

S . In this case ontologies are not in contradiction, simply O(H)
represents a different conceptualization that O(S). For instance, both ontologies
have <dog> concept, but only one of them get the concept <mammal> and the
relation <dog>�<mammal>; in this case there are two possibilities:

• Compatibility: O(H) could admit the missing concept, that is the misalign-
ment is at the aggregation level: concepts are represented with different gran-
ularity. With respect to the previous example, one of the ontologies contains
the concept of < mammal > as an intermediate level among < dog > and
<animal>, while the other one not (see Fig. 2-3a).

• Incompatibility: O(H) description could not admit the missing concept, as it
uses a different categorization for its concepts. This usually reflects differences
in the properties considered to be salient for the generalization. For instance,
having two different ontologies for animals, one organized around classes as
mammal, bird, etc. and the other on their behavior as carnivore, herbivore,
etc (as in Fig. 2-3b).

Semantic similarity measures based on evaluation of taxonomic links usually
use distance metrics between compared concepts, with respect to nodes known as
equivalent: shorter is the path between two nodes, greater is their similarity. Such
an approach often assumes that taxonomic relations have uniform distances, while
it doesn’t hold in the general case. In real world taxonomies, the “distance” covered

56 Maria Teresa Pazienza and Michele Vindigni

C′S

CS

C′H

CH

C′S

CS

C′H

CH

C′S C′H

dog

animal

dog

animal

circle

polygon polygon

circle

dog

animal animal

dog

mammal

dog

mammal

animal

bird

dog

carnivore

animal

herbivore

CS

O(S) O(H) O(S) O(H) O(S) O(H) O(S) O(H)
1

1

2

2

3

3a 3b

subsumption

equivalence

Figure 2. Topological differences in conceptual planes

by direct taxonomic relationships is roughly variable, as a few sub-taxonomies, for
instance, tend to be more dense than others.

As the IS −A relationship induces a partial ordering in concepts, a measure
of the topological similarity of ontological contexts could be obtained by weight-
ing shared constraints (as positive evidences), the contradicting constraints (as
negative evidences) and indeterminate constraints over the two ontologies.

3.1.2. Lexical similarity among planes V (S) and V (H). Let us now take into ac-
count the role of the lexicon in communication process. To transmit information
between a speaker and an hearer, it is necessary that a shared vocabulary exists
and is adopted. Greater is the difference between speaker and hearer dictionaries,
greater is the probability of term known to one agent and unknown to the other
one (success in the communication tends to be zero).

A simple measure of similarity can be obtained as the average mutual cover-
age with respect to the number of words in each dictionary.

The set coverage is defined as a number ranging from 0 to 1. Two identical
sets will have maximal coverage, which is 1, while disjoint sets will measure 0; in
other cases coverage quantifies the set overlap. We define the coverage as:

Definition 3.1. Given a non-empty set X and a subset Y ⊂ X, the coverage σ of
Y over X is the quotient of their cardinality, that is |Y |/|X|.

The common coverage of two non-empty sets will be then the average of the
coverage of their intersection with respect to each of them. In our case:

Definition 3.2. If V (S) and V (H) are the speaker S and hearer H lexicons, then
the lexical coverage σ(V (S), V (H)) is:

σ(V (S), V (H)) =
1
2
|V (S) ∩ V (H)|

|V (S)| +
1
2
|V (S) ∩ V (H)|

|V (H)|

Agent to Agent Talk: “Is Anybody out There?” 57

where
σ(V (S), V (H)) = 0 if V (S) =
 or V (H) =

Is agent lexicons significatively overlap (high σ values), this states that the
set of symbols (i.e. language terms) they are using to communicate is sufficiently
similar to expect their conceptual planes to be organized around the same concepts.
Notice that lexical similarity does not guarantee by itslef that the communication
will succeed but only reflects at which extent a language agreement exists “a
priori”.

3.1.3. Lexical expressivity. A strong similarity in conceptual and lexical planes is
not sufficient to ensure communication to be successful. In fact by definition agents
do not have an a priori knowledge of characteristics of the interacting agent’s on-
tology as they don’t know each other. As a consequence they will not use common
internal representation language whilst they could. They will pass through the
lexical level for communication purposes. The activation of this procedure could
generate a failure. Let us do an exemplification; let us suppose that both the agent
ontologies and their lexicons are exactly the same, but that they could use a single
word only to express any concept (very poor lexical expressivity). Agent S will use
the unique word it gets as lexicalization for communicating any concept. Even if H
knows the word it can’t disambiguate what it hears, as this extremely poor lexical
expressivity does not allow to focus the right concept among all possible ones in its
mind. The correct mapping between lexical and conceptual planes is fundamental
for agents using lexicons for knowledge transmission. This motivates the adoption
of a one-to-one correspondence between these planes realized in the majority of
ontologies. For exemplification purposes in real application, it is generally con-
sidered concepts are represented in an ontology by only one lexicalization.In the
web context a communication could be activated between any couple of agents,
independently by the amount (if any) of ontology overlapping. In case of partial
knowledge/dictionary sharing, several concepts will be cut-off as they could receive
different lexicalizations. A richer set of terms increases the probability of concept
comprehension by the receiver. Lexical redundancy could be seen as a magnifying
factor for the lexical plane with respect to the concept plane.

Unfortunately it is not ever possible to extend the number of unambiguous
lexicalizations for a concept; from a cognitive perspective, the creation of a new
word is strictly related to the intention of explicitly specify a concept. However,
distinct lexicalizations could denote the same concept in an ontology, if the under-
lying domain conceptualization makes no difference among referents they have in
the real world. Lexical variety implies an implicit drawback : often a word could
denote even totally different concepts. This phenomenon (namely, the word poly-
semy) could be seen as the opposite contraction of the lexical plane with respect
to the concept plane; in this case distinct concepts in the conceptual plane par-
tially overlap on the lexical one. Generally, these two phenomena are both present:
lexical richness implies greater ambiguity.

58 Maria Teresa Pazienza and Michele Vindigni

A measure for linguistic expressivity for an agent A lexicon is obtained by
assigning each word w a weight P , inversely proportional to its ambiguity:

PA(w ∈ TA) =
1

|SenseA(w)| with SenseA(w) = {c|(c, w) ∈ LA} (3.1)

where SenseA(w) represents the set of (agent A) concepts associated to word
w, (i.e. its different senses).

We then define the expressivity Expr(c) of a concept c as the sum of the
weights of each word that could express it, that is:

Expr(c ∈ CA) =
∑

w∈WordsA(c)

PA(w) with WordsA(c) = {w|(w, c) ∈ LA} (3.2)

being WordsA(c) the set of words that could express c. Low values of Expr(c)
denote poorly represented concepts in the lexicon, while high scores stand for
richly expressed concepts.

Over the whole ontology of the agent A, we can define the expressivity of the
lexicon TA as the average expressivity of its concepts, that is:

Expr(TA) =

∑
c∈CA

Expr(c)
|CA|

(3.3)

Notice that the expressivity could vary over the range (0,+∞), where an higher
value stands for a “wider” dimension for the lexical plane with respect to the
conceptual one.

3.1.4. Lexical-Semantic coherence. Basic assumption for the communication is the
lexical-semantic coherence: source and destination use lexicons in a coherent way,
by assigning words to concepts in a consistent approach. That is, if CS is a concept
in the conceptual plane O(S) of a speaker agent S and w a word in Words(CS)
we assume that the following rule holds:

if (∃CH ∈ O(H) | CS ≡ CH) ∧ w ∈ V (H) then CH ∈ SenseH(w) (3.4)

that is: if there is a concept CH in the H hearer’s ontology equivalent to CS and
H knows the word w the speaker uses to represent CS , than H too represents
CH by w. This means that if a concept C exists that is known by both S and H,
then each word in their common vocabulary either expresses C for both of them, or
doesn’t express C at all. Lexical mismatches could happen when the hearer doesn’t
know the word w or the concept CH (thus eventually using w to refer to other
concepts). In real frameworks we could not guarantee that rule 3.4 globally holds.
Exceptions to this rule represent situations in which agents use their vocabularies
in an inconsistent way. In case of frequent inconsistencies, it becomes very difficult
information exchange between the two agents.

If we think this exception to the rule 3.4 could usually hold, than the equiv-
alence relation between the lexical planes must be considered as an accidental
equivalence among strings belonging to two different languages. In this case the

Agent to Agent Talk: “Is Anybody out There?” 59

shared vocabulary could not convey any information.

The different factors we analyzed represent the natural dimensions along
which the communication flows. We could distinguish between:

Endogenous factors, i.e. intrinsic conditions, that could be evaluated for each
agent and represent its disposition towards the communication based on its cog-
nitive model, that is its lexical espressivity.

Exogenous factors, i.e. contextual conditions, defined at communication time
between participants, and embedded in the conceptual plane distance, the lexical
distance and the lexical-semantic coherence; they represent properties emerging
from the interaction much more than individual qualities.

4. Toward a linguistic agent society: a language-aware architecture

From the above analysis of our linguistic communication model it emerges that,
even when supposing participants agree on a communication language (at least for
what concerns grammar and protocol), it is possible for direct communication to
fail at content level. This could happen in the following cases:

1. Hearer dictionary does not include the word used by the speaker; this could
happen either in case the hearer adopts another word to express the same
concept, or when speaker and hearer use different languages.

2. Hearer does not know a concept the other is speaking about, that is H knowl-
edge does not contain a (unique) lexical representation for this concept;

3. Hearer maps the word into one or more different concepts while only one is
known by the speaker; this happens with morphologically ambiguous words.

The need to bring into the communication more information to express a con-
cept meaning requires the introduction of further communication capabilities. In
a real world framework it is unrealistic to suppose that each agent willing to com-
municate could have these capabilities, as most of them could even not be aware
of such issues. In fact it would require to both interacting agents the ability to
manage several kinds knowledge as well as to infer an appropriate behavior while
being in a heterogeneous and dynamical framework. An agent with the inferential
abilities needed to deal with language ambiguities will gather several skills that
will greatly increase both design and implementation complexity. Real applications
need to access to different services and resources asynchronously while accomplish-
ing several tasks: it is unfeasible to duplicate such competencies for each agent.
Moreover, a key idea of any agent based distributed approach is to keep individuals
simple and easy to maintain, to customize, and adapt. Another important aspect
is that existing information services, (whose implementation, query language and
communication channels are out of the control of user applications) could be eas-
ily integrated. In fact most of the existing Web information sources have been
developed before the definition of agent technologies. As a consequence it seems

60 Maria Teresa Pazienza and Michele Vindigni

more feasible to realize wrapper agents over these resources than directly to up-
date them: this kind of agents simply interface information sources and consumers,
providing uniform data access and view.

4.1. Agent Taxonomy

We defined an agent society with different specific competencies and in terms of the
different functionalities they offer for the communication task. Among others, our
main objective from an architectural point of view is to keep the resulting architec-
ture independent from the application domain; three different agent “typologies”
have been devised as sufficient for supporting language communication:

1. Resource agents, representing the ends of the communication channel. They
own the knowledge target of the communication;

2. Service agents, owning the single functionalities to support complex linguistic
activities (mainly represented by a Mediator and a Translator);

3. Coordinator agents, that supply structural knowledge of each task, and have
coordination and control capabilities.

Whilst they all share the same structural paradigm, each of them exhibit specific
design choices oriented to the task it is devoted to. In detail, splitting competen-
cies between Service and Coordinator agents realizes a separation between tactical
highly specialized problem-solving skills, and strategic knowledge on how to com-
bine them to achieve a complex goal. In such a way, it is possible to dynamically
recombine existing components to solve new problems, and dually, to upgrade
single functionalities without having to redesign the entire system.

Main functionalities of a Coordinator agent relate to the ability:

• to identify Resource agents involved in the communication act,
• to identify Service agents to support communication,
• to manage the information flow among them.

From the application point of view the separation between functionalities and the
consequent need to interact with a single agent hide the underlying complexity of
the information retrieval activities and communication tasks: these are conceived
to be the most frequent application environments to be met.

A Service agent has task specific capabilities. It will:

• be delegated by the Coordinator agent for the resolution of a specific task
that will become its goal

• identify precise sub goals requiring information from Resource agents
• delegate to the Coordinator agent the task to effectively retrieve the needed

information

A Resource agent will:

• support a transparent access to the underlying resource
• reply to system queries following agreed communication language and proto-

col

Agent to Agent Talk: “Is Anybody out There?” 61

To realize these functionalities, agents must be endowed with appropriate knowl-
edge and processing capabilities to manage it. Thus a Coordinator agent should
at least embody the knowledge of the physical model of both Resource agent and
Service agent distribution in the system, a model for the services involved in the
communication task through the different situations (i.e. involved agents may have
or not the same ontology, or the same language) and a communication protocol to
interact with Resource and Service agents; a Service agent will know at least how
to attain its goal, which additional information is needed, and a communication
protocol to interact with the Coordinator agent.

Being at the lowest cognitive level, any Resource agent will know only the
model of the data it owns, the procedures to answer to specific queries on its
knowledge, and the communication protocol to interact with Coordinator agents.

In this context we focus on the issues related to the use of the natural language
in the communication activity. Although the described architecture is meant to
deal with a more general class of problems, we here refer only to the needs of a
communication scenario. The reasoning skills could broadly vary in this framework:
for instance, every resource could be represented as an agent with a basic set of
skills, able at least to receive specific requests, to act in order to satisfy them,
while Service agents (as described below) expose higher cognitive levels. These
roles, according to the chosen organization, could be even implemented by a single
agent: the proposed categorization holds for modelling purposes only.

The simplest agent organization foresees five different agents: two Resource
agents, (a Speaker and a Hearer, willing to interact, i.e. communicate), two Service
agents (a Mediator and a Translator agent providing the specific services required),
and a Coordinator agent that will supervise all the different activities.

4.1.1. The Resource agents. As Resource agents, Speaker and Hearer are respon-
sible for the management and the presentation of domain knowledge in their own
resources. They alternate in the role of Sender and Receiver while information
flow is managed by a Coordinator agent with which they interact. Nevertheless,
domain knowledge and language knowledge are intrinsically different: though they
use a communication language, agents are not necessarily aware of the language
structure, neither they must be able to learn new words. Language could be seen
as an unconscious phenomenon, as it is for people. Of course, people could in
some measure reason about language, as their conscious knowledge includes some
linguistic skill, but this does not apply for systems. They can’t negotiate terminol-
ogy or autonomously resolve communication failures, as this requires a shift in the
discourse domain, from the content to the language level. An hearer agent knows
how to reply to the queries it receives. When it does not understand the query, as
for instance in case of adopted ambiguous terms, a deeper linguistic knowledge is
required. If this knowledge could be successfully factorized externally from each
single agent, this will greatly reduce the linguistic skills needed. More in detail, we
suppose that knowledge of the underlying language model makes Resource agents
able to reply to simple queries about:

62 Maria Teresa Pazienza and Michele Vindigni

• the lexical relation L between terms and concepts
• conceptual relations R among concepts

with no other assumptions on inference capabilities to correlate concepts in their
ontologies.

4.1.2. The Mediator Agent. The Mediator agent carries on a mediation activity
between actors, being able to understand the information the speaker wants to
express as well as the way to present it to the hearer. He will narrow the gap exist-
ing between the information content of each lexicalization and its joint use, thus
providing inferential contribution to the agents communication. The mediation ac-
tivity overlaps in a transparent fashion the agent interaction. The Mediator agent
is designed to act independently from a specific domain. We assume that he has
no prior knowledge about the dialog topics , while it is focused on understanding
which relationships exist between concepts involved in the communication as well
as terms used to express them, without any assumption on the adopted internal
knowledge representation formalisms. This working modality has been choosen
for making the Mediator agent universally valid in any application domain. Its
role consists in being able to activate the mediation process and manage it until
successful completion.

Due to the fact the mediation activity is developed out of the speaking agents,
the Mediator needs to work on a restricted view of the ontologies. Instead of
duplicating, he builds a partial image of the involved parts, by querying agents
about specific knowledge on terms and concepts, and dynamically compares the
results in order to find a mapping for the target concept.

Let us to provide an example: two agents, say John and Mary, are talking
together: during the dialog, John use the word α that Mary does not know. The
Mediator could come in hand in finding a word known by Mary with the same
meaning of α. To accomplish this, the Mediator must have some specific skills
with respect to the reasoning: at least it must be able to judge if two concept are
or not equivalent for the two involved agents. In practice, the Mediator will learn
what John means by α, asking him other terms representing the same concept.
If John could provide synonyms of the sense it is using, the Mediator could try
to query Mary with these. In case she can identify a corresponding concept (for
instance she knows a synonym β), then the mediation will succeed. But if, for
instance, β is ambiguous for Mary, than the Mediator should learn more features
of the concept John is expressing. John could explain to the Mediator that for
him α is a γ. Mediator will ask them Mary if she knows meaning of γ, and so on.
Conversation will go on until information from two participants will be enough to
let the Mediator decide, with some “degree of confidence”, a mapping among what
John is speaking about and what Mary knows. By “degree of confidence” we mean
that the Mediator offers its service to solve problems tied to the communication,
not to the possible inconsistencies of the conceptualizations.

The mediation function is inspired by human behavior: if an hearer does not
understand the meaning of a word, he asks for more details, firing sub-dialogue

Agent to Agent Talk: “Is Anybody out There?” 63

events, based on a sequence of query-answer, aimed to identify the target concept,
or its position in the ontology: in this activity he will base also on the clues
provided by synonyms, relations with other concepts, and so on. A positive aspect
of this kind of mediation is that the analysis is framed into a local search space.
In real world ontologies, big differences in the taxonomic structure already appear
in the upper levels, making impossible a large-scale mapping between misaligned
structures. Seeing the mediation activity as a terminological problem helps in
understanding the analogies existing on the underlying models.

This view of the ontological mediation is based on minimal assumptions on
the knowledge model the involved agent has: by adding more restrictive hypotheses
on their introspection capabilities, it is possible to include in the same framework
more sophisticated techniques. Reasoning about concept properties, attribute sim-
ilarity and relations requires a deeper semantic agreement among participants that
is out of the scope of this research. We stress here that, in absence of such agree-
ments, what agents could expose about their ontologies is the lexical component,
and thus we focus the mediation activity on this.

4.1.3. The Translator Agent. In case the interacting agents speak different lan-
guages, lexical misalignment are no more a local problem, but have to be dealt
introducing a new entity, able to determine a mapping between terms in the two
languages by an intelligent management of an extensive resource: the dictionary.
For this reason, a Translator agent is foreseen in such a situation.

By “intelligent management” we mean that the Translator agent is expected
to provide more than simple word-level translation according to the dictionary,
but try to find the best “semantic” translation with respect to the sense under
analysis, as a human usually does when translating something. Note that the
problem of finding a translation in ontological mediation although quite similar
to the classical machine-translation problem, exhibit some peculiarities due to the
nature of the task: in fact, while machine translation approaches usually take into
account the word context represented by the phrase the term is in, in our case
the dialog participants have clear intentions to transmit specific senses, and thus
could provide additional information on the ontological context of the word under
analysis. This means for instance that the Translator agent could exploit the useful
information provided by a set of synonyms in order to find the most appropriate
translation or, depending on the underlying resource, try to match different senses
in the dictionary against the ones the agent has.

We choose to localize the mediation and translation tasks in different entities
to separate the reasoning mechanism of the mediation activity, that is essentially
based on labelled graphs matching, and the translation, that is strictly tied to the
amount and modalities of the information stored in the resource.

4.1.4. The Coordinator agent. In real environment the communication needs emerg-
ing in the dialog are unforeseen. It is necessary to add the third agent typology,
aiming to coordinate the operations carried on by the Service agents. A Coordina-
tor agent will then take in charge determining which interaction flow is necessary

64 Maria Teresa Pazienza and Michele Vindigni

Speaker
Hearer

Coordinator

Mediator
Translator

Service Agents

Resource Agents

Virtual Communication

Physical
Connections Physical

Connections

Ta
sk

 D
ele

ga
tio

n

Ontological Competence Linguistic Competence

Figure 3. Schematic view of the agent architecture

to communicate an information, activating for each single task the required Service
agents and supervising their activities. With respect to a Facilitator agent [30], a
Coordinator agent could exhibit a number of extra capabilities, being responsible
not only on the information/services routing (as the other does), but making its
own plans on the way the information should be combined in the system and on
which agents (capabilities) be involved in the process. This usefully decouples the
local strategies, adopted by each single Service agent to solve its goals from the
knowledge on how to combine its results with other parts in the system.

Given this framework, the communication scenario becomes the following:
two agents willing to communicate will contact a Coordinator, declaring their
own languages and ontologies, asking him to organize a meeting and to arbitrate
the dialog. The Coordinator accepts the task and, if necessary, contacts another
agent to support needed knowledge for completing the communication task. If
the communication succeeds, the Coordinator will continue in its role of “message
router”; in case during the meeting a misunderstanding happens, the Coordinator
will involve one or more Mediators, by asking them to solve it. From the two
interacting agents points of view, the Coordinator is performing all the activities.
Task delegation to Mediators and Translators is thus hidden to the users, that will
even ignore the need for these supplementary services.

Agent to Agent Talk: “Is Anybody out There?” 65

4.2. Adaptive agent communication

After identification of agent classes (typologies), their functionalities and roles, it is
now important to analyze in details how interactions may occur at a physical layer.
The previously described architecture could be defined as a pool of cooperating
agents that interact following two different modalities (see [24] for furhter details):
• an event-driven asynchronous communication based on a request/reply pro-

tocol
• a demand-driven synchronous communication based on direct queries.

Agents could adopt a message based communication language that is a simplified
version of KQML [11] implementing only the most common performatives (ask-one,
ask-all, tell, etc.). In this architecture, software agents owning information sources
could freely communicate, through the interaction with a Coordinator agent, inde-
pendently from their physical collocation on the network. Coordinator agents are
responsible for finding suitable support agents to process a message, to forward
requests to them, to translate responses for dialog participants and to transmit
information needed for message building. Depending on the message type, the Co-
ordinator agent will obtain a direct answer or will activate the procedures required
to process it. The overall system is information oriented and implements several
different functionalities. The agent architecture is structured in a number of layers
that implement the different procedures needed for the communication, the reason-
ing and the internal knowledge storage and maintenance. The different interfaces
among agents and the OS are built over TCP stack, that represent the basic layer
needed to connect and speak with software agents through the underlying network
and different OSs. The delivery and monitoring message components along with
the agent connection listeners, are wrapped in. These listeners are owned by the
Coordinator, that is responsible for a coherent activation of Service agent requests.
Its knowledge base contains information on capabilities, languages and ontologies
of each single agent: it dynamically decides upon the involved connections based
on all these information. The Coordinator uses its KB to serve requests, that will
involve one or more of the following actions:

1. Identification of an agent that could process the request
2. Request translation to be comprehensible for the receiving agent
3. Request decomposition into simpler ones, delegated to Service agents
4. Results combination in a response for the requesting agent

To compel with these requests, the Coordinator continually scans the network op-
erations, waiting for a new agent connection, or an existing agent disconnection.
Whenever it receives any one, it will activate the appropriate procedure. In the fol-
lowing, we briefly sketch the principal procedures involved either in the connection
elaboration or in a request.

4.2.1. Processing agent connections. When a connection request is sent from an
agent to the Coordinator agent, a communication channel will be setup between
the two agents. Due to the communication protocol, the Coordinator waits for a

66 Maria Teresa Pazienza and Michele Vindigni

registration message with agents personal data. Purpose of this message is to pro-
vide to the system an explicit characterization for connecting agents . A newcomer
must inform the Coordinator with both its category, (providing a nickname to let
all other agents in the system to logically address it in their messages), and the
services it will expose to the community. The role each agent has in the system is
defined on connection basis: this approach makes it possible for the same agent to
assume time by time more than one role (for instance, nothing inhibits a Mediator
to later perform as a Translator, or a Resource agent). For each role, the agent has
to register to the Coordinator by declaring what kind services it will provide, thus
allowing to build a dedicated communication channel for each specific role. The
Coordinator records the link among name, role, connection and physical agents in
a sort of directory service in its knowledge base, to be used later for message rout-
ing. Depending on the role, further information will be necessary: for instance, the
Coordinator will be informed upon ontology and language the Resource agent will
adopt, while a Translator will specify for which languages could be useful. These
additional information is used both to decide run-time the dynamic information
path, and to plan adequate support activities to be delegated to Service agents.

4.2.2. Processing agent requests. Due to the fact all agents are connected through
the Coordinator, it is needed to guarantee a coherent information flow through the
system. The Coordinator behavior becomes complex and structured related to the
knowledge required for the communication task. For instance, let suppose an agent
S is registered in the system, with a “speaker” (i.e. information sender) role. At
a given time, S will send a request to communicate a concept to agent H. At
that moment, the Coordinator must take a number of decisions: by accessing its
knowledge base, it will check all pre-conditions that should be verified for making
communication feasible. First of all, it will verify H is known to the system. If H is
available, the Coordinator will match the information provided by S with respect
to H capabilities to determine one of the following situations:

speaker coordinator

Say(H,C)

hearer

Hear(S,C)

Figure 4. Communication acts in direct connection

a) both A and B use the same ontology: the A message will be directly trans-
mitted to B, with only (eventual) syntactic translations of its structure (see Fig. 4,
where we use Say(H,C) to represent a communication activity aimed to transmit
concept C to agent H. The message is translated to Hear(S,C) to represent a
logical translation performed by the Coordinator that leaves the content unmodi-
fied);
b)S and H refer to different ontologies while using the same language (see Fig. 5):

Agent to Agent Talk: “Is Anybody out There?” 67

speaker coordinator

Say(H,C)

mediator

M(S,H,C,C’?)

hearer

Query(S,w1)
Q(w1)

A(w2)
Reply(S,w2)

Q(w3)

A(w4)

Query(H,w3)

Reply(H,w4)

M(S,H,C,C’)

Hear(S,C’)

Figure 5. Mediated communication among agents

the Coordinator will verify the presence of a Mediator agent and if unavailable, S
will be notified with an appropriate message; otherwise the Coordinator will build
a suitable request for mediation (represented by M(S,H,C,C ′?), transmitting
the concept under investigation plus S and H logical names. To be transparent,
the Coordinator will behave, time by time, as speaker and as hearer, directly re-
plying to the Mediator queries for further information (represented in figure by
Query(Agent, Info)) if caching the required information, otherwise redirecting
them to the appropriate agent (eventually syntactically translating them in the S
and H languages, see Q(Info) in figure). When the mediation activity ends, the
Coordinator will collect responses from the Mediator (i.e. concept(s) C′

H equiva-
lent to CS), will update its knowledge base, and in case of success of the mediation,
will send back the appropriate information to the hearer(Hear(S,C ′)), finally no-
tifying to the speakers the success of information delivery;

c) both involved parts adopt different ontologies and languages (see Fig.
6): the Coordinator will interleave the actions performed in b) with appropriate
queries to a Translator agent. In fact, the mediation activity happens at symbol
level, and further translations will be needed to present to the Mediator the re-
quested information in a uniform language. For instance, if the Mediator uses H
language, then each lexical information flowing through S would first be trans-
lated by the Translator agent (in figure 6, when the Mediator asks w1 to “S”, the
Coordinator sends the message Trans(w1, t1?) to the Translator agent asking to
translate it, then pass the translated query Q(t1) to S, obtains its answer A(t2),
asks back the Translator for its service to bring t2 in a form the Mediator could

68 Maria Teresa Pazienza and Michele Vindigni

speaker coordinator

Say(H,C)

translatormediator

M(S,H,C,C’?)

hearer

Query(S,w1)

Trans(w1,t1?)

Trans(w1,t1)Q(t1)

A(t2) Trans(w2?,t2)

Trans(w2,t2)
Reply(S,w2)

Q(w3)

A(w4)

Query(H,w3)

Reply(H,w4)

M(S,H,C,C’)

Hear(S,C’)

Figure 6. Translated and mediated commnuication

understand and redirect the translation w2 to the Mediator (Reply(S,w2))). De-
pending on the intelligence of the Coordinator, some information could also be
cached before querying for the Translator (for example, to maximize the transla-
tion accuracy, waiting for all the synonyms identifying a concept to be collected
before querying a translation), thus improving the overall performance.

In case the needed information in each of previous a), b) or c) cases is al-
ready available in the Coordinator knowledge base, it could directly reply without
involving further actions. This knowledge acquisition process is extremely impor-
tant as, run-time, it could result in new linguistic resources “emerging” from the
overall communication process, and eventually, to new Resource agents (it could
be considered as a positive follow up). In a resource extraction context, we could
adopt the same architectural framework by just specializing this process. It is fea-
sible the Coordinator releases periodically the acquired knowledge in form of a new
Resource agent, to maintain distinct as most as possible the identified functional
roles in the communication system.

5. Conclusions

The real innovation of the web will be realized when agents will collect contents
from multiple sources, process the information and exchange the results with other

Agent to Agent Talk: “Is Anybody out There?” 69

agents. Consumer and producer agents can reach a reciprocal understanding by
sharing concepts from their ontologies, which provide the vocabulary needed for a
wide spectrum communication. The structure and semantics of ontologies should
make it easier to share, among an agents community, the document content mean-
ing.

Web resources are accessible to agents surfing the web for performing useful
tasks such as improved search and resources discovery, information bordering and
information filtering.

A group of interacting agents could be seen as a small cooperative society re-
quiring a shared language and communication channels in order to circulate ideas,
knowledge and background assumptions: general abilities for language processing
may be considered as part of the agent knowledge; differences in formal represen-
tation may be overcome by means of transposition - conversion mechanisms.

Agents act on behalf of humans, interacting with other agents. The new
perspective of computing is re-centering on information rather than on processes,
and in examining the nature of such information more closely. It will be required
to understand what is to be represented to be used in computing, communication
and so on. As whatever be the content of the communication, it is supported by
specific linguistic expressions (surface representation and underlying structuring),
these must be covered when leaving to agents authority in searching and extracting
content in the context of document retrieval and information extraction activities.
Such a specificity is not related to a general knowledge of the language, but requires
information onto sub languages and domain related knowledge repositories.

A high level competence on language understanding is thus required as well
as the ability to abstract concepts by their lexicalizations.

While several formalisms for expressing at some extent information contents
exist, none is 1) expressive, 2) shared, 3) synthetic as the natural language. For-
mal languages, as XML, for document content representation are limited by the
lack of an universal agreement on which categories should be assumed as a shared
model and at what extent. Different domain conceptualizations are hardly com-
patible as different aspects emerging from knowledge bases strongly depend on
the application tasks they have been written for [2]. As argued in [28] “Many of
the ontologies for web objects ignore physical objects, processes, people, and their
intentions. A typical example is SHOE (Simple HTML Ontology Extensions) [17],
which has only four basic categories: String, Number, Date, and Truth. Those four
categories, which are needed to describe the syntax of web data, cannot by them-
selves describe the semantics. Strings contain characters that represent statements
that describe the world; numbers count and measure things; dates are time units
tied to the rotation of the earth; and truth is a meta language term about the
correspondence between a statement and the world. Those categories can only be
defined in terms of the world, the people in the world, and the languages peo-
ple use to talk about the world.” Linguistic communication becomes the only
solution in all situations where there is no explicit agreement among parts to co-
herently use a formal language, that is when the ontological agreement is missing.

70 Maria Teresa Pazienza and Michele Vindigni

However, the expressive power on natural language poses a number of issues in
adopting a direct approach to the interpretation of meaning. Polysemy, morpho-
logical variants and synonymy require a linguistic expertise to deal with: even if
almost natural for humans, they could seriously deceive computer systems. The
proposed communication model substantiates the respective contributions of the
different components involved in the communication process by introducing a novel
communication scheme; adopting an explicit separation between the concept level
where contents are organized and the lexical level where they are expressed by
terms in a language helps in incrementally affording the communication problem:
to encode a concept in a set of terms that will express the structural relationships
among concepts in speaker mind, to find mappings among linguistic expressions in
participant languages, to decode the linguistic information in the mind representa-
tion of the receiver. For both Information Extraction and communication purposes
two different aspects need to be tightly integrated converging in a framework in
which different autonomous systems could cooperate, while needed, for knowledge
exchange. An intelligent agent based approach could be a suitable solution: de-
finition of an agent society (to which belong members with different properties
and abilities) would perform the task of knowledge communication (exchange of
information on both a specific matter and the world) with a collective and individ-
ual gain. We based on these assumptions for defining our linguistic agents society
that proved to be successful to support knowledge exchange in a large extent
of situations ranging from an homogeneous and compatible to an only partially
overlapping world model.

References

[1] M. Q. W. Baldonado. An interactive, structure-mediated approach to exploring in-
formation in a heterogeneous, distributed environment. Ph.D. Dissertation, Stanford
University, 1997.

[2] Roberto Basili, Michele Vindigni, and Fabio Massimo Zanzotto. Integrating on-
tological and linguistic knowledge for conceptual information extraction. In Proc.
of the IEEE/WIC International Conference on Web Intelligence (WI’03), Halifax
(Canada), 2003.

[3] R. J. Bayardo, Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikr-
ishnan, A. Unruh, and D. Woelk. InfoSleuth: Agent-based semantic integration of
information in open and dynamic environments. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, volume 26,2, pages 195–206, New
York, 13–15 1997. ACM Press.

[4] S. Bergamaschi, S. Castano, S. di Vimercati, S. Montanari, and M. Vincini. An intel-
ligent approach to information integration. In Proc.s of the International Conference
on Formal Ontology in Information Systems (FOIS’98), Trento, Italy, 1998.

[5] A. Campbell, H. Chalupsky, and S. Shapiro. Ontological mediation: An analysis.
unpublished manuscript.

Agent to Agent Talk: “Is Anybody out There?” 71

[6] C. K. Chang and H. Garćıa-Molina. Conjunctive constraint mapping for data transla-
tion. In Proceedings of the Third ACM International Conference on Digital Libraries,
Pittsburgh, Pa., 1998. ACM Press, New York.

[7] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. D.
Ullman, and J. Widom. The TSIMMIS project: Integration of heterogeneous infor-
mation sources. In 16th Meeting of the Information Processing Society of Japan,
pages 7–18, Tokyo, Japan, 1994.

[8] W. W. Cohen and H. Hirsh. Learning the CLASSIC description logic: Theoretical
and experimental results. In Principles of Knowledge Representation and Reason-
ing: Proceedings of the Fourth International Conference (KR94). Morgan Kaufmann,
1994.

[9] A. Farquhar, R. Fikes, and J. Rice. The ontolingua server: A tool for collaborative
ontology construction. In Technical report, Stanford KSL 96-26, 1996.

[10] D. Fensel, S. Decker, M. Erdmann, and R. Studer. Ontobroker in a nutshell. In
European Conference on Digital Libraries, pages 663–664, 1998.

[11] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Commu-
nication Language. In N. Adam, B. Bhargava, and Y. Yesha, editors, Proceedings
of the 3rd International Conference on Information and Knowledge Management
(CIKM’94), pages 456–463, Gaithersburg, MD, USA, 1994. ACM Press.

[12] Foundation for Intelligent Physical Agents. FIPA 97 specification part 2: Agent com-
munication language, October 1997. Version 2.0.

[13] M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format, Version 3.0 Refer-
ence Manual. Technical Report Logic-92-1, Computer Science Department, Stanford
University, Stanford, CA, USA, June 1992.

[14] P. Gennari and J. Musen. Mappings for reuse in knowledge-based systems. In 11 th
Workshop on Knowledge Acquisition, Modelling and Management KAW 98, Banff,
Canada, 1998.

[15] N. Guarino and R. Poli. Formal ontology in conceptual analysis and knowledge
representation. In Special issue of the International Journal of Human and Computer
Studies, vol. 43 n. 5/6, Academic Press., 1995.

[16] R. V. Guha and Douglas B. Lenat. Enabling agents to work together. Commun.
ACM, 37(7):126–142, 1994.

[17] J. Heflin, J. Hendler, and S. Luke. SHOE: A knowledge representation language for
internet applications. Technical Report CS-TR-4078, 1999.

[18] R. Hull. Managing semantic heterogeneity in databases: a theoretical prospective. In
Proc. ACM Symposium on Principles of Databases (Invited Tutorial), pages 51–61,
1997.

[19] V. Kashyap and A. P. Sheth. Semantic and schematic similarities between data-
base objects: A context-based approach. VLDB Journal: Very Large Data Bases,
5(4):276–304, 1996.

[20] C. A. Knoblock and J. L. Ambite. Agents for information gathering. In Jeffrey M.
Bradshaw, editor, Software Agents, pages 347–374. AAAI Press / The MIT Press,
1997.

[21] W.S. Li. Knowledge gathering and matching in heterogeneous databases. In AAAI
Spring Symposium on Information Gathering, 1995.

72 Maria Teresa Pazienza and Michele Vindigni

[22] M. T. Pazienza, A. Stellato, and M. Vindigni. Purchasing the web: an agent based e-
retail system with multilingual knowledge. In Proc. of the IEEE/WIC International
Conference on Web Intelligence (WI’03), Halifax, Canada, 2003.

[23] M. T. Pazienza and M. Vindigni. Language-based agent communication. In pro-
ceedings of EKAW02, 13th International Conference on Knowledge Engineering and
Knowledge Management, OMAS Workshop on Ontologies for Multi-Agent Systems,
Siguenza, Spain, 2002.

[24] M. T. Pazienza and M. Vindigni. Agent Based Ontological Mediation in IE Sys-
tems. In Lecture Notes in Artificial Intelligence LNAI 2700, Springer Verlag, Berlin
Heidelberg, 2003.

[25] M.T. Pazienza, A. Stellato, M. Vindigni, A. Valarokos, and V. Karkaletsis. Ontol-
ogy integration in a multilingual e-retail system. In HCI International 2003, 10th
International Conference on Human-Computer Interaction, Crete (Greece), 2003.

[26] J. R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge Uni-
versity Press, Cambridge, England, 1969.

[27] John F. Sowa. Knowledge representation: logical, philosophical and computational
foundations. Brooks/Cole Publishing Co., 2000.

[28] John F. Sowa. Ontology, metadata, and semiotics. In Proceedings of the Linguistic
on Conceptual Structures, pages 55–81. Springer-Verlag, 2000.

[29] Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Ar-
tificial Intelligence. The MIT Press, Cambridge, MA, USA, 1999.

[30] G. Wiederhold and M. R. Genesereth. The conceptual basis for mediation services.
IEEE Expert, 12(5):38–47, 1997.

[31] W. Wilks. Senses and texts. In N. Ide (ed.) special issue of Computers and the
Humanities, 31(2)., 1997.

[32] M. J. Wooldridge and N. R. Jennings. Intelligent Agents - Theories, Architectures,
and Languages, volume 890 of Lecture Notes in Artificial Intelligence. Springer-
Verlag: Heidelberg, Germany, 1995.

Maria Teresa Pazienza
University of Rome “Tor Vergata”
Dept. of Computer Science, Systems and Production
Via del Politecnico 1
Rome (Italy)
e-mail: pazienza@info.uniroma2.it

Michele Vindigni
University of Brescia
Dept. of Quantitative Methods
Via C.da S.ta Chiara 15
25125 Brescia (Italy)
e-mail: vindigni@eco.unibs.it

Ontology Translation by Ontology Merging and
Automated Reasoning

Dejing Dou, Drew McDermott and Peishen Qi

Abstract. Ontology translation is one of the most difficult problems that web-
based agents must cope with. An ontology is a formal specification of a vo-
cabulary, including axioms relating its terms. Ontology translation is best
thought of in terms of ontology merging. The merge of two related ontolo-
gies is obtained by taking the union of the terms and the axioms defining
them. We add bridging axioms not only as “bridges” between terms in two re-
lated ontologies but also to make this merge into a complete new ontology for
further merging with other ontologies. Translation is implemented using an
inference engine (OntoEngine), running in either a demand-driven (backward-
chaining) or data-driven (forward chaining) mode. We illustrate our method
by describing its application in an online ontology translation system, On-
toMerge, which translates a dataset in the DAML notation to a new DAML
dataset that captures the same information, but in a different ontology. A
uniform internal representation, Web-PDDL is used for representing merged
ontologies and datasets for automated reasoning.

1. Introduction

“Semantic interoperability” is the problem of achieving communication between
two agents that work in overlapping domains, even if they use different notations
and vocabularies to describe them. We follow common practice in using the word
ontology as a formal specification of a vocabulary, including axioms relating its
terms. Ontology translation is a key element of the semantic-operability problem;
we define it as the problem of translating datasets, queries, or theories expressed
using one ontology into the vocabulary supported by another. As web-based agents
rely more and more on logical notations for communication and reasoning, the
problem of ontology translation will become more important. In this paper, we
argue that the problem can be thought of as a deduction task, which can be solved

This research was supported by the DARPA/DAML program.

74 Dejing Dou, Drew McDermott and Peishen Qi

by relatively straightforward theorem-proving techniques. However, the deduction
must make use of axioms supplied by human experts. We are developing tools for
making it easier for experts to create these axioms, but, for the foreseeable future,
there is no way to eliminate humans from the loop entirely.

Previous work on ontology translation has made use of two strategies. One is
to translate a dataset (i.e., a collection of facts) to a vocabulary associated with one
big, centralized ontology that serves as an interlingua. Ontolingua [29] is a typical
example of this strategy. The problem with this idea is its assumption that there
can be a global ontology covering all existing ontologies. Creating such a thing
would require agreement among all ontology experts to write translators between
their own ontologies and the global one. Even if in principle such harmony can be
attained, in practice keeping all ontologies — including the new ones that come
along every day — consistent with the One True Theory would be very difficult.
If someone creates a simple, lightweight ontology for a particular domain, he may
be interested in translating it to neighboring domains, but can’t be bothered to
think about how it fits into a grand unified theory of knowledge representation.

The other strategy is to do ontology translation directly from a dataset in
a (source) ontology to a dataset in another (target) ontology, on a dataset-by-
dataset basis, without the use of any kind of interlingua. OntoMorph [23] is a
typical example of this strategy. XSLT, the XML Style Language Transformations
system [27], is often used to write such translators. For practical purposes this
sort of program can be very useful, but it tends to rely on special properties of
the datasets to be translated, and doesn’t address the question of producing a
general-purpose translator that handles any dataset in a given notation.

In this paper we present the theory and algorithms underlying our online
ontology translation system, OntoMerge, which is based on a new approach to
the translation problem: ontology translation by ontology merging and automated
reasoning. The merge of two related ontologies is obtained by taking the union of
the terms and the axioms defining them, using XML namespaces to avoid name
clashes. We then add bridging axioms that relate the terms in one ontology to
the terms in the other through the terms in the merge. We develop one merged
ontology not only as a “bridge” between two related ontologies but also as a new
ontology for further merging with other ontologies in the ontology community.

Although ontology merging requires ontology experts’ intervention and main-
tenance, automated reasoning by an inference engine (OntoEngine) can be con-
ducted in the merged ontology in either a demand-driven mode (backward-chaining)
or a data-driven (forward chaining) mode.

This paper is organized as follows: Section 2 gives a detailed description of
our approach to ontology translation, with the focus on forward chaining. Section 3
presents OntoMerge, an online ontology translation service and its application to
a real-world translation problem. Section 4 describes our recent work on backward
chaining and on semiautomatic merging tools for generating the bridging axioms.
Section 6 concludes the paper.

Ontology Translation by Ontology Merging and Automated Reasoning 75

2. Our Approach

2.1. Uniform Internal Representation

As we have pointed out, past work in the area of ontology translation has usually
mixed up syntactic translation and semantic translation. We think it is more en-
lightening to separate the two. If all ontologies and datasets can be expressed in
terms of some uniform internal representation, we can focus on semantic opera-
tions involving this representation, and handle syntax by translating into and out
of it. Although the users don’t need to know the details of this internal represen-
tation, getting them right is important to make our program work. For web-based
agents, the representation should contain the following elements:

1. A set of XML namespaces
2. A set of types related to namespaces.
3. A set of symbols, each with a namespace and a type.
4. A set of axioms involving the symbols.

Our language, called “Web-PDDL,” is the AI plan-domain definition language
PDDL augmented with XML namespaces and more flexible notations for ax-
ioms [38]. Like the original PDDL [36], Web-PDDL uses Lisp-like syntax and is a
strongly typed first-order logic language. Here is an example, part of a bibliography
ontology [6] written in Web-PDDL.
(define (domain yale_bib-ont)

(:extends
(uri "http://www.w3.org/2000/01/rdf-schema#"

:prefix rdfs))
(:requirement :existential-preconditions

:conditional-effects)
(:types Publication - Obj

Article Book Techreport Incollection
Inproceedings - Publication
Literal - @rdfs:Literal)

(:predicates (author p - Publication a - Literal)
.....

The DAML version of this ontology is at
http://www.daml.org/ontologies/81.

Assertions using this ontology are written in the usual Lisp style: (author
pub20 "Tom Jefferson"), for instance. Quantifiers and other reserved words use
a similar parenthesized syntax.

We write types starting with capital letters. A constant or variable is declared
to be of a type T by writing “x - T .” To make the namespace extensions work, we
have broadened the syntax for expressing how one ontology (“domain”) extends
another. In the original PDDL, there was no specification of how domain names
were associated with domain definitions. On the web, the natural way to make
the association is to associate domains with URIs, so we replace simple domain

76 Dejing Dou, Drew McDermott and Peishen Qi

names with uri expressions, which include a :prefix specification similar to XML
namespace prefixes. With this new feature, we can add @prefix: to each term in a
Web-PDDL file to declare its namespace (ontology); for instance, @rdfs:Literal
means a type from the rdfs namespace. Symbols without a prefix come from the
local namespace.

Types can be thought of as sets, but they are not first-class terms in the
language. Types are associated with expressions as well as with objects, so that
when a domain definition is loaded into memory the Web-PDDL system can check
whether an expression’s type is incompatible with its syntactic context. Catch-
ing such type errors early makes debugging knowledge bases much easier. Types
cannot in general be identified with “classes” as that term is used in Owl and
other description logics [19]. For one thing, to make type checking feasible, the
sets denoted by two types must be disjoint unless one is a subtype of the other.
Nonetheless, in this paper we assume that classes and types are equivalent, leaving
until a later date the issue of when classes must be treated as unary predicates
instead of types.

It is sometimes useful to state that an object x has type T , where T is a
subtype of the type it was declared with. For this purpose one can use the pseudo-
predicate is, writing (is T x).

If someone wants to use our system with an external representation other
than Web-PDDL, there must exist a translator between the two. We have provided
such a translator, which we call PDDOWL1 [12], for translating between Web-
PDDL and DAML. Writing translators for other XML-based web languages would
not be difficult. In the following sections, we will use Web-PDDL to describe
our work on ontology merging and automated reasoning, and ignore the external
representation.

2.2. Ontology Merging and Bridging Axioms

Once we have cleared away the syntactic differences, the ontology translation prob-
lem is just semantic translation from the internal representation of a dataset in the
source ontology to the internal representation of a dataset in the target ontology.
For the rest of this paper, we will use two alternative bibliography ontologies as
a running example. These were developed as contributions to the DAML Ontol-
ogy Library, and while they are both obviously derived from Bibtex terminology,
different design decisions were made by the people who derived them. One was
developed at Yale, and we have given it the prefix yale bib [4]; the other was
developed at CMU, and it gets the prefix cmu bib [5]. Although neither of them
is a realistically complex ontology, the semantic differences that arise among cor-
responding types, predicates and axioms in these two ontologies serve as good
illustrations of what happens with larger examples.

For example, both ontologies have a type called Article, but @cmu bib:Art-
icle and @yale bib:Article mean two different things. In the yale bib ontology,

1Formerly called PDDAML

Ontology Translation by Ontology Merging and Automated Reasoning 77

Article is a type which is disjoint with other types such as Inproceedings and
Incollection. Therefore, @yale bib:Article only means those articles which
were published in a journal. By contrast, @cmu bib:Article includes all articles
which were published in a journal, proceedings or collection.

Another example: both of these ontologies have a predicate called booktitle.
In the cmu bib ontology, (booktitle ?b - Book ?bs - String) means that ?b
is a Book and it has title ?bs as String. In the yale bib ontology, (booktitle ?p -
Publication ?pl - Literal) means ?p is an Inproceedings or an
Incollection, and ?pl is the title of the proceedings or collection which con-
tains ?p.

Here is how these distinctions would come up in the context of an ontology-
translation problem. Suppose the source dataset uses the yale bib ontology, and
includes this fragment:

(:objects ... Jefferson76 - Inproceedings)
...
(:facts ... (booktitle Jefferson76

"Proc. Cont. Cong. 1") ...)

The translated dataset in the cmu bib ontology would then have to include
this:

(:objects ... Jefferson76 - Article
proc301 - Proceedings)

...
(facts ... (inProceedings Jefferson76 proc301)

(booktitle proc301 "Proc. Cont. Cong. 1")
...)

Note that we have had to introduce a new constant, proc301, to designate the
proceedings that Jefferson76 appears in. Such skolem terms [41] are necessary
whenever the translation requires talking about an object that can’t be identified
with any existing object.

It is tempting to think of the translation problem as a problem of rewriting
formulas from one vocabulary to another. The simplest version of this approach is
to use forward-chaining rewrite rules. A more sophisticated version is to use lifting
axioms [22], axioms of the form (if p q), where p is expressed entirely in the
source ontology and q entirely in the target ontology. Such an axiom could be used
in either a forward or backward (demand-driven) way, but the key improvement is
that the axiom is a statement that is true or false (hopefully true), not an ad-hoc
rule. This is essentially the idea we will use, except that we do away with any
restrictions on the form or the vocabulary of the rules, and we adopt the term
“bridging axiom” for them. A bridging axiom is then any axiom at all that relates
the terms of two or more ontologies. By looking for such axioms, we separate the
problem of relating two vocabularies from the problem of translating a particular
dataset. This makes dataset translation a slightly more difficult problem, but the
flexibility and robustness we gain are well worth it.

78 Dejing Dou, Drew McDermott and Peishen Qi

Another antecedent of our research is the work on data integration by the
database community. For a useful survey see [31]. The work closest to ours is that
of [33], who use the term “helper model” to mean approximately what we mean
by “merged ontology.” One difference is that in their framework the bridging rules
are thought of as metarules that link pairs of data sources, whereas we embed the
rules in the merged ontology. However, the greatest difference is that for data-
bases the key concerns are that inter-schema translations preserve soundness and
completeness. In the context of the Semantic Web, while soundness is important,
it is not clear even what completeness would mean. So we have adopted a more
empirical approach, without trying to assure that all possible useful inferences are
drawn. Because it is entirely possible that an ontology could introduce undecidable
inference problems, it’s not clear how we could do better than that.

Bridging axioms use vocabulary items from both the source and target on-
tologies, and in fact may make use of new symbols. We have to put these symbols
somewhere, so we introduce the concept of the merged ontology for a set of com-
ponent ontologies , defined as a new ontology that contains all the symbols of the
components, plus whatever new ones are needed. (Namespaces ensure that the
symbols don’t get mixed up.)

We can now think of dataset translation this way: Take the dataset and
treat it as being in the merged ontology covering the source and target. Draw
conclusions from it. The bridging axioms make it possible to draw conclusions
from premises some of which come from the source and some from the target, or to
draw target-vocabulary conclusions from source-language premises, or vice versa.
The inference process stops with conclusions whose symbols come entirely from
the target vocabulary; we call these target conclusions. Other conclusions are used
for further inference. In the end, only the target conclusions are retained; we call
this projecting the conclusions into the target ontology. In some cases, backward
chaining would be more economical than the forward-chain/project process, as
we discuss in Section 4. In either case, the idea is to push inferences through the
pattern

source ⇔ merge ⇔ target.

Getting back to our example of merging the yale bib and cmu bib ontologies,
we suppose we are using a merged ontology with prefix cyb merge. When one
term (type or predicate) in the yale bib ontology has no semantic difference with
another term in the cmu bib ontology, we just use a new term with the same
meaning as the old ones, then add bridging axioms to express that these three
terms are the same. It happens that (as far as we can tell), @cmu bib:Book is the
same type as @yale bib:Book, so we can introduce a type Book in the cyb merge
ontology, and define it to mean the same as the other two. Because types are not
objects, we cannot write an axiom such as (= Book @cmu bib:Book). (A term
with no namespace prefix should be assumed to live in the merged ontology.) So
we have to use a pseudo-predicate (or, perhaps, “meta-predicate”) T-> and write
rules of the sort shown below. We call these type-translation rules:

Ontology Translation by Ontology Merging and Automated Reasoning 79

(axioms:
(T-> @cmu_bib:Book Book)
(T-> @yale_bib:Book Book)
...)

The general form of a type-translation rule is
(T-> type1 type2 [P])

which means “type1 is equivalent to type2, except that objects of type1 satisfy
property P.” We call P the distinguisher of type1 and type2. If P is omitted,
it defaults to true. For instance, suppose ontologies ont-A and ont-B both use
the type Animal, but ont-A uses it to mean “terrestrial animal.” Then the type-
translation rule would be

(T-> @ont-A:Animal @ont-B:Animal (terrestrial x))

All other axioms can be stated in ordinary first-order logic. Consider the
predicate title, declared as (title ?p - Publication ?t - String) in both the
yale bib and cmu bib ontologies. We just reuse the same symbol in our cyb merge
ontology. The corresponding bridging axioms become:

(forall (?p - Publication ?ts - String)
(iff (@cmu_bib:title ?p ?ts)

(title ?p ?ts)))

(forall (?p - Publication ?ts - String)
(iff (@yale_bib:title ?p ?ts)

(title ?p ?ts)))

When one term (type or predicate) in the yale bib ontology has a semantic
difference from the related term in the cmu bib ontology, the bridging axioms be-
come more substantial. Sometimes the axioms reflect our decision that one of the
component ontologies gets a concept closer to “right” than the other. In our exam-
ple, we might decide that cmu bib has a better notion of Article (a type). Then
we add bridge axioms for Article, @cmu bib:Article, and @yale bib:Article:

(T-> @yale_bib:Article Article
(exists (?j - Journal ?s - Issue)

(and (issue ?s ?j)
(contains ?s x))))

The bridging axioms above mean the following: in the cyb merge ontology,
Article is the same type as @cmu bib:Article, which we prefer. But it is a
@yale bib:Article if and only if it is contained in some Journal.

We also add bridge axioms for booktitle, for which we decide that yale bib’s
predicate makes more sense. The axioms relate @cmu bib:booktitle, @yale bib:
booktitle, and our new predicate thus:

(forall (?a - Article ?tl - String)
(iff (@yale_bib:booktitle ?a ?tl)

(booktitle ?a ?tl)))

80 Dejing Dou, Drew McDermott and Peishen Qi

(forall (?a - Article ?tl - String)
(iff (booktitle ?a ?tl)

(exists (?b - Book)
(and (contains ?b ?a)

(@cmu_bib:booktitle
?b ?tl)))))

We make booktitle in the merged ontology be the same predicate as @yale-
bib:booktitle, and then declare that, if and only if ?a is an Article with
booktitle ?tl, there exists some Book ?b such that ?b contains ?a and ?b has
@cmu:booktitle ?tl.

The full version of the merge of the cmu bib and yale bib ontologies can be
found at [8].

Given the merged ontology, any term in either component ontology can
be mapped into a term or terms in the cyb merge ontology, some terms in
cyb merge can be projected back into terms in cmu bib and some into terms
in yale bib. When some datasets represented in the yale bib ontology need to
be translated into the datasets represented in the cmu bib ontology, an automated
reasoning system, such as a theorem prover, can do inference by using those bridg-
ing axioms to implement translation, as we explained above. We will explore the
forward-chaining option in depth in the next section.

We should mention one additional advantage of merged ontologies compared
to direct translation rules between two related ontologies. The merged ontology
serves not only as a “bridge” between the two given related ontologies, but also
as a new ontology for further merging. If foo1 bib, foo2 bib, foo3 bib . . . come
out, we can use cyb merge as a starting point for building a merged ontology that
covers them all, or we may prefer a more incremental strategy where we merge
foo1 bib and foo2 bib, creating, say “foo 1 2 merge,” which would be used for
translating between these two, then merge it with cyb merge if and when a need
arises for translations involving components of both merged ontologies. Exactly
how many merged ontologies one needs, and how to select the right one given
a new translation problem, are open research questions. But the point to make
here is that the number of merged ontologies one needs is unlikely to be as large
as the number of rewrite-rule sets one would need under the direct-translation
approach. If there are N ontologies that need to be translated into each other, the
direct-translation approach requires N(N − 1) rule sets (assuming for simplicity
that all pairwise combinations occur), which could be cut to N(N − 1)/2 if the
rules are bidirectional. Our approach requires on the order of N merged ontologies.
Of course, the exact amount of work saved depends on the sizes of the overlaps
among the component ontologies, and how these sizes change as they are merged,
both of which are hard to predict.

Ontology Translation by Ontology Merging and Automated Reasoning 81

2.3. Automated Reasoning

It is common assumed that theorem proving will always lead to combinatorial
explosions. The desire to avoid it has led researchers to develop web languages,
such as RDF and DAML, that look more like description logics [19] and not so
much like predicate calculus, putting up with the awkwardness of description logics
in hopes of reaping some benefit from their tractable computational properties.
We reverse that decision by translating DAML back into predicate calculus and
doing old-fashioned theorem proving on the resulting internal representation. Our
rationale is that, based on the examples we have looked at, we are inclined to
think most of the theorem-proving problems that arise during ontology translation,
while not quite within the range of Datalog [44, 45], are not that difficult [37]. Our
inference engine, called OntoEngine, is a special-purpose theorem prover optimized
for these sorts of problems. When some dataset in one or several source ontologies
are input, OntoEngine can do inference in the merged ontology, projecting the
resulting conclusions into one or several target ontologies automatically.

A key component of OntoEngine is the indexing structure that allows it to
find formulas to be used in inference. Figure 1 shows what this structure looks like.
As ontologies and datasets are loaded into OntoEngine, their contents are stored
into this structure, as are the results of inferences.

We use a combination of tree-based and table-based indexing. At the top level
we discriminate on the basis of namespace prefixes. For each namespace, there is
an ontology node. The facts stored in an ontology node are next discriminated by
predicate. The resulting Predicate nodes are then discriminated into five categories:

1. Predicate declarations
2. Positive literals (atomic formulas)
3. Negative literals (negated atomic formulas)
4. Implications with the predicate in the premise
5. Implications with the predicate in the conclusion

Predicate declarations are expressions such as (title ?p - Publication ?tl
- String). Positive literals and negative literals are facts such as (title b1
"Robo Sapiens") and (not (title b1 "John Nash")).

All other formulas from bridging axioms except type translation rules are
expressed as implications in INF (Implicative Normal Form):

P1 ∧ · · · ∧ Pj · · · ∧ Pn ⇒ Q1 ∧ · · · ∧Qk ∧ · · · ∧Qm

82 Dejing Dou, Drew McDermott and Peishen Qi

Prefix?

Ontology node: “yale bib”

“cyb merge”

“cmu bib”

����������

�
�

�
��� �

�
�

�
���

���������	
Predicate?

Predicate node: “author” “title” “year”

� �

�
�

�

�������

��������������������������

������� �

�������

�������������
Positive facts Negative facts Definition Premise Conclusion
(title b1

“Robo Sapiens”)

· · ·
· · ·

(not (title b1

“John Nash”))

· · ·
· · ·

title ?p

- Publiction
?ts - String

(title ?p ?ts)
⇒
(@cmu bib:title

?p ?ts)

· · ·
· · ·

(@yale bib:title

?p ?tl)
⇒
(title ?p ?tl)

· · ·
· · ·

Figure 1. Indexing Structure for OntoEngine

where each Pi and Qj is an atomic formula.2 We use the word clause as a synonym
for implication. The conjunction of P ’s we call the premise of the clause; the
conjunction of Qs we call the conclusion.

In the indexing structure, the fourth and fifth categories are implications in
which the predicate in question occurs in the premise or conclusion, respectively.
(Of course, it could occur in both, in which case the formula would be indexed
into both categories.)

So far, we have implemented a forward-chaining inference algorithm using the
indexing structure of figure 1. The algorithm is shown in figure 2. In the procedure
Forwardchaining, the phrase “best clause” needs some explanation. Theoretically,
since we are drawing all possible inferences, it doesn’t matter in what order we
draw them. However, in our current version of the algorithm there are cases where
doing the inferences in the wrong order would result in incompleteness. If clause
1 is

P1 ⇒ Q1 ∧Q2

and clause 2 is
P2 ∧Q2 ⇒ Q3

then our algorithm will fail to conclude Q3 from P1 and P2 unless clause 1 runs
first, because Q2 has to be present for clause 2 to conclude Q3. To compensate,

2An INF formula is equivalent to a set of one or more Horn clauses. A Horn clause is a disjunc-
tion of literals containing at most one positive literal [41]. Not all axioms can be expressed as
Horn clauses, obviously, but it has been our empirical observation that bridging axioms mapping
formulas to disjunctions “do not occur in nature.” To some extent, this is because existing ontolo-
gies are written using relatively inexpressive languages, which leaves us in a slightly embarrassing
position: If our advice that more expressive languages be used for ontologies is followed, then our
current technique for doing ontology translation may turn out to be too weak.

Ontology Translation by Ontology Merging and Automated Reasoning 83

we use a heuristic to try to ensure that we get as many conclusions as possible as
early as possible. The heuristic is to choose the “best clause,” defined as a weighted
average:

W1 × size of conclusion−W2 × size of premise

The design of OntoEngine profitted from our study of KSL’s JTP (Java
Theorem Prover [10]). In the end we decided not to use JTP, but to develop
our own prover, because JTP didn’t contain some of the mechanisms we needed,
especially type-constrained unification, while at the same time being oriented too
strongly toward the traditional theorem-proving task.

3. Application: OntoMerge

We have embedded our deductive engine in an online ontology translation service
called OntoMerge [11]. In addition to OntoEngine, OntoMerge uses PDDOWL [12]
to translate into and out of the knowledge-representation language OWL [3]. On-
toMerge serves as a semi-automated nexus for agents and humans to find ways of
coping with notational differences, both syntactic and semantic, between ontolo-
gies. It accepts a dataset as a DAML file in the source ontology, and will respond
with the dataset represented in the target ontology, also as a DAML file.

When receiving a DAML file, OntoMerge calls PDDOWL to translate it into
a translation problem expressed as a Web-PDDL file which is input to online
version of OntoEngine. To do anything useful, OntoEngine needs to retrieve a
merged ontology from its library that covers the source and target ontologies.
Such an ontology must be generated by human experts, and if no one has thought
about this particular source/target pair, before, all OntoEngine can do is record the
need for a new merger. (If enough such requests come in, the ontology experts may
wake up and get to work.) Assuming a merged ontology exists, located typically at
some URL, OntoEngine tries to load it in. If it is written in DAML or other Web
language, OntoEngine first calls PDDOWL to translate it to Web-PDDL file, then
loads it in. Finally, OntoEngine loads the dataset which needs to be translated
in and processes those facts one by one until all possible inferences have been
generated. To get a final output file in DAML, OntoMerge calls PDDOWL again
to translate back to DAML the projection of the Web-PDDL dataset to the target
vocabulary.

OntoMerge has worked well so far, although our experience is inevitably
limited by the demand for our services. In addition to the toy example from
the dataset in the yale bib ontology to the dataset in the cmu bib ontology,
we have also run it to translate a dataset with more than 2300 facts about mil-
itary information of Afghanistan using more than 10 ontologies into a dataset
in the map ontology [15]. About 900 facts are related to the geographic features
of Afghanistan in the geonames ontology [13] and its airports in the airport
ontology [14]. We have merged the geonames ontology and the airport ontol-
ogy with the map ontology. After OntoEngine loads the two merged ontologies

84 Dejing Dou, Drew McDermott and Peishen Qi

Procedure Process(facts)
For each oneFact in facts Do

Forwardchaining(oneFact)

Procedure Forwardchaining(fact)
For each INF clause from corresponding Premise table in best-first order

newFacts = Modus Ponens(fact, clause)
For each newFact in newFacts Do Forwardchaining(newFact)

Function Modus Ponens(fact, clause) returns facts
facts= empty set
oneAtf = the corresponding AtomicFormula for fact in left-side of clause
restAtfs = the remaining AtomicFormulas in left-side of clause
substi = Unify(oneAtf, fact)
If substi is not empty Then substitutions = Conj match(substi, restAtfs)
If substitutions is not empty
Then newFacts = substituting right-side of clause with substitutions
For each newFact in newFacts Do

If newFact belongs to target ontology Then store it
Else add it into facts which will be returned for further inference

Return facts

Function Conj match(substi, Atfs) return substitutions
substitutions = substi
If Atfs is empty Then return substitutions
Get newAtfs by substituting Atfs with substi
facts = the corresponding facts for FIRST (newAtfs)
For each oneFact in facts do

oneSubsti = Unify(FIRST(newAtfs), oneFact)
If oneSubsti is not empty
Then oneSubstis = Conj match(oneSubsti, REST(newAtfs))

add oneSubstis into substis
If substis is not empty Then add substis into substitutions
Else substitutions = empty set
Return substitutions

Figure 2. The forward-chaining algorithm

Ontology Translation by Ontology Merging and Automated Reasoning 85

Function Unify(oneAtf, fact) return substitutions
For each variable from oneAtf and its corresponding constant from fact Do

If Typecheck(variable, constant)
Then add {variable/constant} to substitutions

Return substitutions

Function Typecheck(variable, constant) return boolean
match = false
If variable’s type is same as or the super type of constant’s type
Then match = true
Else

typeCons = type of constant
fact = (is typeCons constant)
Forwardchaining(fact)
If exist var, (is typeCons var) is the only premise of some clause and

variable’s type is same as or the super type of var’s type
Then match = true

Return match

Figure 3. The forward-chaining algorithm (cont’d)

in, it can accept all 2300 facts and translate those 900 facts in the geonames
and airport ontologies into about 450 facts in the map ontology in 5 seconds
3. For each @geonames:Feature or each @airport:Airport, the bridging axioms
in the merged ontologies will be used for inference to create a pair of skolem
terms with types @map:Point and @map:Location in the fact like (@map:location
Location01 Point02). The values of the @geonames:longitude (@airport:long-
itude) property and the @geonames:latitude (@airport:latitude) property for
each @geonames:Feature (@airport:Airport) can be translated into the values
of the @map:longitude property and the @map:latitude property for the corre-
sponding @map:Location. The value of the @airport:icaoCode property for each
@airport:Airport and the value of @geonames:uniqueIdentifier property for
each @geonames:Feature can be translated into the values of @map:label prop-
erty for the corresponding @map:Point. The reason that the translated dataset
only has 450 facts is some facts in the geonames and airport ontologies can’t be
translated to any term in the the map ontology.

3After the submission of the original paper to EKAW02 OMAS workshop, we have improved
the performance of OntoEngine. This performance is an order of magnitude better than that
originally reported.

86 Dejing Dou, Drew McDermott and Peishen Qi

Prospective users should check out the OntoMerge website4. The website
is designed to solicit descriptions of ontology-translation problems, even when
OntoMerge can’t solve them. However, we believe that in most cases we can develop
a merged ontology within days that will translate any dataset from one of the
ontologies in the merged set to another.

4. Recent Work

4.1. Backward Chaining

Although so far forward-chaining deduction has been sufficient for our needs, we
recognize that backward chaining is also necessary. For example, suppose one agent
has a query:
(and (father Fred ?x) (travel ?x ?y) (desti ?y "SF"))

which means “Did Fred’s father travel to South Florida?” This query could be
answered by another agent with its datasets in another ontology, which may have
different meanings for travel or desti. In this case, the ontology-translation
problem becomes the problem of answering the query in the target ontology with
the datasets in the source ontology.

In addition, backward chaining may be necessary in the middle of forward
chaining. For example, when OntoEngine is unifying the fact (P c1) with (P ?x)
in the axiom:

(P ?x) ∧ (member ?x [c1, c2, c3])⇒ (Q ?x)
it can’t conclude (Q c1) unless it can verify that c1 is a member of the list [c1,
c2, c3], and the only way to implement this deduction is by doing backward
chaining.

We have embedded a backward-chaining reasoner into OntoEngine for query-
ing through different ontologies. We have given a detailed example in [25] of reason-
ing using two different genealogy ontologies, one developed by Dynamics Research
Corporation (DRC) [17] and one developed by BBN technologies [16]. The dataset
is a set of several hundred facts expressed in the BBN genealogy; a typical query
is “Who was the queen of Henry VI and what is date of their marriage?,” and is
expressed in the DRC genealogy,

A full treatment of backward chaining across ontologies would raise the issue
of query optimization, which we have not focused on yet. There is a lot of work in
this area, and we will cite just two references: [28, 18]. We intend to focus more
on overcoming complicated semantic differences when querying through different
ontologies.

4.2. Semiautomatic Tools for Ontology Merging

Our merging of two related ontologies is obtained by taking the union of the terms
and the axioms defining them. We then add bridging axioms that relate the terms
in one ontology to the terms in the other through the terms in the merge.

4http://cs-www.cs.yale.edu/homes/dvm/daml/ontology-translation.html

Ontology Translation by Ontology Merging and Automated Reasoning 87

Semi-Automatic tools for generating bridging axioms. To generate these bridging
axioms, we must first find out the correspondence between the concepts of two on-
tologies, which is the target of ontology mapping. In many cases, only humans can
understand the complicated relationships that can hold between the mapped con-
cepts. Generating these axioms must involve participation from humans, especially
domain experts. You can’t write bridging axioms between two medical-informatics
ontologies without help from biologists.

The generation of an axiom will often be an interactive process. Domain
experts keep on editing the axiom till they are satisfied with the relation expressed
by it. Unfortunately, domain experts are usually not very good at the formal logic
syntax that we use for the axioms. It is necessary for the axiom-generating tool to
hide the logic behind the scenes whenever possible. Then domain experts can check
and revise the axioms using the formalism they are familiar with, or even using
natural-language expressions. So instead of seeing a logical fact representation such
as

(booktitle Jefferson76 "Proc. Cont. Cong. 1")

they will see a sentence like: “The title of the book containing Jefferson76 is ’Proc.
Cont. Cong. 1’,” assuming that there is a natural-language template associated
with the predicate booktitle:
(booktitle ?pub - Publication ?lit - String) =>

("the title of the book containing "
(:np "publication" ?pub)
"is " not?
(:select ((is-var ?lit) => ("the string " ?lit))

(=> "’" ?lit "’"))))

in which :np starts a noun phrase and (is-var ?var) checks whether ?var is
bound to a variable or a non-variable. The elements in the template are delimited
by whitespace and parenthesis. The whole NL expression is the concatenation of
the strings generated from each elements. It is not hard for domain experts to
produce this kind of template for the predicates in their domain. The depth of the
coverage is up to them. Any symbols without templates will be processed using
default phrases.

We have developed a semi-automatic mapping tool and a template-based
natural language generator, and embedded them into our axiom-generating system.
Domain experts now can generate the INF format bridging axioms as specified in
Section 2.3.

The following example shows how we generate the bridging axioms between
the two booktitle predicates in the bibliography ontologies. The mapping tool
can easily suggest a mapping between these two properties because they share the
same name. Domain experts are aware that the semantic meaning of yale bib’s
booktitle conforms to that of BibTex, and prefer it be copied into the merged
ontology directly. However they also know that the semantic meaning of cmu bib’s
booktitle is not quite the same. The suggested mapping can be corrected by

88 Dejing Dou, Drew McDermott and Peishen Qi

adding another predicate inProceedings (or inCollection) to the cmu bib side,
along with appropriate NL templates. Then the domain experts can fill in the
underlined slots with exemplar instances in the following two groups of natural
language expressions, and try to make the whole expression denote the correct
meaning.

“the title of the book containing
a publication is the string ?lit”

←− @yale bib:booktitle

implies

“the title of a publication (a book) is
the string ?lit”

←− @cmu bib:booktitle

(and | or | implies | implied by)
‘a publication appears in
the Proceedings ?proc”

←− @cmu bib:inProceedings

An acceptable fill-in might be:

“the title of the book containing Jefferson76 is the string
‘Proc. Cont. Cong. 1’”

implies

“the title of Proc11 (a book) is the string ‘Proc. Cont. Cong. 1’”
and

“Jefferson76 appears in Proc11”

Our axiom-generation system then tries to derive the axiom by generalization.
It is not always simply a matter of replacing all the constants with variables and
slapping universal quantifiers over them. In the example above, Proc11 shows up
only on the right-hand side of the implication. It’s possible that “Proc11” is a
special constant that is part of the meaning of “booktitle.” (The translation of
(chinese Lao) in one ontology might be (citizen Lao china). This indicates
that the translation of (chinese ?x) is (citizen ?x china), because china is a
special constant that is part of the translation of chinese.) But in fact in deriving
the proper axiom for translating booktitle, “Proc11” should be turned into an
existential variable. Such choices must be made by the human users.

Consistency checking of the generated axioms will also alleviate the bur-
dens on domain experts. For instance, in the final correct axiom, the type of
the variable which takes the place of Jefferson76 should be narrowed down to
@yale bib:InProceedings from the much broader concept Publication, other-
wise inconsistency would come up because the cmu bib:inProceedings predicate
won’t hold for a yale bib:InCollection.

Ontology Translation by Ontology Merging and Automated Reasoning 89

5. Related work

Lots of research has been done on ontology mapping, including implemented sys-
tems named CUPID [34], GLUE [24] and CTX-Match [42]. Some existing sys-
tems do not recognize an explicit boundary between ontology mapping and ontol-
ogy merging; these include Chimaera [39], PROMPT [40], FCA-Merge [43], and
MOMIS [21]. The matching algorithms they used can be divided into two ways:
ontology-based and instance-based. Instance-based approaches mainly exploit ma-
chine learning techniques to uncover the sematic relations among the concepts.
Examples include GLUE and FCA-Merge. However, the situation we met in our
ontology translation problem is that usually we just have two ontologies and data
available in only one of them. Ontology-based approaches should be more applica-
ble to such situations. Three levels of knowledge are utilized in locating the map-
pings: syntactic, structural and semantic matching. Syntactic matching focuses
on the name similarity between nodes’ labels, as in CUPID. Structural match-
ing analysis the neighborhood of ontology nodes, as in PROMPT and Chimaera.
Semantic matching tries to find the mapping between meanings of the concepts.
Additional knowledge information like a pre-compiled thesaurus or WordNet [26]
are usually used to find semantic mappings, as in CTX-Match.

However, most of the mapping tools can only find mappings with “subclas-
sOf”, “subpropertyOf” or “equivalent” relationships. The reason why it is hard to
do anything better is that most current ontologies contain more types (i.e., classes)
and predicates than axioms which relate these types and predicates. Many ontolo-
gies contain no axioms at all, even when it is obvious that their designers know
more about the domain than subclass relationships. We expect that as ontology
designers become more sophisticated, they will want, nay, will demand, the ability
to include more axioms in what they design. Axiom-driven matching tools will go
beyond those simple relationships, and try to find matches between ontologies that
preserve the truth of the axioms on either side. For example, the two booktitle
predicates in the yale bib and cmu bib bibliography ontologies share the same
name, but any attempt to view one of them as a subproperty of the other will
cause the axioms involving them to become untranslatable.

Ontology-mapping tools typically return a list of pairs of concepts, one from
each source ontology.. The merging tools do return the merged ontology, but most
of them consider merging only classes. All the properties in the original ontologies
are copied into the merged one, unless they mean exactly the same thing. So a
dataset in the source ontology can be transferred to the merged ontology, but still
not in a form understandable by an agent using the target ontology. To solve the
ontology-translation problem, we need a merged ontology in which the mappings
are expressed as a set of bridging axioms which explain how those concepts in the
original ontologies are related.

An approach similar to ours is presented in [35]; their MAFRA framework
uses a semantic bridging ontology (SBO) to encode the mappings. An instance
of SBO contains axiomatic rules that transform instances of a source entity to

90 Dejing Dou, Drew McDermott and Peishen Qi

instances of target entity. This is not quite as general as our axioms, but in practice
the difference is probably of little importance.

We should also compare our system with other programs for doing inference,
rule-based or otherwise. There are by now an abundance of rule languages for
manipulating RDF. Any query system can be made into a rule system by providing
a notation for attaching an action to a query, such that the action is performed for
each instance of the query retrieved, and by now there are dozens of query systems
for RDF. (A good survey is [30].) Many of these systems could be adapted to suit
our purposes. Indeed, OntoMerge incorporates some infrastructure code from the
open-source Jena RDF-inference toolkit [9], and we could no doubt improve the
performance of OntoMerge by borrowing further optimization techniques from
other sources. However, no pre-existing inference engine did everything we needed
our engine to do. In particular, most rule-based inference software does not do
equality substitution, nor are existing packages sensitive to the goal of drawing
inferences in a target ontology. Including these facilities means tinkering with the
innards of an inference engine; it would be impossible or extremely awkward to
use someone else’s inference system as a black box whose output we filter.

The dominant pattern for inference on the semantic web involves description-
logic notations such as OWL [19, 3]. There are several efficient inference systems
available for such logics [32], many of which have been equipped with front ends
for RDF. The term description logic (DL) covers a family of subsets of first-order
logic with the following features:
• All predicates are unary or binary. Unary predicates are called classes, and

binary predicates are called roles. The name “class” is used for unary predi-
cates because it is often thought of as the set of all entities the predicate is
true of.

• Class terms can be created by set-theoretic operations on existing classes,
plus the use of restrictions such as ∃role.class, which is the class of objects
x such that there is a y such that class(y) and role(x, y). E.g.,

(Person �∃ has-child.Female)(Fred)

asserts that Fred is a person who has a female child.
• Role terms can be created (in some DLs) by taking inverses (·−1) and com-

positions of roles.
• Some DLs extend the basic framework by allowing axioms asserting that one

class is a subset of or equal to another. Some allow classes to be recursively
defined.

• The standard reasoning tasks performed by DL systems include
– classification: determining whether an individual belongs to a class.
– subsumption: determining whether one class is a subset of another.

One reason DLs have attracted a lot of attention is that for many of them
the classification and subsumption tests are decidable. Variations in the expres-
siveness correspond to variations in computational complexity. However, DLs can’t
approach the expressiveness of first-order logic without giving up decidability and

Ontology Translation by Ontology Merging and Automated Reasoning 91

all those complexity analyses. The question, therefore, is how much expressiveness
is needed for the ontology-translation task.

Unfortunately, there are two reasons why DLs fall short. One is that they
lack a robust notion of forward chaining. They can be used for answering queries
in merged ontologies, but not for translating datasets.

However, the more fundamental reason for the inadequacy of DLs is that
even simple bridging axioms are difficult to express. Consider this axiom from
section 2.2:

(forall (?a - Article ?tl - String)
(iff (booktitle ?a ?tl)

(exists (?b - Book)
(and (contains ?b ?a)

(@cmu_bib:booktitle
?b ?tl)))))

Even though the axiom uses only types (a special case of classes) and binary
predicates, it is impossible to express it as a standard DL axiom. The best we can
do is something like this:

(∃booktitle−1.Article)
= ∃@cmu bib:booktitle−1.∃contains.Article

In English: “The strings that are booktitles of articles (in the merged ontology)
are the strings that are booktitles (in the CMU ontology) of books that contain
articles.” This formula falls short because it doesn’t equate the article correspond-
ing to an article title on the left side of the axiom with the article corresponding
to a containing book on the right side. To state that, we would need to use a very
expressive DL that allowed equations of role compositions:

booktitle = contains−1◦@cmu bib:booktitle

However, in conjunction with other required expressivity enhancements, adding
role-composition equations makes DLs undecidable [20], so we end up with a
clumsy notation that may be no more efficient than first-order logic.

6. Conclusions

We have described a new approach to implement ontology translation by ontology
merging and automated reasoning. Here are the main points we tried to make:

1. Ontology translation is best thought of in terms of ontology merging. The
merge of two related ontologies is obtained by taking the union of the terms
and the axioms defining them, then adding bridging axioms that relate the
terms in one ontology to the terms in the other through the terms in the
merge.

2. It is important to separate syntactic translation and semantic translation. If
all ontologies and datasets can be expressed in terms of some uniform internal

92 Dejing Dou, Drew McDermott and Peishen Qi

representation, semantic translation can be implemented by automatic rea-
soning. For this to be feasible, the internal representation must be as flexible
as possible. We believe that the language we use, Web-PDDL, has about the
right degree of flexibility. Translating from other notations to Web-PDDL
is performed by dialect-dependent modules. An example is our PDDOWL
system, which transforms formulas in Web-PDDL to DAML, and back.

3. We have developed a special-purpose inference system, OntoEngine, for per-
forming automated reasoning in merged ontologies for the purpose of ontol-
ogy translation. The key features of OntoEngine are its indexing structures
for managing multiple ontologies, its ability to do equality substitution, its
mechanism for handling existential variables and skolem terms, control rules
for ordering both forward and backward chaining operations, and the use of
type- constrained unification.

4. We set up an ontology translation server, OntoMerge, to apply and vali-
date our method. We hope OntoMerge can attract more ontology translation
problem from other people and get their feedback, which will help our future
work.

5. We designed a semi-automatic tool which can help generate the bridge ax-
ioms to merge ontologies. It provides a natural-language interface for domain
experts, who are usually not good at logic formalism, to construct and edit
the axioms.

References

[1] http://www.w3c.org/TR/wsdl

[2] http://www.daml.org

[3] http://www.w3.org/TR/owl-guide

[4] http://www.cs.yale.edu/homes/dvm/daml/ontologies/daml/yale bib.daml

[5] http://www.daml.ri.cmu.edu/ont/homework/atlas-publications.daml

[6] http://cs-www.cs.yale.edu/homes/ddj/ontologies/yale bib ont.pddl

[7] http://cs-www.cs.yale.edu/homes/ddj/ontologies/cmu atlas publications.pddl

[8] http://cs-www.cs.yale.edu/homes/dvm/daml/ontologies/pddl/cmu yale bib merge.pddl

[9] http://jena.sourceforge.net/tutorial/RDF API/index.html

[10] http://www.ksl.stanford.edu/software/JTP

[11] http://cs-www.cs.yale.edu/homes/dvm/daml/ontology-translation.html

[12] http://cs-www.cs.yale.edu/homes/dvm/daml/pddl daml translator.html

[13] http://www.daml.org/2002/04/geonames/geonames-ont.daml

[14] http://www.daml.org/2001/10/html/airport-ont.daml

[15] http://www.daml.org/2001/06/map/map-ont.daml

[16] http://www.daml.org/2001/01/gedcom/gedcom.daml

[17] http://orlando.drc.com/daml/Ontology/Genealogy/3.1/Gentology-ont.daml

Ontology Translation by Ontology Merging and Automated Reasoning 93

[18] S. Adali, K. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query caching
and optimization in distributed mediator systems. In Proc. ACM SIGMOD Conf.
on Management of Data, pages 137–148, 1996.

[19] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook; Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[20] F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, and P. Patel-Schneider, editors, The Description Logic
Handbook; Theory, Implementation, and Applications, pages 43–95. Cambridge Uni-
versity Press, 2003.

[21] D. Beneventano, S. Bergamaschi, F. Guerra, and M. Vincini. The MOMIS approach
to information integration. In ICEIS (1), pages 194–198, 2001.

[22] S. Buvac and R. Fikes. A declarative formalization of knowledge translation. In
Proceedings of the ACM CIKM: The 4th International Conference on Information
and Knowledge Management, 1995.

[23] H. Chalupsky. Ontomorph: A translation system for symbolic logic. In Proc. Int’l.
Con. on Principles of Knowledge Representation and Reasoning, pages 471–482,
2000. San Francisco: Morgan Kaufmann.

[24] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between
ontologies on the semantic web. In Proceedings of the World-Wide Web Conference
(WWW-2002), 2002.

[25] D. Dou, D. McDermott, and P. Qi. Ontology translation on the semantic web.
In Proc. Int’l Conf. on Ontologies, Databases and Applications of SEmantics
(ODBASE) 2003, pages 952–969, 2003. LNCS 2888 Springer-Verlag.

[26] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[27] Khun Lee Fung XSLT: Working with XML and HTML. Addison-Wesley 2001

[28] M. R. Genesereth, A. M. Keller, and O. M. Duschka. Infomaster: an information
integration system. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 539–542, 1997.

[29] T. Gruber. Ontolingua: A Translation Approach to Providing Portable Ontology
Specifications. Knowledge Acquisition , 5(2):199–200, 1993.

[30] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A comparison of rdf query lan-
guages. In Proceedings of the Third International Semantic Web Conference, Hi-
roshima, Japan, 2004., NOV 2004.

[31] A. Y. Halevy. Answering queries using views: A survey. VLDB J , 10(4):270–294,
2001.

[32] I. Horrocks and P. F. Patel-Schneider. FaCT and DLP. Lecture Notes in Computer
Science, 1397:27, 1998.

[33] J. Madhavan, P. A. Bernstein, P. Domingos, and A. Halevy. Representing and Rea-
soning about Mappings between Domain Models. In Proc. AAAI 2002, 2002.

[34] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid.
In Proc. 27th Int. Conf. on Very Large Data Bases (VLDB).

[35] A. Maedche, B. Motik, N. Silva, and R. Volz. , mafra - a mapping framework for
distributed ontologies. In Proceedings of EKAW2002, pages 235–250, 2002.

94 Dejing Dou, Drew McDermott and Peishen Qi

[36] D. McDermott. The Planning Domain Definition Language Manual. Technical
Report 1165, Yale Computer Science, 1998. (CVC Report 98-003) Available at
ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz.

[37] D. McDermott, M. Burstein, and D. Smith. Overcoming ontology mismatches in
transactions with self-describing service agents. In Proc. Semantic Web Working
Symposium, pages 285–302, 2001.

[38] D. McDermott and D. Dou. Representing Disjunction and Quantifiers in RDF. In
Proceedings of International semantic Web Conference 2002, pages 250–263, 2002.

[39] D. McGuinness, R.Fikes, J.Rice, and S.Wilder. An Environment for Merging and
Testing Large Ontologies. In Proceedings of the Seventh International Conference
on Principles of Knowledge Representation and Reasoning (KR2000), 2000.

[40] N. F. Noy and M. A. Musen. Prompt: Algorithm and tool for automated ontology
merging and alignment. Technical Report 2000-0831, Proc. AAAI 17 Also available
as Stanford SMI, 2000.

[41] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (2nd edition).
Prentice Hall, 2002.

[42] L. Serafini, P. Bouquet, B. Magnini, and S. Zanobini. An algorithm for matching
contextualized schemas via sat. In Proc. CONTEX’03, 2003.

[43] G. Stumme and A. Maedche. Ontology merging for federated ontologies on the se-
mantic web. In Proceedings of the International Workshop for Foundations of Models
for Information Integration (FMII-2001), September 2001.

[44] Jeffrey D. Ullman Principles of Database and Knowledge-Base Systems, 1. New York:
Computer Science Press. 1988a

[45] Jeffrey D. Ullman Principles of Database and Knowledge-Base Systems, 2 New York:
Computer Science Press 1988b

Dejing Dou
Department of Computer and Information Science
120 Deschutes Hall
University of Oregon
Eugene, OR 97403-1202
e-mail: dou@cs.uoregon.edu

Drew McDermott
Computer Science Department
Yale University
P.O. Box 208285
New Haven, CT 06520-8285
e-mail: drew.mcdermott@yale.edu

Peishen Qi
Computer Science Department
Yale University
P.O. Box 208285
New Haven, CT 06520-8285
e-mail: peishen.qi@yale.edu

Collaborative Understanding of Distributed
Ontologies in a Multiagent Framework:
Experiments on Operational Issues

Leen-Kiat Soh

Abstract. This chapter describes a set of experiments that uses a multiagent
framework for collaborative understanding of distributed ontologies (CUDO).
Our current focus is on the operational issues of such collaboration among the
agents, with each agent managing an information database in a distributed in-
formation retrieval simulation. To facilitate collaborative understanding, each
agent maintains an ontology and a translation table with other neighboring
agents to map between each own concepts and the neighbors’. Based on an
infrastructure prototype, our experiments have focused on how neighborhood
profiling, the translation tables, and query experience impact the collabo-
rative activities among the agents. The specific objectives of our analyses
are to investigate (a) the recognition of useful neighbors for sharing queries,
(b) the efficiency of query handling in different real-time scenarios and with
different resource constraints (such as the number of threads and available
translations), and (c) the effects of different concepts and query demands
on collaborative understanding. Our results show that the different resource
constraints influence the collaborative activities significantly and thus also
impact how the agents learn of each others ontologies.

Keywords. Multiagent systems, distributed ontology learning, dynamic profil-
ing.

1. Introduction

In the real world, where human agents are autonomous, distributed, and capable
of individual learning, there are different languages. To communicate or collabo-
rate, humans speaking different languages either learn a common language or use a
translator. Learning a common language that is not a person’s native tongue usu-
ally incurs additional effort on that person. On the other hand, speaking through
a translator may not be always feasible and may be too costly. Similarly, in a

96 Leen-Kiat Soh

multiagent environment, autonomous and distributed agents may encounter dif-
ferent events, gather different experiences, and learn different ontologies. To im-
prove communication, these agents must be able to understand each other. Our
research, called Collaborative Understanding of Distributed Ontologies (CUDO),
is to investigate these issues in a multiagent system, in which each agent main-
tains an information database and the corresponding ontology. In this chapter,
we investigate the role of operational issues in how these agents collaborate in a
distributed information retrieval simulation.

Our CUDO research is motivated by our long-term research goals: (1) to
promote understanding among agents of a community, thus reducing communica-
tion costs and inter-agent traffic, (2) to improve cooperation among neighbors of
a community, thus enhancing the strength (productivity, effectiveness, efficiency)
of a neighborhood and supporting the distributed effort of the community, (3) to
encourage pluralism and decentralization within a multi-agent community - spe-
cialization of agents of a community since each agent can rely on its neighbors for
tasks not covered by its capabilities, and (4) to enable collaborative learning to
improve the throughput of the community, the intelligence in communication and
task allocation, the self-organization within the community, and integrity of the
community.

We originally proposed our CUDO framework in [1] where we identified two
strategies with which an agent can learn to improve its ontology. First, users can
teach them - by supplying a list of words and what the classifying concepts are
for that list of words. Second, an agent can learn through its interactions with its
neighbors. As a result, each agent learns its own concepts based on its experiences
and specialties. When a new concept arrives, the agent needs to incorporate it into
its ontology and its translation table. This is supported by three important compo-
nents: conceptual learning, translation, and interpretation, with a Dempster-Shafer
belief system [2].

Our current research focuses on developing and analyzing the operational
components of our framework, applied to a document retrieval problem. Each agent
interacts with a user who submits queries based on keywords. These keywords are
known as concepts in the agents. The goal of this problem is satisfy as many
queries as possible and as well as possible. An agent may turn to its neighbors for
help. Thus, this collaboration facilitates the distributed ontology learning.

In this chapter, we report on our experiments applying a prototype infrastruc-
ture of CUDO in a distributed information retrieval simulation. The objective is to
understand how collaborative understanding of distributed ontologies is impacted
by operational issues such as queries, the number of communication threads, the
variability within the translation tables and so on. Therefore, in this paper, we fo-
cus on the operational design of our infrastructure and the investigations on how
neighborhood profiling, translation tables, and query experience influence the re-
lationship among collaborative agents. Our experiments are aimed at studying (a)
the learning of useful neighbors for sharing queries, (b) the efficiency of query han-
dling in different real-time scenarios and with different resource constraints, and

Distributed Ontologies in a Multiagent Framework 97

(c) the effects of different ontological concepts and query demands on collaborative
understanding.

Here is how we organize the following discussions. First, we briefly outline the
methodology of our framework in Section 2. Then we describe our implementation.
Note that though this chapter studies the operational issues in our experiments,
we include the ontological components in both Sections 2 and 3. Subsequently, we
discuss our experiments and results in Section 4. Finally, we conclude.

2. Framework

In our CUDO framework, the multiagent system is one in which agents can ex-
change queries and messages to learn about each other’s ontology. To improve the
communication and collaboration efficiency, agents determine whether some trans-
lation is worth learning, which neighbors to communicate to, how to handle and
distribute queries, and how to plan for agent activities. The framework consists
of two sets of components. The operational components allow the agents to work
together in a multiagent system. The ontological components allow the agents to
communicate and understand each other.

Our discussion here is related to [6]. In [6], however, the agents were not
able to learn collaboratively in a multiagent system. Instead, the learning was
conducted only between two agents via exchange of concepts (ontologies) where
the agents were neither able to adapt to changes in concept definitions nor able
to handle multiple assertions from different neighbors. Moreover, our framework
addresses translation and interpretation of concepts, query processing and com-
position for collaboration among agents, and action planning based on traffic and
agent activities, which indirectly control the learning rates of the agents.

In the following, we briefly introduce and describe the operational and onto-
logical components of our framework. Interested users are referred to [1] and [3]
for more details. Here we define the neighborhood of an agent as a subset of the
multiagent system such that the agent is able to contact each of its neighbors.
Neighborhoods are assumed to be overlapping.

2.1. Ontological Components

We represent an ontology item as a vector. Each vector consists of a concept and
then a list of links describing that concept. Each agent maintains a set of such
vectors and collectively such a set is known as the ontology of the agent. Note that
here we refer a link to a URL address of an online document.

Each agent maintains a comprehensive translation table. Each table lists the
concepts that the agent knows and maps them to the corresponding concepts of
the neighboring agents. Each translation is accompanied with a credibility value.
Table 1 shows an example. In the example, the agent has four neighbors. It knows
of concepts such as ”basketball” and ”car”. For ”basketball”, it is similar to N1’s
”NBA” with a credibility value of 2.1, N2’s ”Bball” with a credibility value of 1.0,

98 Leen-Kiat Soh

and N4’s ”Basketball” with a credibility value of 3.4. However, it does not have a
translation for ”basketball” between itself and N3.

Concepts N1 N2 N3 N4
basketball NBA 2.1 Bball 1.0 NIL Basketball 3.4
car NIL Auto 2.1 Car 1.0 Move 1.0
. . .

Table 1. A translation table example.

In general, in the beginning, each agent has an empty translation table. At
the birth of an agent, an agent learns from the users’ submission (or queries).
Then the agent learns about the relations it has with its neighbors through two
functional occasions. First, when it queries another agent for certain knowledge or
information. Second, when it receives a query from another agent. When an agent
queries another agent for certain knowledge and if the queried agent responds
positively with its own semantics, the querying agent will duly interpret it and
update it in its translation table. When an agent receives a query from another
agent, if it does not have a readily available and up-to-date translation, then
the agent interprets the semantics that accompany the query. At the end of the
interpretation, if the agent is able to recognize the semantics, it then reflects the
learned mappings in the translation tables.

Note also that there is also the scalability issue to address. In a large-scale
system with hundreds and thousands of agents and hundreds and thousands of
concepts, for an agent to maintain a translation of that magnitude is not scalable.
In our multiagent system, we make use of the notion of the neighborhood. An
agent’s neighborhood is a subset of the entire multiagent system such that the
agent only considers the agents in its neighborhood when it tries to satisfy the
queries received. Agents that are not in the neighborhood will not be approached;
and thus the translation table can be reduced significantly in size. This neighbor-
hood approach is feasible as each agent has the ability of relaying queries, allowing
a query to be relayed eventually to an agent that knows about the queried concept,
as every agent has a neighborhood and the neighborhoods overlap. This allows our
design to address the scalability issue to some extent.

2.2. Operational Components

There are three important operational components: query processing, action plan-
ning, and query composition. Note that in our framework, an agent sends out a
query to its neighbor when it needs to find some additional links (or links) to satisfy
that query. Agents are required to compose queries when they relay or distribute
queries to other agents. Finally, for the system to be effective, the action planning
component of the agent decides how to distribute queries and learn about others
ontologies based on the observed environmental properties such as the message
traffic and the profile of the agent’s neighborhood.

Distributed Ontologies in a Multiagent Framework 99

2.2.1. Query Processing. Each agent has a query processing module. This module
accepts a query from the user, parses the query, and decides what to do with the
query. A query is basically a composition of query’s originator, the search key (or
also known as the concept name), the request (in terms of the number of links
desired), and the sender of the query. When an agent receives a query, it first
matches the search key or concept name to its own ontology. If it finds a match, it
proceeds to retrieve the links (or links) filed under that concept. If this number is
greater than the desired number, then the query is satisfied. However, it is possible
that the agent may encounter two other scenarios and each leads to collaboration
with other agents or neighbors. First, the agent finds a match between the search
key and its ontology but does not have enough links to satisfy the query. As a
result, it needs to ask for help from other agents. Second, it is possible that the
agent may not recognize the search key as it fails to find a match in its own
ontology. This is when the agent needs to relay the query to other agents or to
learn about the search key. The agent relays the query to another agent, say, b,
when it finds a match for the search key in the translation table - that is, b knows
about the search key. On the other hand, the agent will try to learn about the
search key if it fails to find a match for the search key in the translation table.
As will be discussed further in Section 3, the translation table of an agent is a
matrix in which each cell represents a mapping between a concept of the agent
and possibly a concept of a neighbor agent.

To identify the particular neighbors to ask for help, an agent makes use of two
dynamically maintained knowledge bases. First, it uses its translation table. As
alluded earlier in Section 2.2, in some cases, the mapping is NULL or empty when
such a correspondence dose not exist. Each mapping is quantified by a confidence
value, specifying how closely related the two concepts are. With this translation
table, an agent can locate the appropriate neighbors for help. Second, it uses a
neighborhood profile. A neighborhood profile is a record from the viewpoint of an
agent of each of its neighbors, in terms of how helpful, useful, and responsive a
neighbor has been in the past. This provides an operational aspect to the query
processing.

Once an agent decides to help, it will compose a query or queries based on
what its neighborhood profiler and translator have observed and learned so far. In
general, issues such as specialties, personalities, and communication experiences
of the neighboring agents determine how a query should be composed. The agent
might want to send a query to a particular neighbor with high priority, or broadcast
the query to every neighbor with low priority, or target a group of specialized
neighbors, or ask for help from a helpful and knowledgeable agent. This decision
making process is based on the observations that the agent has experienced and
the lessons it has learned interacting with its neighbors. This approach enhances
the cooperative efficiency and effectiveness between an agent and its neighbors,
thus strengthening the collaboration within the system.

100 Leen-Kiat Soh

2.2.2. Action Planning. We will briefly discuss its activities here. An action plan-
ner monitors its environment to decide which course of actions to take: (1) offer
help by adopting and relaying a query to other agents, (2) supply the necessary
translation information and let the querying agent retrieves the knowledge itself,
or (3) return a NULL response to terminate the query. Such a decision is based on
two criteria observed from the environment and the priority of the query: (1) the
activities the agent currently is engaged in provided by the activity monitor of the
agent, and (2) the traffic situation among the agent and its neighbors provided by
the traffic monitor of the agent. The query priority signifies the importance of the
request to the querying agent.

2.2.3. Query Composition. When an agent decides to relay a query, it needs to
compose the query fitting for its neighbors. The query composer refers to the
neighborhood profiler to construct its queries. For every interaction between an
agent and its neighbor, the success of the interaction, the accuracy of the trans-
lation, the usefulness of the knowledge and information, the responsiveness of the
neighbor, and other inter-agent issues are logged and evaluated. Each criterion
will be scored; the scores averaged; and all idly-linked neighbors ranked in terms
of the average. The query composer thus constructs its queries based on the aver-
age: allocate higher requests to useful and helpful neighbors, for example. In short,
the query composer decides how to allocate requests among the agent’s neighbors
based on the knowledge expertise as well as operational behavior of the neighbors
that it has observed.

Query Acknowledgement. After a query is processed, the queried agent re-
turns the result back to the querying agent. The querying agent has to acknowledge
it. When the result is received, the incident will be recorded in the knowledge base
regarding the neighborhood: (a) success of the interaction — based on the NULL,
information, and knowledge typing if the response, (b) responsiveness of the neigh-
bor — based on the elapsed time between query sent and response received, (c)
nature of the query — concept categories, priority levels, originators, etc., and (d)
log of activities and traffic observations. In general, conceptually, the knowledge
base provides a library from which an agent can learn to compose better queries
as the community evolves. This modification of knowledge maintains the ontolo-
gies, translation tables, and neighborhood profiles. Further, it could also compile
statistics such as average, risk factor, friendliness factor, and success rate and
records.

2.3. Agent Communication Language

Our agent communication language is rudimentary and only sufficiently functional
to capture the various communication acts. It does not in particular follow a
certain formal representation language such as DAML or OWL. The syntax is Lisp-
based. For example, a query request that an agent receives is: (request <user ID>
<concept name> <number of links desired>) where <user ID> is the user that
posed the query, <concept name> is the search key, and <number of links desired>

Distributed Ontologies in a Multiagent Framework 101

is the number of links related to <concept name> that the user would like to have
returned. A query relay that an agent a sends to another agent b has the following
syntax: (relay <originator ID> <sender ID> <receiver ID> <query ID> <concept
name> <number of links desired>) where (originator ID> and <sender ID> are
the ID of agent a, and <receiver ID> of agent b, and <query ID> is the ID that
agent a tags onto the original query that it received. Note that <originator ID>
and <sender ID> will be different if the query is subsequently relayed again. When
agent b returns the links, the message has the following syntax: (results <originator
ID> <sender ID> <receiver ID> <query ID> <concept name> (<link 1> <link
2> . . .<link N>)), where <sender ID> is agent b, and <receiver ID> is agent
a, and (<link 1> <link 2> . . .<link N>) is the list of links returned. A link is
either a URL address of an online document or the pathname of a filed document.
When agent a collects all returned results from its neighbors, it composes the final
message to be returned to the user: (results <sender ID> <user ID> <concept
name> (<link1> <link 2> . . .<link N>)).

3. Methodology and Design

In this section, we describe the methodology and the current design of the oper-
ational components of an agent in the CUDO framework discussed in Section 2.
As shown in Figure 1, an agent has nine important modules.

Figure 1. The current design of the operational components of
an agent in our framework.

102 Leen-Kiat Soh

(1) Interface: This module interacts with the user to obtain queries and to
provide queried results. Currently, we have (simulated) software users that auto-
matically generate timed queries for our experiments. Each software user submits
its queries through a socket connection with the interface.

(2) Query Processor: This module receives a query from the Interface module
and processes it. It first checks the agent’s ontology base. If the query matches
one of the concepts in the ontology, the module retrieves the number of links
available. If the query does not find a match in the ontology, the module examines
its translation table. If there are available translations, that means a collaboration
is possible.

(3) Action Planner: This module serves as the main reasoning component of
the agent: (a) If the number of internal links satisfies the query, then the action
planner simply provides those links to through the Interface module to the user;
(b) otherwise, if the agent understands the query and finds available translations, it
initiates its collaborative activities; (c) if the agent does not understand the query,
it will relay the query to another agent; and (d) finally, if there are no available
translations, the retrieval process stops and the agent reports back to the user.
Whether a collaboration is feasible depends on the current status of the agent, as
recorded by the Activity Monitor and Thread Manager modules. If the agent does
not have enough resources for a collaboration, the retrieval process terminates.

(4) Collaboration Manager: When the action planner calls for a collaboration,
this module takes over. The objective of this module is to form an appropriate
group of neighboring agents to approach and distribute the query demands (link
allocations) accordingly among them. To design such a collaboration plan, this
module relies on the Neighborhood Profiler module, and the translation table.
Each neighbor is given a utility measure based on the translation credibility value,
the past relationship and the current relationship. Note that in our original thesis
[1], each translation has a credibility value: two concepts are similar to only a
certain degree. The past relationship is how the agent views a particular neighbor
in terms of the quality of their interactions, as monitored and stored by the Profiler
module. The current relationship is captured by the Activity Monitor module to
indicate whether the agent is currently engaged in any query transactions with the
particular neighbor. A neighbor has a high utility if the translation credibility of
the query in question is high, if the past relationship is strong, and if there is not
any current interaction. The collaboration manager ranks these neighbors based
on the utility measure and then assigns the query demands accordingly, with the
help of the Query Composer. The manager assigns more links to neighbors with
higher utility proportionally to maximize the chance of retrieval success. It also
collects the negotiation results, sorts the received links based on the credibility,
and filters out low-credibility links when it has more links than desired.

(5) Query Composer: Based on the allocation of query demands, this module
composes a specific query for each neighbor to be approached. As previously men-
tioned, each query is associated with a document or link demand that specifies the
number of links desired. A query will also include the name of the originator and a

Distributed Ontologies in a Multiagent Framework 103

time stamp when it is first generated. If the query is based on a translation, then
the translated concept name is used. If the agent does not recognize a concept and
needs to relay a query it has received to a neighbor, it simply uses the queried
concept directly.

(6) Neighborhood Profiler: The design of this module is based on our work
in coalition formation [5]. The relationship is a composition of four basic num-
bers: numHelp (the number of times the agent provides help to the neighbor),
numSuccess (the number of times the agent successfully solicits help from the
neighbor), numRequestFrom (the number of times the agent receives a request
from the neighbor), and numRequestTo (the number of times the agent initiates
a request to the neighbor) [4]. Based on these numbers, we can derive helpfulness,
usefulness, importance, and reliance of each neighbor, from the viewpoint of the
agent.

(7) Activity Monitor: This module keeps track of the activities in a job vector
— whether the agent is processing a query on its own, or negotiating with other
neighbors for more links, or entertaining a request from a neighbor. Each job is
described with a list of attributes such as the originator, the executor, the task
description, the current status, and so on.

(8) Thread Manager: This module manages the threads of the agent. It is
a low-level module that activates the threads, updates and monitors the thread
activity.

(9) Negotiation Manager: This module manages the negotiation tasks. In our
current design, the interaction between two agents does not involve negotiations as
the two simply exchange information. However, our long-term plan views negotia-
tion as an important part of interpreting ontologies (the act of mapping concepts
between two agents) in a distributed environment. Negotiations that are too time
consuming, stagnant, or no longer useful will be modified or aborted; negotiations
that are successful will be learned; and so on. We will adapt our previous work in
reflective negotiations [5] to distributed ontology in this framework.

Together with these nine operational components are three dynamic knowl-
edge or data bases: ontology, translation table, and profiles. As discussed in Section
2, the profiles keep track of the relationships between the agent and its neighbors,
updating the neighborhood parameters. The ontology is a dictionary listing the
concepts that the agent knows. Each concept has a list of supporting links. Each
agent also maintains a translation table that stores the mappings between what
the agent knows and what its neighbors know. Each mapping is tagged with a
credibility value.

4. Implementation

We have implemented all the nine modules of our agent as depicted in Figure 1 in
C++. Each agent receives its user queries from a software user through a socket
connection, and communicates with other agents through a central relay server

104 Leen-Kiat Soh

module through socket connections as well. Each agent generates and maintains
its neighborhood profile during runtime dynamically.

For our experiments, each agent is equipped with a translation table right
from the start. Note that in our original CUDO framework [1], the entries in
a translation table is learned over time based on the experience of each agent.
Here, since we focus on the operational design of collaborative understanding of
distributed ontologies, we assume that each agent has a translation table to begin
with.

In addition, each agent is equipped with an ontology database. This database
lists all the concept terms that an agent knows. For each concept, there is a list of
links (or links) that are examples that illustrate the concept.

5. Discussion of Results

We have performed a comprehensive set of experiments to investigate the impact
of operational factors on how agents collaborate. Ultimately, this investigation
will give us insights as to how such resource-constrained collaborations affect how
agents learn distributed ontologies. In this, we will first describe our experimental
setup and then discuss the results.

5.1. Experimental Setup

Here is the setup of our experiments:
There are five agents supporting a software user each. All agents are neighbors

and can communicate among themselves. All five agents and their threads are run
on the same CPU.

Every agent has a unique set of nine concepts in its ontology. Each concept
has five supporting links.

Each agent has a translation table where each cell of the table indicates the
translation between a local concept and a foreign concept in a neighbor and the
translation’s credibility value. If a translation is not available, we use the symbol
NIL.

For our distributed information retrieval simulation, each software user has
a query configuration file. Thus, instead of manually submitting these queries, the
software user simply reads them from the file and sends them to the corresponding
agent. Each query in a configuration file has (a) a cycle number, (b) the queried
concept name, and (c) the number of links desired. The cycle number indicates
when the query will be submitted to the agent. Each configuration file has about
300 cycles, and two batches of queries. Both batches are the same with the only
difference being the cycle numbers. This allows us to investigate whether the agents
are able to improve in their response time in the second batch after having learned
how to form collaborations better through neighborhood profiling in the first batch.

In the first batch of query scenarios, there are six segments of queries:
(1) Cycles 0-10: Each query that each agent receives asks for a different

concept that the agent has in its ontology. Each agent is also able to satisfy the

Distributed Ontologies in a Multiagent Framework 105

query demand on its own, and thus does not need to collaborate in this segment.
All queries across the users are submitted at the same cycles.

(2) Cycles 11-40: Each query that each agent receives asks for a different
concept that the agent has in its ontology. Unlike Segment 1 above, each query
has a query demand greater than what an agent can handle. Thus, in this segment,
each agent needs to collaborate. All queries are submitted in a staggered manner.
Agent 1 sees all its nine queries first; agent 2 sees all its queries next; and so on.

(3) Cycles 41-70: The queries here are set up similarly as those in Segment
2 above except that the number of links or links desired for every query is twice
that in Segment 2. Thus, extensive collaborations are needed. Queries are also
staggered in this segment.

(4) Cycles 71-80: In this segment, every agent does not recognize the queried
concepts that it sees; that is, an agent does not have the queried concepts in its
ontology. This forces each agent to relay the queries to other neighboring agents.
Queries are packed — all agents see their queries at the same time — in this
segment.

(5) Cycles 81-110: This segment is almost the same as Segment 4. The only
difference is that the queries are staggered.

(6) Cycles 111-120: In this segment, two users query about concepts that
their agents do not have in their respective ontologies, two users query about only
some concepts that their agents do not have in their respective ontologies, and one
user queries about concepts that its agent has in its ontology. The queried number
of links is small and no negotiations are needed.

The second batch starts around Cycle 150, and repeats the above query
scenarios. Figure 2 gives a brief overview of our query scenarios.

Our query scenarios are staggered or packed to investigate the response be-
haviors of the agents. Since the number of negotiation threads is limited for each
agent, packed queries with high link demands may lead to only partial link re-
trievals. Our query scenarios also come with low and high link demands. Low link
demands do not require or require fewer collaborations, while high link demands
prompt the agents to plan for collaborative actions. Finally, an agent may or may
not know some of the queried concepts. The agent’s ontology specifies this knowl-
edge. When an agent knows the queried concept, it has more options, approaching
different neighbors for help. When it does not know the queried concept, then it
shifts the responsibility to one of the neighbors, essentially making itself a relay
station.

Given the above query scenarios, we further vary two sets of parameters:
the number of negotiation threads and the credibility values in the translation
tables. We vary the number of negotiation threads between 0 and 5. When the
number is 0, the agents do not have collaborative capabilities since they cannot
contact other agents. When the number is 5, an agent can simultaneously conduct
5 negotiations. Thus, this number directly impacts the resources that the agents
have to collaborate to satisfy queries. This is relevant to operational constraints.
There are also six sets of translation tables. In the first set, the credibility values

106 Leen-Kiat Soh

Figure 2. The number of links for the queries submitted by the
software users to the agents for each cycle.

of all translations are above zero. In this situation, every concept that one agent
knows has four translations. In the second set, one of the agents has what is
termed as a ”narrow ontology”. That is, its translation table contains has numerous
NIL translations (more than 50% of all table cells). In the third set, two agents
have narrow ontologies. In the fourth set, three agents do; in the fifth set, four
agents do; finally, all agents do. With these sets, we want to see how successful
the agents are in satisfying high-demand queries when they are faced with varying
degrees of ontological constraints; and how operational factors help alleviate these
constraints.

Given the six different numbers of negotiation threads and six sets of trans-
lation tables, we carry out a total of 36 runs using the same set of query scenarios.

5.2. Parameters Collected

Our current experiments concentrate on two sets of parameters:
(1) Neighborhood Profile Parameters: For each neighbor, an agent collects

parameters documenting the outcomes of their past interactions. These parameters
are alluded to in Section 3, used in the computation of a neighbor’s utility measure.
Table 2 defines these parameters.

Distributed Ontologies in a Multiagent Framework 107

Parameters Definitions
numSuccess The number of successful negotiations that the agent has

initiated to neighbor i
numHelp The number of successful negotiations that the agent has

received from the neighbor i
numRequestTo The total number of negotiations that the agent has initi-

ated to the neighbor i
numRequestFrom The total number of negotiation requests that the agent

has received from neighbor i
successRate numSuccess/ numRequestTo
helpRate numHelp/ numRequestFrom
requestToRate numRequestTo/ totalRequestTo where totalRequestTo is

the sum of all negotiations that the agent has initiated
requestFromRate Presently this number is not updated, as our negotiation

design does not incorporate the argumentative reasoning in
[5]. However, we plan to re-visit this number in the future
once the interpretation module is completed. This number
tells the agent how much neighbor i relies on the agent

Table 2. Neighborhood profile parameters.

(2) Query Result Parameters: For each query, an agent collects parameters
documenting the characteristics of the query and the query outcome. Table 3 links
the definitions of these parameters.

Parameters Definitions
originator The originator of the query, either from a software user

(ID) or another agent
cycle The cycle ID when the query is first generated
numLinksDesired The number of links desired by the query
numLinksRetrieved The number of links retrieved at the end of the retrieval

process and presented to the user, always smaller than
numLinksDesired

conceptName The query keyword
successQuality numLinksRetrieved/numLinksDesired
duration The actual elapsed time between the receipt of a query and

the presentation of the query results to the user
listLinks The list of links retrieved and presented to the user at the

end of the retrieval process
Table 3. Query result parameters.

108 Leen-Kiat Soh

5.3. Results

Our overall, long-term plan of analysis aims at analyzing the results at eight dif-
ferent levels. At level 0, we derive an overview of the correctness and assessment
of the results. At level 1, we want to analyze the agents retrieval quality in the two
batches of queries. At level 2, we aim to compare across the agents and see whether
there are significant patterns. At level 3, we want to look into the retrieval results
of each segment. Note that each segment has its unique set of characteristics as
previously discussed in Section 5.1. At level 4, we want to investigate the role of
the concepts. Some concepts may have few supporting links and some have many.
At level 5, we will analyze the impact of different queries on the quality of the
retrieved results. A query with a high-link demand may not necessary result in
poorer results than one with a low-link demand. At level 6, we plan to examine
closely the impact of the translation tables with narrow and wide ontologies, and
how distributed ontology learning may help improve the tables for better query
effectiveness. Finally, at level 7, we will study the operational impact of the threads
as a constrained resource.

In this paper, we report on some in-depth level-0 analyses. Further, we present
observations and discussions on other levels.

5.3.1. Level-0 Analysis. Figures 3-7 show the graphs of the successQuality of each
users queries vs. the number of threads. Here are some observations:

(1) The average successQuality of a user’s queries increases as expected when
the number of threads increases. This is because for high-demand queries that call
for collaborations, the agent has more resources (i.e., negotiation threads) to do
so..

(2) The average successQuality of a user’s queries drops significantly when-
ever the corresponding agent has a narrow ontology. However, the drops are more
significant when the number of threads is smaller. This indicates that the retrieval
benefits from the collaborative distributed ontology design. When agents are able
to collaborate more often, the successQuality of a query is higher.

(3) Figure 8 shows the average successQuality and standard deviation of
all queries for each number of threads. As we can see, with a higher number of
negotiation threads, queries are satisfied more successfully (high average values),
and also more consistently (low standard deviation values).

(4) Figure 9 shows the average successQuality for agents with narrow on-
tologies and those with non-narrow ones. Note that if agent A1 does not have a
translation for mapping its concept name C1 to any of agent A2 ’s, that does not
necessarily mean that A2 does not have a translation mapping one of its concepts
to A1 ’s concept name C1. This is by design as we ultimately aim to show how
collaborative agents can learn new translations or refine old ones as they help
each other in satisfying queries. As observed, the number of narrow ontologies
does not impact the success quality. From the operational point of view, this was
unexpected. When the number of narrow ontologies within the multiagent system
increases, we expected that more agents would relay queries to their neighbor,

Distributed Ontologies in a Multiagent Framework 109

Figure 3. The average successQuality value of each user’s
queries vs. the number of threads where no agents have narrow
ontologies.

Figure 4. The average successQuality value of each user’s
queries vs. the number of threads where agent 1 has narrow on-
tology.

and that would cause the negotiation threads to be used more frequently. We sus-
pect that the agents’ collaborative activities reduce the impact of having narrow
ontologies.

110 Leen-Kiat Soh

Figure 5. The average successQuality value of each user’s
queries vs. the number of threads where agents 1 and 2 have
narrow ontologies.

Figure 6. The average successQuality value of each user’s
queries vs. the number of threads where agents 1, 2, and 3 have
narrow ontologies.

(5) Figure 10 shows the average duration (in seconds) for each query to
be processed and presented back to software user 1 (by only agent 1), for dif-
ferent numbers of negotiation threads. As observed, when the number of threads

Distributed Ontologies in a Multiagent Framework 111

Figure 7. The average successQuality value of each user’s
queries vs. the number of threads where agents 1, 2, and 3 have
narrow ontologies.

Figure 8. The average and standard deviation of the
successQuality for all users vs. the number of threads.

increases, it takes longer for a query to be responded to. This observation was not
anticipated. However, upon further analysis, we realize the following. When an
agent has more threads, not only it can approach more neighbors for help, but it
also receives more requests for help from other agents. As a result, the agent man-
ages more tasks and slows down its processes for retrieving and supplying results
to the software users. This indicates an oversight in our design with regards to the
efficiency of our implementation. We are currently reviewing our program code

112 Leen-Kiat Soh

Figure 9. The average successQuality for agents with narrow
ontologies and agents with non-narrow ontologies. The sQnarrow
value for the 0 narrow ontologies is not applicable.

to pinpoint the places where we could optimize the multi-threaded programming
portion. We will also perform the same analysis on all other software users and
agents to see whether the same patterns are observed as well.

(6) From Figure 10, the average duration values for the different numbers of
narrow ontologies are 9.96, 7.66, 7.41, 7.73, 8.15, and 8.24 seconds, respectively.
The multiagent system where the agents do not have narrow ontologies, unexpect-
edly, have the highest average duration value. This value drops, has a minimum
when the number of narrow ontologies is two, and then climbs up consistently for
the next three sets. We are currently investigating the reasons behind this curve,
to at least explain the data of the 0-narrow ontology case. Coupling the above
observation with that in from Figure 12, we see that when the number of narrow
ontologies increases (starting from number = 2), even though the successQuality
value remains mostly the same, the duration value starts to dip. This clarifies
somewhat our observations.

Figure 10 The average duration for agent 1, for different numbers of threads,
vs. the number of narrow ontologies.

(7) Figure 11 shows the average profile of agent 1 of its neighbors: numSuccess,
numHelp, numRequestTo, and numRequestFrom. The values of numHelp and
numRequestFrom are the same; that is, the helpRate is 100%. For this agent 1,
the number of times it has requested for help is smaller than the number of times
it has entertained other agents requests. This indicates that the query scenarios
tend to invoke collaborations, causing the originating agents to ask for help from
many different neighbors. From the graph, we see that the agent approaches more
neighbors for help as it has more negotiation threads. However, when the number
of threads is 5, the rate levels off just a little, indicating that a convergence may

Distributed Ontologies in a Multiagent Framework 113

Figure 10. The average duration for agent 1, for different num-
bers of threads, vs. the number of narrow ontologies.

occur when the number of threads is larger than 5. This means that in our current
experimental setup, our link demand is still more than what the agents can handle.

(8) Figure 12 shows the average successRate vs. the number of threads avail-
able. As observed, the agent is able to negotiate more successfully when the number
of threads increases. This is expected since with more threads available, an agent
is able to entertain more requests. Coupling this with Figure 13, we see that agent
1 is able to conduct more negotiations more successfully when the number of
threads increases — more effectively and more efficiently. This is a good indicator
that would help guide the design of distributed ontology learning in our work.

(9) Figure 13 shows the requestToRate vs. the number of threads available.
As observed, when the number of threads is 1, agent 1 relies on agent 2 (or N1)
heavily. This is due to the fact that in the beginning of an agent, all neighbors
are weighted very similarly; as a result, the agent will approach the first neighbor
that it knows. However, as the number of threads increases, the agent is able to
collaborate more with other neighbors. As a result, the reliance on N1 decreases sig-
nificantly. Meanwhile, the reliance on the other three neighbors steadily increases.

114 Leen-Kiat Soh

Figure 11. The average profile for agent 1 of its neighbors vs.
the number of threads

Figure 12. The average profile for agent 1 of its neighbors vs.
the number of threads

This is a good lesson, as we now know that in order for the system to exhibit un-
intended bias favoring one neighbor over another, we need to have enough number
of threads, laying the groundwork for the distributed ontology learning design of
our work.

The requestToRate from agent 1 to its neighbors, N1 (agent 2), N2 (agent
3), N3 (agent 4), and N4 (agent 5) vs. the number of threads.

Distributed Ontologies in a Multiagent Framework 115

Figure 13. The requestToRate from agent 1 to its neighbors,
N1 (agent 2), N2 (agent 3), N3 (agent 4), and N4 (agent 5) vs.
the number of threads.

5.3.2. Other Level Analysis. Level-1 Analysis: Batch Results
At this level, we want to investigate whether the agents are able to handle the

second batch of queries (exactly the same with the first batch) better compared
to the first batch. From the experiments, we observe that:
• The average successQuality of the second batch is a little better than that of

the first batch (0.85 vs. 0.81), more so when the number of agents with narrow
ontology is high. This confirms that the ontological learning (translations) in
the first batch helps the agents in the second batch.

• The average duration values of the two batches are very similar (10.38 vs.
10.39 s). Thus, at least for our experiments, the ontological learning does not
help reduce the average search time.
Level-2 Analysis: Neighborhood Profiles
At this level, we want to investigate how the neighbors affect the search result.

Each agent maintains a profile of each of its neighbors, recording successRate,
helpRate, and requestToRate. Our preliminary analysis of the results indicates
that an agent is able to locate its best neighbor eventually, striking a balance
between operational quality and credibility of the translation. We are currently
adding time constraints in another experiment to address partial successes. Results
are forthcoming.

Level-3 Analysis: Segment Results
At this level, we want to investigate how the agents handle the different

segments. Briefly, there are six segments in each batch of queries. Segment 1 is the
least demanding in terms of the number of links or links desired for each query.
Segment 2 consists of queries that each lead to an agent having to collaborate
with its neighbors. Also, the queries are submitted in a staggered manner. Thus,
the agents are not flooded with all their queries at the same time. Segment 3

116 Leen-Kiat Soh

is similar to Segment 2, but with far more demanding queries in terms of the
number of links desired. In Segment 4, the queries are intentionally submitted to
the agents that do not have links for. These queries are also packed to induce
communication congestion in the system as well as resource contention within
each agent for negotiation threads. Segment 5 is similar to Segment 4 but with
staggered submissions and thus is less constrained. Segment 6 is a mixture of all
the above characteristics.

In addition, we identify eight attributes to describe each segment (see Table
4):

(1) cooperationNeeded : indicating whether an agent needs to collaborate with
its neighbors to satisfy the queries in the segment.

(2) numCycles: the duration of the segment.
(3) queryCompactness: the ratio of the number of queries occurring at the

same cycles to the total number of queries in the segment.
(4) queryDensity : queryCompactness normalized by numCycles.
(5) aveNumLinks: the average number of links desired per query in the

segment.
(6) maxNumLinks: the maximum number of links or desired links of a query

in the segment.
(7) minNumLinks: the minimum number of links or desired links of a query

in the segment.
(8) knowledgeRatio: the ratio of the number of queries submitted to the

agents who know the requested concepts over the number of total queries in the
segment.

In general, if a segment requires cooperation, with a larger number of queries
for an agent, higher compactness, lower number of cycles, higher query density,
and higher number of links desired per query, and lower knowledge ratio, then we
expect the system to perform less successfully.

Seg cN nC qC qD aL maL miL kR
1 N 9 1 0.11 3 5 1 1
2 Y 27 0.8 0.03 10 12 7 1
3 Y 27 0.8 0.03 20 26 15 1
4 Y/N 9 1 0.11 4 5 2 0.02
5 Y 26 0.8 0.03 11 12 7 0.00
6 Y/N 9 1 0.11 5 13 2 0.54

Table 4. Description of the six different segments. Ab-
breviations: cN = cooperationNeeded, nC = numCycles, qC
= queryCompactness, qD = queryDensity, aL = aveNumLinks,
maL = maxNumLinks, miL = minNumLinks, and kR
= knowledgeRatio.

From the experiments, we observe that:

Distributed Ontologies in a Multiagent Framework 117

• The average successQuality values for segments 2 and 3 are similar given
the same number of threads. The key difference between the two segments is
the average number of links desired per query. So, we see that the average
number of links desired does not directly impact the quality of the retrieval.
It does impact the duration value, however.

• The knowledgeRatio value impacts the average successQuality value: agents
with higher knowledgeRatio values achieve higher successQuality values,
especially when the number of threads is small (0 or 1). As the number
of threads increases, the impact of knowledgeRatio decreases. Also, as the
number of agents with narrow ontology increases, the number of threads
factors more significantly into the successQuality values of the agents with
low knowledgeRatio values. In general, more agents having narrow ontology
in the system does not affect their retrieval outcome if the knowledge ratio is
high. However, when the knowledge ratio is low, both the number of threads
and the number of agents having narrow ontology will impact greatly on the
retrieval outcome.

• The impact of queryDensity value of the segments on the query results is
not expected. We expected that the successQuality would be high when
the queryDensity was low. However, this is not the case. Actually, the
segments with a high query density (1, 4, and 6) have significantly higher
successQuality than do the other segments. This indicates that the query
density is not as important as other attributes in determining the retrieval
quality. As future work, we will design further experiments with the same
number of links desired per query but with different query density values to
more clearly investigate the role of queryDensity in successQuality.

• The number of links desired per query impacts the retrieval results. As
aveNumLinks increases, successQuality decreases given the same number of
threads. Also, when the average number of links desired is large, it dominates
the variance in the number of agents having narrow ontology in determining
successQuality.

• If the average number of links desired is kept the same for any two segments,
the segment with a higher maximum number of links desired will yield worse
query result. This is consistent even when the number of threads is varied.

• The successQuality is less predictable when the agents have fewer threads.
This indicates that when there are enough threads for the agents to commu-
nicate with, the retrieval results are more predictable — a key motivation for
multiagent cooperation.

• The successQuality is less predictable when there are more agents with nar-
row ontology. This may be a good sign. As each agent processes queries and
learns, it updates its translation table, and thus it performs gradually better.
We will investigate the convergence of this observation in the future.

• The average duration increases the fastest for Segment 5 as the number of
threads increases. Note that in this segment, the knowledgeRatio value is
zero. That is, all queries submitted are intentionally directed to the agents

118 Leen-Kiat Soh

who do not understand the queries, which result in many relays. Since an
agent has to contact all known neighbors, the more threads it has, the more
neighbors it contacts and that leads to the significant increase in duration.

• The average duration value is less predictable when the agents have fewer
threads. This observation echoes the one regarding successQuality. Also,
when the number of threads is small, the average duration value is more
predictable if the system has more agents with narrow ontology. Overall, we
see that the number of threads play a significant role in determining the
average duration value.
Level-5 Analysis: Individual Results
At this level, we compare the systems performance to the different groups of

queries, based on the numbers of links desired. From the experiments, we observe
that:
• The searchQuality value decreases as the number of links desired increases.

This is expected.
• In general, when the number of links desired is small, the average searchQuality

value increases as the number of negotiation threads increases. The reason
for this observation is that an agent needs to contact its neighbors when it
cannot provide a sufficient number of links. With more threads, the agent
is able to ask for more help and that leads to more successes. However, if
the environment is over-constrained (e.g., when a set of queries are packed
in a short segment), the number of threads available for communication at
any given time decreases and the benefit is not observed. Also, when the link
demand is high, the searchQuality values are similar in spite of the differ-
ent numbers of negotiation threads. We see that the system saturates at this
point.

6. Conclusions

We have described our work-in-progress with collaborative understanding of dis-
tributed ontologies in a multiagent framework, focusing on the operational com-
ponents. We have outlined the methodology and design of our framework. The
methodology involves building agents with key operational components to sup-
port ontological functions such as query processing, query composition, negotia-
tion, and collaboration. We have also briefly discussed our implementation. We
have focused mainly on our on-going experiments and study of operational issues.
We have described our query scenarios, translation tables, and ontologies, as well
as two key sets of parameters collected from our experiments: neighborhood profile
and query result parameters. Our experiments have generated a lot of data that we
are currently reviewing and investigating. We have reported on some preliminary
analyses to give an overall assessment of our system’s feasibility and correctness.
In general, we see that the number of negotiation threads available to each agent
in the system has a key role in determining the successQuality of a query task,

Distributed Ontologies in a Multiagent Framework 119

the average successRate of a negotiation, and the degree of collaboration among
agents. We also see that the number of ”narrow” ontologies influences the agents’
behaviors negligibly. We plan to look into this finding further. Our immediate
future work includes (1) completing the 7 levels of analyses identified in this pa-
per to analyze our infrastructure, (2) finishing the interpretation module to add
complexity into the negotiation protocols, (3) studying the impact of learning in-
depth, and (4) investigating the usefulness of the utility measure and its impact on
the accuracy of translation. For the last item, remember that the utility measure
of a neighbor is based on the credibility of the particular translation as well as
the agents relationships. That means, even if a neighbor is very knowledgeable
(with high credibility), an agent may not approach that neighbor for help if the
successRate is low. As a result, our distributed ontology learning may be biased
towards how close two agents have collaborated, and factor in less importantly the
actual accuracy of the translation. Thus, in a way, we are addressing a type of op-
erational distributed ontology: agents learn ontologies that are useful and credible
to them, instead of only learning ontologies that are highly credible to them.

Acknowledgement

The author would like to thank JingFei Xu for her programming and running the
experiments for this project.

References

[1] Soh, L.-K. 2002. Multiagent, Distributed Ontology Learning, Working Notes of the
2nd AAMAS OAS Workshop, July, Bologna, Italy.

[2] Shafer, G. 1976. A Mathematical Theory of Evidence, Princeton, NJ: Princeton Uni-
versity Press.

[3] Soh, L.-K. 2002. A Mutliagent Framework for Collaborative Conceptual Learning
Using a Dempster-Shafer Belief System, Working Notes of AAAI Spring Symposium
on Collaborative Learning Agents, Stanford, CA, Mar 25-27, pp. 9-16.

[4] Soh, L.-K. and Tsatsoulis, C. 2002. Satisficing Coalition Formation among Agents,
Proceedings of AAMAAS02, July, Bologna, Italy.

[5] Soh, L.-K. and Tsatsoulis, C. 2002. Reflective Negotiating Agents for Real-Time Mul-
tisensor Target Tracking, in Proceedings of IJCAI’01, Seattle, WA, Aug 6-11, pp.
1121-1127.

[6] Williams, A. B. and Tsatsoulis, C. 1999. Diverse Web Ontologies: What Intelligent
Agents Must Teach to Each Other, Working Notes of the AAAI Spring Symposium
Series on Intelligent Agents in Cyberspace, Stanford, CA, Mar 22-24, 115-120.

120 Leen-Kiat Soh

Leen-Kiat Soh
Computer Science and Engineering
University of Nebraska
256 Avery Hall
Lincoln, NE
(402) 472-6738
e-mail: lksoh@cse.unl.edu

Reconciling Implicit and Evolving Ontologies
for Semantic Interoperability

Kendall Lister, Maia Hristozova and Leon Sterling

Abstract. This paper addresses current approaches to the goal of semantic
interoperability on the web and presents new research directions. We criti-
cally discuss the existing approaches, including RDF, SHOE, PROMPT and
Chimaera, and identify the most effective elements of each. In our opinion,
the ability of these primarily closed solutions to succeed on a global web
scale is limited. In general, a unilateral solution to the problem on a global
level seems unlikely in the foreseeable future. We review and contrast our
own research experiments AReXS and CASA and suggest that as yet unad-
dressed issues should be considered, such as reconciling implicit ontologies
and evolving ontologies and task-oriented analysis. We also consider the role
of semantic interoperation in multi-agent systems and describe strategies for
achieving this via the ROADMAP methodology, with emphasis on building
and assuring knowledge models.

Keywords. Ontology translation/mapping, Ontology maintenance/evolution,
Data standardisation.

1. Introduction

The much talked about goal of building a new Internet that is comprehensible to
machines as well as humans is generally considered to involve enhancing content
and information sources with semantic markings and explicit ontologies. A number
of approaches to this goal have been proposed, and these generally involve a new
representation for semantically enriched data. Something that seems to be often
overlooked, however, is that a single solution is unlikely to be usefully applicable
to the entire world wide web. It is obvious that business needs are generally quite
different to the needs of individuals, and that even within the business community
different areas will require solutions of varying sophistication, accuracy and scale.

The widespread success of the world wide web and its underlying technolo-
gies, HTML and HTTP, has been due in no small part to their simplicity and ease

122 Kendall Lister, Maia Hristozova and Leon Sterling

of adoption. By providing a simple architecture that anyone could learn and use
with minimal overhead, content flourished on the web. Other information tech-
nologies that arguably provided more effective methods for locating and retrieving
data failed to take off in the same exponential way that the web did. Where the
web infrastructure itself doesn’t even contain the most rudimentary searching and
resource location features, Gopher, WAIS and a large number of proprietary on-
line databases that predated the world wide web all provided automated indexing,
searching, hypertextuality and other information management capabilities. But
despite their apparent advantages, all of these technologies were overtaken by the
web. In fact, in many cases proprietary databases and indexes have had their in-
terfaces replaced with web-based solutions, to the point that the actual technology
is largely hidden. It is more than a coincidence that where the world wide web
succeeded and grew to become a de facto standard, the more complex alternatives
faltered and missed out on popular adoption.

Similarly, we consider that the next generation of semantically-capable global
information infrastructure will necessarily be relatively simple in order to achieve
the same scale of acceptance. That is not to say that sophisticated technologies
have no place - on the contrary, they will be vital for the areas of industry that
require them, and their advances will no doubt drive other research efforts even
further. Also, the intelligent agents that roam this infrastructure will themselves be
very sophisticated. However, there remains a fundamental role for simple, flexible
and adaptive technologies that do not demand strict adherence to formal standards
and protocols and the development and publishing costs that follow. By leaving
the majority of the intelligence for semantic comprehension in the interpreting
applications rather than the medium itself, we will develop technologies that can
operate in any information environment, not just those that are sophisticated and
semantically enhanced. There is no suggestion that semantically rich environments
are not useful and desirable, but it is not practical to expect the entirety, or even
the majority, of the information landscape of the future to be uniformly structured,
as current research seems to imagine.

2. Current projects toward a semantic web

Discussions of the problems of semantic operability on the web have a tendency
to become discussions of the problem of managing and integrating ontologies. The
reasons for this are not obscure: ontologies are widely regarded as a critical ele-
ment of the next generation of data integration solutions, and the world wide web
is a heterogeneous environment in which foreign data (and therefore ontologies)
are regularly juxtaposed. What is less clear is how such data can be combined. A
number of new technologies have been proposed that extend or replace existing web
technologies; prominent among these are RDF, SHOE, PROMPT and Chimaera.
However, these tools and techniques either require adoption of a specific standard
for ontology representation (RDF [1], SHOE [6, 7]) or are only semi-automated

Reconciling Implicit and Evolving Ontologies for Semantic Interoperability 123

reconciliation solutions (PROMPT [20], Chimaera [18]). In fact, even the ontol-
ogy representation standards such as RDF and SHOE appear to require manual
construction of the new intersection ontologies that provide mappings between
different ontologies.

Each of these tools and technologies has been well described by their authors
and developers, and the purpose of this paper is not to repeat the existing descrip-
tions. Each development attempts to overcome the heterogeneity of the web, but
they all suffer common problems. For example, although Chimaera successfully
addresses the issue of managing different ontologies by reconciling them, it is still
a tool that requires manual manipulation and human decision-making. Similarly,
PROMPT also is only semi-automatic.

RDF provides a transportable way of expressing information, but the schema
itself is separated from the information. Thus maintenance is difficult, as if the data
changes the schema must be changed as well to maintain consistency. This prob-
lem will be faced by any implementation that uses an explicit representation of
ontology. RDF appears to provide a useful medium for expressing data and meta-
data, and further layers such as DAML+OIL [8, 19] increase the opportunities
for reasoning about the data contained in a document based on its accompanying
meta-data. But each ontology must still be constructed either in isolation from
other ontologies (in which case reconciling information sources faces all the prob-
lems discussed in the introduction to this paper), or the ontology developer must
find and look inside external ontologies to choose which to extend. Since this im-
plies that the other ontologies are well-formed and available, there is hardly a need
for reconciliation - this paper is concerned with situations in which two (or more)
existing information sources are to be brought together. It is not clear that RDF
or DAML+OIL can assist with this task.

The biggest disadvantage of SHOE is lack of central management. Because
of its flexibility, many different users can create new or extend existing ontologies
to annotate the data, which makes it difficult for agents and humans to query this
data. As mentioned regarding RDF and DAML+OIL, agents must be aware of the
many existing ontologies, and SHOE still does not solve the problem of automat-
ically reconciling diversity. Thus results from a query may remain incomplete or
mismatched because the agent is not able to find all the relevant data. Further,
SHOE does not yet support a wide range of ontology formats.

Since the previous version of this article was published, OWL, or Web On-
tology Language, has received a great deal of attention and effort. Supported
and endorsed by the World Wide Web Consortium (W3C), OWL is a revision of
DAML+OIL, extended to include, among other features, relations between classes,
cardinality, equality, characteristics of properties and enumerated classes [26].
OWL provides a means to tag and mark entities mentioned in web pages, con-
necting them to ontologies for definition, and relating them to other entities for
reasoning and deduction. The motivation behind the development of OWL is to
provide a language to support the Semantic Web, discussion of which is beyond
the scope of this article (see the W3C web site [25] for information). OWL comes

124 Kendall Lister, Maia Hristozova and Leon Sterling

in three versions which differ in complexity, trading expressiveness and syntactic
freedom for computability and decidability.

As a language for declaring entities’ types by reference to web-accessible
ontologies, and reasoning about these entities, OWL is a strong candidate for a
de facto standard for on-line communication. If all information publishers could
be convinced to develop ontologies for their content and mark it accordingly, and
their ontologies could be meaningfully integrated or at least reconciled consistently,
then the Semantic Web effort will succeed and the technologies to be presented in
this article will no longer be necessary. As yet, this has not happened, nor does
it seem likely in the immediate future. Further, there is an enormous body of
information both on- and off-line that will probably never be marked with OWL
or other ontological meta-data, unless this could be done automatically.

3. Reconciling implicit ontologies

Most data on the Internet today appears without any explicit ontology. To inte-
grate data that has no accompanying explicit ontological representation requires
either that formal ontologies be constructed for each data source, manually or
automatically, or that the conceptual and semantic correspondences between el-
ements in the data be recognised or deduced directly, without resorting to an
explicit representation of the ontology. The former process at first seems to be
the more reasonable, as it mirrors the intuitive process a person would be likely
to define if asked to plan the task (see [17] for a detailed analysis of task-based
contexts). However, we suggest that the latter process is in fact closer to the actual
approach a person would take when given two data sources and asked to reconcile
them. Furthermore, the first method introduces several of the most troublesome
ontology management issues, namely constructing accurate and usable ontologies,
choosing a representation, and then aligning different ontologies. If the two on-
tologies are developed together, some of the difficulties of the development can be
stepped over as the engineer juggles and reconciles concepts and relationships as
they go, but such a synergy certainly cannot scale far beyond two data sources at
a time. In reality it is often desirable to compare and contrast data from multiple
sources, such as a variety of on-line book stores. One objective of our research into
ontological reconciliation is to automate the process as much as possible so that
any solutions are eventually globally deployable.

Another important benefit of an automated, lightweight approach to ontolog-
ical reconciliation is that it makes whatever technology is deployed very adaptable
to changes in the data environment. If an intelligent agent is tasked with retrieving
prices of books from three major on-line book stores, traditional ontology develop-
ment and management approaches require that an engineer assess the data sources
and construct mapping ontologies between them. If the companies publishing their
stock data does not supply a well-formatted ontology along with the shopping data,
the engineer also has to construct three individual ontologies before any mapping

Reconciling Implicit and Evolving Ontologies for Semantic Interoperability 125

can even be considered. If a fourth source of on-line books becomes available, the
engineer is required again to construct either another mapping ontology to align
the new source and the existing mapping ontologies, or the process must begin
again from scratch. Of course, if the intelligent agent has its own ontology for
the domain of books sales (which is likely, if it has been designed to search and
report on data of this type), it is only necessary for the engineer to construct maps
between this ontology and each data source. But each time one of the companies
changes their data representation the engineer is again required to manually inter-
vene, unless the company provides sufficient hooks in their ontology for backward
compatibility. In the low margin world of on-line commerce, this is hardly likely to
be considered a cost-effective effort even though technologies such as SHOE delib-
erately support this [6]. An automated solution is obviously preferable to one that
requires human supervision, and we suggest that in most end-user applications,
the required accuracy is generally not high enough to demand heavyweight tools
and processes. Additionally, a well-designed user interface could allow the user to
touch up the results of the automatic reconciliation on-the-fly, thus harnessing the
intelligence of the user for effectively no cost.

4. Practical reconciliation

The bulk of this paper discusses two recent projects that have produced promising
results for alternative approaches to ontological reconciliation. Elements of this
analysis were originally published in [15] but have been significantly updated here
to illustrate the practical possibilities for implementing the ideas presented in
the first part of this paper. The projects described here are a progression from
earlier work [23, 24]. The two approaches to ontological reconciliation described
in this section are lightweight and suitable for inclusion in intelligent software
agents, particularly information agents which are required to deal with varied
and uncertain information sources and formats. Neither approach is tied to a
particular ontology representation language, indeed AReXS does not use explicit
formal ontologies at all. Rather than the more abstract exercise of aligning hand-
crafted ontologies, these two approaches deal with semi-structured information as
it tends to occur in practice. Where CASA uses knowledge units to interpret an
information source and AReXS constructs example-based assumptions of semantic
equivalence, our most recent work is a combination of these approaches called
ROADMAT1 which has demonstrated improved results and will be described in
future publications.

4.1. CASA

Classified Advertisement Search Agent (CASA) is an information agent that searches
on-line advertisements to assist users in finding a range of information including

1ROADMAT has been developed by Gillian Tee as part of her honours thesis in the Intelligent
Agent Lab.

126 Kendall Lister, Maia Hristozova and Leon Sterling

rental properties and used cars [3, 4]. It was built as a prototype2 to evaluate
the principle of increasing the effectiveness and flexibility of information agents
while reducing their development cost by separating their knowledge from their
architecture, and discriminating between different classes of knowledge in order to
maximise the reusability of constructed knowledge bases. CASA is able to learn
how to interpret new HTML documents, by recognising and understanding both
the content of the documents and their structure. It also represents a framework
for building knowledge-based information agents that are able to assimilate new
knowledge easily, without requiring re-implementation or redundant development
of the core agent infrastructure.

CASA classifies knowledge into three categories: general knowledge, domain-
specific knowledge and site or source specific knowledge. Each category is inde-
pendent from the others, and multiple instances of each category can exist. This
segregation of knowledge by practical use is markedly different to the usual ap-
proach of capturing and representing all high-level knowledge in a formal hierarchy
or graph and ignoring low-level knowledge. It provides more seamless integration
of different types of knowledge, as well as discriminating between knowledge that
is likely to be common across heterogeneous data sources, and knowledge that is
likely to change. This increases the effectiveness of an information agent equipped
with such knowledge, as it does not approach a new data source empty handed, but
armed with the ability to make assumptions and deduce correspondences between
the new data and sources with which it is familiar.

General knowledge gives a software agent enough information to understand
and operate in its environment. General knowledge is knowledge that is true for
all information sources, and is independent of specific domains and sites. The set
of general knowledge developed for CASA describes on-line web documents, and
includes knowledge of the components that make up an HTML document such as
what are tables, paragraphs and lines, as well as knowledge of what a web page is
and how one can be accessed.

Domain-specific knowledge provides an information agent with a basic un-
derstanding of the area in which it is required to work. This knowledge is true
for a particular field and is independent of site or source specifics. For the case of
university services, domain knowledge would generally include the concepts of stu-
dents, lectures, theatres, semesters, professors and subjects, as well as ontological
relationships such as the idea that students take classes, classes cover particular
topics and occur at certain times during the week at certain locations, and that
particular subjects make up a course. Because domain knowledge is independent of
site-specific knowledge, it can be re-used across numerous sites and should remain
useful into the future.

Site-specific knowledge is true for a particular information source only. Site
knowledge is specific and unique, but necessary for negotiating the contents of
a particular information source; it provides a means of understanding the basic

2CASA was built by Sharon Gao as part of her doctoral thesis in the Intelligent Agent Lab.

Reconciling Implicit and Evolving Ontologies for Semantic Interoperability 127

data that comprise an information source, for a particular representation. Con-
tinuing the university web site example, site-specific knowledge might encode the
particular pattern or format in which a certain institution presents a description
of a unit of teaching, or of a degree, including information such as table struc-
tures, knowledge unit sequences and marker text that locates certain classes of
information.

The three categories of knowledge that CASA manages provide different lev-
els of operational assistance for the information agent. General knowledge enables
an agent to act and interact in a particular environment, providing the basis for
navigation and perception and giving the agent a means by which to internalise
its input. Site-specific knowledge permits an agent to assimilate and process in-
formation from a particular source, which is a necessary ability if the agent is
to perform useful tasks. Domain-specific knowledge sits between general and site-
specific knowledge, giving a conceptual framework through which an agent can
reconcile information from different sources. Domain-specific knowledge can also
assist an agent to negotiate unfamiliar information sources for which it has no
site-specific knowledge. Domain knowledge can be used in conjunction with gen-
eral knowledge to analyse a site’s conventions and representations and to attempt
to synthesise the site knowledge necessary to utilise the new information source.
Because domain knowledge is not tied to a particular representation, it can be
adapted and applied to a variety of different sites or data sources, significantly
reducing development time for information agents.

A significant benefit of classifying knowledge into categories is that knowledge
can be more readily reused and incorporated into other agents. Compartmental-
ising knowledge allows agents to teach each other about new information sources
or even new knowledge domains. Domain knowledge is reusable by design, and
general knowledge is similarly useful. Given the modular approach to information
agent construction presented in CASA, once an agent has been taught about a
certain domain of knowledge, that knowledge can be applied to a variety of en-
vironments just as easily as it can a variety of sites. By plugging in a different
general knowledge base, a web-based information agent could easily become an
SQL- or XML-based information agent, with the cost of redevelopment greatly
reduced by the re-applicability of the domain knowledge base. It also seems quite
feasible for an information agent to be armed with a variety of general knowledge
bases permitting it to work in multiple environments as appropriate, or even at
the same time, utilising its knowledge as applicable both to process recognised
information and to interpret and negotiate unfamiliar conceptual representations.

The knowledge categories also enabled a limited amount of learning within
CASA. Within the domain knowledge structure CASA was able to add to knowl-
edge units; for example, a real estate instance of CASA learned suburb names for
location of properties described in advertisements and the going rates for proper-
ties to enable it to understand the meaning of terms such as “cheap”. It also learnt
the site-specific knowledge required to interpret HTML table structures automat-
ically without training data. This learning protected CASA from the evolution of

128 Kendall Lister, Maia Hristozova and Leon Sterling

form that inevitably occurs in on-line information sources, allowing it to adapt to
unstated ontological changes.

4.2. AReXS

AReXS (Automatic Reconciliation of XML Structures) is an application3 that rec-
onciles heterogeneous data sources presented in XML documents. It aligns data
sources according to their implicit ontological structure. It is able to reconcile
differences of expression and representation across XML documents from hetero-
geneous sources without any predefined knowledge or human intervention [15]. It
achieves this by identifying XML elements whose meanings are similar enough
to be considered equivalent. AReXS requires no knowledge or experience of the
domain in which it works, and indeed is completely domain independent. It uses
Example-Based Frame Matching (EBFM) [9] and is able to achieve very high recall
with modest precision on real world data collected from commercial web sites. By
requiring no domain knowledge, AReXS is suitable for application to any field; its
success relies on its ability to identify and resolve the differences in representation
that result from sourcing data from a multi-cultural environment.

AReXS does not fit into the traditional mould of an ontology management
tool, as it does not use any type of formal ontology representation. Instead, it
more closely mimics the intuitive process that a person is likely to follow when
tasked with aligning multiple structured data sources. In formal terms, AReXS
attempts to automatically resolve the problems of synonymy and polysemy that
are significant hurdles to semantic interoperability [14, 15, 16].

For example, a pair of XML documents from different sources, both describ-
ing services offered by universities, might contain elements named SUBJECT and
UNIT respectively. If the two elements happen to both signify self-contained units
of course work, an agent with no prior domain experience or knowledge will have lit-
tle hope of realising this. AReXS resolves this discontinuity by considering the val-
ues of instances of the elements as well as the element names, deriving confidence in
a match from similarities in either comparison. If one document contains the state-
ment <SUBJECT>Introductory Programming</SUBJECT> and another contains a
similar statement <UNIT>Introduction to Programming </UNIT>, AReXS is able
to consider the possibility that the two elements SUBJECT and UNIT are in this
context signifying the same concept. If further correspondences could be found
between other instances of these same elements, the confidence of a conceptual
match would increase.

AReXS works by analysing two XML structures and identifying matching
elements, generating a map of equivalence between concepts represented in the
two documents. It is important to note that no formal representation of such
concepts is attempted - rather, it is assumed that elements represent concepts,
and that the equivalence of two elements can be deduced based on similarities
between instances of both elements. As a metaphor, AReXS works in much the

3The original AReXS system was built by Dominic Hou as part of his honours thesis in the
Intelligent Agent Lab.

Reconciling Implicit and Evolving Ontologies for Semantic Interoperability 129

same way that two people who do not share a common language might teach each
other by pointing at objects and saying the names that each person’s language
gives to that object.

Identification of conceptual equivalence is based on a consideration of lex-
icographical similarity between both the names and the contents of XML tags
in each document. Matches are then assessed to deduce structural similarities
between documents from different sources. By repeating this search for semiotic
correspondence across other pairs of elements generated from the contents of the
XML documents under consideration, AReXS is able to build a local context for
data and then use this context to reconcile the ontological differences between
XML documents.

To establish the extent of the context shared by pairs of documents, the
AReXS engine uses the Character-Based Best Match algorithm [21] to evaluate
textual similarity between the names and contents of elements. Such a string based
comparison works well to filter out simple manifestations of local cultures; for
example, one university web site may choose to include the identification number
of a subject in the name of the subject while another may not, opting instead
to have a second element containing a numeric identification code for each unit.
While AReXS will not be able to realise that the number in the name of a subject
from one university corresponds to the numeric unit code from another, it will
generally conclude from the similarity of the names that units and subjects are
conceptually compatible in this context.

Applying a textual similarity analysis on real data is likely to generate a
large number of candidate concepts that may or may not contribute to the local
context of the data. AReXS increases its confidence in a candidate for equivalence
depending on the uniqueness of the matches between element pairs. The unique-
ness function described by [9] is used to establish the likelihood of a textual match
between elements actually revealing a shared, unique concept, based on the prin-
ciple that the more common a concept is across significantly different elements,
the less rich the concept is and thus the less there is to be gained from considering
it as part of the data context.

The results of tests based on sample real world data from web sites in-
cluding amazon.com, angusandrobertson.com.au, barnesandnoble.com and bor-
ders.com show that AReXS is capable of accurately identifying conceptually equiv-
alent elements based on both the element names and sample instances of the el-
ements. These web sites were chosen as useful examples for two reasons. Firstly,
they are live, international representatives of the types of data source with which
people desire to interact (and in fact already do interact) on a regular but casual
basis, and secondly they provide data that by its nature is open to subjective de-
cisions during the process of choosing a logical representation. The casual nature
of the interaction that people generally have with sites such as these is important,
as discussed earlier in this paper. Since AReXS has been tailored to process XML
formatted input, the raw data from the sampled web sites was encoded into XML
by hand. Although much care was taken not to add any information or structure

130 Kendall Lister, Maia Hristozova and Leon Sterling

to the data that might spoil the experiments, extracting relatively free data from
web sites and converting it to a structured form is not the focus of the AReXS
prototype please refer to the next section on CASA to see how this extraction
can be automated.

The AReXS algorithms allow identification of concept matches regardless of
the ordering of concepts or elements, and its consideration of both names and
values of elements allows it to identify equivalences even if one of the name or the
value is absent (e.g. <>John Cole</> matches <AUTHOR>John Cole</AUTHOR>); in
other words, AReXS is tolerant of inconsistent data. An element name might well
be missing if the XML data has been automatically generated from another source,
as happened during the construction of the test input for these experiments - it
was not possible to identify from the sample web sites exactly what the intended
name of a particular element was, so rather than make one up, the element tag
name was left blank. Admittedly, this left the XML documents malformed, but
substituting dummy element names would solve this and would actually allow
AReXS to cope with more than one missing element name in each data source.
The AReXS engine has also demonstrated partial success in identifying many-
to-one conceptual equivalences, which can occur in situations like that described
earlier in which multiple concepts are represented by multiple elements in one data
source but only one element in the other data source.

Although AReXS only supports reconciling pairs of data sources, the EBFM
algorithm on which it is based provides for comparison of multiple sources and
so extending AReXS to support this feature is feasible. While AReXS is par-
tially able to recognise many-to-one equivalences, it will require further work
to actually capitalise on this recognition. Finally, the principles implemented in
AReXS could quite readily be adapted to allow the extension of data struc-
tures based on identification of concept matches within element names or val-
ues. Drawing on the example described earlier of university service descriptions,
if one information source presents automobile data with an element of the form
<make model>Mitsubishi Magna</make model> and a second source opts for
two elements <make>Mitsubishi</make> and <model>Magna</model>, it is
possible to see that a software agent could use analysis techniques similar to those
implemented in AReXS to realise that both elements from the second source are
encoded within a single element of the first source.

New results in reconciliation
Since this work was first published, the capabilities of the AReXS engine

have been further examined. The domain of second-hand car advertisements was
chosen for a series of experiments, which will be briefly discussed here. Classified
advertisements are one of the more popular and successful use that people have
found for the Internet so far, probably due to the fact that they leverage the
Internet’s strengths, being convenient communication and information retrieval,
while avoiding it’s weaknesses by conducting actual transactions off-line - although
auction sites are also popular on the Internet, for high-value items such as cars,
classified advertisement sites tend to act more like match-makers than brokers,

Reconciling Implicit and Evolving Ontologies for Semantic Interoperability 131

Figure 1. Search interface for Autotrader

bringing together interested sellers and buyers who then meet and make their own
arrangements. Five popular web sites were chosen:

• Autotrader (www.autotrader.com.au)
• Autoweb (www.autoweb.com.au)
• Carsales (www.carsales.com.au)
• Drive (www.drive.com.au)
• Ebay (www.ebay.com.au)

The search function of each site, an example of which is shown in Figure 1,
was used to collect 100 current entries, creating a database of 500 car descriptions.
The web sites typically presented the car descriptions in the form of tables, like
that shown in Figure 2. This data was then parsed by custom written information
agents to create pseudo-XML documents (it was not necessary to conform strictly

132 Kendall Lister, Maia Hristozova and Leon Sterling

Figure 2. Car descriptions presented by Autotrader

to the XML standard for our purposes). The descriptions of cars were thereby
transformed into documents of the form:

<Autotrader>
<car>

<make model>Toyota Corolla SECA</make model>
<yr>1993</yr>
<kms>140,000</kms>
<price>$9,995</price>
<state>WA</state>
<media>?</media>
<dealer></dealer>

</car>
</Autotrader>

The data presented by the classified advertisement web sites was not always in
the form of a simple table - Figures 3, 4 and 5 show different styles of presentation.

Reconciling Implicit and Evolving Ontologies for Semantic Interoperability 133

Figure 3. Car descriptions presented by Autoweb

Regardless, the use of task-oriented information agents to extract the required data
from the web pages made collecting the data into a consistent form quite simple.
Attempting to create a single information agent to parse all five web sites would
have taken significantly longer than this more direct approach.

Where possible, the markup tag names were taken directly from the original
source data. Each of the five sets of car descriptions were paired and given to
AReXS to reconcile, producing a collection of mappings between fields based on
any evidence that AReXS could find to claim conceptual correspondences between

134 Kendall Lister, Maia Hristozova and Leon Sterling

Figure 4. Car descriptions presented by Carsales

the sets. For example, the data from Autotrader was compared with with that
from Autoweb:

Source Autotrader.xml Source Autoweb.xml
<make model>Subaru Liberty GX</make model> <year>1989</year>
<yr>1993</yr> <description>FORD FALCON</description>
<kms></kms> <price>$5,990</price>
<price>$9,990</price> <body type>WAGON</body type>
<state>VIC</state> <colour>YELLOW</colour>
<dealer>Eastern Vehicle</dealer> <location>OAKLEIGH, VIC</location>

The original form of the data for these two web sites can be seen in Figures 2
and 3. These two representations are quite tabular and it is very easy to read a

Reconciling Implicit and Evolving Ontologies for Semantic Interoperability 135

Figure 5. Car descriptions presented by Ebay

schema or ontology for the data directly from the column headings4. Other web
sites did not present such a straight forward format, notably those in Figures 4
and 5.

For a person, a quick glance at the sample records is enough to identify two
direct field matches, yr with year and price with price. Relying solely on the
field names, make model might not be expected to encode the same meaning as
description, but the sample contents of these two fields suggest that there may in
fact be a correlation. AReXS proposed the following mapping between these two
data sources:

4For reasons related to printing, some of the figures in this article had to be updated; some of
the web sites involved had changed their design since the original analysis was performed and
consequently look slightly different. Although none of the changes were significant, the reader
may notice minor differences in field names and contents

136 Kendall Lister, Maia Hristozova and Leon Sterling

Slot 0 [year] ↔ Slot 1 [yr] : 0.99965
Slot 1 [description] ↔ Slot 0 [make model] : 0.99996
Slot 2 [price] ↔ Slot 2 [kms] : 0.81160
Slot 2 [price] ↔ Slot 3 [price] : 0.99962
Slot 3 [body type] ↔ Slot 0 [make model] : 0.41018
Slot 5 [location] ↔ Slot 0 [make model] : 0.02155

Comparing the automated results with our expectations, the correlation be-
tween year and yr has been convincingly detected, as has that between price and
price. Further, as predicted based on the field content, a strong correspondence
has also been identified between description and make model. These are the three
strong content-based concept matches. However, a number of other weaker corre-
spondences are suggested, and these are just as interesting as the strong matches.
Based on the example data, there is a moderate correlation between price values
and kms values. This is understandable, as the Character-Based Best Match string
comparison algorithm focuses on pairs on characters within the strings being com-
pared, and since both price and kms are actually numbers, there is naturally a
high coincidental correspondence - numbers have a small alphabet and so exhibit
much less variation than alphanumeric strings. The CBBM algorithm is further
confused by the fact that for second-hand cars, the distance travelled will gen-
erally be in the order of 100,000 kilometres and the asked sale price will be in
the order of 10,000 dollars, thus there is almost no difference in the lengths of the
strings that represent these numbers. It seems very likely that the only reason that
the correspondence between price and kms was not stronger is the ‘$’ dollar sign
present in the price fields.

AReXS also reported a weak correspondence between body type and make model.
Examining the sample date reveals that the people who entered the data occasion-
ally include words such as ‘sedan’ or ‘wagon’ in the make model field, which seems
natural enough. This highlights the fact that even in natural language communi-
cation between people, ontological differences arise - some car owners obviously
believe that the concept of a car’s make and model includes it’s body type, whereas
others believe that that information belongs elsewhere. Some probably would have
included it in a separate field if one had been offered, but lacking such a field de-
cided to attach the information to the most appropriate available field. We also
believe that the lexicographic nature of the CBBM comparison algorithm con-
tributed to the weak correspondence between body type and make model - these
fields contain natural language words which inherently contain common substrings.
Similarly, we explain the slight correspondence between location and make model
as merely the result of linguistic coincidence.

In many cases, the unexpected results were as interesting as the expected
ones, and revealed potential methods for improving the AReXS functionality. For
example, both the Autotrader site and the Drive site included in their car descrip-
tions fields labelled colour. Typical contents of these fields were white, yellow and
so on. Intuitively, these fields should have been among the easiest for AReXS to

Reconciling Implicit and Evolving Ontologies for Semantic Interoperability 137

match, and yet on 100 records from each site it was only confident enough to rate
them with a correspondence of 0.71911. It seems likely that a string comparison
algorithm working on a word basis rather than a character-pair basis as the used
CBBM algorithm does would be more appropriate for such data, yet it is not
clear how an information agent should make a decision like this. Perhaps colour
should be regarded as a basic concept that all information agents should know
(general knowledge, in knowledge classification scheme implemented in CASA),
or at least ones dealing with cars (domain knowledge, as per CASA). Similarly,
although prices and numbers look similar, they generally shouldn’t be considered
for conceptual equivalence just because they both consist mainly of digits. AReXS
copes quite well with them, but tends to allow too much correspondence between
them - some basic knowledge about types of data would surely improve its results.

Generally, it is our opinion that the techniques for enabling semantic interop-
erability used in AReXS complement other techniques such as explicit ontology-
based approaches. Combining a variety of techniques should lead to a synergy that
provides even better results. As identified earlier, seeding AReXS’s reconciliation
attempt with small domain- or task-specific ontologies should enhance its results.
Other domain or general knowledge such as types of data would allow AReXS to
explore the most likely matches first, increasing its efficiency greatly. Although we
have not as yet conducted a comprehensive analysis, experiments with smaller sam-
ple sets have produced less consistent results as individual variations in the sample
data have greater impact on the reconciliation process. Some data are clearly more
easily reconciled than others; what is not yet clear and deserves further attention
is how to identify how useful given data will be prior to reconciling.

4.3. Modifications to the AReXS algorithm

Two noteworthy modifications were made to the AReXS implementation of the
EBFM algorithm, after running the initial experiments. The first of these was to
remove uniqueness screening for fields in the input XML documents (referred to
as slots and frames respectively by [9]). The EBFM algorithm screens input data
records according to their uniqueness, that is, how different they are to all other
input data. This was found to significantly reduce the ability identify semantic
matches, as even what appeared to be strong correspondences were heavily pe-
nalised. In effect, fields such as vehicle prices had very little chance of being suc-
cessfully reconciled because there was relatively little variance in the actual prices.
We felt that similarity within a field in a single information source shouldn’t reduce
the value of matches between fields from different sources, and when we removed
this restriction we found the results to be more in line with our expectations, and
thus much more useful.

The second modification that we made was similar. We made the reward
for matching contents of fields independent of the uniqueness of the match. The
original EBFM algorithm devalues matches if they are common, whereas we found
that this reduced the effectiveness of the reconciliation process. An example of the

138 Kendall Lister, Maia Hristozova and Leon Sterling

effect of removing this restriction was the following improvement in reconciling
two information sources:

Reward tied to uniqueness of match:
Slot 0 [make model] ↔ Slot 1 [description] : 0.57109
Slot 3 [price] ↔ Slot 2 [price] : 0.07830

Reward tied only to similarity of contents:
Slot 0 [make model] ↔ Slot 1 [description] : 0.99997
Slot 0 [make model] ↔ Slot 3 [body type] : 0.41019
Slot 0 [make model] ↔ Slot 5 [location] : 0.02156
Slot 1 [yr] ↔ Slot 0 [year] : 0.99965
Slot 2 [kms] ↔ Slot 2 [price] : 0.81161
Slot 3 [price] ↔ Slot 2 [price] : 0.99962

Certainly the number of false positive results has been increased, but they
are well below the cut-off level at which a correspondence would be considered to
be a semantic match (0.9 or greater seems to be a reasonable limit). The only real
concern is the moderate correspondence between kms and price, but even this is
not rated highly enough that presents a risk of being confused with other stronger
matches. More importantly, the confidence of the matches between make model
and description and price and price has increased dramatically, and a further very
strong correspondence has been identified between yr and year, bringing the overall
result much closer to what we had expected based on our own understanding of
the sample data.

5. Multi-agent systems: applied semantic interoperability

Multi-agent systems are an area in which multiple view-points and independent in-
terpretations of data and events are increasingly becoming a topic of interest, par-
ticularly for multi-agent systems that are open and permit heterogeneity amongst
their population. In such systems, it is inherently difficult to predict the infor-
mation needs of individual agents, let alone which particular data representations
they require. Although many proposed multi-agent systems enforce system-wide
global ontologies, this is not always desirable or feasible.

Developing such systems reliably and predictably requires careful consider-
ation of the structure of knowledge and responsibility within the system. Agent-
oriented software engineering has emerged as an active area of research in the
past several years to address the question of how to develop information agents
systematically. The first complete methodology proposed to guide the process of
developing a multi-agent system from analysis to design was Gaia [27]. Accord-
ing to Gaia, a multi-agent system is conceived as a computational organisation of
agents, each playing specific roles in the organisation, and cooperating with each

Reconciling Implicit and Evolving Ontologies for Semantic Interoperability 139

Figure 6. ROADMAP Models

other towards the achievement of a common application (i.e. organisational) goal.
Several extensions of Gaia have been proposed including ROADMAP, as reported
in [12, 13].

The ROADMAP methodology is to develop a series of models. It started as an
attempt to extend the original version of Gaia with a dynamic role hierarchy as a
way to deal with open agent systems, and included additional models to explicitly
describe the agent environment and agent knowledge. From Gaia, ROADMAP
inherits the organisational view on multi-agent systems, and basic definitions of
roles, protocols, agents and services.

In ROADMAP, a system is viewed as an organisation of agents, consisting
of a role hierarchy and an agent hierarchy. The role hierarchy is the specification
of the system representing the correct behaviour of agents. The agent hierarchy
is the implementation of the system, providing actual functionalities. The role
hierarchy constrains the agent hierarchy in the same way as organisational struc-
tures, responsibilities and business procedures constrain individuals in a human
organisation.

Figure 6 shows the structure of the ROADMAP models. The models are
grouped into three categories:

• The environment model and the knowledge model contain reusable high-level
domain information. This category of ROADMAP models provides a flexible
framework whereby an agent can be conceptualised rather than being seen
in terms of computer code.

• The goal model, role model, agent model and interaction model are applica-
tion specific. This category of models provides for the definition of the agent
as a coherent software structure that can meet the needs identified in the
first category.

140 Kendall Lister, Maia Hristozova and Leon Sterling

• The protocol model and service models describe potentially reusable software
components. As a functional area, this component helps keep the reusable
components in a place where they can be easily identified and not confused
with the conceptual structures.

For the purposes of this paper, the key model is the knowledge model. Any
evolving ontology would form the content of the knowledge model in a web-based
agent system. As described earlier in this article, even with automatic ontological
reconciliation available as an important tool for semantic interoperability, in some
situations it is undoubtedly still appropriate to create an ontology manually. We
favour a lightweight, change-sensitive approach, such as the EXPLODE ontology
development methodology [10, 11] developed here in the Intelligent Agent Lab-
oratory. Unlike traditional ontology-based system development, where the entire
system must wait for the completion of the ontology before it is possible to build
intelligent agents, EXPLODE allows the development of the system to not depend
on the ontology structure and thus to proceed safe in the knowledge that the final
ontology will be built around both the application’s domain knowledge and sys-
tem’s technical requirements. Thus significant implementation time can be saved,
as the ontology and the software agents are treated as equal elements of the sys-
tem. The EXPLODE methodology avoids the problems of ontology maintenance
and integration by employing a multi-staged approach with frequent small releases
and continuous integration. This approach extends our vision of lightweight on-
tological management to to situations that do require construction of an explicit
ontology.

6. Conclusions and Future Directions

If one of the technologies described in this paper emerged as a unilateral favourite
for knowledge representation and data integration, the Internet would quickly
cease to be that unstructured wilderness that so many paper introductions claim
it to be. Unfortunately, it seems unlikely that any single proposed solution will be
widely accepted in the near future. Even if such an event occurred, it is doubtful
that many smaller commercial and individual publishers of information would be
willing to devote the time and effort required to comply with a standard that re-
quires ontology development. If ontologies developed by leading academics require
significant effort to be combined, aligned or otherwise reconciled, as they currently
do even with the aid of computerised ontology management tools, how much more
the millions of ontologies that would be thrown together by people who just want
to get their in-formation on to the web? Ontology engineering is a complicated
activity that, while it is clearly important and will definitely play a major role
in some areas of information integration, seems likely to always bring overheads
that make it unattractive to many publishers, particularly those who move in the

Reconciling Implicit and Evolving Ontologies for Semantic Interoperability 141

global, heterogeneous public space of the Internet. We are proposing and devel-
oping technologies and methodologies that cope with heterogeneity and change in
information sources by performing implicit ontological reconciliation.

However, it would be a shame to ignore the much work being done to provide
information sources with meta-data in the form of explicit ontologies and schema.
One important direction for the future development of the tools and algorithms
described in this paper is the combination of systems that consider implicit on-
tologies with ones that understand explicit meta-data. Since we are effectively
advocating a multi-level and decentralised approach to semantic interoperability,
it is natural to imagine solutions that combine a variety of strategies, each with
its own strengths and weaknesses. Although the AReXS project requires no do-
main knowledge at all, there is no reason to restrict ourselves to this; if domain or
any other relevant knowledge is available then of course it should be harnessed. It
seems intuitive that, for example, the uninformed reconciliation done by AReXS
could be significantly enhanced by using the knowledge contained in any supplied
ontology, schema or DTD as an advantageous starting point for the reconciliation
effort. Thesaurus projects such as WordNet [2] can provide ready-made synonym
tables, enabling the space of possible concept matches that must be searched to
be greatly reduced, or at least for the most interesting and profitable areas to be
searched first. Basic grammatical or formatting knowledge could be similarly em-
ployed, as could lists or ontologies of manufacturers and products. Similarly, the
instance-based approach employed by AReXS could augment current approaches
to merging and reconciling structured ontologies, particularly if instances or ex-
emplars are include along with concepts, as is the case in the popular ontology
editing tool Protégé [5].

The approaches and methods that we have presented here address the issue
of semantic interoperability in lightweight, flexible, adaptive, reusable and intelli-
gent ways. In the future we intend to expand these approaches, strengthening the
tools available for the creation, distribution and maintenance of smart information
processing tools that work with information and people the way they are, rather
than requiring that people and information alter their respective practices and
forms to suit technology.

Acknowledgements

The projects described in this article were supported by ARC Discovery Project
DP0209297, Multi-Ontologies meet UML: Improving the Software Engineering of
Multi-Agent Systems, which was folded into the ARC Special Research Centre
of Excellence, CE0348177, for Perceptive and Intelligent Machines in Complex
Environments.

142 Kendall Lister, Maia Hristozova and Leon Sterling

The authors owe great thanks to Dominic Hou, Sharon Gao, Gillian Tee,
Thomas Juan and our colleagues in the Intelligent Agent Laboratory at the De-
partment of Computer Science and Software Engineering at The University of
Melbourne.

References

[1] Decker, S., Erdman, M., Fensel, D., Studer, R. Ontobroker: Ontology-based Access
to Distributed and Semi-Structured Information. R. Meersman et al. (eds), Semantic
Issues in Multimedia Systems, Kluwer Academic Publishers, Netherlands, 1999.

[2] Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database. MIT Press, Cambridge,
America, 1998.

[3] Gao, X., Sterling, L. A Methodology for Building Information Agents. In Y. Yang,
M. Li, A. Ellis (eds), Web Technologies and Applications, pp 43-52, International
Academic Publishers, 1998.

[4] Gao, X., Sterling, L. Semi-structured Data Extraction from Heterogeneous Sources. In
D. Schwartz, M. Divitini, T. Bratjevik (eds), Internet-based Knowledge Management
and Organizational Memories, pp 83-102, Idea Group Publishing, 2000.

[5] Gennari, J., Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubézy, M., Eriksson,
H., Noy, N. F., Tu, S. W. The Evolution of Protégé: An Environment for Knowledge-
Based Systems Development. Stanford University, Technical Report SMI-2002-0943,
2002.

[6] Heflin, J., Hendler, J. Semantic Interoperability on the Web. In Proceedings of Ex-
treme Markup Languages 2000, Graphic Communications Association, Alexandria,
America, 2000.

[7] Heflin, J., Hendler, J. Dynamic Ontologies on the Web. In Proceedings of the Sev-
enteenth National Conference on Artificial Intelligence, Menlo Park, America, 2000.

[8] Hendler, J., McGuinness, D. L. The DARPA Agent Markup Language. In IEEE
Intelligent Systems, Vol. 15, No. 6, November/December, pp 67-73, 2000.

[9] Ikeda, Y., Itoh, F., and Ueda, T. Example-based Frame Mapping for Heterogeneous
Information Agents. In Proceedings of the International Conference on Multi-Agent
Systems, Paris, France, 1998.

[10] Hristozova, M. EXPLODE: Extreme Programming for Lightweight Ontology Devel-
opment. Master of Engineering thesis, Department of Computer Science and Software
Engineering, The University of Melbourne, 2003.

[11] Hristozova, M., Sterling, L. An eXtreme Method for Developing Lightweight Ontolo-
gies. In S. Cranefield, T. Finin, S. Willmott (eds), Proceedings of the Workshop on
Ontologies in Agent Systems, First International Joint Conference on Autonomous
Agents and Multi-Agent Systems, CEUR Workshop Series, 2002.

[12] Juan, T., Pearce, P., Sterling, L. ROADMAP: Extending the Gaia Methodology for
Complex Open Systems. In Proceedings of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, 2002.

[13] Juan, T., Sterling, L. The ROADMAP Meta-model for Intelligent Adaptive Multi-
Agent Systems in Open Environments. In Proceedings of the Fourth International

Reconciling Implicit and Evolving Ontologies for Semantic Interoperability 143

Workshop on Agent Oriented Software Engineering, Second International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems, Springer-Verlag Lecture
Notes in Computer Science, Vol. 2935, 2003.

[14] Klein, M. Supporting evolving ontologies on the Internet. In Proceedings of the EDBT
2002 PhD Workshop, Prague, Czech Republic, 2002.

[15] Lister, K., Sterling, L. Agents in a Multi-Cultural World: Towards Ontological Rec-
onciliation. In M. Stumptner, D. Corbett, M. Brooks (eds), Advances in Artificial
Intelligence, Proceedings of the Fourteenth Australian Joint Conference on Artificial
Intelligence, Springer-Verlag Lecture Notes in Artificial Intelligence, Vol. 2256, pp
321-332, 2001.

[16] Lister, K., Sterling, L. Tasks as Context for Intelligent Agents. In Proceedings of
the IEEE/WIC International Conference on Intelligent Agent Technology, Halifax,
Canada, 2003.

[17] Lister, K., Sterling, L. Reconciling Ontological Differences for Intelligent Agents. In
P. Bouquet (ed), Meaning Negotiation, AAAI Technical Report WS-02-09, Eigh-
teenth National Conference on Artificial Intelligence, Edmonton, Canada, 2002.

[18] McGuinness, D., Fikes, R., Rice, J., Wilder, S. An Environment for Merging and
Testing Large Ontologies. In Proceedings of the Seventh International Conference
on Principles of Knowledge Representation and Reasoning, Breckenridge, America,
2000.

[19] McGuinness, D. L., Fikes, R., Hendler, J., Stein, L. A. DAML+OIL: An Ontology
Language for the Semantic Web. In IEEE Intelligent Systems, Vol. 17, No. 5, Sep-
tember/October, 2002.

[20] Noy, F., Musen, N. An Algorithm for Merging and Aligning Ontologies: Automation
and Tool Support. In Proceedings of the Workshop on Ontology Management at the
Sixteenth National Conference on Artificial Intelligence, Orlando, America, 1999.

[21] Sato, S. CTM: An example-based translation aid system. In Proceedings of the Fif-
teenth International Conference on Computational Linguistics, Nantes, France, 1992.

[22] Steels, L. Self-Organising Vocabularies. C. Langton, T. Shimohara (eds), Artificial
Life V: Proceedings of the Fifth International Conference on the Synthesis and Sim-
ulation of Living Systems, Nara, Japan, 1996.

[23] Sterling, L. A Knowledge-Biased Approach to Information Agents. In Proceedings of
the International Workshop on Information Integration and Web-based Applications
and Services, Yogyakarta, Indonesia, 1999.

[24] Sterling, L. On Finding Needles in WWW Haystacks. In Sattar, A. (ed.), Advanced
Topics in AI, Proceedings of the Tenth Australian Joint Conference on Artificial
Intelligence, Springer-Verlag Lecture Notes in Artificial Intelligence, Vol. 1342, pp
25-36, 1997.

[25] World Wide Web Consortium. www.w3c.org. World Wide Web Consortium web site,
2004

[26] Web Ontology Language (OWL). www.w3c.org/2004/OWL. World Wide Web Con-
sortium web site, 2004

[27] Wooldridge, M., Jennings, N. R., Kinny, D. The Gaia Methodology for Agent-
Oriented Analysis and Design. In Journal of Autonomous Agents and Multi-Agent
Systems, 3(3):285-312, 2000.

144 Kendall Lister, Maia Hristozova and Leon Sterling

Kendall Lister, Maia Hristozova and Leon Sterling
Intelligent Agent Laboratory
Department of Computer Science and Software Engineering
The University of Melbourne
Australia
e-mail: krl@cs.mu.oz.au

majah@cs.mu.oz.au

leon@cs.mu.oz.au

Query Processing in Ontology-Based
Peer-to-Peer Systems

Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia

Abstract. The unstructured, heterogeneous and dynamic nature of the Web
poses a new challenge to query-answering over multiple data sources. The
so-called Semantic Web aims at providing more and semantically richer
structures in terms of ontologies and meta-data. A problem that remains
is the combined use of heterogeneous sources. In a dynamic environment,
it is no longer realistic to assume that the involved data sources act as
if they were a single (virtual) source, modelled as a global schema, as is
done in classical data integration approaches. In this paper, we propose
an alternative approach where we replace the role of a single virtual data
source schema with a peer-to-peer approach relying on limited shared (or:
overlapping) vocabularies between peers. Since overlaps between vocabularies
of peers will be limited and the dynamic nature of the system prohibits the
design of accurate mappings, query processing will have to be approximate.
We provide a formal model for such approximate query processing based
on limited shared vocabularies between peers, and we show how the quality
of the approximation can be adjusted in a gradual manner. The result is
a flexible architecture for query-processing in heterogenous and dynamic
environments, based on a formal foundation. We present the approach and
discuss it on the basis of a case study.

Keywords: Semantic web, methods and formalisms for knowledge sharing,
knowledge-based mediation architectures

1. Introduction

1.1. Semantic Web and Peer-to-Peer

The approach to query-processing that we present in this paper is strongly
motivated by the peer-to-peer (P2P) architecture [12] that we expect for the
Semantic Web. In this section we will argue why we expect the Semantic Web to

146 Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia

have such a peer-to-peer architecture.

When we look at the current World Wide Web, we see in fact a mixed
architecture, that is partly client/server-based, and partly P2P. On the one hand,
each node in the network can directly address every other node in the network in a
single, flat, world-wide address space, giving it the structure typical of many P2P
networks. On the other hand, in practice there is currently a strong asymmetry
between nodes in this address space that act as content-servers, and nodes that
act as clients. Recent estimates indicate the presence of 50 million web-servers,
but as many as 150 million clients. On the scale of the World Wide Web, any
form of centralization would create immediate bottlenecks, in terms of network
throughput and server capacity.

This need for a flat, non-server-centered architecture will be even stronger
on the Semantic Web. Of course, the same physical load-balancing arguments
hold as on the current Web, but the Semantic Web adds a new argument in favor
of a P2P-style argument. On the Semantic Web, any server-centered architecture
will not only create physical bottlenecks, but as communication relies on the
use of ontologies will also create semantic bottlenecks. Since the semantics of
information will be explicit (or at least: more explicit) on the Semantic Web, any
single server will in a way “impose” a particular semantic view on all its clients.
This will have undesirable consequences, both in terms of the pluriformity of the
available information, as well as in terms of the size of the central ontology that
such information-servers would have to maintain.

Instead, a P2P-style architecture will be able to avoid both the physical and
the semantic bottlenecks. Different semantic views, expressed in terms of different
ontologies, will be provided by many peers in a flat network of peers, each employ-
ing their own local, small ontology. Of course, this increased flexibility comes at
a price: such ”different semantic views, in terms of different ontologies” creates a
significant data-integration problem: how will these peers be able to communicate
if they do not share the same view on their data? In the remainder of this paper,
we propose an approach where the communication between peers relies on a lim-
ited shared vocabulary between them. This replaces the role of the single virtual
database schema that is the traditional basis for solving data integration problems.

In the following, we will briefly point to existing work on integration of het-
erogeneous databases, and we will see that this work is predominantly based on
the notion of a global schema that is connected to the heterogeneous schemas to be
integrated. Subsequently, we argue why this traditional approach is no longer vi-
able in a peer-to-peer style network as the Semantic Web will be. The remainder of
the paper will then be devoted to describing our proposal for such new approaches
that will enable us to do query processing in a peer-to-peer setting without the
need for global integrating schemas.

Query Processing in Ontology-Based Peer-to-Peer Systems 147

1.2. The Need for New Approaches

The problem of integrating heterogeneous database schemas [10] has been
addressed by many researchers.

The integration is normally done using a global schema that is connected
to the heterogeneous schemas to be integrated by a number of views. We can
distinguish two general approaches [7]:

• Global-As-View: In the global-as-view approach every relation in the global
schema is defined as a view over the different schemas to be integrated.

• Local-As-View: In the local-as-view approach, views are used to define the
schemas of local information sources in terms of the global one.

The benefits of using explicit semantic models, i.e. ontologies, has been
recognized in many approaches. A survey of approaches using ontologies is
provided by [19]. Description logics have been proven to be a useful formalism
for specifying and reasoning about semantic models [3] to support information
integration. It has been shown that results from the database area provide
solutions for the integration of semi-structured information (see e.g. [1]).

However, some peculiar characteristics of P2P networks and, in particular,
the fact that they are characterized by strong dynamics, require the development
of new solutions, which substantially extend the current data integration technol-
ogy. This issue has been discussed in length in [5]. We report here only the main
ideas. Consider the situation where John, a person living in Toronto, is described
in the database F of his family doctor, and also in the database H of the hospital
where he once received medical treatment.

Example: John goes to another country, for instance Trentino in Italy. Un-
luckily, here he has an accident; he breaks a leg, and he must get medical aid.
The medical office has its own database M which now needs to query H for the
purpose of retrieving previous treatment details. Furthermore, a new record from
M should appear in F. However the acquaintance between M and F does not
need to be maintained for ever, since the two databases will probably not need to
coordinate again.

1.2.1. Dropping the global schema. In situations like that described in the ex-
ample, the design and development of data integration mechanisms for randomly
acquainted databases which may need to communicate only a few times, becomes
impractical. In particular, it makes little sense to speak of a global schema [7],
as we cannot think of a set of P2P databases just as an implementation of a sin-
gle virtual database (this being the assumption which motivates the definition of
a global schema). It is no longer possible to see the global schema as a view of
the local database (global-as-view approach) or, vice versa, the local databases
as views of the global database (local-as-view approach). For instance, we can no

148 Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia

longer assume that there is a unique universe, containing all the elements of the
single databases, but rather many overlapping domains. From a foundational point
of view, any theory developed under the assumption of a global schema, and un-
der the implicit assumption that the global schema is fixed, prevents us from the
studying the dynamics of a P2P network. As far as we know, in the data integra-
tion literature, these two assumptions have never been relieved, see for instance
[7, 10]. As a consequence, the problem handling heterogeneous information sources
becomes a coordination task that reoccurs whenever two peers want to cooperate.

1.2.2. Good enough answers. In a P2P network, it becomes hard to maintain
high quality answers to queries, for instance the fact that data can flow among
the databases preserving soundness and completeness. In this context, soundness
means that the data provided by the local databases satisfy the global schema
(but they are not necessarily complete, some of them can get lost in the coordi-
nation). Completeness has the dual meaning. In the data integration literature,
completeness is often given up, still maintaining the request of soundness. In a
P2P environment, it will be possible to have completeness and soundness only in
limit cases, for instance with low dynamics or simplified interaction among the
databases.

One area where there will often be interest in getting very high quality
data integration is the medical care domain. There are however many other
application domains where this is not the case. One such example is tourism. This
domain is not life critical, and in many cases the small dimension of a single busi-
ness (e.g., hotels) does not justify big investments. Consider the following example.

Example: When planning his vacation in Trentino, John goes to a local
agency. The agency searches for single operators (hotels, for instance), and queries
them for the necessary information (e.g., prices and availability).

In this, the dynamics will have a high impact on the quality of the answer.
We have network variance: the relevant databases are much more unstable in their
being active and coordinated in the network, nodes come and go (for instance
depending on the season), and so on. We have database variance: John travels
around and queries different databases. The same query will get different results
since each database will implement different degrees of coordination with the
others, and so on. Thus, for instance, a query about hotels made to a hotel
database will likely get an answer that is better than the answer obtained from
a campsite database. We also have query variance: if you ask a query about
campsites to a campsite database you will likely get a better quality answer
than if you ask this database a query about hotels. Depending on the query,
certain coordination mechanisms may or may not be activated. However, in this
application, the agency doesn’t need the best possible answer. It simply needs

Query Processing in Ontology-Based Peer-to-Peer Systems 149

some answer. As long as, for instance, it gets a hotel John likes, this is good enough.

Compared to the previous medical example, in the tourism example much
lower quality data coordination will suffice. The medical care and tourism domains
are just examples. Things can get even more radical and complex when one thinks
of applications where some of the nodes are mobile and where coordination happens
on an even more occasional basis, for instance due to the physical proximity of two
mobile peers. In these situations, and for certain kinds of applications, almost any
answer will suffice. In terms of quality of answers, we can go from one extreme to
the other. On one extreme, it may be usual to get poor quality answers. This may
happen because the databases interact partially or do not interact at all or, even
worse, they pass around data which are wrong (for instance because of unsolved
problems of semantic heterogeneity). On the other extreme, there will be a tight
coordination and it will be possible to achieve or, at least, approximate soundness
and completeness. Between these two extremes there is a continuum of answers of
different quality. This observation coincides with the ideas of the Semantic Web,
where it is widely agreed that completeness and correctness in a logical sense can
not be reached in many cases.

2. Ontology-Based Peer-to-peer Systems

Before we can present our approach to query processing in ontology-based
peer-to-peer systems, we have to specify the systems we are talking about in
more detail. We assume a system of independent peers that encapsulate the
(possibly redundant) information of the whole system. Each peer uses one or more
ontologies to model the information. These ontologies are used as a conceptual
schema of the actual information that can be seen as an instantiation of the
ontology. Peers exchange knowledge by formulating queries using the vocabulary
defined in the ontologies they use and sending them to other peers in the network.
The task of the receiving peer is to determine the answers to these queries relative
to its own vocabulary and information. This leads to a situation where we are
rather concerned with heterogeneous knowledge bases that plain data sources in
the conventional sense.

In order to get a clearer notion of the problem of processing queries in
such systems we make some simplifying assumptions. First of all we will only
consider two peers that want to communicate. Then we assume that there are
only two ontologies involved, a shared one and a private one of the peer trying to
communicate. We further assume that both ontologies are encoded on the same
language, preventing us from the problem of integrating the ontology languages.

This simplified communication problem can easily be extended to more
realistic scenarios as communication is mostly bi-lateral even in complex systems.

150 Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia

There might be more than two ontologies involved in the communication, but
they will all either be shared or private to one of the peers. The assumption
that there are actually ontologies being shared by peers in the system is backed
by the observation, that real-world ontologies are in most cases not build from
scratch. It is rather common to at least start with an existing ontology (see
for example http://www.daml.org for a library of ontologies about various
domains. The existence of an internal mapping between the ontologies used
by an individual peer is likely because if the peer wants to use more than one
ontology as a basis for its information, it has to know about their relation.
As a single peer is a rather static system compared to the overall network, we
can use schema matching techniques that have been developed in the database
community in order to find correspondences (see [14] for an overview). The
only assumption that really is a simplification is the existence of a single ontol-
ogy language. Investigating this problem, however, is out of the scope of this paper.

In the following we give formal definitions for the parts of an ontology-based
peer-to-peer system that are concerned with query processing. These parts include
the definition of ontologies and mappings as well as the notion of queries and
answers in the setting of ontology-based information.

2.1. Ontological Knowledge

A number of languages for encoding ontologies on the Web have been proposed
(see [6] for an overview). In order to get a general notion of ontological knowledge,
we define the general structure of a terminological knowledge base (ontology) and
its instantiation independent of a concrete language.

Terminological knowledge usually groups objects of the world that have cer-
tain properties in common. A description of the shared properties is called a class
definition. Classes can be arranged into a subclass-superclass hierarchy. Classes
can be defined in two ways, by enumeration of its members or by stating that it
is a refinement of a complex logical expressions. The specific logical operators to
express such logical definitions can vary between ontology languages; the general
definitions we give here abstract from these specific operators. Further relations
can be specified in order to establish structures between classes. Terminological
knowledge considers binary relations that can either be defined by restricting their
domain and range or by declaring them to be a sub-relation of an existing one. In
order to capture the actual information content of a knowledge base we allow to
specify single objects, also called instances. In our view on terminological knowl-
edge, instances can be defined by stating their membership in a class. Further, we
can define instances of binary relations by stating that two objects form such a
pair.

Definition 1 (Terminological Knowledge Base). A Terminological Knowledge Base
T is a triple T = 〈C,R,O〉 where C is a set of class definitions of the form:

Query Processing in Ontology-Based Peer-to-Peer Systems 151

• c ≡ (o1, · · · , on) where c is a class definition and o1, · · · , on are object defin-
itions.

• c1 � c2 where c1 and c2 are class definitions.

R is a set of relation definitions of the form:

• r � (c1, c2) where r is a role definition and c1 and c2 are class definitions.
• r1 � r2 where r1 and r2 are role definitions.

and O is a set of object definitions of the form:

• o : c where c is a class definition and o is an individual.
• (o1, o2) : r where r is a relation definition and o1, o2 are object definitions.

In the following, we will consider terminological knowledge bases that consist
of such axioms. Of course, any specific ontology language will have to further
instantiate these definitions to specify logical operators between classes etc, but
for the purposes of this paper, these general definitions are sufficient. Further, we
define the signature of a terminological knowledge base 〈C,R,O〉 to be a triple
〈CN ,RN ,ON〉, where CN is the set of all names of classes defined in C, RN the
set of all relation names in O and ON the set of all object names occurring in O.

We define a Tarski style semantics for the notion of terminological knowledge
that is very much inspired by Description Logics (compare [3]). The formal defini-
tion of this semantics and the notion of logical consequence is omitted due to lack
of space and can be found in an extended version of this paper [18].

2.2. Inter-Ontology Mappings

We assume that each peer has an integrated view on the ontologies it uses as
a semantic foundation for its information. This integrated view is created by
the mappings relates elements from different ontologies. The creation of these
mappings is discussed in other work (see e.g. [14] for an overview) and is not
further discussed in this paper. As our methods for query processing rely on
these internal mappings of individual peers, we have to define the nature of the
mappings. For this work, we adopted the mapping framework proposed in [11]
summarized in the following.

Madhavan et.al. define mappings in terms of operations between expressions
in two different domain models, in our case ontologies. They further demand
that the resulting expression is consistent with the logical interpretation of the
individual ontologies (we cover this point in the next section). As this framework
is very generic, we instantiate it in the context of ontological knowledge as defined
in the last section. In particular, we need to define the kinds of expressions, we
consider and the operations used to relate them.

The expressions, we are considering here are the definitions of classes, rela-
tions and objects, respectively. Further, we define the following mappings between

152 Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia

the different types of knowledge:

c1
mC←→ c2,mC ∈ {�,�,≡}

r1
mR←→ r2,mR ∈ {�,�,≡}

o1
≡←→ o2 (1)

Intuitively the mappings marked with the operator ≡ state that definitions in the
different ontologies refer to the same class, relation or object. Mappings marked
with � (and �) state that the definition in the one ontology is a special (more
general) case of the other definition. Further, Madhavan et.al. consider the use of
a helper model individual models are mapped to. The helper model is then used to
derive composed mappings between these models. In our view on ontology-based
peer-to-peer systems, the shared ontologies can be seen as such helper models.

The formal semantics for terminological knowledge can easily be extended to
cover mappings between different models. Here we assume a set of interpretation
mappings into partially overlapping domains. Mappings impose constraints on
these interpretations. A formal definition of the semantics of mappings can be
found in [18].

2.3. Semantics and Logical Consequence

We can define semantics and logical consequence of a terminological knowledge
base using an interpretation mapping .� into an abstract domain ∆ such that:
• c� ⊆ ∆ for all class definitions c in the way defined above
• r� ⊆ ∆×∆ for all relation definition r
• o� ∈ ∆ for all object definitions o

This type of denotational semantics is inspired by description logics [4], how-
ever, we are not specific about operators that can be used to build class definitions
which are of central interest of these logics. Using the interpretation mapping, we
can define the notion of a model in the following way:

Definition 2 (Model of a Terminological Knowledge Base). An interpretation � is
a model for the knowledge base T if � |= A for every axiom A ∈ (C ∪R∪O) where
|= is defined as follows.
• � |= c ≡ (o1, · · · , on), iff c� = {o�1 , · · · , o�n}
• � |= c1 � c2, iff c�1 ⊆ c�2
• � |= r � (c1, c2), iff r� ⊆ c�1 × c�2
• � |= r1 � r2, iff r�1 ⊆ r�2
• � |= o : c, iff o� ∈ c�

• � |= (o1, o2) : r, iff (o�1 , o�2) ∈ r�

In order to be able to handle multiple ontologies, we have to define the
interpretation mapping over different models and mappings between them. In the
following, we only consider an interpretation for two ontologies and mappings
between them. The definitions, however, can easily be extended to more than two

Query Processing in Ontology-Based Peer-to-Peer Systems 153

ontologies.

First of all, we divide the interpretation mapping � into two sub-mappings
�1 and �2 each defining the interpretation for one of the two ontologies in the
way described above. Further, we define the interpretation of mappings between
the ontologies in the following way:

� |= (c1
mC←→ c2) iff

⎧
⎪⎨

⎪⎩

c�
1

1 = c�
2

2 for mC =≡
c�

1

1 ⊆ c�
2

2 for mC =�
c�

1

1 ⊇ c�
2

2 for mC =�
(2)

� |= (r1
mR←→ r2) iff

⎧
⎪⎨

⎪⎩

r�
1

1 = r�
2

2 for mR =≡
r�

1

1 ⊆ r�
2

2 for mR =�
r�

1

1 ⊇ r�
2

2 for mR =�
(3)

� |= (c1
≡←→ c2) iff o�

1

1 = o�
2

2 (4)

These definitions enable us to perform reasoning across different ontologies
using the notion of logical consequence:

Definition 3 (Logical Consequence). An axiom A logically follows from a set of
axioms S if � |= S implies � |= A for every model �. We denote this fact by
S |= A.

In order to perform logical reasoning, we can use existing reasoning systems
that have been build for reasoning about description logic knowledge bases. The
system that has been used in the case study is the FaCT system [8].

2.4. Ontology-Based Queries

As mentioned in the beginning of this section, the peers in a system will exchange
information by querying information from other peers in the network using terms
from their own ontology. In the following we first define ontology based queries
as well as the notion of answers to and relations between queries. We formalize
queries in the following way: conjuncts of a query are predicates that correspond
to classes and relations of the ontology. Further, variables in a query may only be
instantiated by constants that correspond to objects in that ontology.

Definition 4 (Terminological Queries). Let V be a set of variables disjoint from
ON then an terminological query Q over a knowledge base T = 〈C,R,O〉 is an
expressions of the form Q(X̄) ← q1i

∧ · · · ∧ qmi
where qi are query terms of the

form x : c or (x, y) : r such that x, y ∈ V ∪ ON , c ∈ CN and r ∈ RN or are of
the form x = o where x ∈ V and o ∈ ON 1.

1Note that this may include data-type expressions as the type itself is can be considered to be a
class, the actual value an instance of that class and the comparison operator a special relation.

154 Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia

The following expression in an example query based on an ontology used in
the case study described later. It asks for hotels in castles that are located in towns
in Mecklenburg and have less than 25 rooms:

Q(X) ← X : Hotel ∧ (X, Z) : hat− Zimmer ∧ Z ≤ 25 ∧
(X, W) : ist− in− Schloss ∧W = ja ∧ (X, Y) : liegt− in−Ort ∧
(Y, V) : liegt− in− Land ∧ V = mecklenburg (5)

The fact that all conjuncts relate to elements of the ontology allows us to de-
termine the answer to terminological queries in terms of instantiations of the query
that are logical consequences of the knowledge base. The computation of query
answers in the sense being defined above is the main inference task of peers within
a system. In the next section we will discuss a logically well-founded approach for
computing such answers.

3. Query Processing

After having introduced some basic notions related to ontology-based peer-to-
peer systems we now turn our attention to the problem of query processing. The
definition of query answers provides us with a deductive definition that describes
correct answers with respect to a query over a single specific ontology. In the case
of an ontology-based peer-to-peer system, however, we face a situation where we
have to deal with more than one ontology. In many cases, the answering peer does
not know all terms used in the query expression, because they are taken from the
local ontology of the asking peer. In order to overcome this problem, we have to
align the vocabularies the asking and the answering peer. In [16] we describe an
approach for approximately translating classes from one ontology into another. We
briefly summarize this approach in the next section and extend it to conjunctive
queries. Further, we discuss the issue of the quality of approximations generated
by our approach.

3.1. Approximating Class Descriptions

The notion of an interpretation given above is a very general one and does not re-
strict the nature of members of a concept. This is done by the use of operators for
defining classes. These kinds of operators restrict the possible members of a class
using an interpretation mapping to an abstract domain ∆. Figure 1 defines some
operators we use in the following in order to define classes. These operators include
the definition of a class by enumerating its members, the conjunction of two
classes interpreted as the intersection of their members and existential restriction
on a certain property defining that all members of that class have to be related to
at least one object of a certain type C by the relation P . We use the the compari-
son of two numerical values as a special case of such a property (compare figure 1).

Query Processing in Ontology-Based Peer-to-Peer Systems 155

Operator Extension .�

C1 � C2 C�
1 ∩ · · · ∩ C�

n

{x1, · · · , xn} {x1, · · · , xn} ⊂ ∆

(∃P.C) {y ∈ ∆|∃x((y, x) ∈ P�) ∧ x ∈ C�}
(≤ n) {x� ∈ N |xE ≤ n}

Figure 1. Some operators for Constraining Classes

These kinds of restriction are the basis for deciding whether a class definition
is equivalent, more specialized or more general than another. Formally, we can
decide whether one of the following relations between two classes can be deduced
from the ontology:

subsumption:: C1 � C2 ⇐⇒ C�
1 ⊆ C�

2

membership:: x : C ⇐⇒ x� ∈ C�

The classes in an ontology form a hierarchy with respect to the subsumption
relation. In the case of multiple ontologies connected by mappings such a hierarchy
can also be computed for the united set of classes. Therefore, we will always have
a set of direct super- and a set of direct subclasses of a class c1 from the private
ontology. We can use those direct sub- and super classes that belong to the shared
ontology as upper and lower approximation for c1 in the shared ontology:

Definition 5 (Lower Approximation). Let C1 be the set of classes of a private
ontology, C2 the set of classes of a shared ontology and c ∈ C1, then a class
cglb ∈ C2 is called a lower approximation of c in C2, if the following assertions
hold:

1. cglb � c
2. (∃c′ ∈ C2 : c′ � c) =⇒ (c′ � cglb)

The greatest lower bound glbC2(c) denotes the set of all lower approximations of c
in C2.
Definition 6 (Upper Approximation). Let C1 be the set of classes of a private
ontology, C2 the set of classes of a shared ontology and c ∈ C1, then a class club ∈ C2
is called an upper approximation of c in C2, if the following assertions hold:

1. c � club

2. (∃c′ ∈ C2 : c � c′) =⇒ (club � c′)
The least upper bound of lubIS2(c) is the set of all upper approximations of c in
C2.

The rational of using these approximations is that we can decide whether an
entity x is a member of a class in the private ontology based on its membership in
classes of the shared ontology. This decision in turn provides us with an approxi-
mate result on deciding whether x is the result of a query stated in terms of the
private ontology, based on the following observation:
• If x is member of a lower bound of c1 then it is also in c1

156 Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia

• If x is not member of all upper bounds of c1 then it is not in c1

In [15] Selman and Kautz propose to use this observation about upper and
lower boundaries for theory approximation. We adapt the proposal for defining an
approximate classifier M ′ that assigns members of shared classes to private ones
in the following way:

Definition 7 (Class Approximation). Let C1 be the set of classes of a private on-
tology, C2 the set of classes of a shared ontology and x member of a class in C2,
then for every c1 ∈ C1 we define M ′ such that:

• M ′(x, c1) = 1 if x :

(
∨

c∈glbIS2 (c1)

c

)

• M ′(x, c1) = 0 if x : ¬
(

∧
c∈lubIS2 (c1)

c

)

• M ′(x, c1) = ?, otherwise
Where the semantics of disjunction and conjunction is defined in the obvious way
using set union and intersection.

Based on the observation about the upper and lower bounds, we can make
the following assertion about the correctness of the proposed approximate classi-
fication:

Proposition 1 (Correctness of Approximation). The approximation from definition
7 is correct in the sense that:

1. If M ′(x, c1) = 1 then x� ∈ c�1
2. If M ′(x, c1) = 0 then x� �∈ c�1

Using the definition of upper and lower bounds the correctness of the clas-
sification can be established using the model-based semantics of ontologies and
mappings (see [17] for a proof).

3.2. Queries as Classes

The result of the section 3.1 provides us with the possibility to compute a set
of objects that are definitely members of a class expression and a set of objects
that are possibly members of a class. This approach can directly be used to answer
trivial queries that only ask for members of a particular class. We have shown that a
slight variation of the mechanism can also be used to approximate Boolean queries
over class names [16]. In order to compute (approximate) answers for ontology-
based conjunctive queries, however, we also have to deal with binary relations in
the query expression. In order to cope with relations as well, we use a method for
translating conjunctive queries into class expressions that has been proposed by
Horrocks and Tessaris [9]. The idea of the approach of Horrocks and Tessaris now
to translate the query into an equivalent class expression, classify this new class
and use standard inference methods to check whether an object is an instance of
the query expression. This approach makes use of the fact that binary relations

Query Processing in Ontology-Based Peer-to-Peer Systems 157

in a conjunctive query can be translated into an existential restriction in such a
way that logical consequence is preserved after a minor modification of the object
definition part of the ontology. Details are given in the following proposition.

Proposition 2 (Role Roll-Up [9]). Let T = 〈C,R,O〉 be an ontology. Let further
R be a role, CI a set of class names in CN and a, b ∈ ON individual names.
Given a new class name Pb not appearing in CN , then 〈C,R,O〉 |= (a, b) : R ∧ b :
C1 ∧ · · · ∧ b : Ck if and only if 〈C,R,O ∪ {b : Pb}〉 |= a : ∃R(Pb � C1 � · · · � Ck)

The transformation of a complete query is more difficult due to the dependen-
cies between the variables that occur in the query expression. In order to keep track
of these dependencies during the transformation Horrocks and Tessaris introduce
the notion of a query graph.

Definition 8 (Query Graph (Horrocks and Tessaris 2000)). The graph induced by
a query is a directed graph with a node for every variable and individual name in
the query and an directed edge from node x to node y for every role term (x, y) : R
in the query.

The correct transformation of a query into a class expression depends on the
kinds of dependencies between the variables in the query which is reflected in the
structure of the query graph. While the approach of Horrocks and Tessaris is more
general, we restrict ourselves to queries where the query graph is a (directed) tree
and its root node corresponds to the variable we are interested in. In especially, this
requires that none of the roles used in the query is declared to be functional and
that each constant only appears once in a query. While using this simplification, we
would like to emphasize that the translation can be done for unions of conjunctive
queries with an arbitrary number of result variables and a very expressive logical
language for defining class expressions. Our simplifying assumptions lead to a
simple method for transforming a query graph into a class expression. The result
of applying this translation technique to our example query in equation 5 is the
following expression:

(Hotel � (∃ liegt − in −Ort .(∃ liegt − in − Land .{mecklenburg})) �
(∃ hat − Zimmer .(≤ 25)) �
(∃ ist − in − Schloss.{ja})) (6)

As this expression defines a new class in the overall ontology we can now apply
the approximation techniques described in the last section in order to compute the
sets of possible and the set of definite answers to the query. We will use this query
as a running example in the following discussion on approximations.

3.3. Quality of Approximation

Unfortunately, proving the correctness of the approximation says nothing about
the quality of the approximation. In the worst case, the upper and lower bound-
aries of concepts in the other hierarchy are always � and ⊥ respectively. In this

158 Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia

case the translated query always returns the empty set as result. We were not
able to investigate the quality of approximations on theoretical level, however, we
can provide some rules of thumb that can be used to predict the quality of an
approximation:

Depths of hierarchies:: The first rule of thumb, we can state is that deeper class
hierarchies lead to better approximations. For hierarchies of depth one it is
easy to see that we will not be able to find good upper and lower bounds.
We can also assume that deeper hierarchies provide finer grained distinctions
between concepts that in turn often produce closer approximations.

Degree of overlap:: Our approach assumes a shared ontology, however, we can-
not guarantee that different systems indeed use the same parts of this shared
vocabulary. Therefore, the actual overlap of terms used in the existing defi-
nitions that are compared is important for predicting the quality of approx-
imations. In general, we can assume that a high degree of overlap leads to
better approximations.
Both criteria used in the rules of thumb above strongly depend on the

application and on the creator of the corresponding models. At least for the
degree of overlap, we can assume that hierarchies that are concerned with the
same domain of interest will share a significant part of the vocabulary, thus
enabling us to compute reasonable approximations.

In the course of a case study it turned out that in most cases the approxima-
tion of concept expressions returns good results, because people tend to share a
reasonable number of concept names across different ontologies that provide a ba-
sis for creating mappings. These mappings can often be found using stemming and
simple string matching. On the other hand, it turned out that it is much harder to
come up with reasonable mapping between the relations used in different ontolo-
gies leading to a situation where we only have very sparse mappings between these
relations. This in turn has a major impact on the quality of approximation applied
to conjunctive queries. In fact the lack of mappings between relations often leads
to a situation, where answers could not be found, because names of relations in
the query were not known in the ontology in the answering peer. In the next sec-
tion, we discuss an approach to overcome the problem of sparse mappings between
relation names.

4. Query Relaxation

In the presence of sparse mappings, we face a situation where the descriptions of
different peers referring to the same real-world object can be significantly different.
In most cases, the descriptions are different in the sense that different relations are
used to related same object to other objects in the domain. These relations may
refer to the same properties of the object that cannot be matched due to a missing
mapping or the set of properties itself used might be different. As a consequence,

Query Processing in Ontology-Based Peer-to-Peer Systems 159

real-world objects that are meant to be an answer to a query are not returned
because their description does not match the query that is formulated using terms
form a different ontology. We address this problem by relaxing the query, i.e. by
weakening those constraints from the query expression that are responsible for
the failure. In order to be useful, this weakening process has to fulfill certain
formal properties. In especially, we want to make sure that we do not loose any
answers when modifying the query. We can guarantee this using the notion of
query subsumption as described by Halevy:

Definition 9 (Query Containment and Equivalence (Halevy 2001)). Let T =
〈C,R,O〉 and Q1, Q2 conjunctive queries over T . Q1 is said to be contained in
another query Q2 denoted by Q1 � Q2 if for all possible sets of object definitions
of a terminological knowledge base the answers for Q1 is a subset of the answers
for Q2 : (∀O : res(Q1) ⊆ res(Q2)). The two queries are said to be equivalent,
denoted as Q1 ≡ Q2 iff Q1 � Q2 and Q2 � Q1

Based on these notions we compute a sequence of queries Q0, · · · , Qn such
that the following properties hold:

1. Q0 ≡ Q
2. i < j =⇒ Qi � Qj

The intuition behind this approach is to start with the original query and
generate queries where each is more general than the one before, i.e. each query
following in the sequence returns all results of the previous one, but might return
more results. Our hope is that these new results contain the description of some
real-world objects that should be answers, but were not found due to their
description.

There are many different ways of making a query more general in order to
increase the chance of matching a potential answer. In the following we discuss
relaxation heuristics we consider useful for the purpose of query processing in a
peer-to-peer setting.

4.1. Variable Elimination

The first heuristic is based on the fact that each variable in a conjunctive might fail
to match a specific object if the object does not satisfy the constraints. Therefore, a
way of increasing the chance of matching the target object in the head of the query
is to successively eliminate non-answer variables from the query. In the example
query in equation 5 for example, we have the variables V,W,X,Y and Z where X is
the answer variable. Therefore we can weaken query by eliminating the variables
V,W,Y and Z. This can be done by removing all conjuncts containing a specific
variable from the query expression. It is easy to see that successively removing
conjuncts from the query leads to a sequence of queries with the desired properties.

The main question that arises when adopting the variable elimination ap-
proach is the order in which the variables should be removed from the query.

160 Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia

(a)

(b) (c)

(d) (e)

Figure 2. A possible sequence of query graphs

This order is partially constrained by the dependencies between the different vari-
ables. Removing the wrong variable first can break these dependencies and make
remaining conjuncts useless. Looking at the example query this would happen
if we first removed the variable Y. In this case the conjunct V = Deutschland
would be isolated, because the variable V only occurred in the removed conjuncts
that connected it to the answer variable. In order to avoid breaking dependencies
when removing conjuncts, we can use the query graph of the query to be relaxed
(compare definition 8) as it explicates existing dependencies. In the query-graph

Query Processing in Ontology-Based Peer-to-Peer Systems 161

dependencies between variables are represented by arcs between nodes. Therefore
we have to ensure that the query graphs remains connected when removing the
node that represents the variable we want to eliminate. Obviously, this is only the
case if we eliminate variables that correspond to leaf nodes in the graph. Figure
2 illustrates the successive elimination of the variables V, Y, Z and W from the
example query, showing the corresponding sequence of query graphs.

4.2. Guided Elimination

The major drawback of the variable elimination heuristic as explained so far is the
high number of arbitrary choices that still exist in the order of elimination. More
specifically, whenever the query tree has more than one leaf node, we have no strat-
egy yet to decide which one to eliminate. In general, there are many possibilities
for defining ordering heuristics, based on:

1. The nature of the domain
2. The preferences of the user
3. The task to be solved

As our approach does not aim at a specific domain, user or task, we will have to
rely on rather general heuristics being aware that they will never be optimal. In
our case, the only information we can use to decide on an elimination order is the
existence of local mappings that relate the query vocabulary to the shared one that
is actually used to compute the answer. The general idea is that we would rather
drop conjuncts that represent concepts or relations without a suitable mapping
into the shared ontology, because it can never be satisfied by any object classified
according to that ontology. We have seen that for the case of concepts, we can often
find a suitable approximation even if there is no direct counterpart in the shared
ontology. Therefore, we focus on conjuncts representing relations and eliminate
such variables first that are constrained by a relational conjunct that has no direct
mapping to the shared ontology. The effect of this strategy is illustrated in the
next section where we describe some experiments with approximating concepts
and relaxing queries in a case study.

5. Examples from a case study

We performed a case study in order to validate the methods described above. The
case study is based on three different ontologies in the domain of tourism. The
ontologies are available in the DAML ontology library (www.daml.org) and have
been created by independent groups of students at the University of Karlsruhe.
All ontologies aim at describing the conceptualization of an Internet site that is
advertising tourism in north-east Germany. All ontologies contain information
about accommodation, tourist attractions and transportation facilities. While
sharing these general topics, the different ontologies describe them in a very
different way focusing on different parts of the overall domain. We chose these
ontologies, because they very closely resemble the situation we expect in a

162 Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia

peer-to-peer network, where peers model information about the same domain in
different ways.

In the course of our case study, we imported the ontologies, each containing about
300 concepts and 50 to 70 relations, into an ontology editor using some syntactic
transformations. We then analyzed the ontologies and created about 150 obvi-
ous mappings using simple string matching. In this way we created mappings
mostly between concepts that have exactly the same name and between concepts
where one name is the plural form of the other. Based on these mappings we
computed two overlapping concept hierarchies consisting of about 600 concepts
each. These hierarchies served as the basis for evaluating our concept approxima-
tion and query relaxation techniques. In the following, we describe examples of
concept-approximation and of query-relaxation with respect to this hierarchy.

5.1. Concept approximations

As an example of concept approximation we use the concept “Ferien-Wohnung”
(a flat used as accommodation during holidays). The relevant part of the overall
hierarchy can be seen in Fig. 3. We can see that concepts from private and shared
ontologies occur in this part of the hierarchy (The private concepts are shaded).

The approximations we are interested in are the direct sub- and superclasses of
tourism example concept that are not from the same ontology. We can see in
the figure that these are: “Bungalow” and “Appartment”. If we look at the view
of Peer B on the World we see also that the concept “Ferienhaus” (house used
during holiday) would fall under this category. While this result is not completely
true, because houses are not flats, it still serves the purpose very well, because all
of the concepts describe accommodations that are reasonable replacements in the
case that no flat is available.

If we determine the upper approximation of the example concept, we get the
general concept “Unterkunft” (accommodation). Our method now determines all
instances of this general concept to be potential members of the example concept.
Besides the members of the already mentioned concepts, this also includes objects
that are members of the concepts “Hotel” and “Campingplatz” (camp site) in the
view of the answering peer B. We see, that these results are still closely related
to the example concept, because they are all accommodations mainly used during
holidays; however, hotels and camp sites are not really the kind of answer the user
would assume to get when asking for a flat. Still, returning hotels and camp sites
as answers to a query for a flat is still better than not returning any result, because
the user might want to change her choice in favor of other preferences (e.g. the
location).

Query Processing in Ontology-Based Peer-to-Peer Systems 163

(a) Peer A

(b) Peer B

Figure 3. The views of two different peers of the same domain

5.2. Query relaxation

As an example for query relaxation, we take the example query. If we transform
this query into a concept expression (Equation 6) and classify it into the overall
concept hierarchy of the case study, it end up as a subconcept of “Schlosshotel”
(castle acting as a hotel). Computing the answer to the query we get an empty

164 Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia

set, because there are no instances of “Schlosshotel” satisfying all properties of
the query concept. Using the upper bound, however, we already get the members
of the concept “Schlosshotel”. If we do not want to rely on this result, we have
to analyze the reason for the failure of returning definite answers. Looking at the
ontologies in the case study, we see that none of the ontologies except for the
one the query is based on contains information about the number of rooms of a
hotel, which makes it impossible to prove that a specific hotel is an answer to
the query. As a response to this observation, we relax the query by removing the
restriction on the number of rooms. This leads to a situation where we already get
some definite results, namely those members of the concept “Schlosshotel” that
satisfy the requirement of being in the federal state of Mecklenburg. Note that
this provides us with a better result than the use of the upper bound, because we
already have a preselection of results according to the geographic criterion.

The ability to retrieve relevant information using this second query relied
on the fact that the ontology describing the information defines the concept
“Schlosshotel” as the set of all hotels for which the property “liegt-in-Schloss”
(is located in a castle) is true. We were able to use this implicit information about
the specific relation in order to retrieve information without having an explicit
assertion stating that a hotel has this specific property. In a case where the ontol-
ogy does not contain the necessary information, we would still get no results for
the relaxed query, because the property “liegt-in-Schloss” is not satisfied by any
information item. In this case we can again use the upper bound for answering
the query, which would now be the concept “Hotel”. Consequently, we would get
all hotels as potential answers. Again, this result is too general, as we want to
preserve at least the geographic constraint. A solution is to further relax the query
by removing the “liegt-in-Schloss” property from the query. The resulting query
will match all hotels in the federal estate of Mecklenburg. Admittedly, this result
is not a very good one; however, it resembles the functionality of many current
Web-based information systems, where lists of hotels can be accessed by selecting
a specific area. We would like to stress that our approach leads to more precise
answers in most cases, especially if the queries are not too complicated, and we
only have to fall back on very imprecise results if all other attempts fail.

6. Conclusions

The existing data integration technology is based on the assumption that it is
possible to define a virtual global schema. A query is therefore posed to this
schema and then suitably translated in local queries to the information bases
being integrated. As hinted in this paper and more extensively argued elsewhere,
this approach hardly scales to a highly dynamic P2P network.

Query Processing in Ontology-Based Peer-to-Peer Systems 165

In this paper we have proposed a novel approach based on the following key
ideas:

1. We shouldn’t think in terms of a global schema but, rather, in terms of
independent autonomous nodes which, at run time, depending on the query,
provide local answers which must then be integrated.

2. In most cases, the system will not be able to provide the best possible answer.
It is more an issue of providing an answer which is good enough.

The proposed approach exploits ontologies as a conceptual ”high level”
schema which allows to hide local implementation details, and to exchange
information using the vocabulary defined by the ontologies themselves. In this
setting, good enough answers are obtained by posing queries to local ontologies,
by allowing queries to be propagated by using inter- ontology mappings, and
by using approximation techniques in order to avoid the problem of very sparse
mappings.

We are only at the beginning and a lot of work is still to be done before
integrating Semantic Web and P2P network technology. We list below some of
the open problems we can foresee:

Foundations. Once we assume that we have no global schema we must
also assume, among other things, that we no longer have a single domain of
interpretation (a single set of models). To take this into account we must define a
new semantics which allows for multiple interpretation domains, and for mappings
which tell how ontology elements, and also domain elements, are mapped. In this
framework, queries, query answers, and the mappings defined in this paper can be
formally characterized and various (partial) completeness and correctness results
can be provided (characterizing, for instance, to which extent, a query has been
answered). Some preliminary ideas in this direction can be found in [2].

Semantic Routing. In a P2P network, in most if not all cases, a node has
very little knowledge of its peers, and this knowledge becomes obsolete very
quickly. Before worrying about how to answer a query (the problem we have
mainly dealt with in this paper) a node has to worry about which nodes should
be queried. This requires some mechanisms for peer discovery that, in general,
will have again to deal with the problem of semantic heterogeneity (each node
will advertise itself using some local vocabulary). A preliminary description of a
possible solution has been provided in [5], which proposes ”Interest Groups” as
a way of collecting peers having knowledge about same or similar topics and a
”locally centralized” mechanism for handling such groups.

Quality of Answers. We have already given up the hope for complete or, more
simply, correct answers. But how do we judge when an answer is good answer?
Whether an answer is good enough depends on many things: what the user wants,

166 Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia

the status of the network, its connectivity, the topic of the query, and so on. If
we want to make the approximation independent of human judgement, we have to
provide formal quality measures that can be used to judge the quality of an ap-
proximation and provide a basis for deciding between alternative approximations.
A promising proposal for such a quality measure is described in [13]. A partic-
ular question concerns the trade-off between the accuracy of an approximation
and the complexity of computing it. One of the strengths of our approach is that
determining the next approximation does not require logical reasoning itself due
to the structure based relaxation criterion. It is very likely that we could further
improve the accuracy of the approximation by using logical reasoning for find-
ing alternatives for class and relation names rather than removing them from the
query.

References

[1] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semi-structured
and structured data sources. SIGMOD Records, 28(1):54–59, March 1999.

[2] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and
I. Zaihrayeu. Data management for peer-to-peer computing: A vision. Technical Re-
port DIT-02-0013, Depertment of Information Technologies, University of Trento,
2002. Also appears in Proceedings of Web DB 2002.

[3] D. Calvanesea, G. De Giacomo, and M. Lenzerini. Description logics for informa-
tion integration. In Computational Logic: From Logic Programming into the Future,
Lecture Notes in Computer Science. Springer Verlag, 2001.

[4] F. M. Donini, M. Lenzerini, D. Nardi, , and A. Schaerf. Reasoning in description
logics. In G. Brewka, editor, Principles of Knowledge Representation, Studies in
Logic, Language and Information, pages 193–238. CSLI Publications, 1996.

[5] F. Giunchiglia and I. Zaihrayeu. Making peer databases interact - a vision for an
architecture supporting data coordination. In CIA 2002: Cooperative Information
Agents, Lecture Notes in AI. Springer, 2002.

[6] A. Gomez-Perez and O. Corcho. Ontology langauges for the semantic web. IEEE
Intelligent Systems, January/February:54–60, 2002.

[7] A. Y. Halevy. Answering queries using views: A survey. The VLDB Journal,
10(4):270–294, 2001.

[8] I. Horrocks. The FaCT system. In H. de Swart, editor, Automated Reasoning with
Analytic Tableaux and Related Methods: International Conference Tableaux’98, num-
ber 1397 in Lecture Notes in Artificial Intelligence, pages 307–312. Springer-Verlag,
Berlin, May 1998.

[9] I. Horrocks and S. Tessaris. A conjunctive query language for description logic
aboxes. In AAAI/IAAI, pages 399–404, 2000.

[10] M. Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–246,
2002.

Query Processing in Ontology-Based Peer-to-Peer Systems 167

[11] J. Madhavan, P. Bernstein, P. Domingos, and A. Halevy. Representing and reason-
ing about mappings between domain models. In Eighteenth National Conference on
Artificial Intelligence (AAAI’2002), Edmonton, Canada, 2002.

[12] M. Parameswaran, A. Sursala, and A. Winston. P2p networking: An information
sharing alternative. IEEE Computing, 34(7), 2001.

[13] M. Peim, E. Franconi, and N. Paton. Estimating the quality of answers when query-
ing description logic ontologies. Data and Knowledge Engineering, 2002. (submitted).

[14] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching.
The VLDB Journal, 10(4):334–350, 2001.

[15] B. Selman and H. Kautz. Knowledge compilation and theory approximation. Journal
of the ACM, 43(2):193–224, March 1996.

[16] H. Stuckenschmidt. Approximate information filtering with multiple classification
hierarchies. International Journal of Computational Intelligence and Applications,
2002. to appear.

[17] H. Stuckenschmidt. Ontology-Based Information Sharing in Weakly-Structured En-
vironments. PhD thesis, Faculty of Sciences, Vrije Universiteit Amsterdam, 2002.

[18] H. Stuckenschmidt, F. van Harmelen, and F. Giunchiglia. Query processing in
ontology-based peer-to-peer systems. Technical report, Department of Department of
Information and Communication Technology, University of Trento, November 2002.

[19] H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann,
and S.Huebner. Ontology-based integration of information - a survey of existing ap-
proaches. In Ontologies and Information Sharing, number 47, pages 108–117, Seattle,
USA, August 2001.

Heiner Stuckenschmidt and Frank van Harmelen
Department of Mathematics and Computer Science
Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam
The Netherlands
e-mail: {heiner,frankh}@cs.vu.nl
Fausto Giunchiglia
Department of Information and Communication Technology
University of Trento
38050 Povo di Trento,
Italia
e-mail: fausto@dit.unitn.it

Message Content Ontologies

Chris van Aart, Bob Wielinga and Guus Schreiber

Abstract. In this article we address the problem of how agents can handle
message-based communication. Our approach is to look at ontology-based
communication, in which the meaning and intention of messages is specified
in message content ontologies. The idea is that agents can share semantics
by committing to shared message content ontologies. We discuss a theoretical
framework for message-based communication, in which we sketch an ideal
world where an agent is capable of various ontological operations. A pragmatic
approach is presented, which enables the creation and use of ontologies to
support message-based communication between agents.

1. Introduction

In this article, we present a layered framework containing a Reference Model for
ontology-based agent communication. Using ontologies in agent communication
enables agents and agent engineers to add semantics to agent conversations.

A traditional distributed system interoperates with other systems by giving
these other systems access to its information retrieval functions. One technique to
interoperate, for instance to transfer information between distributed systems, is
Remote Methods Invocation (RMI). Giving systems direct access to other systems’
information retrieval functions leads to tightly coupled systems. However, multi-
agent systems are loosely coupled distributed systems, where agents do not have
direct access to each others functionalities (services). By exchanging messages,
agents can access other agents’ services. The messages are not only used to ex-
change information, but also to communicate on a higher level, such as negotiation
about price, instructions and sharable knowledge [19, 23].

The case study on Legal services described is based on an Agentcities grant project (See
www.acklin.nl/agentcities). The “Bean Generator” tool assists agent engineers in designing mes-
sage content ontologies and export it to Java source code. The tool is designed by the au-
thor and is used by various institutions and companies that work with the JADE toolkit (See
http://gaper.swi.psy.uva.nl/beangenerator).

170 Chris van Aart, Bob Wielinga and Guus Schreiber

Message-based communication can be described on several levels of detail:
message transport, message encoding, communication languages, message inter-
pretation and composition [24]. Message transport is involved with agent address-
ing and communication protocols. Whether a message is encoded in binary, string
or other format is of concern at the message encoding level. Several agent commu-
nication languages exist, for example KQML or FIPA-ACL.

We focus on the ideas motivating the FIPA standardization, because it is
supported in the agent community1. On top of the agent communication language,
FIPA has adopted the idea of ontology-based communication from [28], where
the meaning and intention of message contents is specified in message content
ontologies. In order to share semantics, agents commit to shared message content
ontologies. The agent engineer is free to design and implement the communication
model of the agent around message content ontologies. The only requirement is
that the content of messages exchanged commit to one or more message content
ontologies. In this case, agents can interact without having to negotiate about
message structure and message content. A similar approach can be found in Open-
EDI [38].

The problem addressed in this chapter is defined by [9] as: “Despite its crucial
importance for guaranteeing the exchange of content information among agents,
(...) a suitable “Reference Model” for ontologies needs to be established.” The as-
sumption is that agents share a common Reference Model that provides the proper
semantics in message-based communication. Specific message content ontologies
will be based on this Reference Model. The question is, what such a Reference
Model could look like and how agents can generate and interpret messages that
commit to such a Reference Model.

In the remainder, we give a brief introduction on ontologies. Next, we discuss
a layered framework containing a Reference Model for message content ontologies,
in which we sketch an ideal world, where agents are capable of various ontological
operations. Then, we discuss a pragmatic approach to the Reference Model based
on the current state-of-the art in agent technology, which is applied in a case study
on legal services. We conclude this chapter by a discussion on the two approaches
and issues arising from this work.

2. Message Content Ontology Framework

In this section, we discuss a theoretical approach to establish a Reference Model
(cf. [9]) for message content ontologies. The framework consists of a collection of
ontologies, which we refer to as agent communication ontologies. The basis of these
ontologies is the speech acts theory [24, 34, 4]. Messages exchanged between agents

1An alternative to FIPA is the Rosetta initiative(www.isi.edu/expect/projects/agents/rosetta.html)
and available technology (See www.agentlink.org/software). In contrast to FIPA, the Rosetta
architecture is based on middleware, which represents most of the agent’s environment. This
means that an agent should be equipped with an interface to the Rosetta architecture. The
drawback of this approach is that the agents are not loosely coupled to the agent environment.

Message Content Ontologies 171

are annotated with speech acts, giving messages specific meanings. The theory
originates from linguistics [33, 1], where it is used to analyze human speech and
text. A speech act is composed of three components: locutionary act, illocutionary
act and perlocutionary act. The locutionary act is concerned with the material
generation of utterances. The illocutionary act is concerned with carrying out a
speech act. An illocutionary act itself is composed of an illocutionary force and a
propositional content. An illocutionary force can be seen as a performative, such as
questioning, negotiating, ordering and asking to do something. The propositional
content is the object of the illocutionary force, such as problem, price, product or
activity. The perlocutionary act is concerned with the effect an illocutionary act
has on the state of the receiver. We focus on the illocutionary force, which we refer
to as performative.

Linguists have made a difference between explicit and implicit performa-
tives [1]. Agent Communication languages such as KQML and FIPA-ACL make
use of explicit performatives [24]. Here, every agent utterance (i.e. the sending of a
message) is seen as a speech act, which is composed of a propositional content and
a performative. The structure of a speech act is then of the form E(I(A)), where
E is the explicit performative, I the implicit performative and A the arguments
of the directive2. For example, a message containing an explicit performative is:
promise(deliver(cd)), where promise is the performative (in this case a “commissive,
because the speaker has committed him to a future course of action, c.f. [33]), de-
liver the intended transaction and cd the argument.

Most human communication does not explicitly express one of these types of
speech acts. For example, one does not ask a question in the form of:“I direct you
to the give me the price of a CD”, or “I assert the price of a CD to 30 EURO”.
In order to come close to human communication, we will make use of implicit
performatives. This means that we directly make use of a specific performative,
without declaring the type of performatives. The form of an utterance is in the
form of I(A)). For example, an utterance such as (Buy (CD :name “Mahler 1”)) is
to be read in a first-person present declarative form [24]. Hence, this message can
be read as “hereby, I declare that I want to buy the CD with the name Mahler 1”.

Concepts such as CD can be found in an existing ontology, cf. [6]. Therefore
we can reuse existing concepts and relations of these ontologies into our agent
communication ontology3. There are several methods to reuse and share ontologies,
divided into syntactical and semantic methods [20, 31]. An example of a syntactical
method (which operates on the symbol level) is the translation of an ontology into
another ontology representation language. Semantic methods (which operate on
the knowledge level), includes merging of one ontology with another and mapping
of one concept to another.

2In more, detail E(I(A)) is the logical representation of a speech act. The actual representation
of an utterance depends on the languages of agent communication (ACL). For example, in SL it
is possible to express multiple performatives in one utterance.
3By reuse, we mean reusing one concept and related relations or the reuse of an entire branch of
an ontology.

172 Chris van Aart, Bob Wielinga and Guus Schreiber

Another important communication theory is conversational interaction [18],
which reasons on the use of performatives by conversation members. In every
conversation there is at least one initiator and one other participant. Furthermore,
there are rules that restrict the use of performatives. In the agent community,
these rules are called protocols. Every participant in a conversation should follow
these protocols. In our framework, we couple protocols to roles. In communication
theory this is called role-taking4 [25]. A protocol can dictate that for every question
asked, an answer has to be given. For example in the IBROW architecture, if the
broker asks a question to a librarian, both the broker and the librarian know
what role to take and what performatives to use. So the broker as questioner
sends ask(needed competences) to a librarian. The librarian as agent questioned,
responds with reply(candidate PSMs).

2.1. Agent Communication Meta Ontology

The Agent Communication Meta Ontology defines generic concepts necessary for
agent communication: conversation domain concept, performative, protocol and
agent role. The elements of this ontology are not explicitly used in the messages
exchanged between agents. Rather, these elements are used as reference by agents
and agent engineers. Agents can use it to reason about interactions with other
agents. For example, when an agent decides to consult another agent, it can select
the appropriate vocabulary, performatives, protocol and role. When an agent en-
gineer is designing an agent he can configure the functions of the communication
model of the agent.

In order to bind the concepts together, a number of relations are defined:
allowed concept, allowed performative and allowed protocol. The relation allowed
concept means that every performative should contain one or more instances of
domain concept. The relation allowed performative denotes that every protocol
contains an ordered number of performatives. Finally, the relation allowed protocol
tells that agent roles (part of the agent role ontology) should commit to one or
more protocols.

Figure 1 shows shows the four subjects of agent communication: domain con-
cept, performative, protocol and agent role. The relation between the performative
and protocol metaclasses (from the Agent Communication Meta Ontology) and the
Performative Ontology and Protocol Ontology (from the Reference Model) are of
type <<instance>>. The elements of the Performative Ontology are discussed in
Table 1. In Table 2, the elements of the Protocol Ontology are discussed

2.2. Reference Model

The four subjects of agent communication are defined into four agent communi-
cation ontologies: conversation domain ontology, performative ontology, protocol
ontology and the agent role ontology. These four agent communication ontologies
form the Reference Model. The relations between the ontologies are illustrated in
Figure 2. The dependencies (i.e. the dashed arrowed lines, which are to be read as

4Other terms used are feed forward and empathy.

Message Content Ontologies 173

«metaclass»
Performative

«metaclass»
Protocol

«metaclass»
Agent Role

0..*

0..*

 allowed concept

1..*

0..* allowed protocol«metaclass»
Domain Concept

2..* 1..*

 allowed performative

Agent Communication Meta Ontology

«instance»

{ordered}

Protocol Ontology

Query Request

SuperviseNegotiateAuction

Performative Ontology

Commissive Declarative

RepresentativeExpressiveDirective

Reference Model

«instance»

Figure 1. Agent Communication Meta Ontology and a part of
the Reference Model.

“source depends on destination”) show the relations between the ontologies. The
Agent Communication Meta Ontology defines the subjects for agent communica-
tion ontologies: conversation domain concepts, performatives, protocols and agent
roles. The Reference Model is an instantiation of the Agent Communication
Meta Ontology. The Reference Model makes use of the four agent communication
ontologies. Finally, the Message Content Ontology instantiates elements from the
Reference Model

The relations between the Agent Communication Meta Ontology and the
Reference Model are illustrated in Figure 1. Below, we discuss the agent commu-
nication ontologies in detail.

2.2.1. Conversation Domain Ontology. A conversation domain ontology defines
the vocabulary used in the propositional content of conversations related to a
domain. Examples are price, product, answer, question, proposal, offer, name,
person and address. Furthermore, it defines the structure of a domain, for example
a product has a price, a question has zero or more answers, an offer is related to
one product, a person has a name and an address.

Several ontologies are available that can be used in the design of conversation
domain ontologies. Elements of existing ontologies can be imported, adapted or
translated into other ontologies. Several ontologies exists for identifying products in

174 Chris van Aart, Bob Wielinga and Guus Schreiber

Reference Model

Conversation Domain
Ontology

Performative Ontology Protocol Ontology

Agent Role Ontology

Agent Communication
Meta Ontology

<<instance>>

Message Content
Ontology

The "Agent Communication Meta Ontology"
contains definitions for generic subjects

for agent communication:
conversation domain concepts,

performatives, protocols and agent roles.

The "Reference Model" is an instance of
the agent communication model.
It contains four ontologies based

on the subjects for agent communication.

The "Agent Role Ontology" defines the
roles agents can play in conversations.

The "Conversation Domain
Ontology" defines the vocabulary

used in the content of
conversations related to a domain.

The "Performative Ontology"
defines performatives based on

the Speech Acts theory,
which are used to indicate
the intention of messages

within a conversation.

The "Protocol Ontology"
defines protocols that are used to
steer messages in conversation.

A "Message Content Ontology" instantiates elements
from the Reference Model, which are used
by agents to conversate with other agents.

<<instance>>

Figure 2. The agent communication ontologies represented by
UML packages.

an electronic commerce applications through product descriptions, such as S95, the
United Nations Standard Products and Services Codes, E-cl@ss, and RosettaNet5.

2.2.2. Performative Ontology. The performative ontology defines performatives
that are based on the Speech Acts theory. The Speech Acts theory is introduced
into Agent Communication Languages to design agent communication as close to
human communication as possible [24]. In traditional information exchange be-
tween systems, messages are only pieces of data [38]. In order to create a social
effect, such as creating an obligation, performatives are added to messages. In a
traditional setting one service would send a message (CD :name “Mahler 1”) to a
musicshop service, intending to buy a CD. Both services “know” that when one
service sends a reference to a CD, that it wants to buy a CD. In agent systems,
an agent would send the message (buy (CD :name “Mahler 1”)), where the buy
performative can be seen as a speech act (the message is an attempt to perform a
transaction between a buyer and a seller).

The idea behind Speech Acts is that sentences can be categorized into par-
ticular types. We follow the classification as suggested by [33], see table 1. In this
classification there are five basic categories of performatives (illocutionary forces):

5See www.s95.info, www.unspsc.org, www.eclass.de and www.rosettanet.org

Message Content Ontologies 175

Performative Description Examples

Representative inform the addressee of asserting, concluding, describing
some state of affairs “The price of every CD is 30 EURO.”

Commissives commit the speaker to promising, threatening, offering and vowing
future course of action “If you buy 10 CDs, the price is 23 EURO.”

Declaratives “representatives” spoken by marrying, naming, and firing from employment

a recognized authority, such “I allow this shop to sell CDs.”

as a director or president

Directives attempts by the speaker requesting, questioning and commanding
to get the addressee (or “What is the price of a CD?”
receiver) to do something “Can I buy this CD?”

Expressives express a psychological state greeting, thanking and congratulating

“Thank you for buying this CD!”

Table 1. Five basic categories of performatives (illocutionary
forces), cf. [33].

Representatives, Commissives, Directives, Declaratives and Expressives. Representa-
tives are speech acts that represent some state of affairs. For example, asserting
facts about a domain, such as telling the price of a CD.

Commissives are speech acts that commit the speaker to some future course
of action. In an economic setting, this can be used to have agents committing to a
contract. For example, promising to perform a job in the future, such as: “at noon,
I will buy a CD”. Directives are speech acts whose intention is to get the addressee
to carry out some action. For example, asking a question related to a domain, such
as “what is the price of CD X?”. Declaratives are speech acts that themselves bring
about a state of affairs and which are spoken by a recognized authority. In order
to give a Manager control over Operators, an Operator has to see a Manager as
an authority. For example, an Manager instructs an Operator how to perform its
activities. Expressives are speech acts that indicate the speaker’s psychological
state or mental attitude. For example, one agents “thanks” another agent for its
services.

Several variations of the categorization of Searle exist, see [1, 35, 8]. Also
in the Agent Field, specializations of Speech Acts have been reported. A number
of explicit performatives are specified by Haddadi and FIPA, which can also be
used as implicit performatives. Haddadi has defined a library of communication
types [22]. A selection of these types is: Require, Order, Reject, Ask and Reply. FIPA
has specified: Accept Proposal (which can be seen as an instance of a “representa-
tive”), Call for Proposal (directive), Confirm (commissive), Inform (representative),
and request (directive) [11]. These performative or communicative types are ei-
ther representatives, directives or commissives [35]. For example, the performative
inform is supposed to give information and request corresponds to a demand for
information. In order to allow authority, which is needed to construct organiza-
tional relations such as a Manager-Operator relation, “Declaratives” are needed.
Furthermore, to allow learning based on feedback, the speech act “Expressive”

176 Chris van Aart, Bob Wielinga and Guus Schreiber

Protocol Description Example utterance exchanged between two or more agents

FIPA-Query asking for A to B (directive): “What is the price of a CD?”

information B to A (commissive): “Agree to answer the question.”

B to A (representative): “The price of a CD is 30 EURO.”

FIPA-Request requesting A to B (directive): “Can you order a CD?”

to perform B to A (commissive): “Agree to perform the action.”

an action B to A (commissive): “The CD will arrive next week.”

FIPA-Auction bid on A to B, C (directive): “Who wants to buy this CD?”

object B to A (commissive): “I bid 20 EURO.”

C to A (commissive): “I bid 18 EURO.”

A to B, C (representative):“Sold to A, for 20 EURO.”

Negotiate negotiate A to B (directive): “What is the price of a CD?”

on object B to A (commissive): “I offer the CD for 30 EURO.”

A to B (representative): “I reject, price too high.”

B to A (commissive): “I offer the CD for 25 EURO.”

A to B (representative): “I accept.”

Supervise coordinate M to A (declarative): “Follow my instructions.”

an agent A to M (commissive): “Agree.”

or process M to A (directive): “Find a CD shop.”

A to M (representative): “I found a CD shop.”

M to A (directive): “Try to buy a CD for less then 28 EURO.”

A to M (representative): “I bought a CD for 25 EURO.”

M to A (directive): “Send CD to address X.”

M to A (expressive): “You did a good job.”

Table 2. A selection of types of communication protocols. In the
example column, the letters “A”, “B”, “C” and “M” represent
names of agents.

is needed. For example, a Manager can give positive or negative feedback on the
activities performed by an Operator in order to learn the Operator coordination
pattern.

2.2.3. Protocol Ontology. Next to individual message exchange, agents engage in
conversations. Conversations can be seen as a shared sequence of messages that
agents follow [24]. We have expressed the notion of sequencing between allowed
type of messages by the Ordered relation in Figure 1. In order to guide conver-
sations, (interaction) protocols can be used that restrict the allowed sequence of
performatives. Examples of shared sequences are negotiations [5] and auctions [32].
The shared sequences of performatives are defined in the protocol ontology. For ex-
ample, a directive, such as a question, should be followed by an representative to
answer the question. The Protocol Ontology of the Reference Model, contains a
number of generic protocols, which can be seen as a Reference Model for conver-
sations, see Table 2. The FIPA-Query, FIPA-Request and FIPA-Auction protocols
originate from the FIPA standards (cf. [15, 15, 12]) and are extended with speech
act categories and examples related to the musicshop domain. The Negotiate and
Supervise protocols are added to illustrate the variety of possible protocols.

FIPA has defined a number of interaction protocols. For example the FIPA-
REQUEST protocol specifies that a request performative should be followed by a

Message Content Ontologies 177

Performatives/Protocols Representative Commissives Declaratives Directives Expressives

Query + + +

Request * * +

Auction + + +

Negotiate + + * + *

Supervise + * * + *

Table 3. Examples of the Allowed Performative Relation relation,
on the basis of the Performatives as given in Table 1 and protocols
as given in Table 2. In this relation, performatives are required
(+) or optional (*).

refuse, or an agree [15]. After the agree performative, the performative failure and
inform are allowed.

Other interaction protocols deal with the Contract Net [12] and Auctions,
such as the English auction [14] and the Dutch auction [13]. In addition, Haddadi
has defined a library of message patterns [22]. Examples are, that an order perfor-
mative has to be followed by a report performative, require has to be followed by
agree or reject, and propose has to be followed by request, require or reject.

In Table 3 we have placed the performatives as given in Table 1 against
the protocols as given in Table 2, in order to illustrate the AllowedPerformative
relation. As shown, a number of performatives are required (+) or optional (*). The
three existing protocols, Query, Request and Auction, allow the agree performative
that confirms a directive. We see the agree performative as a commissive, which
is optional. The idea is that agents “agree” on how to negotiate. Examples of
agreements are the number of negotiation rounds, number of participants, object
of negotiation and rule setting.

A negotiation protocol is also called the “rule of encounter”, which enables
agents to share allowed sequences of performatives in a negotiation [26]. In our
negotiate protocol, directives are used to ask a participant of a negotiation for an
offer, such as the price. In response, a commissive is used to offer a bid. Next,
representatives are used to react positively or negatively on a bid.

In our supervision protocol, directives are used by an agent with a manager
role to instruct its subordinates, such as an operator. The operator responds with
representatives to report the result of the instructions. The use of the expressive
performative can play a role in learning situations, because it enables a feedback,
such as rewarding. Taking a situation where a manager supervises an operator,
the manager could use feedback in the form of expressives, to teach the operator
how to perform its activities. In the end, the operator could operate without direct
supervision of the manager.

Ontologies that can be used as the basis of protocol ontologies are the En-
terprise Ontology [37] and the Toronto Virtual Enterprise [21]6.

6See www.aiai.ed.ac.uk/enterprise/enterprise/ontology.html and www.eil.utoronto.ca/
tove/toveont.html

178 Chris van Aart, Bob Wielinga and Guus Schreiber

2.2.4. Agent Role Ontology. The agent role ontology defines the roles that agents
can play in conversations. An agent role defines the responsibility and allowed be-
havior of an agent. In the Reference Model, we modeled responsibility and allowed
behavior of an agent as the protocols an agent is allowed to use. This is represented
by the allowed protocol relation in Figure 1.

Typical roles in agent communication are: Operator, mediator, planner, co-
ordinator, decision-maker, observer, executive, broker and Manager. Futhermore,
FIPA has defined a number of agent roles: an agent platform’s Directory Facili-
tator (DF) and Agent Manager Service (AMS). Furthermore, in an e-commerce
setting there are roles, such as supplier, producer, partner, and consumer [38].

2.3. Message Content Ontology

Message content ontologies can be used by agents to discuss about facts, beliefs,
hypotheses and predications related to specific domains. Hence, a message content
ontology makes use of a conversation domain, performative, protocol and agent role
ontologies. When agents want to communicate, the appropriate message content
ontology is selected.

Based on the type of conversation, the required domain concepts and rela-
tions, performatives and protocols, and agent roles are referred to (i.e. instanti-
ated). In our framework, a Message Content Ontology instantiates elements from
the Reference Model (cf. Figure 2).

Several examples of message content ontologies can be found in the agent lit-
erature and agent programming manuals: Agent Management Ontology, Currency
ontology and Cinema Service Ontology. We briefly discuss these ontologies and
relate them to our agent communication ontologies.

The FIPA Agent Management Ontology is a message content ontology used
for conversations between (visiting) agents and the agents on a FIPA compliant
agent platform (cf. [10]): the AMS (agent management service) and the DF (direc-
tory facilitator). In order for a (visiting) agent to work on an agent platform, it has
to behave according to an agent life cycle [10]. Every (visiting) agent that wants to
join an agent platform should register itself with the AMS and the DF. The AMS
maintains a register of physical agent addresses, and the DF maintains a register
of agent service descriptions. If the agent decides to leave the agent platform, it
should deregister itself.

This ontology is composed of a number of performatives: register, deregister,
search and modify. Within our framework, the performatives register, deregister
and modify are of type “directive”, because visiting agents use them to change the
DF’s register. For example, the performative modify is used when an agent wants
to change its address or service. In case the agent wants to locate other agents, it
can use the performative search. This performative is of type directive, because it
can be used to question the DF’s register.

Examples of the relations between speech acts and domain concepts are: the
performatives register requires the concept agent-description, which contains other
properties such as name to identify the agent, address to locate the agent and

Message Content Ontologies 179

services to describe the services the agent offers. Furthermore, the performative
search requires the concept service, and the performative modify requires the domain
concept agent-description. Allowed sequences of performatives are not specified in
the ontology.

There is a notion of visiting agent, DF and AMS. The role of a visiting
agent is to register itself on a platform and it can make use of the search, modify
and deregister performative. However, these roles in relation to protocols are not
specified.

The Cambia Currency Ontology is a message content ontology used by an
agent that provides a service to make currency conversions between a number of
currencies7. An agent should specify source and destination currency as well as
the date, to determine the correct exchange rate, and the amount. The ontology
contains the performative convert, which requires four domain concepts: from, to,
rate and dateC. This performative is of type directive, because it is used to request
the currency agent. The concept from is used to denote the source currency code
(e.g. “USD”) and the amount. To specify the target currency code (e.g. “EUR”),
the concept to is used. The concept rate specifies the type of conversation, this can
be “cash”, “inter-bank” or “credit card”. Finally, the concept dateC contains the
date of conversion. There is no notion of role or protocol.

The Tilab Cinema Representation Service Ontology is a message content on-
tology used by the cinema broker agent that provides information concerning a
selection of cinemas of the cities of Turin and Paris8. One of the specified perfor-
matives is: provide-cinema-info (of type directive) which can be used to question the
cinema broker. The domain concepts are Show, Cinema and CinemaPreference. The
concept Show contains attributes related to time of a show and price. The concept
Cinema describes the address and contact details of a cinema. The preferences of
a user, such as time and price are described in the concept CinemaPreference.

There is a notion of two roles: user agent and cinema broker. A user agent uses
the performative provide-cinema-info combined with the concept CinemaPreference
to ask the cinema broker, to acquire a list of available shows and cinemas. The
relation between the user agent that can use the performative provide-cinema-info
and the cinema broker agents, is not specified in the ontology.

In the three examples, we can identify the notion of performative and domain
concepts, and the relation between the performatives and the allowed domain
concepts. Roles, protocols and relations between roles, protocols and performatives
are not specified. The reason for this is that these ontologies are applied in relative
simple agent systems, with a limited number of agents, reasoning capabilities and
possible interactions. Furthermore, these ontologies are designed “ad hoc”.

7http://zurich.agentcities.whitestein.ch/Services/Cambia.html
8http://jade.cselt.it/AgentCities/CinemaRepresentativeServiceDescription.htm

180 Chris van Aart, Bob Wielinga and Guus Schreiber

2.4. Message Content Ontology Creation

In our approach, there are two steps for defining a message content ontology:
identification of conversation specific concepts and specification of conversation
specific concepts.

In the first step: Identification of Conversation Specific Concepts, the required
conversation specific concepts for the Message Content Ontology are defined. This
step takes as input the Agent Communication Meta Ontology and the ontologies
of the Reference Model: the Conversation Domain, Agent Role, Performative and
Protocol Ontology (see Figure 1). On the Agent Communication Meta Ontology
level, the classes of the Reference Model are seen as instances9. The result of
this step is (technically) an object diagram that shows the needed concepts for a
conversation (see Figure 3). On the level of the Reference Model, the instances of
the object diagram are seen as classes.

In the second step: Specification of Conversation Specific Concepts, the defined
conversation specific concepts will be specified in detail. The step takes the object
diagram and a selection of external ontologies as input. The attributes for the
classes are defined in the Reference Model and linked to other, possibly already
existing, classes. The result is a message content ontology represented as a class
diagram(see e.g. Figure 4).

The idea is that the conversation specific concepts can make use of classes
imported from other ontologies.

In the next two sections, we discuss identification of conversation specific
concepts and specification of conversation specific concepts in detail.

2.4.1. Identification of Conversation Specific Concepts. Conversation specific con-
cepts are defined based on generic classes of the Agent Communication Meta On-
tology. In order to illustrate the process of creating the required classes of a message
content ontology, we define an example in an electronic commerce domain, because
it is a popular domain for agent systems [27]. Agents can represent parties that
want to do business, such as buying and selling items. Both the buying agent and
the selling agent will try to negotiate in order to get the best deal. An example of
a negotiation is bargaining for the price of a CD in a musicshop.

In our example, we start with defining roles needed for CD bargaining: buyer
and seller. The buyer role has as goal to buy a CD for a reasonable price. The role
of seller is to sell as many CDs as possible. In order to have the two roles negotiate
with each other, we defined two protocols: cdNegotiationBuy and cdNegotiation-
Sell. The first protocol is coupled to the buyer and allows the performatives: ask,
buy, reject and abort. The second protocol is coupled to the seller and allows the
performatives: offer and abort. The performative ask is used by the buyer to start
a negotiation by asking for the price of CD. The seller can offer a price, which the
buyer can accept by using buy or continue the negotiation by using reject. Both
roles can break off the negotiation by using the performative abort. The domain

9To define a class based on a metaclass, one has make an instantiation of a metaclass.

Message Content Ontologies 181

concepts involved are CD and price. The concept CD refers to the item subject of
negotiation. The concept price refers to the argumentation used in the negotiation.

The instantiation of the required conversation specific concepts is illustrated
in Figure 3. This object diagram shows the required conversation specific concepts
for the musicshop example, as instances of the Agent Communication Meta On-
tology (e.g. the object CD is an instance of the metaclass Concept). The name of
an object is composed of the identification of an object, followed by the name of
the metaclass (e.g. Concept, Directive, Negotiate and AgentRole). For example,
the object Buy is an instance of the metaclass Representative. The relations be-
tween the objects are inherited from the Agent Communication Meta Ontology.
As illustrated in Figure 1, the relation between AgentRole and Negotiation (which
is of type Protocol) is allowed protocol. The relations between the Protocols and the
directives, commissive and representative (which are of type Performative is allowed
performative. The relation between the Performatives and the Concepts is of type
allowed concept.

cd : Concept

price : Concept

Conversation
Domain
Ontology

ask : Directive

buy : Representative

reject : Representative

offer : Commissive

abort : Representative

Performative
Ontology

cdNegotiationBuy : Negotiate

cdNegotiationSell : Negotiate

Protocol
Ontology

buyer : AgentRole

seller : AgentRole

Agent Role
Ontology

Figure 3. Object diagram showing the conversation-specific con-
cepts as instances of the agent communication meta ontology.

2.4.2. Specification of Conversation Specific Concepts. In order to make the
switch from the metalevel to the domain level, we map the defined instances of
the Reference Model onto classes. For example, the instances defined in Figure 3
are mapped on the classes in Figure 4. The purpose of this step is to elaborate
(i.e. make the generic classes specific) on the definition of the conversation spe-
cific concepts in terms of properties (or attributes) and relations. We refer to [30]
for ways to define the properties of these classes. The resulting class diagram is
illustrated in Figure 4.

182 Chris van Aart, Bob Wielinga and Guus Schreiber

+title[1] : String
+artist[1] : String
+content[1..*] : CDCatalog.Track

CD

+value[1] : float
+currency[1] : Currency.CurrencyCode

Price

Ask

+payement[1] : Cyc.Monder-Tender-Type

Buy

+reason[1] : String

Reject

+validity[1] : Date

Offer

+reason[1] : String

Abort

1

*

1

*

1

*

1
*

cdNegotiationBuy1

*

1
*

1

1

cdNegotiationSell

1 *

1 *

+localName[1] : String
+aid[1] : AgentManagement.AID
+represents[1] : LegalEntity

Buyer

+localName[1] : String
+aid[1] : AgentManagement.AID
+represents[1] : LegalEntity

Seller

1
*

1

*

Musicshop
Message Content Ontology

Figure 4. Class diagram showing the design of the Musicshop
Message Content Ontology.

For our example, the concept CD is equipped with the attributes title, artist
and content. The attribute content is described using the concept Track for indi-
vidual track identification. The concept Track is imported from the ontology for
a catalog system for a classical music compact disc publisher [6]. We refer to this
ontology by “CDCatalog”. An alternative to the CDCatalog is the Music Domain
Ontology, which contains concepts that can be used to describe music and/or songs
on the basis of composer, musical instruments, musicians and style10.

The concept price contains the attributes value and currency. The currency
attribute is of type CurrencyCode, which is imported from the currency ontology
that specifies the “three letter currency codes” as defined by ISO 421711. Given this
attribute, the agents involved could use the above described currency conversation
service.

The performative Buy makes use of the attribute payment of type Money-
Tender-Type, which is imported from the Cyc upper level ontology12. This concept
defines types of the payment form, such as credit card, cash and cyber coin. When
the buyer wants to actually buy a CD, the buyer can also negotiate on the way of
payment.

10See www.daml.org/ontologies/276
11See www.daml.ecs.soton.ac.uk/ont/currency.daml
12The Cyc upper ontology is reused in the HPKB-UPPER-LEVEL ontology. The Cyc ontology
can be found at www.cyc.com.

Message Content Ontologies 183

In order to summarize the process from Agent Communication Meta On-
tology to message content ontology, we have described a “trace” in Figure 5.
As shown, the class buy is an instantiation of the class Representative from the
Performative Ontology. The class Representative is an instance of the metaclass
Performative from the Agent Communication Meta Ontology. The class Buy makes
use of the class Money-Tender-Type of the external ontology Cyc, to describe the
attribute payment.

Agent Communication
Meta Ontology

«metaclass»
Performative

«instance»

Representative

Performative
Ontology

Buy

Musicshop
Message Content
Ontology

«instance»

External Ontology
Cyc

Money-Tender-Type

«import»

Reference Model

Figure 5. The process from Agent Communication Meta Ontol-
ogy to Message Content Ontology.

2.5. Message Content Ontology Application

In order to discuss a message content ontology in action, we show how agents apply
the musicshop ontology. In an ideal world, we can assume that all agents are ca-
pable of handling imported parts of message content ontologies. Problems related
to ontology integration include mapping between different types of languages, ver-
sions of ontologies and levels of detail. For a discussion on the use of ontologies
we refer to [36]. Furthermore, we assume that the agents are FIPA-Compliant,
meaning that they have registered themselves at an agent platform and know how
to consult a platform’s DF (directory facilitator, i.e. an agent platform’s yellow
pages).

Below a part of a conversation is given, which is composed of four stages.
The conversation in the third stage makes use of the Musicshop message content
ontology. In the first stage, where agent B consults the DF to find an agent that
represents a CDshop, the FIPA Agent Management Message Content Ontology is
used. Then, agent B starts a negotiation with agent S (the agent suggested by the
DF) on how to follow the message content ontology. This part of the conversation
is based on the negotiation protocol and makes use of the Execution Negotiation

184 Chris van Aart, Bob Wielinga and Guus Schreiber

Message Content Ontology. Next, the agents start the actual negotiation by argu-
ing on the price of a CD on basis of the Musicshop ontology and the negotiation
protocol. Finally, the agents argue on the actual payment using the Payment Ne-
gotiation Message Content Ontology. We added the Execution Negotiation and
Payment Negotiation Message Content Ontologies to illustrate how agents can
switch between multiple message content ontologies.

1: service location (using the FIPA Agent Management Message Content Ontology)
① agent B to DF: (Search (service-description :type “CDShop”))
② DF to agent B: (Agree (Search (service-description :type “CDShop”)))
③ DF to agent B: (Result (AID name: “agent S”))

2: execution negotiation (using the Execution Negotiation Message Content
Ontology)
① agent B to agent S: (Ask (Ontology))
② agent S to agent B: (Answer (Ontology name: “Musicshop”))
③ agent B to agent S: (Tell (Role name: “buyer”))
④ agent S to agent B: (Tell (Role name: “seller”))

3: actual negotiation (using the MusicShop Message Content Ontology)
① buyer to seller: (Ask (CD :title “the best of” :artist “Paolo Conte”))
② seller to buyer: (Offer (Price :value “19.90” :currency “EUR”) :validity

“18/02/2004”)

③ buyer to seller: (Reject :reason “price too high”)
④ seller to buyer: (Offer (Price :value “18.50” :currency “EUR”) :validity
“18/02/2004”)
⑤ buyer to seller: (Reject :reason “price too high”)
⑥ seller to buyer: (Offer (Price :value “18.00” :currency “EUR”) :validity

“18/02/2004”)

⑦ buyer to seller: (Buy (CD :title “the best of” :artist “Paolo Conte”) :payment
“credit-card”)

4: payment negotiation (using the Payment Negotiation Message Content
Ontology)
① seller to buyer: (Ask (CreditCard))
② buyer to seller: (Offer (CreditCard :number “1111 2222 3333 4444” :validity
“1203”))
③ seller to buyer: (Reject :reason “credit card not valid”)
④ buyer to seller: (Offer (CreditCard :number “2222 3333 4444 5555” :validity
“0105”))
⑤ seller to buyer: (Accept :comment “CD will be delivered within 1 week”)
. . .

In the first stage, agent B sends message ① to the agent platform’s DF to
search for an agent that offers services belonging to the “CDshop” domain. After a
lookup in the DF’s repository, the DF suggests to contact agent S with message ②.
The conversation between the DF and agent S, are based on the Agent Manage-
ment Ontology, see Section 2.3 and [10]. The applied protocol in this conversation
is the Request-Protocol.

In the second stage, agent B and agent S start a discussion on how to perform
the negotiation. Two decisions are made: one on the message content ontology

Message Content Ontologies 185

(see messages ① and ②) to apply and on the division of roles (see messages ③
and ④). From here on agent B plays the role of “buyer” and agent S plays the
role of “seller”. More work on ontology negotiation can be found in [2]. Here we
assume that the imported ontologies used in the musicshop ontology are available
(e.g. via an online ontology repository). If not, the agents should be capable of
finding a substitute ontology or can decide to stop the negotiation. In addition,
version problems have to be solved. For example, agent A and agent S make use
of different versions of the musicshop ontology or one or more of the imported
ontologies. We assume that the agents are capable of detecting version problems
and are capable of resolving it, by upgrading to a common version. There can also
be problems related to the level of detail of the imported ontologies. For example,
one attribute can be of a type in an upper ontology and another in an application
ontology. In this case, we assume that the agents are capable of building mappings
or bridges between levels of detail. The applied protocol in this conversation is the
negotiation-protocol.

In the third stage, the buyer begins the actual negotiation, based on the Mu-
sicshop ontology and the negotiation-protocol. The negotiation starts with message
① using the action Ask combined with the concept CD to ask for an offer of the
seller. The seller responds with message ②, which has the action Offer including
a validity attribute and the object Price. The validity attribute is used to refer to
the validity of the offer for this particular CD. Next, the buyer sends message ③
containing the action Reject and a reason, in order to reject the offer. The seller
responds with message ④ containing a new Offer, which is rejected by message ⑤.
The offer in and ⑥ is accepted by the buyer, and sends message ⑦ to the seller,
which contains the action Buy.

Finally, in the fourth stage, the seller and buyer try to settle the payment,
which is based on the negotiation-protocol. As shown, the seller asks the buyer for
details on the selected payment form, i.e. “credit card”. The first answer of the
buyer is rejected due to an invalid credit card. The second answer of the buyer is
accepted and a delivery date is offered.

3. Operationalization of Ontology-based Communication

In the previous section we presented a framework containing a Reference Model.
In this section, we argue that not all parts of the Reference Model are always
required for agent communication. For example, the agent role ontology is meant to
model more elaborate roles, such as Manager and Operator. One of the reasons to
distribute the task of a system is to separate responsibilities, which are connected
to roles. Given, the current state of the art in agent technology, agent designers
often choose to have agents commit to one role, e.g. Broker, Librarian, Manager or
Operator. Therefore, given the current state of the art, the use of agent roles can be
seen as superfluous. Consequently, the relation between protocols and agent roles
can become redundant. For example, in the case of the FIPA Agent Management

186 Chris van Aart, Bob Wielinga and Guus Schreiber

Ontology, visiting agents already know the existence of the AMS and the DF. Even
registration procedures (with the AMS and the DF) are hardwired in agent tool
kits as two separate agents [3].

Most agents at this moment are relatively simple, in terms of reasoning power.
One reason for that is that implementing agents with traditional AI languages is
problematic [24]13. A lot of existing tools such as JADE are designed in Java, be-
cause of its popularity and of the availability of reusable components. Furthermore,
more low level standardization has to be realized [27].

The role of a Reference Model is to provide means for agents and agent engi-
neers to reason about ontology-based agent communication. Therefore, we propose
to use a Minimal Ontology, which only defines conversation specific concepts. The
Minimal Ontology is discussed in detail in Section 3.1. When designing relative
simple agents using the current state of the art, the Minimal Ontology can be
applied.

In the remainder of this section, we answer the following two questions: How
can ontologies for message content be designed? and How can messages be gener-
ated and interpreted, both on the basis of a Minimal Ontology? The first question
is related to ontology modeling. Typical issues related to ontology modeling are,
domain of interest, knowledge to be stored in the ontology and the maintenance of
the ontology [30]. The second question is related to the application of the ontology.
In this case, ontologies are used to support relatively simple conversations between
relative simple agents. These conversations are built up out of multiple messages,
which can contain questions, answers, offers and so forth.

3.1. Minimal Agent communication ontology

The minimal agent communication ontology14, presented, is preliminary and con-
tains only basic concepts and relations based on the Agent Communication Meta
Ontology. The idea is, that when we gained enough experience with this Minimal
Ontology, and possible conversations, extensions in the direction of the Reference
Model can be made. The trade-off is between expressive power and usability. A
Minimal Ontology that is very expressive may not be easy to use. For example, a
Minimal Ontology could demand that the state of an agent and the overall goals
of the system have to be specified. The idea could be that the sending agent, spec-
ifies its internal state and denotes for what goal a message is sent. This could lead
to an overload of information, where the agents spend more time on processing
information than on its actual task.

As mentioned above, FIPA has specified ontology-based communication, in
which the semantics of message contents is specified in message content ontologies.
The JADE toolkit has implemented the FIPA specifications15. The ontology han-
dling functionalities within this toolkit are extended to explicit ontology handling.

13Although this claim originates from 1999, little is known on agents with considerable reasoning
power, such as learning and reasoning on different types of ontologies and knowledge
14In the remainder we refer to “minimal agent communication ontology” by “Minimal Ontology”.
15It has successfully passed so called interoperability tests held by FIPA, see http://jade.cselt.it.

Message Content Ontologies 187

JADE is Java oriented, therefore ontology specifications have to be expressed in
Java code. This code will be part of the agent.

Every concept in an ontology has to be defined as a Java Bean. A Java Bean
is a special type of a Java class, which adheres to a specific design. A Java Bean
has members (i.e. attributes) that can be written with a set operation and be
read with a get operation or an is operation16.

One of the content languages FIPA has described and for which tools are
available is FIPA-SL017 [16]. The SL0 representation of this class is (CD :name
”the best of” :artist ”Paolo Conte”). We focus on the creation of the ontologies and
use the SL0 format to describe examples of the content of messages.

For every sent message, a translation from the internal Java instances to SL0,
has to be made. For every received message, a translation from SL0 representation
to internal Java instances has to be made. A more elegant alternative functionality
is to manipulate ontologies as external resources expressed in SL0. However, no
concrete implementation of a SL0 knowledge base is available.

The JADE toolkit offers limited ontology manipulation, we follow its (limited)
view on ontologies. The reason for this is that a lot of agent engineers use the
toolkit to develop agents in. Within the JADE toolkit, there are a limited number
of basic ontological classes18 with corresponding concepts that can form the basis of
a Minimal Ontology. The candidate elements of the Minimal Ontology are Concept
and Action, because they correspond with the domain concept and performative
from our Reference Model. We neglect the notion of role and protocol in order to
keep the ontology minimal.

A Concept is a superclass of the domain concepts that are subject of dis-
cussion, such as good, price, person, and address. This element refers to the con-
versation domain ontology. A Concept has properties that can have values. For
example, a CD can have the properties title and artist instantiated with the values
“the best of” and “Paolo Conte”.

An Action is a superclass of the intentions (or performatives) that can change
the world. This element refers to the performatives of the performative ontology.
Examples of actions are sell, offer, ask, tell, propose and buy.

Every Action contains at least one Concept. This means that every action is
coupled to one or more objects in the world. For example, Buy is connected to a CD
and offer is connected to a price. Therefore, we include the relation AllowedConcept
in the Minimal Ontology, to relate Concepts to the Action class.

An example message content ontology related to a musicshop is illustrated in
Figure 6. As illustrated the conversation specific concepts are defined as abstract
classes (i.e. the classes printed in italic letters) and not as meta classes. The reason
for this is to keep the creation of message content ontologies less complicated
compared to the Agent Communication Meta Ontology. We can already see a

16The is operation is used to check the value of boolean typed members.
17SL0 is a subset of FIPA-SL. The syntax of SL is based on s-expressions used in LISP, which
are balanced parenthesis lists [24].
18These elements (i.e. Java classes) can be found in the jade.content package.

188 Chris van Aart, Bob Wielinga and Guus Schreiber

+title[1] : String
+artist[1] : String
+content[1..*] : String

CD

+value[1] : float
+currency[1] : String

Price

Ask

+payment[1] : String

Buy

+reason[1] : String

Reject

+validity[1] : String

Offer

+reason[1] : String

Abort

1

*

1
*

1

*

1

*

Musicshop
Message Content Ontology

ActionConcept

Figure 6. Musicshop Message Content Ontology for a conver-
sation in a CD shop (see also Figure 4), based on the Minimal
Ontology.

drawback of the Minimal Ontology, because it does not include the possibility to
define axioms and rules. For example, the rule that the seller has to respond with
the action Offer after receiving an action Ask, cannot easily be modeled in the
ontology.

In the remainder of this section, we discuss a tool that is a first attempt to
automate agent coding. With the use of Protégé message content ontologies can
be defined based on the Minimal Ontology. The ontologies defined within Protégé
can be translated to Java code, which can be used for buildings agents with the
JADE toolkit.

3.2. Defining Message Content Ontologies

Defining a message content ontology means specializing the elements of the Mini-
mal Ontology. In order to be able to use the current ontology editors to design our
Minimal Ontology we decided to comply with the OKBC knowledge model, used in
Protégé 2000, Protégé 2000 is a commonly used ontology editor, which enables en-
gineers to graphically model ontologies. Furthermore, additional functionality and
storage formats can be “plugged in” into the system. An ontology within Protégé

Message Content Ontologies 189

Facet Description Examples

cardinality of a slot the number of values the class person can only have
slot can have, i.e. 0,1,N. one father (c = 1),

class father can have
multiple children (c = N).

allowed values restriction of the Integer, String, Instance of a class.
value type of a slot.

numeric boundaries the minimum and maximum the slot age is between 0 and 150.
value for a numeric slot

required or optional whether a slot is required or not the slot name is required for
the class person.

Table 4. Facets of the slots part of ontologies within Protégé
including description and examples.

is based on a frame-based (OKBC) knowledge model [29]. Therefore, ontologies
modeled with this tool, can be mapped onto Java structures.

The ontology model of Protégé consists of classes, slots and slot facets [29].
Classes are concepts in the domain of discourse, with which a taxonomic hierarchy
can be constructed. Slots describe properties or attributes of these classes. A slot
in itself is a frame that has a type. This can be a primitive class, like String, Integer
and Float, or an instance of another class. Furthermore, a slot has a value. Slot
facets (see Table 4) describe properties (or constraints) of slots.

The design of the musicshop ontology is given in Figure 7 and Figure 6. As
shown the concept CD has three slots: title, artist and tracks. The slots title and
artist are modeled as String, are required and the cardinality is single. This means
that every instance of CD, such as the Paolo Conte’s CD, needs exactly one title
and artist. We also added the slot tracks, to define the content of a CD. The slot
is defined as multiple instances, which means that the slot refers to a collection
(sequence) of instances of the type Track. Each class Track has the slots title and
duration.

The concept Price has two slots: value and currency. The slot value denotes
the amount of the price and currency the corresponding currency. In order to
comply with the currency slot with international standards, the values of this slot
could be restricted to an ontology that has defined internal currency codes. The
International Organization for Standardization (ISO), a worldwide federation of
national standards bodies, has specified the ISO 4217 standard, which contains
global currencies and the three-character currency codes that are generally used
to represent them19. In order to keep the ontology simple, this step is omitted by
only considering EUROs, which is represented by “EUR”.

In order to have the agents discuss on CDs in a musicshop setting, four
Action types were modeled: Buy, Ask, Reject and Offer. These actions can be
used to negotiate on the price of CDs. The actions correspond with the implicit
performatives defined in Section 2.4.

19See www.xe.com/iso4217.htm

190 Chris van Aart, Bob Wielinga and Guus Schreiber

Figure 7. Screenshot from Protégé containing the Musicshop
Message Content Ontology based on the Minimal Ontology.

One of the advantages of the Protégé tool is that other ontologies can be
imported. Repositories of existing ontologies ranging from Biological domains to
market place product and service descriptions, can be found at the Protégé com-
munity page and at the DAML site20. The languages used to represent these
ontologies can range from XML, RDF, DAML-OIL, XMI, SQL to UML.

3.3. Mapping from Ontology Design to Java Beans

To support the agent engineer in creating and using message content ontologies,
we developed a plug-in for the Protégé 2000 environment called the Bean Gener-
ator.With this plug-in, a domain ontology within Protégé can be developed and
exported to Java beans.

Every class in the Minimal Ontology, i.e. Concept and Action is the basis for
the generation of a Java class. The taxonomic structure (i.e. inheritance relations)
of the domain model is mapped on the inheritance capabilities of Java.

3.4. Message Content Ontology Application

Agents can generate and interpret the content of messages, using content encoding
and content decoding processes. An encoder is used by an agent when sending
messages. There are two basic reasons for an agent to send a message. First, to
start a conversation, such as asking for the price of a CD. Secondly to participate
in a conversation, such as responding to a question. In both cases, the agents have
to make translations from their internal state (i.e. collection of java instances) to
an ACL language, such as SL0.

20See http://protege.stanford.edu/ontologies.html and www.daml.org/data

Message Content Ontologies 191

When an agent receives a message, the content has to be translated into
the internal model of the agent, using a decoder. For example, when receiving a
message filled with the content: (Offer :id 1 (Price :value ”19.90” :currency ”EUR”))
the appropriate instances have to be generated. In this case, instances of the class
Offer and Price are generated.

4. Legal Advisor

In this section we show the application of the message content ontologies and
the above described approach in the domain of European Competition Law. We
choose another domain then the Musicshop in order to show the variety of message
content ontologies.

European Competition Law focuses on determining what law system(s) and
rules are applicable in case of international business. Law systems include for
instance national competition law and European competition law. Whereas rules
include acts, statutes, regulations, directives, treaties, etc. For example, a company
from country A wants to take over a company situated in country B. The question
then is, which laws and rules are applicable when doing business on an international
level?

There are several methods to enable companies to determine which laws
and/or rules are applicable. One way is to look at the transaction amount of a
take-over. This can determine whether European Law or national law is applicable.
Another way is to look at the impact of the take-over with regard to the (European)
competition. This can determine whether this take-over can be granted. Finally,
does a take-over result in a dominant position of power with regard to the European
Competition. If so, the take-over might not be granted.

4.1. Architecture

The system is composed of different types of agents: the law expert agent, the
law services broker and the personal law assistant. The multi-agent architecture
is drawn in Figure 8, showing the agents involved: the law expert agent, the law
services broker and the personal law assistant, and their interactions. The law
expert agent is drawn as a prototype for the the web expert, the article expert and
the rules expert. The “consultation” between the law expert agent and personal
law assistant are based on a sequence of Tell (of type directive) and Answer (of
type representative) performatives, based on the FIPA-Request protocol.

4.1.1. Law Expert Agent. The law expert agents have the necessary knowledge
about parts of European competition law. It means that they can reason about
a part of a legal domain and exchange their finding with other agents. The law
expert agents are able to agree on certain legal practices applicable to the question
posed to them by the personal law assistant. In order to offer their services the
agents register their competences at the law services broker.

192 Chris van Aart, Bob Wielinga and Guus Schreiber

personal law
assistant

user

law services
broker

law expert
agent

register("services")

"consultation"

consult("legal problem") delegate("legal problem")

Figure 8. The Legal Advisor multi-agent architecture.

The first task of a law expert agent, i.e. register itself at the law services
broker, is handled by the environment model. The law services broker uses the
registrations of the law expert agents in order to select the proper law expert agent
that can solve the issues submitted by the personal law assistant. The second task
is to provide answers to questions posed by the personal law assistant.

Three types of law expert agents are defined: the web expert, the article expert
and the rules expert. The web expert agent is able to translate a question from the
personal law assistant to a query for a search engine (e.g. Google). To make sure
that the results are within the required domain, certain keywords, such as “law”
are added to the search query. The article expert is able to match a question from
the personal law assistant to an XML annotated set of laws. We used an “ad hoc”
article annotation. A formalized schema for annotation is METAlex21, which is
used in markup of legal sources, such as the Rome Statute, Belgian Income Tax
Law, Dutch Corporate Tax Law and Dutch Penal Code.

The rules expert consults a SWI-Prolog-driven knowledge base, which is able
to reason with a set of production rules. If the reasoner has insufficient informa-
tion about the legal situation, it sends a message back, asking for more specific
information. To be able to query the Prolog KB from within the agent, the JPL22

library is used.
After interviews with legal experts, it appeared that there are no knowledge

bases available that cover European Law. The decision was made to use an available

21www.metalex.nl
22http://sourceforge.net/projects/jpl/

Message Content Ontologies 193

knowledge base, describing a set of law articles about the “opium laws” in the
Netherlands, provided by the Department of Computer Science and Law of the
University of Amsterdam23.

4.1.2. Law Services Broker. The law services broker functions as a central hub in
the system, it has a notion of existing law expert agents and is able to delegate
questions to the law expert agents that are posed by the personal law assistant.
Every law expert agent has to register at the law services broker. The “location”
of the law expert agents is maintained by the environment model. The “services”
of the law expert agents is maintained by the competence model.

On the basis of a matching strategy (such as pattern matching) and a question
of a personal law assistant, the law services broker selects a law expert agent. The
law services broker will delegate a consul to the selected law expert agent.

4.1.3. Personal Law Assistant. The personal law assistant is the agent with whom
the end-user of the system interacts. The agent maintains a user profile of the user
and processes interaction with the user. Furthermore, the agent interacts with the
law services broker and law expert agents selected by the law services broker on
the basis of the Legaladvisor message content ontology.

Based on answers a user has given to queries, the personal law assistant
can provide domain knowledge to law services broker and law expert agents. The
answers of the law expert agents agents are presented as results to the user. This
is operationalized by a web service which enables the user to provide its input.
Furthermore, results of consults can be displayed.

4.2. Message Content Ontology Design

By combining the ontology design of the Protégé tool with the Bean Generator, it
was possible to create a Java object hierarchy which is used by the agents in the
system. We will now look at the design of the LegalAdvisorOntology. A part of the
ontology as designed in Protégé is given in Figure 9.

The LegalAdvisorOntology ontology contains a limited set of classes on the
basis of the Minimal Ontology, in order to balance the expressive power of the
ontology and the competences of the agents, which are in this case limited. Reason
for this is that the agents have access to services with limited functionalities.

Conforming to the Minimal Ontology, we first defined subclasses of type Ac-
tion. These subclasses are Ask, AskYesNo, AskOption, Register, Consult, Delegate,
Tell, TellYesNo and TellOption. The action Ask is applied by the expert agents to
inquire information. This action is specialized into AskYesNo, to inquire boolean
questions and AskOption, to inquire for one or more options. Register, which is
used to register agents at the broker. Consult is used by the UserAgent to consult
the broker agent. Delegate is used by the BrokerAgent to delegate a legal problem
to one or more expert agents. Tell is used to answer an Ask action. Similar to the
Ask action. Tell is specialized into TellYesNo and TellOption.

23www.lri.jur.uva.nl

194 Chris van Aart, Bob Wielinga and Guus Schreiber

Next we defined the subclasses of type Concept: Option, LegalService and
LegalProblem. The concept Option defines the possible options used in the action
AskOption. LegalService is a description of a service offered by an ExpertAgent.
LegalProblem is a simplification of the problem owned by a UserAgent.

+value[1] : String

Option

+type[1] : String
+description[1] : String

LegalService

Tell

Ask

Register

Consult

+agent[1] : String

Delegate

1

*

1..*

*

*

1..*

*

1..*

Legaladvisor
Message Content Ontology

Action
Concept

TellYesNo

TellOption

AskYesNo

AskOption

+domain[1] : String
+description[1] : String

LegalProblem

* 1..*

Figure 9. The Legaladvisor Message Content Ontology design
for the Legal Advisor system, based on the Minimal Ontology.

4.3. Simple Scenario

This section describes a simple example scenario to show how the agents within
the system interact with each other, using the LegalAdvisorOntology. The scenario
starts when the agent platform has been launched and the agents have been cre-
ated. Each agents has to register its services at the law services broker. An example
message sent from the webagent to the broker is:

web expert to law services broker: (Register :legalservice (LegalService :type ”key-
wordsearch” :description ”Googlesearch”))

Message Content Ontologies 195

The message shows a description of the service that the agent can offer. As
mentioned above, we did not use a full-fleshed ontology. Therefore, the service
description is a very basic one.

The next step in the scenario is when a user enters information into a web
form and submits this to the personal law assistant. Unknowing what the (seman-
tic) content of the user’s information is, it starts asking the law services broker for
a suitable expert agent. The agent does this by forwarding the user’s question to
the broker:

personal law assistant to law services broker: (Consult (LegalProblem :domain ”com-
petition law” :description (sequence ”European” ” competition” ”law” ”regula-
tions”))”

The broker analyzes the content of the message, and tries to find an appro-
priate agent. This is done by applying a basic lookup mechanism in the broker’s
register. In this case, the broker decides to delegate the legal problem to the web
expert agent. Therefore, the webagent is selected, since it can ask any question to
Google. Whether the answer of Google is usable is to be decided by the end user.

This decision is then sent to the web agent by the message:
law services broker to web expert: (Delegate (Consult (LegalProblem :domain
”competition law” :description (sequence ”European” ”competition” ”law” ”regu-
lations”)) :agent ”personal law assistant”)

This message tells the web expert that it should find an answer to the specified
LegalProblem and give the answer back to the agent ”useragent”. To find an answer
to the LegalProblem, the web expert consults Google. The answer of Google, i.e. a
list of URLs is translated into a sequence of the object Option and embedded into
a TellOption action:

web expert to personal law assistant: (TellOption :options (sequence (Option value:
”http://europa.eu.int”)(Option value: ”http://www.ellispub.com”)(Option value:
”http://www.etsi.org”) . . .))

From there, the user agent presents the received answer to the end-user.

4.4. Evaluation

Although there have been a few concessions to the original design, we succeeded
in building a stable and fully functional law assistance agent system. The system
makes use of the relative simple message content ontology in order to show the
generation and application of message content ontologies on a general level. The
agents’ functionality is limited, due to the unavailability of usable legal knowledge
bases. We did not model an ontology that fully represents a legal domain. For
example, in the musicshop example, the notion of a CD is relatively well-defined.
However, the notion of a legal problem in the Legal Advisor System needs to be
further elaborated. Furthermore, we only paid attention to the type of conversa-
tions, i.e. Tell-Answers combinations.

The legal services and legal problems are expressed as keywords. Real life
conceptualization of legal services and legal problems need more elaborate con-
structs. For this, existing ontologies and knowledge bases could be included, such

196 Chris van Aart, Bob Wielinga and Guus Schreiber

as the CIA world fact-book that contains basic information related to countries,
CYC containing common sense knowledge and various (in DAML represented)
information sources24. The problem with this, however, is that conceptualization
conflicts need to be resolved.

A drawback of the presented approach is that it does not consider complex
constraints between concepts25. It is not (yet) possible to define what an allowed
sequence of messages is. For example, a message containing the action class of type
Ask, should be followed by a message containing an action class of type Tell. If
we want to do so, we need to enhance the ontology mapping mechanism, in such
a way that constraints can be stored in the ontology-mapping file.

5. Discussion

In this chapter, we addressed the problem of how agents can handle message-based
communication. We have defined a framework for message content ontologies con-
taining a Reference Model in order to provide semantics in message-based com-
munication. The framework is built up out of a generic part and a specific part.
The generic part is represented by an Agent Communication Meta Ontology that
defines types of performatives and protocols based on (human) communication
theory: speech acts and conversational interaction. The specific part is composed
of a collection of domain dependent ontologies that describe the domain of the con-
versation, performatives, protocols and agent roles. We described and extended an
existing categorization of speech acts for the definition of performatives. Further-
more, in order to show the variety of conversation protocols, we adjusted three
existing protocols (i.e. Query, Request and Auction) and added two new ones
(Negotiation and Supervision).

The Agent Communication Meta Ontology defines the subjects of agent com-
munication: concepts, performatives, protocols and agent roles. We showed that
a message content ontology is an instantiation of the Agent Communication Meta
Ontology, which can be mapped onto a class diagram and specified in detail. From
a theoretical point of view, it is appealing to define as much information as pos-
sible into a “full fledged” Reference Model. However, when designing an agent
that is capable of handling this information, a lot of overhead emerges (due to the
need for ontology operations and pre-negotiation activities). When making use of
a full fledged Reference Model, the question is if all its concepts and relations are
needed.

Based on our framework, we defined a “Minimal Ontology”, which can be
used in more pragmatic agent solutions. The ontology contains the classes Concept
and Action, and the relation AllowedConcept. We explained that agents without an
inference engine need a representation of an ontology in terms of their internal
representation (such as Java beans) and means (such as an ontology mapping

24www.cia.gov/cia/publications/factbook, www.opencyc.org and www.daml.org.
25Constraints on slots can be made, with facets as described in Table. 4.

Message Content Ontologies 197

file) to map instances of an ontology into their internal representation. On the
basis of the presented tool, encoders and decoders can respectively be used for
translating an agent’s internal model to agent communication utterances and vice
versa. However, in this approach, the ontology and ontology translation is hard
coded. This means that if an ontology changes, the java code for the agent needs
to be regenerated and the agent needs to be deployed again.

Both the construction of the Message Content Ontology Framework and the
Minimal Ontology can be seen as a first step towards the standardization of on-
tologies in agent communication and conversation. A possible method to define
message content ontologies starts with choosing an Agent Communication Meta
Ontology as a Reference Model, such as defined in Section 2.1. Next, based on
generic classes of the Agent Communication Meta Ontology, conversation specific
concepts of a message content ontology need to be defined (see Section 2.4.1).
Then, these concepts can be specified in more detail by defining their properties
(or attributes) and relations (see Section 2.4.2). Finally, ontology operations (such
as encoding and decoding) have to be defined and added into an agent model.

Future research on message content ontologies includes elaboration on means
to represent both syntax and semantics of message content ontologies, handling
issues related to accessibility, i.e. how to store ontologies and how to retrieve them.
From a methodological point of view, future research should address problems
related to redefinition of ontologies.

For the case study, we designed a system with an information-driven char-
acter (cf. [17]) using notions of information processing actions (i.e. ask and tell).
In the future, dedicated minimal ontologies suited for specific processes or spe-
cific domains can be defined. Other interesting domain are when agents with a
knowledge-driven character communicate at the knowledge level. For this, content
ontologies could be defined that can handle concepts like competences, knowledge,
methods and protocols. A starting point can be UPML [7].

An alternative approach to ontology handling is having agents to manipulate
existing ontologies and even to learn new ones. For example, agents could negotiate
on the meaning of concepts and relations. Another alternative approach to ontology
handling is that the agent sends serialized Java code26 that represents (parts of)
an ontology. The receiving agent can process this code into its own ontology model.
Next to automatic generation of Java beans, semi-automatic generation of Java
classes that define the behavior of agents can be considered. For example, encoders
and decoders could take care of all aspects of conversation management. Tasks
of conversation management are to keep track of state of conversations, follow
interaction protocols and negotiate meaning. Probably the method of generating
static code can be useful in well defined situations. However, when agents operate in
dynamic environments and need to change their strategy and models at runtime,

26Within Java it is possible to translate (i.e. serialize) the structure and state of objects into a
transportable format.

198 Chris van Aart, Bob Wielinga and Guus Schreiber

other techniques such as maintaining an explicit message content ontology and
behavior patterns are to be considered.

References

[1] J.L Austin. How to Do Things with Words. Oxford University Press, 1976.

[2] S.C. Bailin and W. Truszkowski. Ontology Negotiation between Scientific Archives.
In Thirteenth International Conference on Scientific and Statistical Database Man-
agement, 2001.

[3] F. Bellifemine, Caire G., T. Trucco, and G. Rimassa. JADE Programmer’s Guide.
2003.

[4] A. Bond and L. Gasser. Readings in Distributed Artificial Intelligence. Morgan Kauf-
mann publishers Inc.: San Mateo, CA, USA, 1988.

[5] A. Chavez and P. Maes. Kasbah: An agent marketplace for buying and selling goods.
In Proceedings of the First International Conference on the practical Application of
Intelligent Agents and Multi-agent systems, 1996.

[6] S. Cranefield and M. Purvis. Uml as an ontology modelling language. In Workshop on
Intelligent Information Integration, 16th International Joint Conference on Artificial
Intelligence (IJCAI-99), 1999.

[7] D. Fensel, V.R. Benjamins, E. Motta, and B.J. Wielinga. UPML: A framework for
knowledge system reuse. In Proceedings of IJCAI-99, Stockholm, Sweden, 1999.

[8] J. Ferber. Multi-Agent Systems. Addison-Wesley, Reading, MA, 1999.

[9] FIPA. FIPA Ontology Service Specification. Technical Report XF000086, Foundation
for Intelligent Physical Agents, http://www.fipa.org/specs/fipa00086/, 2001.

[10] FIPA. FIPA Agent Management Specification. Technical Report SC00023, Founda-
tion for Intelligent Physical Agents, http://www.fipa.org/specs/fipa00023/, 2002.

[11] FIPA. FIPA Communicative Act Library Specification. Technical Report SC00037J,
Foundation for Intelligent Physical Agents, http://www.fipa.org/specs/fipa00037,
2002.

[12] FIPA. FIPA Contract Net Interaction Protocol Specification. Tech-
nical Report SC00029, Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00029/, 2002.

[13] FIPA. FIPA Dutch Auction Interaction Protocol Specification. Tech-
nical Report XC00032, Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00032/, 2002.

[14] FIPA. FIPA English Auction Interaction Protocol Specification. Tech-
nical Report XC00031, Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00031/, 2002.

[15] FIPA. FIPA Request Interaction Protocol Specification. Techni-
cal Report SC00026H, Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00026, 2002.

[16] FIPA. FIPA SL Content Language Specification. Technical Report SC00008, Foun-
dation for Intelligent Physical Agents, http://www.fipa.org/specs/fipa00008/, 2002.

[17] J. Galbraith. Designing complex Organizations. Addison-Wesley, 1973.

Message Content Ontologies 199

[18] M.L. Geis. Speech Acts and Conversational Interaction. Cambridge University Press,
1995.

[19] M. Genesereth and S. Ketchpel. Software agents. Communications of the ACM,
37(7):48–53, 1994.

[20] A. Gomez-Perez. Ontological engineering: A state of the art. Expert Update, 2(3):33–
43, 1999.

[21] M. Gruninger and M. Fox. The Role of Competency Questions in Enterprise Engi-
neering. In Workshop on Benchmarking - Theory and Practice, 1994.

[22] A. Haddadi. Communication and Cooperation in Agent Systems. Berlin, Springer-
Verlag, 1995.

[23] M.N. Huhns and L.M. Stephens. Multiagent systems and societies of agents. In
G. Weiss, editor, Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence, pages 79–120. The MIT Press, Cambridge, MA, USA, 1999.

[24] Y. Labrou, T. Finin, and Y. Peng. The current landscape of agent communication
languages, 1999.

[25] S.C. Levinson. Pragmatics. Cambridge University Press, Cambridge, 1991.

[26] A. R. Lomuscio, M. Wooldridge, and N. Jennings. A classification scheme for nego-
tiation in electronic commerce. International Journal of Group Decision and Nego-
tiation, 12(1):31–56, 2003.

[27] M. Luck, P. McBurney, and C. Preist. Agent Technology: Enabling Next Generation
Computing: A Roadmap for Agent Based Computing. AgentLink II, 2003.

[28] R. Neches, R. Fikes, T. Finin, Gruber T., R. Patil, T. Senatir, and W. Swarout.
Enabling technology for knowledge sharing. AI Magazine, 12(3):36–56, 1991.

[29] N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protege-2000: Combin-
ing interoperability and flexibility. In 2th International Conference on Knowledge En-
gineering and Knowledge Management (EKAW’2000), Juan-les-Pins, France, 2000.

[30] N. Noy and D. L. McGuinness. Ontology Development 101: A Guide to Creating
Your First Ontology. 2001. Technical report, Stanford Medical Informatics, 2001.

[31] H.S. Pinto and J.P Martins. Reusing Ontologies. In AAAI 2000 Spring Symposium
Series, Workshop on Bringing Knowledge to Business Processes, 2000.

[32] J.A. Rodŕıguez-Aguilar, F.J. Martin, P. Noriega, P. Garcia, and C. Sierra. Towards
a test-bed for trading agents in electronic auction markets. AI Communications,
11(1):5–19, 1998.

[33] J.R. Searle. Seech Acts. Cambridge University Press, 1969.

[34] . Shoham, Y. Agent oriented programming. Artificial Intelligence, 60(1):51–92, 1993.

[35] M.P. Singh. Agent Communication Languages: Rethinking the Principles. IEEE
Computer, 31(12):40–47, 1998.

[36] M. Uschold and M. Grüninger. Ontologies: principles, methods, and applications.
Knowledge Engineering Review, 11(2):93–155, 1996.

[37] M. Uschold, M. King, S. Moralee, and Y. Zorgios. The Enterprise Ontology. The
Knowledge Engineering Review, 1998.

[38] H. Weigand and W. Hasselbring. An Extensible Business Communication Language.
International Journal of Cooperative Information System, 10(4):423–411, 2001.

200 Chris van Aart, Bob Wielinga and Guus Schreiber

Chris van Aart
Molenstraat 229
5342 CB
Oss
The Netherlands
e-mail: chris@vanaart.com

Bob Wielinga
University of Amsterdam
Human-Computer Studies Laboratory
Kruislaan 419
1098 VA Amsterdam
The Netherlands
e-mail: wielinga@science.uva.nl

Guus Schreiber
Free University Amsterdam
Department of Computer Science
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
e-mail: schreiber@cs.vu.nl

Incorporating Complex Mathematical Relations
in Web-Portable Domain Ontologies

Muthukkaruppan Annamalai and Leon Sterling

Abstract. The growing use of agent systems and the widespread penetra-
tion of the Internet have opened up new avenues for scientific collaboration.
We have been investigating the possibility for agent systems to aid with col-
laboration among Experimental High-Energy Physics (EHEP) physicists. An
apparent necessary component is an agreed scientific domain ontology, which
must include concepts that rely on mathematical formulae involving other
domain concepts such as the energy and momentum, for their meaning. We
claim that the current web ontology specification languages are not sufficiently
equipped to be useful for explicit representation of mathematical expressions.
We adapt some previous work on representing mathematical expressions to
produce a set of representational primitives and supporting definitions to in-
corporate complex mathematical relations among existing domain concepts in
web ontologies, illustrated with examples arising from our interactions with
the EHEP physicists.

1. Introduction

The growing use of agent systems and the widespread penetration of the Internet
has opened up new avenues and created new challenges for scientific collaboration.
On one hand, it is possible to make large amounts of scientific analyses of Exper-
imental High-Energy Physics (EHEP) experiments available to scientists around
the world [3, 4, 7]. On the other hand different scientific groups, even within a sin-
gle collaboration, utilise different calculation methods, and it is sometimes difficult
to know how to interpret particular analyses. It is assumed that practitioners in
the EHEP domain possess the necessary background knowledge to interpret the
intended meaning of the intuitive concepts and appropriated jargon in the domain
of discourse. Unfortunately, application developers, newcomers to this field, and
software agents lacking in relevant expertise are not capable of making a similar
kind of interpretation. Knowledge models, or ontologies built to express specific

202 Muthukkaruppan Annamalai and Leon Sterling

facts about a domain can serve as the basis for understanding the discourse in
that domain [5].

The notion of ontology as specification of a partial account of shared con-
ceptualisation [14, 17] is adopted in this paper, that is an ontology defines a set
of representational vocabulary for specific classes of objects and the describable
relationships that exist among them in the modelled world of a shared domain.

In 2002, we were involved in a project [1, 8] supported by the Victorian
Partnership for Advanced Computing [25] to investigate whether ontologies would
be useful for EHEP collaboration, in particular in the Belle [4] collaboration. The
research is founded on the idea that suitable web ontologies be developed and
reused to facilitate this scientific community to produce and share information
effectively on the semantic web. While the final verdict has not been reached, it
is clear that our project extends existing capabilities of web ontology specification
languages and tools.

One concerning issue is as to how to define mathematical concepts in the
EHEP domain ontology. Mathematical concepts are equated with mathematical
formulae involving other domain concepts such as the energy and momentum.
A mathematical concept is a manifestation of an n-ary mathematical relation
binding a set of concepts that co-exist in the ontology. The current web ontology
specification languages, such as DAML [18] and OIL [10] (which has since evolved
into OWL [23]) are founded on Description Logic [2] and can only express unary
and binary relations. They offer no representational features for expressing both
mathematical semantics and n-ary relations involving terms in the ontology. We
ask, “How do we facilitate the semantic recognition of mathematical concepts
in web ontology?” The answer to this question led us to cognise the extensions
required for additional expressivity in web ontology. This paper shows the approach
we have taken in order to ensure that we could describe complex mathematical
relations linked to mathematical concepts and appropriately structure them in the
web-portable domain ontology.

This paper is organised as follows. In Section 2, we provide a glimpse of
the event selection variable in the EHEP domain ontology, which will be aug-
mented with mathematical qualities to facilitate a coherent description of EHEP
experimental analysis. In Section 3, we describe the principles of dealing with
mathematical relations in domain ontology, and our approach to the problem is
elaborated in Section 4. Section 5 proposes to adopt a related XML standard so
that the augmented domain ontology remains XML-compliant. The future work
is mentioned in Section 6, and finally Section 7 concludes the contribution of this
paper.

Complex Mathematical Relations in Domain Ontologies 203

2. The EHEP Experimental Analysis

The foundation for the Belle experimental data analysis is the knowledge about
certain B particle decay channels and unbiased analysis of huge event data.1 A
particular data analysis attempts to recognise interesting B decay events by sys-
tematically discarding the background events in the data set.

A key information appreciated by the physicists is the event selection crite-
ria, which prescribes a set of ‘cuts’ to determine the acceptance or rejection of
an event. Cuts are constraints specified on event selection variables, whose values
are either measured directly or mathematically derived from values of other vari-
ables. Loosely restricted cuts (or skimming), followed by more decisive topological,
kinematic and geometric cuts is aimed to produce a set of desired event data for
justified analysis of the empirical findings.

One use of the EHEP domain ontology being developed is to help clarify
the cuts specified in the event selection criteria in definite terms – an essential
requirement for the rudiments of the analysis to be interpreted and processed by
supporting tools and agents.

2.1. Event Selection Variables in the EHEP Domain Ontology

The primary concept in the EHEP experimental analysis is event selection variable.
A category of event selection variables is defined in the EHEP domain ontology.
Figure 1 illustrates a partial hierarchy of event track variable concepts in the model.
These terms are identified based on their need to specify the event selection cuts.2

A set of competency questions [16] drawn-up while the ontology being built guides
the conceptualisation of these required event-variables. The competency questions
outline the competence of the EHEP ontologies. A typical competency question is:
“What is the kinematic selection criteria applied in a specified analysis?” The en-
suing answer would list the selection criteria enforced, such as: “Beam constrained
mass Mbc > 5.2 GeV/c2, Track transverse momentum PT > 100 MeV/c, Energy
difference ∆E < 0.2 GeV , Likelihood of electron over kaon Le/K > 0.95”. The
EHEP ontology must define the necessary vocabulary to represent the competency
questions that arose and the answers that were generated.

Following the web ontology modelling approach, we defined the hierarchi-
cally organised concepts and their distinguishing properties using frames. We used
Protege [13], a frame-based modelling tool to construct the domain model. Con-
sequently, the concepts are conceived using notations as class, subclass, property
(slot), property type, cardinality and facets. Figures 2, 3 and 4 exemplify the in-
ternal structure for concepts Energy, Momentum and InvariantMass, respectively.

1The B subatomic particles in the meson family, has mass 10, 331 times that of an electron and

average lifetimes of 1.6×10−12 seconds. The unstable B particle naturally decays into a range of

simpler particles. Physicists are particularly interested to study B decay channels that violate the
Charge-Parity symmetry prescribed by the standard physics model, which the physicists believe

may explain the dominance of matter over anti-matter in the universe.
2The subscripted-A at the end of a track variable name denotes that it is regarded as an abstract
concept. Individuals cannot be instantiated from such general concepts.

204 Muthukkaruppan Annamalai and Leon Sterling

Figure 1. Partial Hierarchy of Event Track Variables

The Energy class has been defined as a subclass of TrackVariable with prop-
erties like value and unit. The energy quantity of a track particle is described as a
real number together with its unit of measurement. The property unit denotes a
symbolic unit of measurement symbol. In the case of energy, a set of allowed values
for unit is represented by a facet, restricting the allowed symbol to eV, KeV, MeV,
and so on. The definitions of Momentum and InvariantMass are similar, except for
a different set of symbols utilised to denote their respective units of measurement.

The Track class describes a group of characteristics such as its charge, en-
ergy, invariant mass and momentum, which helps to distinguish a candidate track
particle. A partial definition of Track is given in Figure 5. Notice that there are
four types of momentum properties defined in this class. The property momen-
tum relates to the magnitude of a track particle’s momentum, whose fundamental
momentums along the X-, Y- and Z-axes in the laboratory frame are described as
momentumX, momentumY and momentumZ, respectively.

The definitions of these concepts in the model are rather simple. Also, notice
that the track variables have been defined somewhat independent of one another,
apart from indicating they are all subclasses of TrackVariable. In reality, these
concepts are mathematically related to one another. The restricted features offered

Complex Mathematical Relations in Domain Ontologies 205

class Energy
subClassOf TrackVariable
Property Property Type Cardinality
value Real =1
unit Symbol =1

Figure 2. Partial Definition of Class Energy

class Momentum
subClassOf TrackVariable
Property Property Type Cardinality
value Real =1
unit Symbol =1

Figure 3. Partial Definition of Class Momentum

class InvariantMass
subClassOf TrackVariable
Property Property Type Cardinality
value Real =1
unit Symbol =1

Figure 4. Partial Definition of Class InvariantMass

by web ontology modelling tools and languages do not allow us to define these
relationships explicitly.

We are also not able to represent vectors such as 3-momentum and flight
direction of a track particle. We circumvented this situation by defining three
properties to describe the individual components of a vector, like the way the
three fundamental momentums of a track particle are defined in Track. Again,
the close affinity between these fundamental momentums is not describable in the
current model, which can potentially lead to inconsistency in the knowledge base.

On the other hand, the calculation oriented event analysis to which we pro-
pose to apply this ontology, compels related domain terms to exhibit considerable
numeric-ability. The domain ontology must explicitly represent the mathematical
relationships among peer concepts so as to limit their possible interpretation and
relations in the ontology. More usefully, a mathematical relationship helps to trace
the derivability of a ‘function’ event selection variable from related constants and
‘constant’ event selection variables. In the ensuing discussion, we elucidate such
relationships that exist in the EHEP domain.

2.2. Constant and Function EHEP Event Selection Variables

The EHEP event variables provide a ‘handle’ for specifying the event selection cuts.
We sometimes refer to ‘event selection variables’ simply as ‘event variables’ for

206 Muthukkaruppan Annamalai and Leon Sterling

class Track
subClassOf EHEPEntity
Property Property Type Cardinality
signalTrack Boolean
candidateParticle Particle =1
charge Charge =1
energy Energy =1
mass InvariantMass =1
momentum Momentum =1
momentumX MomentumX =1
momentumY MomentumY =1
momentumZ MomentumZ =1
class Charge
subClassOf TrackVariable
class Energy
subClassOf TrackVariable
class InvariantMass
subClassOf TrackVariable
class MomentumX
subClassOf TrackVariable
class MomentumY
subClassOf TrackVariable
class MomentumZ
subClassOf TrackVariable

Figure 5. Partial Definition of Class Track

short. There are two classes of event variables in the EHEP domain depending on
how the quantity associated with these variables is determined. The quantities of
‘constant’ event variables are directly measured in a particular event; whereas the
quantities of ‘function’ event variables are derived from the quantities of constant
event variables.

In the illustrative example given in the first paragraph of the previous section,
Le/K is a constant event variable; whereas, Mbc is a function event variable. Mbc =√

E2
beam − P 2

B , where Ebeam is an experiment constant that represents the energy
of beam, while PB is the momentum of a B-candidate particle.3 P denotes the
norm of a 3-dimensional momentum vector. It is a function event variable derived
from the 3-Momentum vector as follows, P = ‖P3‖. P3 is a constant event variable.

3While constants such as energy of beam, Ebeam remains invariable for the whole experimental

analysis, the quantities assigned to event selection variables, either measured or calculated, re-

main fixed in a single event analysis. The numerical quantity, such as 5.2 GeV/c2 that appears
on the right-hand side of a cut specification is user-defined constant.

Complex Mathematical Relations in Domain Ontologies 207

A function event variable is expressed mathematically in terms of its re-
lated constants and constant event variables. A first order function event variable
accepts only constants or constant event variables as parameters. Examples are
momentum of particle, P and transverse momentum of particle, PT . The function
event variable P is given above, while PT =

√
P 2

x + P 2
y . Both variables are derived

from 3-Momentum, P3. In the latter, the momentums along the X- and Y-axes,
denoted respectively as Px and Py must be first extracted from P3 in order to
derive PT . Notice that function event variables are always grounded in constant
event variables.

Other examples of first order function event variables are the Fox-Wolfram
Moment-0, H0 and Fox-Wolfram Moment-1, H1 that utilise Fisher Discriminant
technique to combine a set of correlated event variables [11]. H0 =

∑
j

∑
k(Pj×Pk)

and H1 =
∑

j

∑
k(Pj×Pk×cos θjk). Both function variables are derived from a set

of 3-Momentums. H0 summatively combines the product of all pairs of momentums
belonging to a set of track particles in an event, while H1 summatively combines
their scalar product. The indices j and k enumerate the tracks in an event and θjk

is the polar angle between them in the laboratory frame of reference.
A higher-order function event variable admits other function event variables

as parameters. The beam constrained mass, Mbc, which relies on function event
variable momentum, P as parameter is an example of higher-order function event
variable. In fact, invariant mass of a particle, M =

√
E2 − P 2 is derived from

its energy, E and momentum, P . Another example of higher-order function event
variable is the normalised Fox-Wolfram Moment-1, R1 = H1

H0
. Note that both

parameters of R1 are function event variables. Anyhow, higher-order function event
variables are eventually grounded in constant event variables.

3. The Principles of Our Approach

We are focusing on the meaningful representation of relations that mathemati-
cally bind a set of the domain concepts in web ontology. Our development is quite
different from the work being pursued by the mathematical-knowledge represen-
tation community that is concerned about content theories of mathematics and
experiment with different formalisms for representing theories, definitions, axioms,
proofs, etc. in the field of mathematics. In contrast, our effort to incorporate math-
ematical relations in domain ontologies is closer in spirit to that of EngMath [15],
with the qualification that our scope is aligned to knowledge sharing on the web.

EngMath ontology is an extensive past attempt to capture the semantics asso-
ciated with mathematical expressions in engineering models. This declarative first
order KIF [12] axiomatisation for mathematical modelling in engineering is built
on abstract algebra and supported by sets of theories for describing mathematical
objects such as scalar, vector and tensor.

To a lesser degree, general-purpose ontologies like CYC [9] and SUMO [24]
also attempt to declaratively capture the semantics of mathematical function.

208 Muthukkaruppan Annamalai and Leon Sterling

However, such function is categorised as unary, binary, ternary and quaternary;
thereby placing a limit on the number of its argument. Perhaps, this restraint
is imposed in order to refer to a function’s argument based on its order in the
‘argument list’. On the contrary, we do not wish to limit the number of arguments
of a function. In addition, a function argument must be able to denote a collection
of class instances (both extensional and intensional sets), which CYC and SUMO
do not allow.

Although, the EngMath approach of providing rigorous descriptions appears
to faithfully represent mathematical expressions in instantiated models, it is diffi-
cult to understand and apply to working systems.4 More importantly, the EngMath
ontology that is constituted from declaratively specified n-ary relations, functions
and axioms is not amenable on the web.

Since we aim to build an ontology that can be ported on the web, we have
bypassed the declarative style of EngMath, but still need to ground the expression
describing a mathematical relation in the formal language of mathematics. As
such, we will have to regard the generic mathematical notations as primitives in
our model. The idea is to utilise these mathematical primitives together with a set
of epistemological primitives as the basis for incorporating mathematical relations
among existing domain terms in the web ontology. We list below the principles of
our approach.

I. Web ontologies are frame-based. In light of this fact, we built on the original
domain model that was constructed using Protege to incorporate mathe-
matical relations among the relevant domain terms. The augmented concept
definition is represented using notions as metaclass, class, subclass, property
(template-slot and own-slot), property type, cardinality and facets, which
feature in Protege’s knowledge model [21].

II. Mathematics deal with numeric quantities. Therefore, the domain concepts
united by mathematical relations ought to be treated as quantities. Physi-
cally significant quantities usually have dimension and units of measurement
associated with them.

III. We have introduced the notion of Simple and Compound quantities. The
values of simple quantities are directly assigned to them. The values of com-
pound quantities are derived from the values of its dependent quantities.

IV. The mathematical relation described by a mathematical concept is grounded
in a compound quantity.

V. The quantities are modelled upon mathematical data types. Simple quantity
is modelled upon scalar and vector. Compound quantity is modelled upon
function. Collection of homogeneous quantities is modelled as set. Aggregate
of heterogeneous quantities are treated as tuple (record). The data types

4The theories specified formally as KIF axioms, not only entails high specification effort, but

are also hard to read and understand. It is difficult to envisage how practitioners in the domain
could be influenced to use it.

Complex Mathematical Relations in Domain Ontologies 209

define the semantics of its associated data values and the operations that can
be applied on them.

VI. The algebra of scalars and vectors need to be extended to simple quantities
allied with units of measurement, so that it is possible to reason effectively
about the mathematical relations involving these quantities.

4. Explicating the Mathematical Relations In the EHEP Domain
Ontology

The constant and function event variables mentioned in Section 2.2 are physical
quantities. We need to first define suitable concepts for representing these quan-
tities in the ontology. Then, we will propound a scheme for providing an abstract
description of mathematical relations involving these quantities.

4.1. Representing Quantity

The need to deal with physical quantities in scientific ontologies is obvious. Physical
quantity reflects the property of things that can be measured in the ontology.
The conceptualisation of physical quantity is based upon our viewpoint on how
quantities, dimension and units are treated in the EHEP domain.

A species of physical quantities is broadly organised in a tree as shown in Fig-
ure 6. Physical Quantity is divided into Simple Quantity and Compound Quantity.
A Simple Quantity holds a constant value of measurement. We represent simple
quantities as Scalar Quantity and Vector Quantity, the two significant types of
quantities that govern physical modelling in science. Their respective mnemonic
names indicate the type of values held. A Compound Quantity is categorised as
Static Compound Quantity or Dynamic Compound Quantity in our model. Both
static and dynamic compound quantities are further sub classified as scalar and
vector quantities, depending on the type of their derived output.5

The physical quantities are defined as a hierarchy of metaclasses. The subclass
relation between the defined classes reflects the organisation of quantity-concepts
outlined in Figure 6. The root and intermediate classes in the hierarchy are ‘ab-
stract’ classes, while the leaves are ‘concrete’ classes. Only the concrete subclasses
of PhysicalQuantity can be instantiated. Our rationales for defining physical quan-
tities as metaclasses rather than classes are as follows:

I. Domain concepts (represented as classes in the domain ontology) that will be
related mathematically are physical quantities. Therefore, we want to be able
to describe the event variables and related classes in the EHEP domain on-
tology as specific types of physical quantities. For example, Energy should be
represented as scalar quantity, 3-Momentum as vector quantity and Invari-
antMass as a form of compound quantity. The properties required to describe
a type of physical quantity must be representationally attached to an event

5The constant event variables mentioned in Section 2.2 are simple quantities; the function event
variables are compound quantities.

210 Muthukkaruppan Annamalai and Leon Sterling

Physical Quantity

Simple Quantity Compound Quantity

 Scalar
Quantity

Vector
Quantity

Static
Compound

Quantity

Dynamic
Compound

Quantity

Static
Scalar

Compound
Quantity

Static
Vector

Compound
Quantity

Dynamic
Scalar

Compound
Quantity

Dynamic
Vector

Compound
Quantity

Figure 6. Physical Quantities

variable class to describe the class itself. In frame terminology, these kind
of properties are called own-slots of the class. A practical way for a class to
acquire own-slots is by being instance of metaclass that has those properties
as template-slots [21].6

II. We are mindful of the fact that an existing domain ontology that was con-
structed to suit some tasks requirement in the domain is being extended to
incorporate mathematical relations among domain concepts. Any modifica-
tion to these domain concepts should be kept minimal so that prospective
users who have adopted the original version can continue to rely upon the
augmented ontology, and not be overwhelmed with mathematical extensions
unrelated to their need. The approach we have taken is to model metaclasses
of physical quantities as a framework overarching the classes in the domain
ontology. They physical quantities are integrated with the classes in the do-
main ontology through instanceOf relationships (not by additional subClas-
sOf relationships, which will introduce the unwieldy multiple inheritance in
the domain ontology). The properties of the domain classes instantiated as
physical quantities has acquired additional properties (own-slots from meta-
class and modeller-defined template-slots), without overly compromising the
existing properties and relations of the classes.

The root concept, PhysicalQuantity is defined as a metaclass having prop-
erties magnitude and dimension as template-slots. This first-level conceptualisa-
tion identifies these properties to describe all instances of physical quantities. The

6The own-slots of a class describe the properties of a class rather than the properties of instances

of the class. In contrast, the properties ordinarily attached to a class are known as template-

slots, which describe the properties that instances of a class shall have. A template-slot of a class
becomes own-slot on the instances of the class.

Complex Mathematical Relations in Domain Ontologies 211

metaclass PhysicalQuantity
Property Property Type Cardinality
magnitudeT Scalar, Vector = 1
dimensionT DimensionUnit = 1

Figure 7. Definition of Metaclass PhysicalQuantity

concept-oriented definition shown in Figure 7 is an abstract idea of a physical
quantity described in a Protege-like representation.

We use the term ‘reify’ to mean instantiating a class from a specific metaclass
as a way to make the class more concrete by specifying its intrinsic properties using
own-slots.

The superscripted symbol T at the end of a property name denotes that the
signified relation in the reified physical quantity relates to the type (class) iden-
tifying a set of individuals and not to a particular individual in the set, as often
implied in web ontology specification languages. In other words, the magnitude
of an instantiated subclass of PhysicalQuantity is identified as either a scalar or
vector data type, rather than an individual instantiated from either of these types.
More specifically, the ScalarQuantity and VectorQuantity are defined as concrete
subclasses of SimpleQuantity whose magnitude are directly related to scalar and
vector types, respectively. Similarly, the dimension in the instantiated class is re-
lated to a dimension type, indicated by the choice dimension-unit category name
(such as MassUnit or MomentumUnit), rather than a specific unit instance asso-
ciated with this dimension.

Relating magnitude and dimension properties in an instantiated physical
quantity to the type of individual rather than a specific individual is an important
distinction. For example, the Energy event variable defined in Figure 8 is a reified
class of ScalarQuantity. Its magnitude is characterised as Real and dimension as
EnergyUnit, representing their respective classes of values. Note however that the
magnitude and dimension properties acquired from ScalarQuantity metaclass are
structured as own-slots of Energy. This is denoted by the superscripted symbol O at
the end of the property name of the signified relation. These properties acquired
from the metaclass are not visible to individuals extended from Energy.

The properties attached to Energy class, namely value and unit relate to
instances of real number and units of energy dimension, respectively. They are
referred to as its template-slots. An individual extended from Energy will inherit
these properties. For instance, the energy of a track particle object can be featured
as value = 700.0 and unit = MeV . The former is congruent with the magnitude
of the scalar quantity, while the latter is an instance of a unit of measurement
according to the specified dimension of the scalar quantity. Therefore, an extension
of Energy has a representation that respects the expected property of scalar class.

212 Muthukkaruppan Annamalai and Leon Sterling

class Energy : ScalarQuantity
subClassOf TrackVariable
Property Property Type Cardinality
value Real =1
unit EnergyUnit =1
Property Property Value
magnitudeO Real
dimensionO EnergyUnit

Figure 8. Partial Definition of the Augmented Class Energy

The main role of the own-slots: magnitude and dimension in simple quantities
is to help to enforce and/or validate the conformity of the instantiated template-
slots: value and unit of objects extended from these simple quantities. This is
necessary in order for the object to be seen as semantically and syntactically well-
formed.7

Scalar quantities such as mass, energy and charge are represented by a single
magnitude. In contrast, quantities such as velocity and momentum are described
by both magnitude and direction. They are called vectors. Position or direction
vectors that are the basis for kinematic and geometric analysis in physical science
are mapped to 3-dimensional space. This type of vector is defined by its relation-
ship to a Cartesian coordinate system for a particular reference frame.

A position vector �R can be formally represented as a linear combination of
three orthogonal unit vectors: �R = Rxî + Ry ĵ + Rz k̂ or implicitly by a triple of
real numbers < Rx, Ry, Rz >. Here, Rx, Ry, Rz are the X-, Y-, Z-components of
the vector and î, ĵ and k̂ are the unit vectors along the three axes. The frame
of reference establishes the context of the vector. For instance, in the Belle [4]
EHEP laboratory frame, the interaction point on the beam axis is regarded as the
origin of the coordinate system, the beam axis is the Z-axis, and the XY-plane is
transverse to the beam axis.

A VectorQuantity is defined as a physical quantity whose magnitude de-
scription is supplemented with direction or orientation in a reference frame. The
magnitude of a VectorQuantity is a vector data type. The dimension of a Vec-
torQuantity is related to an appropriate dimension-unit type. As an illustration,
the track momentum, 3-Momentum event variable is defined in Figure 9 as a rei-
fied class of VectorQuantity, whose magnitude is a vector type and its dimension
refers to class of momentum units.

Subsequently, an individual can be extended from 3-Momentum with value
equals < 100.0, 225.0, 350.0 > and unit equals KeV/c to denote a track particle’s
momentum vector in laboratory frame, whose individualised momentum along the
X-, Y- and Z-axes are 100KeV/c, 225KeV/c and 350KeV/c, respectively. Note

7We will see later in the paper that own-slot properties have a more significant role in the
conceptualisation of compound quantity.

Complex Mathematical Relations in Domain Ontologies 213

class 3-Momentum: VectorQuantity
subClassOf TrackVariable
Property Property Type Cardinality
value Vector =1
unit MomentumUnit =1
Property Property Value
magnitudeO Vector
dimensionO MomentumUnit

Figure 9. Partial Definition of Class 3-Momentum

the dependence of vector components on X-, Y- and Z-axes is only implied by the
order of elements in the triple.

A CompoundQuantity defines the functionality of a mathematical concept,
abstracting from how the function is computed and its output can be derived. A
compound quantity is distinguished from simple quantity by the fact that the value
measured by a compound quantity object is derived from other simple quantities.
Therefore, a compound quantity can be viewed as a function that maps one or more
simple quantities (input parameters) to a simple quantity (output). Consequently,
a compound quantity can be casted into simple quantity by anchoring it in the
domain ontology.

We distinguish between static and dynamic compound quantities in our
model. A static compound quantity statically binds one or more predetermined
quantifiable terms in the ontology. An example of static compound quantity is
the function describing the track event variable TransverseMomentum, which is
always derived from 3-Momentum. In other words, the parameter classes of static
compound quantity are fixed. On the other hand, a dynamic compound quantity
closely models a generic function that dynamically binds a specified number of
parameter instances according to need and purpose.

An example of dynamic compound quantity is the function representing the
geometric event variable PolarAngle that describes the angle between any two
unit vectors in a common frame of reference. In one instance, it could be the
angle between the flight directions of two daughter particles in a decay. In another
instance, it could be the angle between a track particle flight direction and the
beam axis.8 We elaborate on compound quantities in Section 4.4.

4.2. Representing Units of Measurement

A unit is a measure of quantity in some dimension. Each physical quantity belongs
to exactly one dimension, while pure scalars and vectors are quantities with no
dimension. There is a range of units associated with each dimension in the EHEP

8FlightDirection and BeamAxis are vector quantities in the augmented domain ontology.

214 Muthukkaruppan Annamalai and Leon Sterling

domain. For example, the units for Energy dimension are eV, KeV, MeV, GeV
and TeV.9

The EHEP physicists mainly discuss their work in terms of kinematic, geo-
metric and topological analysis. The kinematic quantities are specified in natural
units, in which the fundamental constants such as c (that denotes the speed of
light), � (Planck’s constant) and kB (Boltzmann’s constant) are equal to unity.
The geometric and topological quantities are mostly without dimension, since the
calculation makes use of dimensionless unit vectors derived from momentum vec-
tors of tracks and vertices.

The predominant quantities in kinematic analysis are related to mass, mo-
mentum and energy dimensions. Relativistic physics asserts that Energy = Mom-
entum×SpeedOfLight. Accordingly, the Momentum units such as eV/c, KeV/c,
MeV/c etceteras are always derived from Energy units in this domain. Likewise,
Momentum = Mass × SpeedOfLight. So, Mass units such as eV/c2, KeV/c2,
MeV/c2 etceteras are always derived from Momentum units.10

Note that in this system of units, the constant c is an integrated part of
dimension of a quantity and the symbol c is featured as part of its unit. This rather
unconventional way of specifying a quantity of measurement in natural units not
only allows the physicists to omit this constants from mathematical equation, but
also work with a limited set of dimension unit symbols. It conveniently facilitates
the dimensional analysis of algebraic expressions involving related quantities.

The EHEP physicists are parsimonious in the use of derived units of mea-
surement to avoid indeterminate situations that arise when unit of measurement
of a particular quantity can be derived in more than one way from fundamental
dimension units, as mentioned in the previous footnote. As a result, the unit of
measurement of a derived compound quantity in the ontology will not be com-
posed from a set of fundamental dimensions as prescribed in EngMath and SUMO
sub-model on ‘Unit of Measure’. On the contrary, a physical quantity is directly
related to a unit instance from a predefined set of dimensions in the ontology (See
Figure 10. Naturally, we have restricted our attention to dimension types that we
have found of particular interest to us. The onus of dimensional consistency in
algebra over the quantities and the subsequent assignment of an appropriate unit
to a derived quantity rest with the modeller. However, the ontology is needed to
support the unit analysis involving those quantities.

Based on the above standpoint, we have assigned a set of canonical units
of measurement to each of the dimensions that appear in the EHEP ontology.
In order to facilitate unit analysis over a dimension, a base unit is selected for
each dimension. The conversion factor between units of measurement to the base
unit within the same dimension scales on the metric system of numbers, which is
based on powers of 10. For example, the base unit for Energy dimension is eV . Its

9eV stands for electronvolt, is a non-standard unit for energy. The standard international (SI)

unit for energy is J (joule). 1eV ≈ 1.60218 × 10−19J.
10The SI unit for mass is kg (kilogram) and momentum is Ns (newton second) or kg.m/s,

depending on the dimensions that are employed in its derivation.

Complex Mathematical Relations in Domain Ontologies 215

DimensionUnit

Energy
Unit

Momentum
Unit

Mass
Unit Length

Unit

Time
Unit Angular

Unit

Dimensionless

Figure 10. Dimensions of Units of Measurement in EHEP On-
tology

class EnergyUnit
subClassOf DimensionUnit
Property Property Type Cardinality
multiplier Real =1
baseUnit EnergyUnit =1
baseUnitOf EnergyUnit ≥ 1
Property Inverse Property
baseUnitOf baseUnit

Figure 11. Definition of Class EnergyUnit

succeeding units, KeV, MeV, GeV and TeV are 103, 106, 109 and 1012 multiples
of the base unit, respectively. The class EnergyUnit is defined as the subclass
of DimensionUnit in Figure 11. The properties multiplier is a real number that
specifies the conversion factor between an energy unit of measurement and its
baseUnit.

All physical quantity objects have value and unit assigned to them. Homo-
geneous quantities must be of same dimension, but may have different units of
measurement. For example, one quantity may be specified in eV , while the other
in KeV . In this case, the difference in their conversion factor can be used to rec-
oncile the homogeneous quantities before they are operated upon.

Note also that baseUnitOf is defined as the inverse property of baseUnit. As
a result, we are able to assert that eV is the baseUnitOf KeV, MeV and so on,
enabling the representation of a calculated quantity of measurement in units of
higher order.

4.3. Quantity and Data Type

Data type defines the type of values that can be assumed by physical quantities
and also expressions involving them. More importantly a data type specifies a set
of operations that are allowed on its individuals. We will make use of mathematical
data types [6] to model the data types of quantities in our ontology.

216 Muthukkaruppan Annamalai and Leon Sterling

Simple quantities in arithmetic expressions are allied with dimensional units.
As a quick example, the addition of two scalars: 1 + 1 equals 2, however, the
addition of two scalar quantities: 1KeV +1eV equals 1001eV . Therefore, it is req-
uisite to reconcile the values of homogeneous quantities in an expression by first
harmonising their units of measurement before they can be effectively utilised in
calculation. Hence, the admittance of units of measurement in quantities necessi-
tates polymorphic extension of scalar and vector algebra to simple quantities.

4.3.1. Basic Data Type. The basic data types are scalar and boolean types. The
data values of scalar quantities in our ontology are Real, Integer and Rational,
directly related to real numbers, integers and rational numbers. Other scalar types
such as complex numbers would be included, when the need arises.

For instance, the properties of subatomic particles in the EHEP ontology
are scalar quantities. The quantity value of Charge is specified as type integer11,
InvariantMass as type real and the half-integral Spin(specified as factor of Planck’s
constant, �) as type rational.12

The scalar operators in Figure 12 are required to construct arithmetic expres-
sion involving scalar quantities. The operator names are mnemonic algebraic terms.
Binary operators such as plus, minus and times have signature: ScalarQuantity×
ScalarQuantity → ScalarQuantity, while a unary operators like unaryminus, abs
and log have signature: ScalarQuantity → ScalarQuantity.

plus minus times divide power mod
abs log ln exp cos unaryminus
cos sin tan arccos arcsin arctan

Figure 12. Scalar Operators

A boolean is a mathematical data type associated with two-valued logic val-
ues, namely false or true. The boolean operators required to support this type are
and, or and not. The and and or operators have signature: Boolean×Boolean→
Boolean. The not operator’s signature is: Boolean→ Boolean.

We also need the relational operators lt, gt and eq that maps a pair of scalar
quantities to boolean. Logical expressions constructed using the boolean and re-
lational operators listed in Figure 13 will be used to specify conditions and con-
straints on quantities in an arithmetic expression. Together, the arithmetic and
logical sub-expressions constitute an arithmetic-logical expression.

11Electric charge is specified in atomic unit based on the electric charge carried by a proton

particle, which is equals to +1. Charges of all particles except quarks are indivisible units.
12Although no calculation is currently performed on rational numbers, their values may still be
compared and discriminated from one another.

Complex Mathematical Relations in Domain Ontologies 217

and or not lt gt eq

Figure 13. Boolean and Relational Operators

4.3.2. Composite Data Type. The basic data types mentioned in the previous
section are defined without reference to other data types. The composite data
types, on the other hand are built upon other data types. They are specified and
partly defined in terms of primitive and other composite data types. We have
identified five kinds of composite data types in the ontology, namely tuple, vector,
record, set and matrix, but only the first four data types are covered in this paper.
Tuple. A tuple is useful to aggregate several heterogeneous data types and consider
it as a single entity. The components of tuples can be accessed randomly based
on their position in the tuple. Tuples are commonly used to refer to elements of
Cartesian product.
Vector. A vector is commonly defined as a point in the generalised Euclidean N-
space, RN , given by N-coordinates [20, keyword: Vector]. In RN , the vector �A is
specified by N-tuple < A1, A2, ..., AN >, where Ai is a component of vector �A.
A vector derives its meaning from its components; the category of value assigned
to a component of vector denotes its magnitude and the component’s position
signifies the orientation of the magnitude in the coordinate system. For instance,
we have confined our attention to a subtype of vector by restricting the number
of its components to 3 real-scalar quantities in order to represent the ordinary
Euclidean 3-space in our ontology.

The vector operators in Figure 14 are required to express the algebra on
vectors. Operations on vector quantities have an additional ‘twist’ due to the in-
troduction of units of measurement in quantities. Recall that a vector quantity is
comprised of a scalar-vector and a unit of measurement. The scalar-vector rep-
resents the magnitude and orientation of the described vector object in a spatial
coordinate system, and the unit of measurement is common to all the scalar-vector
components. As in the case of scalar operators, we have to augment the traditional
operations on vector with function useful for operating vector quantities.

vector vectorselector dotproduct crossproduct norm
vectoradd vectordiff multiply unitvector

Figure 14. Vector Operators

The n-ary operator vector constructs a vector quantity from a homogeneous
scalar quantities (of the same dimension-unit category). It is the onus of the mod-
eller to pass the appropriate set of arguments to this operator, so that the resulting
vector is semantically well-formed. For example, it makes no sense to pass three
mass quantities to vector since mass is not a vector quantity.

Operator vectorselector has signature: V ectorQuantity× integer → Scalar-
Quantity and denotes the function that selects a particular component of the

218 Muthukkaruppan Annamalai and Leon Sterling

vector quantity, whose ordinal number is specified by an integer. The unit of mea-
surement of the scalar quantity returned by this function is same as the unit of
the vector quantity. Suppose 3-Momentum vector quantity, �P3 has value equals
< 100.0, 225.0, 350.0 > and unit equals KeV/c. The operation vectorselector(�P3, 2)
will return a scalar quantity whose value equals 225.0 and unit equals KeV/c. This
happens to be the particle’s momentum along the Y-axis in a Cartesian coordinate
system.

Operator dotproduct performs the scalar product of a pair of vector quantities
and returns a scalar quantity. Operator crossproduct performs vector product of
a pair of 3-dimensional vector quantities and will return a 3-dimensional scalar-
vector. Note that vector product can only be performed on 3-dimensional vectors.

Operator vectoradd and vectordiff are functions that perform vector addition
and vector subtraction of a pair of vectors, respectively. Operator multiply has sig-
nature: V ectorQuantity× real → V ectorQuantity. It does a scalar multiplication
on a vector quantity and returns a vector quantity. Note that real is indeed a
dimensionless real-valued scalar quantity.

The unary operator norm generates the length of a vector represented by
the vector quantity and returns a scalar quantity. Operator unitvector is also a
unary operator that generates the unit vector of the vector represented by a vector
quantity. The normalised unit vector indicates the direction of the original vector
and has a norm equals 1. Therefore, the resulting vector quantity has no unit of
measurement.
Record. A record is composed of a fixed number of heterogeneous data types,
similar to tuple. However, unlike tuple whose components are accessed by their
position, the fields of record are accessed by using a name. Therefore, record can
be regarded as classified tuple of labelled components. A record is analogous to
class construct in ontology specification language. The property name conveniently
serves as the identifier of a record field.

We utilise record data type to model a set of disparate quantities such as
Track (Figure 15). The track information is feasibly denoted by a tuple of distinct
quantities, partially described as < charge, energy, momentum, transverseMom-
entum, mass >. However, unlike the case of 3-Momentum, where we can rely upon
the generally accepted ordinal of the components in the ‘classified tuple’,
< momentum−X, momentum− Y, momentum−Z >, the organisation of quan-
tities that are part of track information is an arbitrary decision. Such is the case,
it is only appropriate to represent these kind of grouped quantities as record be-
cause we are able to provide explicit identifiers for the individual quantities in the
aggregate.

Note that the augmented track class ably distinguishes the attributes of a
track particle by their typical quantity types. It is now possible to represent the
mathematical relation involving these track attributes. Note also that the 3mo-
mentum property relates to the 3-Momentum vector quantity, in place of three
disparate fundamental momentums (see earlier definition in Figure 5 on page 206).

Complex Mathematical Relations in Domain Ontologies 219

class Track : Record
subClassOf EHEPEntity
Property Property Type Cardinality
signalTrack Boolean
candidateParticle Particle =1
charge Charge =1
energy Energy =1
3momentum 3-Momentum =1
mass InvariantMass =1
class Charge : ScalarQuantity
subClassOf TrackVariable
class Energy : ScalarQuantity
subClassOf TrackVariable
class 3-Momentum : VectorQuantity
subClassOf TrackVariable
class InvariantMass : StaticScalarCompoundQuantity
subClassOf TrackVariable

Figure 15. Partial Definition of the Augmented Class Track

An access operator called recordselector is required to select individual fields
of a record. For example, recordselector(T, momentum) accesses the momentum
field in track information T.
Set. A set is a mathematical abstraction of a collection of things. The elements
of set are not ordered. Multiplicity of elements is disregarded in set. Nonetheless,
arithmetic function over a set of quantities can return two or more similar quanti-
ties. The resulting set will ignore repeated elements and this can be problematic.
For this reason alone, we need to deal with multisets, in which multiplicity is ex-
plicitly significant. Having said that, we will continue to use the term ‘set’ to also
refer to multiset.

In the context of our work, we depended on a restricted subtype of set by
limiting the bounds of elements in its value space to homogeneous individuals,
that is, class instances of same type. A mathematical operation on a set is valid
only if all the individuals in the set are quantities. The operators listed in Fig-
ure 16 are required to support set operations. All the operators in the top row and
cartesianproduct in the bottom row are conventional set operators, while the rest
of the operators in the bottom row are specially defined to facilitate mathematical
operations involving set of simple quantities.

set setof union intersect setdiff size in
max min summation cartesianproduct map filter

Figure 16. Set Operators

220 Muthukkaruppan Annamalai and Leon Sterling

An extensional set entity is fully determined by the enumerated individuals
in its collection. The n-ary operator set is used for exhaustively enumerating a set
of individuals. A supplementary set constructor setof is required to describe a set
constructed using expression over elements involving collection of finite entities,
such as setof(recordselector(Event,tracks)), where Event is an instance of EHEP-
Event record, whose tracks field refer to a set of Track individuals in the EHEP
domain ontology.13

The binary operators union, intersect, setdiff and cartesianproduct are func-
tions that construct the union, intersection, set difference and the cartesian prod-
uct of two sets, respectively. The unary operator size is a function for determining
the cardinality of a set, and in is a binary operator for checking set membership.

Unary operators max and min have signature: Set → ScalarQuantity and
represent functions that select the element with maximum and minimum value
in a set of scalar quantities, respectively. The unary operator summation has a
similar signature and is used to represent the function that calculates the sum of
values held by the entire quantities in a set. This operator repeatedly applies the
plus operation on all the individuals in the set of scalar quantities.

The binary operator map has signature: Function × Set → Set. It maps a
mathematical function involving elements of a first set, on the first set to generate
a second set. In other words, the mapped function describes the relation between
two sets in which one element of the generated set is assigned to each element of
the first set.

The binary operator filter applies a predicate (logical function) to a set to
filter a subset of desired elements. The predicate assumes the value true on the
elements of the filtered set. The operator has signature: Set× Predicate → Set.

Intensional set elements are formally specified with the help of mathematical
and logical functions in operators as map and filter. We demonstrate map and
filter operation in Section 4.4.3. The map operator is used in the definition of
Fox-Wolfram Moment-0 event shape variable. Both map and filter operators are
used to partly define the Sphericity event shape variable.

4.4. Structuring Mathematical Concept as Compound Quantity

The mathematical relation underlying mathematical concept is represented by
compound quantity in our ontology. Compound quantity typifies a physical quan-
tity that is mathematically derived from other quantities. It is invoked with a
set of parameters, representing simple quantities, which always map to a simple
quantity. The compound quantity clarifies the dependencies between the resulting
quantity and its parameters, with the aid of an arithmetic-logical expression. This
expression is an intensional description of the relation involving the parameters,
portraying what the modeller intends to resolve by use of this compound quantity.

13The EHEPEvent record describes the entities that make up an EHEP event, via fields as tracks,

clusters and vertices. All these record fields have cardinality greater than 1 to indicate that they
relate to a collection of individuals.

Complex Mathematical Relations in Domain Ontologies 221

metaclass CompoundQuantity
subClassOf PhysicalQuantity
Property Property Type Cardinality
parameter Parameter ≥ 1
intension ArithmeticLogicalExpression

magnitudeT Scalar, Vector = 1
dimensionT DimensionUnit = 1

Figure 17. Definition of Metaclass CompoundQuantity

Parameter

 Static Parameter Dynamic Parameter

 Collection
Parameter

Individual
Parameter

Figure 18. Parameters of Compound Quantities

We give the definition of the metaclass CompoundQuantity in Figure 17.
It is conceptualised as an abstract subclass of PhysicalQuantity with a set of
properties, namely parameter, intension, magnitude and dimension. The prop-
erty parameter describes the cardinality and sort of parameter objects, and is
related to one or more instances of Parameter class. The property intension is
an arithmetic-logic expression that binds the parameter objects and the resulting
quantity. A compound quantity inherits the magnitude and dimension properties
from PhysicalQuantity, which together denote the characteristics of the resulting
simple quantity.

We have categorised CompoundQuantity as StaticCompoundQuantity and
DynamicCompoundQuantity for representing static and dynamic relations in the
ontology (see Figure 6 on page 210).

Static relation depicts a permanent relationship that exists between domain
concepts in the ontology. Example of static relations in the EHEP event analy-
sis are the relations describing the derivation of function event variables, such as
InvariantMass, which is composed from its Energy and 3-Momentum; FlightDirec-
tion and TransverseMomentum, which are generated from 3-Momentum. A static
compound quantity is statically bound to its parameter objects.

222 Muthukkaruppan Annamalai and Leon Sterling

On the other hand, dynamic relation among terms does not readily exist in
the ontology. They are construed as dynamic compound quantities to serve as
convenient ‘handle’ for expressing relations over individuals extended from reified
quantities. They may be regarded as peripheral data type operators that are not
included in the set of core operators described in Section 4.3. Examples of dy-
namically derived quantities in the EHEP domain are QuantitySquaredDifference,
which represents the function that calculates the absolute difference between a
pair of squared- scalar quantities, and PolarAngle, which represents the function
that generates the angle between two vector quantities.

4.4.1. Result of Compound Quantity. The result of a compound quantity is a sim-
ple quantity, whose magnitude and dimension are same as that of the compound
quantity. Both static and dynamic compound quantities are further sub classified
as scalar and vector compound quantities, indicating the type of their resulting
quantity. A StaticScalarCompoundQuantity, such as InvariantMass results in a
scalar quantity, while a StaticVectorCompoundQuantity, such as FlightDirection
results in a vector quantity. It is similar for DynamicCompoundQuantity.

As in the case of simple quantity, the own-slots: magnitude and dimension of
a reified compound quantity assign the data value type and dimension-unit type,
respectively. These information is used to appropriately relate its template-slots,
value and unit to instances of those types.

4.4.2. Intension of Compound Quantity. The intension of a compound quantity
is conveyed by an arithmetic-logical expression. The semantics in this constrained
sequence of symbols is determined largely by the data type of the ‘object’ symbols
linked to parameters of compound quantity, and the operations applied on them.

4.4.3. Parameter of Compound Quantity. Parameters identify the types of objects
that are involved in a mathematical relation described by compound quantity. In
Figure 18 we show a category of parameter classes that outlines the different
parameters of compound quantity. The significant difference between StaticCom-
poundQuantity and DynamicCompoundQuantity is in the manner the parameters
of these two quantities are specified. The parameters of StaticCompoundQuantity
and DynamicCompoundQuatity are related to StaticParameter and DynamicPa-
rameter, respectively.

Each parameter of a static compound quantity either denotes an individual
quantity or a collection of quantities. The distinguishability of collection from in-
dividual is necessary to allow for different treatment on these types of arguments.
Consequently, we have defined two concrete subclasses of StaticParameter, namely
IndividualParameter and CollectionParameter. The parameter objects of Static-
CompoundQuantity is instantiated from one of these concrete classes. DynamicPa-
rameter is a concrete class of Parameter and is analogous to IndividualParameter
of static compound quantity. We cannot foresee a dynamic compound quantity
needing collection parameter at this stage.

Complex Mathematical Relations in Domain Ontologies 223

class IndividualParameter
subClassOf StaticParameter
Property Property Type Cardinality
argument SimpleQuantity,

StaticCompoundQuantity = 1

Figure 19. Definition of Class IndividualParameter

class InvariantMass : StaticScalarCompoundQuantity
subClassOf TrackVariable
Property Property Type Cardinality
value Real =1
unit MassUnit =1
Property Property Value
parameterO E, P3

intensionO abs(power(minus(power(E,2), power(norm(P3), 2)), 0.5))

magnitudeO Real
dimensionO MassUnit

class E : IndividualParameter
Property Property Value
argument Energy
class P3 : IndividualParameter
Property Property Value
argument 3-Momentum

Figure 20. Partial Definition of the Augmented Class Invariant-
Mass

Individual Parameter of Static Compound Quantity. The definition of Individu-
alParameter is shown in Figure 19. The property argument relates to a specific
instance of SimpleQuantity or StaticCompoundQuantity. The latter is necessary to
define ‘higher-order’ compound quantities, which admits other compound quanti-
ties as parameters.14

Figure 20 illustrates the definition of InvariantMass compound quantity and
its two parameters. Each parameter denotes a specific simple quantity argument,
namely Energy scalar quantity, and 3-Momentum vector quantity. This defini-
tion establishes the static binding of Energy and 3-Momentum to InvariantMass,
according to the specified intension. The bound quantities coherently describe a
common target object, a track particle in our case. This static compound quantity
results in a scalar quantity.

14Care must be exercised in here so as not to introduce circular definition in static compound
quantities.

224 Muthukkaruppan Annamalai and Leon Sterling

Collection Parameter of Static Compound Quantity. The parameters of Static-
CompoundQuantity can also denote a collection of individuals composed from
simple and static compound quantities, such as a collection of 3-Momentum quan-
tities or a collection of event tracks. For practical purpose, we have restricted the
individuals in the collection to be of same kind and are typically applied to set
operators as a whole.

There are three ways of defining and referring to a collection of individuals in
the ontology: (1) Define a collection by exhaustively enumerating its individuals
and refer to it by its given name; (2) Construct a collection using union, intersect,
map and filter set operators; and (3) Relate to a named collection of individu-
als referred to by a field of an instantiated record. Consequently, the property
argument of CollectionParameter is associated with an instance of Collection or
Record. Both types are constituted of simple and/ or static compound quantities
in our ontology.

Collection parameter is typically used to represent a collection of event tracks.
We give two example usage of collection parameter in the definition of static com-
pound quantities Fox-Wolfram Moment-0 and Sphericity.

The Fox-Wolfram Moment-0 event shape variable summatively combines the
product of all pairs of particle momentum belonging to a set of event tracks,
H0 =

∑
j

∑
k(Pj × Pk). The intension of the compound quantity that represents

this event variable is expressed as follows:

summation(map(lambda(j, lambda(k,
times(norm(recordselector(j,momentum)), norm(recordselector(k,momentum))))),

cartesianproduct(setof(recordselector(Event,tracks)),
setof(recordselector(Event,tracks))))

Note the use of lambda abstraction to represent an unnamed mathematical
function in the above. The function constructor lambda binds the variable to a
mathematical expression to form the function, which is the lambda extraction
of the expression. In this example, the lambda function represents the product of
two vector norms.15 Subsequently, this function is applied to the set of all ordered-
pairs in the constructed cartesian product of two sets of event tracks. The map
operation in turn creates a set of scalar quantities, and the summation operator
adds up these quantities.

The definition of Sphericity event shape variable requires to sum up the
transverse momentum of event tracks that makes a polar angle of more than 45◦

with the event thrust axis (T̂). This can be represented by the arithmetic-logic
expression as follows:

summation(map(lambda(j, recordselector(j,transverseMomentum)),

15Recall that norm is a vector operator to find the length of a vector and returns a scalar quantity
as result.

Complex Mathematical Relations in Domain Ontologies 225

class DynamicParameter
subClassOf Parameter
Property Property Type Cardinality
argumentTypeT PhysicalQuantity ≥ 1

Figure 21. Definition of Class DynamicParameter

filter(setof(recordselector(Event,tracks)),

lambda(k, gt(PolarAngle(recordselector(k,flightDirection), T̂), π/4)))))

In this example, the ‘predicate’ associated with the filter function is a lambda
extraction that expresses the logical constraint on the polar angle between a track
particle’s flight direction and the Thrust axis in an event. Subsequently, a map
function is applied to the filtered set of event tracks in order to extract the trans-
verse momentum quantities from the individual Track record in the set. Finally,
these scalar quantities are summed up by the summation operator. Recall that
PolarAngle is a geometric event variable that represents the angle between any
two vectors in a common frame of reference. The terms transverseMomentum and
flightDirection are fields of Track record.
Dynamic Parameter of Dynamic Compound Quantity. Unlike in the case of sta-
tic compound quantity, we cannot be certain about the arguments of a dynamic
compound quantity. Nonetheless, we can still provide a partial definition of this
quantity based on what is known, such as the number of parameters and their
types, what it intends to resolve and the type of resulting quantity. These general
information can be used to ground the dynamic compound quantity dynamically
at the time of their invocation.

The dynamic parameters are associated with dynamic compound quantities.
We can only specify the argument generically, belonging to one or more Physi-
calQuantity types, that is unlike the arguments of individual and collection pa-
rameters, which are related to specific instance of those types. The definition of
DynamicParameter is shown in Figure 21. The superscripted symbol T at the end
of a argumentType denotes that this property is associated with type (not in-
stance) of physical quantity.16 Note the unusual property name ‘argumentType’,
in the place of ‘argument’ in the parameter class definition.17

In retrospect, a static compound quantity describes the mathematical re-
lationship among classes of reified quantities. This static relationship can be im-
posed on the class instances associated with a common target object. On the other

16This denotation is consistent with the manner the properties magnitude and dimension are

specified in the PhysicalQuantity metaclass.
17We could have used the same property name ‘argument’ to describe the arguments of both static
and dynamic parameters, by locally restricting their property types, but thought it will be best

to keep these two relations separate to avoid confusion in their interpretation. The argument of a

static parameter is a physical quantity instance, whereas, the argument of a dynamic parameter
relates to one or more physical quantity class.

226 Muthukkaruppan Annamalai and Leon Sterling

class PolarAngle : DynamicScalarCompoundQuantity
subClassOf GeometricVariable
Property Property Type Cardinality
actualArgument EHEPAttribute =2
value Real =1
unit AngularUnit =1
Property Property Value
parameterO V1, V2

intensionO arccos(divide(dotproduct(V1,V2), times(norm(V1),norm(V2))))

magnitudeO Real
dimensionO AngularUnit

class V1 : DynamicParameter
Property Property Value
argumentType VectorQuantity, StaticVectorCompoundQuantity
class V2 : DynamicParameter
Property Property Value
argumentType VectorQuantity, StaticVectorCompoundQuantity

Figure 22. Partial Definition of Class PolarAngle

hand, a dynamic compound quantity describes the dynamically bound mathemati-
cal relationship among instances of reified quantities. A reified dynamic compound
quantity must be invoked with explicit arguments. For the invocation to be seen
as syntactically well-formed, the classes from which its actual argument is instan-
tiated must matched with an instance of the class denoted by argumentType.

For illustration, we give the definition of PolarAngle compound quantity in
Figure 22. It has two parameters, V1 and V2. The type of argument of each of
the parameters can be a reified class of vector quantity or static vector compound
quantity. This means the actualArgument objects must be an instance of these
types. In this example, the actual arguments are instantiated from EHEPAttribute
class, whose subclasses are EHEP event variables and constants. The pair of ar-
gument objects is dynamically bound according to the specified intension at the
time of usage. This dynamic compound quantity results in a scalar quantity.

Allowing dynamic compound quantities in knowledge model raises some prob-
lem. Firstly, the semantic well-formedness of the dynamically bound relation can-
not be verified. Secondly, the verification of syntactic well-formedness of the re-
lation is also not conclusive. In addition, the values of actualArgument must be
treated as a list since it is important to maintain the order of the values in some
cases. In spite of all these drawbacks, dynamic compound quantities are essential to
represent unconventional (peripheral) data type operators in certain domain and
task. Consequently, the onus is on the modeller to instantiate and use dynamic
compound quantities correctly.

Complex Mathematical Relations in Domain Ontologies 227

5. Encoding the Arithmetic-Logic Expression of Compound
Quantities

Web ontologies are founded on XML [26], a mark up language intended to encode
metadata concerning web document. The mathematically augmented concepts in
the domain ontology must be XML-compliant to be consistent with the syntax of
web ontologies. This includes the specification of the arithmetic-logic expression
that conveys the intension of compound quantity, which also needs to be encoded
using XML format.

A candidate that can be leveraged on is XML-based OpenMath [22], a W3C
standard for exchanging mathematical objects on the web.18 Figure 23 shows a
possible way to encode the arithmetic-logical expression that describes the inten-
sion of InvariantMass in OpenMath. (The class definition of InvariantMass is
given in page 223).

Expressions encoded in OpenMath are constrained by XML-syntax with im-
plied semantics. An OpenMath object (OMOBJ) is a sequence of one or more
application objects (OMA). OpenMath maintains reportative definitions of the
mathematical-oriented metadata in a set of content dictionaries. In this exam-
ple, the content dictionary (cd) named arith1 holds the definition of the following
symbols (OMS): abs, power and minus. These symbols coincide with the scalar
operators identified in Section 4.3. The parameter or variable (OMV) is associated
with simple quantity, in our case.

While targeting a subset of the concepts in the evolving OpenMath standard
as the basis for representing the arithmetic-logic expression, it is important to
stress that we ought to be more explicit than that is allowed in OpenMath expres-
sion as concerns the ontological mark of quantities which we have to deal with.
OpenMath only recognises scalar values such as integer (OMI) and real (OMF).
The design decision will also have to consider on how to extend the scalar and
vector algebra to cover the simple quantities in the ontology.

6. Future Work

We have two compelling issues to tackle. The first one has to do with the treatment
of vectors in the ontology. For sake of convenience, we have fixed the orthogonal
basis of vector quantities in the laboratory frame of reference. In reality, the data
represented by vector quantity is dynamic. If the frame of reference changes, the
vector is displaced in the 3-dimensional space. For example, the re-orientation of
vector needs to be considered to purposefully describe the following event selection
cut : “The angle between the flight direction of candidate B particle and the flight
direction of ρ daughter particle in the ρ rest frame”. The frame of reference in the
cut is aligned with the momentum of ρ particle (no longer the laboratory frame of

18Another independent XML data exchange standard is MathML [19]. While OpenMath focuses

on the semantics in mathematical expression, MathML gives importance to the presentation
(rendering) of the mathematical expression.

228 Muthukkaruppan Annamalai and Leon Sterling

<OMOBJ>
<OMA>

<OMS cd=”arith1” name=”abs”/>
<OMA>

<OMS cd=”arith1” name=”power”/>
<OMA>

<OMS cd=”arith1” name=”minus”/>
<OMA>

<OMS cd=”arith1” name=”power”/>
<OMV name=”E”/>
<OMI> 2 </OMI>

< /OMA>
<OMA>

<OMS cd=”arith1” name=”power”/>
<OMA>

<OMS cd=”linealg?” name=”norm”/>
<OMA>

<OMS cd=”linealg2” name=”vector”/>
<OMV name=”P3”/>

<OMA>
<OMA>
<OMI> 2 </OMI>

< /OMA>
< /OMF dec=”0.5”/>

< /OMA>
< /OMA>

< /OMA>
< /OMOBJ>

Figure 23. A Possible Encoding of the Intension of Invariant-
Mass in OpenMath

reference). We ask, “What pertinent knowledge should be captured in the ontology
to support this kind of vector re-orientation?”, and “How do we represent the
choice of reference frame in the vector quantity?” An orthogonal matrix is needed
to represent and work with orthogonal transformation. This raises the question,
“How do we instantiate an orthogonal matrix from the knowledge about a particle’s
momentum?”

The second issue concerns with ‘unified’ event selection variable constructed
ad hoc using mathematical methods. An example is the use of Fisher Discrimi-
nant method to combine a set of correlated event variables. Different experimental
analysis entails different sets of correlated event variables. Similarly, the Likeli-
hood Ratio analysis method is utilised to combine a set of uncorrelated event
variables. First, we need to know which event selection variables can be effectively
combined. Additionally, these methods generate and refer to statistical resources

Complex Mathematical Relations in Domain Ontologies 229

such as probability density functions associated with the variables being combined.
Clearly knowledge about mathematical methods does not belong in domain on-
tology. We ask, “Should we develop a method ontology for describing specialised
procedures such as above, or could we simply treat these variable unification tasks
as computational services?”

7. Conclusion

Scientific domain ontology such as the EHEP ontology should provide the neces-
sary representational vocabulary to facilitate the scientific community to collabo-
rate effectively on the web. These ontologies must include concepts that are related
mathematically to restrict their possible interpretation and implication. One con-
cern however is due to the limitations of web ontology languages, which disallow
the direct representation of mathematical relations in ontologies. The existing web
ontology languages falter when the need to specify n-ary relations and functions
arises. They also lack the necessary epistemological and mathematical primitives
to explicitly represent mathematical relations involving domain concepts.

This paper highlights the additional vocabulary and language features re-
quired to incorporate complex mathematical relations in web-portable domain
ontologies. Future web ontology languages may offer a richer set of primitives to
express this sort of relationships among entities. Until such time, our approach rec-
ommends the use of supplementary epistemological concepts (categories of phys-
ical quantities, parameters, and dimension-oriented units of measurement) and
mathematical primitives (data types and operators), modelled using classes and
metaclasses to describe the meaning of the mathematical relations in the domain
ontology.

References

[1] M. Annamalai, L. Sterling, and G. Moloney. A collaborative framework for distrib-
uted scientific groups. In S. Cranefield, S. Willmott, and T. Finin, editors, Pro-
ceedings of AAMAS’02 Workshop on Ontologies in Agent Systems, volume 66 of
CEUR-WS, Bologna, Italy, 2002.

[2] F. Baadar and W. Nutt. Basic description logics. In F. Baadar, D. McGuiness,
D. Nardi, and P. Patel-Schneider, editors, Description Logic Handbook: Theory, Im-
plementation and Applications. Cambridge University Press, 2002.

[3] The Babar Physics Collaboration. http://www.slac.stanford.edu/BFROOT/.

[4] The Belle Physics Collaboration. http://belle.kek.jp/belle.

[5] B. Chandrasekaran and J. Josephson. What are ontologies, and why do we need
them? IEEE Intelligent Systems, pages 20–26, January/February 1999.

[6] J. Cleaveland. An Introduction to Data Types. Addison-Wesley, 1986.

[7] The Cleo Physics Collaboration. http://www.lns.cornell.edu/public/CLEO.

230 Muthukkaruppan Annamalai and Leon Sterling

[8] L. Cruz, M. Annamalai, and L. Sterling. Analysing high-energy physics experiments.
In B. Burg, J. Dale, T. Finin, H. Nakashima, L. Padgham, C. Sierra, and S. Willmott,
editors, Proceedings of AAMAS’02 Workshop on AgentCities, LNCS, Bologna, Italy,
2002. Springer-Verlag.

[9] CYCorp. http://www.cyc.com.

[10] D. Fensel, I. Horrocks, F. van Harmelen, D. McGuiness, and P. Patel-Schneider.
OIL: Ontology infrastructure to enable the Semantic Web. IEEE Intelligent Systems,
pages 38–45, March/April 2001.

[11] G. Fox and S. Wolfram. Observables for the analysis of event shapes in e + e− anni-
hilation and other processes. Physical Review Letters, 41(23):1581–1585, December
1978.

[12] M. Genesereth and R. Fikes. Knowledge Interchange Format. Technical Report
Logic-92-1, Computer Science Department, Stanford University, 1992.

[13] W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu, and M. Musen. Knowledge
modeling at the millennium (the design and evolution of Protege-2000). In Proceed-
ings of KAW’99 Workshop on Knowledge Acquisition, Modelling and Management,
Banff, Alberta, 1999.

[14] T. Gruber. A translation approach to portable ontologies. Knowledge Acquisition,
5(2):199–220, 1993.

[15] T. Gruber and G. Olsen. An ontology for engineering mathematics. In J. Doyle,
P. Torasso, and E. Sandewall, editors, Proceedings of KR’94 Conference on Principles
of Knowledge Representation and Reasoning. Morgan Kaufmann, 1994.

[16] M. Gruninger and M. Fox. Methodology for the design and evaluation of ontologies.
In Proceedings of IJCAI’95 Workshop on Basic Ontological Issues in Knowledge
Sharing. Montreal, Canada, 1995.

[17] N. Guarino. Ontologies and knowledge base: Towards a terminological clarification.
In N. Mars, editor, Towards Very Large Knowledge: Knowledge Building and Knowl-
edge Sharing, pages 25–32. IOS Press, Amsterdam, 1995.

[18] J. Hendler and D. McGuiness. The Darpa Agent MarkUp Language. IEEE Intelligent
Systems, pages 67–73, November/December 2000.

[19] Mathematics MarkUp Language. http://www.w3.org/TR/MathML2.

[20] Mathworld Mathematical Encyclopedia. http://mathworld.wolfram.com.

[21] N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protege-2000: Com-
bining interoperability and flexibility. In Proceedings of EKAW’2000 Conference on
Knowledge Engineering and Knowledge Management, Juan-Les-Pins, France, 2000.

[22] Openmath MarkUp Language. http://monet.nag.co.uk/cocoon/openmath/index.html.

[23] The OWL Web Ontology Language. http://www.w3.org/TR/owl-features.

[24] Suggested Upper Merged Ontology. http://ontology.teknowledge.com.

[25] Victorian Partnership for Advanced Computing. http://www.vpac.org.

[26] EXtensible MarkUp Language. http://www.w3.org/XML.

Complex Mathematical Relations in Domain Ontologies 231

Acknowledgment

We are grateful to Glenn Moloney and Lyle Winton of the Physics department
in The University of Melbourne for providing insights into EHEP experimental
analysis.

Muthukkaruppan Annamalai and Leon Sterling
Department of Computer Science & Software Engineering
The University of Melbourne
Victoria 3010
Australia
e-mail: mkppan@cs.mu.oz.au

leon@cs.mu.oz.au

The SOUPA Ontology for Pervasive Computing

Harry Chen, Tim Finin and Anupam Joshi

Abstract. This paper describes SOUPA (Standard Ontology for Ubiquitous
and Pervasive Applications) and the use of this ontology in building the Con-
text Broker Architecture (CoBrA). CoBrA is a new agent architecture for
supporting pervasive context-aware systems in a smart space environment.
The SOUPA ontology is expressed using the Web Ontology Language OWL
and includes modular component vocabularies to represent intelligent agents
with associated beliefs, desire, and intentions, time, space, events, user pro-
files, actions, and policies for security and privacy. Central to CoBrA is an
intelligent broker agent that exploits ontologies to support knowledge sharing,
context reasoning, and user privacy protection. We also describe two proto-
type systems that we have developed to demonstrate the feasibility and the
use of CoBrA.

Keywords. Semantic web ontology, pervasive computing, smart spaces, agents.

1. Introduction

Pervasive computing is a natural extension of the existing computing paradigm.
In the pervasive computing vision, software agents, services, and devices are all
expected to seamlessly integrate and cooperate in support of human objectives
– anticipating needs, negotiating for service, acting on our behalf, and delivering
services in an anywhere, any-time fashion [17]. An important next step for perva-
sive computing is the integration of intelligent agents that employ knowledge and
reasoning to understand the local context and share this information in support
of intelligent applications and interfaces. We describe a new architecture called
the Context Broker Architecture (CoBrA) for supporting context-aware systems
in smart spaces (e.g., intelligent meeting rooms, smart homes, and smart vehicles).

A key difference between CoBrA and the existing pervasive computing sys-
tems [15, 11, 37, 39, 26, 23] is in the use of ontology [7]. Computing entities in

This work was partially supported by DARPA contract F30602-97-1-0215, NSF award 9875433,
NSF award 0209001, and Hewlett Packard.

234 Harry Chen, Tim Finin and Anupam Joshi

CoBrA can share context knowledge using the CoBrA ontology, which extends the
SOUPA ontology (Standard Ontology for Ubiquitous and Pervasive Applications)
[10]. These ontologies are expressed in the Web Ontology Language OWL [29].
Central to CoBrA is an intelligent broker agent called Context Broker. Using the
CoBrA ontology and the associated logic inference engines, the Context Broker can
reason about the local context of a smart space, and detect and resolve inconsis-
tent context knowledge acquired from disparate sensors and agents. Human users
in the CoBrA system can use an OWL representation of the Rei policy language
[22] to define privacy policies to control the sharing of their private information in
a pervasive context-aware environment.

Context-aware systems are computer systems that can provide relevant ser-
vices and information to users by exploiting context [6]. By context, we mean
information about a location, its environmental attributes (e.g., noise level, light
intensity, temperature, and motion) and the people, devices, objects and software
agents that it contains. Context may also include system capabilities, services of-
fered and sought, the activities and tasks in which people and computing entities
are engaged, and their situational roles, beliefs, and intentions [7].

The design of CoBrA addresses the following research issues in building per-
vasive context-aware systems: (i) context modeling (i.e., how to represent and store
contextual information), (ii) context reasoning (i.e., how to interpret context based
on the information acquired from the physical environment; how to detect and re-
solve inconsistent context knowledge due to inaccurate sensing), (iii) knowledge
sharing (i.e., how to help independently developed computing entities to share
context knowledge and interoperate), and (iv) user privacy protection (i.e., how
to protect the privacy of users by restricting the sharing of contextual information
acquired by the hidden sensors or agents).

The rest of this paper is organized as follows: In the next section, we describe
the problems in existing pervasive computing systems and our motivation to use
ontologies in CoBrA. In Section 3, we describe the SOUPA ontology and how it
can be used to represent various types of contextual information. In Section 4, we
present the design of CoBrA. In Section 5, we describe two different prototype
systems that implement CoBrA. One is a prototype for supporting context-aware
services in a smart meeting room system called EasyMeeting, and the other is
a toolkit for building stand-alone demonstrations of the Context Broker. Future
work and conclusions are given in Section 6 and Section 7, respectively.

2. Problems in the Existing Pervasive Computing Systems

A number of pervasive computing prototype systems have been designed and im-
plemented. Contributions to the field have been made in various aspects of perva-
sive computing. Dey [15] developed a middle-aware framework to facilitate context

The SOUPA Ontology for Pervasive Computing 235

acquisition, Coen et al. [11] defined new extensible programming libraries for build-
ing intelligent room agents, and several groups [37, 39] have created badge-size
tracking devices for determining people’s location in an indoor environment.

Major shortcomings of these systems are that they are weak in supporting
knowledge sharing and reasoning and lack adequate mechanisms to control how
information about individuals is used and shared with others. In Dey’s Context
Toolkit framework [15], Schilit’s context-aware architecture [37], and the Active
Badge system [39], context knowledge is embedded in programming objects (e.g.,
Java classes) that are often inadequate for supporting knowledge sharing and data
fusion operations. The designs of these systems also make strong assumptions
about the accuracy of the information acquired from the hardware sensors. In
an open and dynamic environment, such assumptions can lead to system imple-
mentations that cannot cope with the frequently occurred inconsistent context
knowledge. In the Intelligent Room system [12] and the Cooltown architecture
[26], information about a user can be freely shared by all computing entities in the
environment. As physical environments are populated with ambient sensors, users
may be unaware of the use and the sharing of their private information, which can
create great concerns for privacy.

The design of CoBrA is aimed to address these issues using ontologies. We
believe ontologies are key requirements for building context-aware systems for the
following reasons: (i) a common ontology enables knowledge sharing in an open
and dynamic distributed system [33], (ii) ontologies with well defined declara-
tive semantics provide a means for intelligent agents to reason about contextual
information, and (iii) explicitly represented ontologies allow devices and agents
not expressly designed to work together to interoperate, achieving “serendipitous
interoperability” [19].

3. The SOUPA Ontology

The SOUPA project began in November 2003 and is part of an ongoing effort of
the Semantic Web in UbiComp Special Interest Group1, an international group of
researchers from academia and industry that is using the OWL language for perva-
sive computing applications and defining ontology-driven use cases demonstrating
aspects of the ubiquitous computing vision. The SOUPA ontology is expressed
using the OWL language and includes modular component vocabularies to repre-
sent intelligent agents with associated beliefs, desires, and intentions, time, space,
events, user profiles, actions, and policies for security and privacy.

The goal of the project is to define ontologies for supporting pervasive com-
puting applications. The design of SOUPA is driven by a set of use cases. While
the SOUPA vocabularies overlap with the vocabularies of some existing ontolo-
gies, the merits of SOUPA is in providing pervasive computing developers a shared

1http://pervasive.semanticweb.org

236 Harry Chen, Tim Finin and Anupam Joshi

Figure 1. SOUPA consists of two sets of ontology documents:
SOUPA Core and SOUPA Extension. The OWL owl:imports
construct is used to enable a modular design of the ontology. Dif-
ferent domain vocabularies are grouped under different XML
namespaces.

ontology that combines many useful vocabularies from different consensus ontolo-
gies. By providing a shared ontology, SOUPA can help developers inexperienced
in knowledge representation to quickly begin building ontology-driven applications
without needing to define ontologies from scratch and to be more focused on the
functionalities of actual system implementations.

SOUPA consists of two distinctive but related set of ontologies: SOUPA Core
and SOUPA Extension. The set of the SOUPA Core ontologies attempts to define
generic vocabularies that are universal for building pervasive computing applica-
tions. The set of SOUPA Extension ontologies, extended from the core ontologies,
define additional vocabularies for supporting specific types of applications and
provide examples for defining new ontology extensions.

Note that the structure of the ontology merely suggests certain vocabularies
are more general than the others in supporting pervasive computing applications,
and there is no inherent computational complexity difference in adopting either
set of the ontologies. The complete set of SOUPA ontologies is available at http:
//pervasive.semanticweb.org.

The SOUPA Ontology for Pervasive Computing 237

3.1. The Web Ontology Language OWL

The OWL language is a Semantic Web language for use by computer applications
that need to process the content of information instead of just presenting infor-
mation to humans [29]. This language is developed in part of the Semantic Web
initiatives sponsored by the World Wide Web Consortium (W3C).

The current human-centered web is largely encoded in HTML, which focuses
largely on how text and images would be rendered for human viewing. Over the
past few years we have seen a rapid increase in the use of XML as an alternative
encoding, one that is intended primarily for machine processing. The machine
which process XML documents can be the end consumers of the information,
or they can be used to transform the information into a form appropriate for
humans to understand (e.g., as HTML, graphics, and synthesized speech). As a
representation language, XML provides essentially a mechanism to declare and
use simple data structures, and thus it leaves much to be desired as a language
for expressing complex knowledge. Enhancements to the basic XML, such as XML
Schemas, address some of the shortcomings, but still do not result in an adequate
language for representing and reasoning about the kind of knowledge essential to
realizing the Semantic Web vision.

OWL is a knowledge representation language for defining and instantiating
ontologies. An ontology is a formal explicit description of concepts in a domain
of discourse (or classes), properties of each class describing various features and
attributes of the class, and restrictions on properties [30].

The normative OWL exchange syntax is RDF/XML. Ontologies expressed in
OWL are usually placed on web servers as web documents, which can be referenced
by other ontologies and downloaded by applications that use ontologies. In this
paper, we refer to these web documents as ontology documents.

3.2. Related Ontologies

Part of the SOUPA vocabularies are adopted from a number of different consensus
ontologies. The strategy for developing SOUPA is to borrow terms from these
ontologies but not to import them directly. Although the semantics for importing
ontologies is well defined [1], by choosing not to use this approach we can effectively
limit the overhead in requiring reasoning engines to import ontologies that may be
irrelevant to pervasive computing applications. However, in order to allow better
interoperability between the SOUPA applications and other ontology applications,
many borrowed terms in SOUPA are mapped to the foreign ontology terms using
the standard OWL ontology mapping constructs (e.g., owl:equivalentClass and
owl:equivalentProperty).

The ontologies that are referenced by SOUPA include the Friend-Of-A-Friend
ontology (FOAF) [3, 35], DAML-Time and the entry sub-ontology of time [20, 31],
the spatial ontologies in OpenCyc [27], Regional Connection Calculus (RCC) [36],
COBRA-ONT [7], MoGATU BDI ontology [32], and the Rei policy ontology [21].
In the rest of this section, we describe the key features of these related ontologies
and point out their relevance to pervasive computing applications.

238 Harry Chen, Tim Finin and Anupam Joshi

FOAF. This ontology allows the expression of personal information and relation-
ships, and is a useful building block for creating information systems that support
online communities [16]. Pervasive computing applications can use FOAF ontolo-
gies to express and reason about a person’s contact profile and social connections
to other people in their close vicinity.

DAML-Time & the Entry Sub-ontology of Time. The vocabularies of these on-
tologies are designed for expressing temporal concepts and properties common to
any formalization of time. Pervasive computing applications can use these ontolo-
gies to share a common representation of time and to reason about the temporal
orders of different events.

OpenCyc Spatial Ontologies & RCC. The OpenCyc spatial ontologies define a
comprehensive set of vocabularies for symbolic representation of space. The ontol-
ogy of RCC consists of vocabularies for expressing spatial relations for qualitative
spatial reasoning. In pervasive computing applications, these ontologies can be
exploited for describing and reasoning about location and location context [7].

COBRA-ONT & MoGATU BDI Ontology. Both COBRA-ONT and MoGATU
BDI ontology are aimed for supporting knowledge representation and ontology
reasoning in pervasive computing environment. While the design of COBRA-ONT
focuses on modeling contexts in smart meeting rooms [7], the design of MoGATU
BDI ontology focuses on modeling the belief, desire, and intention of human users
and software agents [32].

Rei Policy Ontology. The Rei policy language defines a set of deontic concepts (i.e.,
rights, prohibitions, obligations, and dispensations) for specifying and reasoning
about security access control rules. In a pervasive computing environment, users
can use this policy ontology to specify high-level rules for granting and revoking
the access rights to and from different services [24].

3.3. SOUPA Core

The SOUPA core ontology consists of nine ontology documents. Together these
ontology documents define vocabularies for describing person contact information,
beliefs, desires, and intentions of an agent, actions, policies, time, space, and events.

Person. This ontology defines typical vocabularies for describing the contact in-
formation and the profile of a person. The OWL class per:Person is defined
to represent a set of all people in the SOUPA domain, and is equivalent to the
foaf:Person class in the FOAF ontology (i.e., the owl:equivalentClass prop-
erty holds between the per:Person and foaf:Person class). An individual of the
class can be described by a set of properties, which include basic profile informa-
tion (name, gender, age, birth date, etc.), the contact information (email, mailing
address, homepage, phone numbers, instant messaging chat ID, etc.), and social
and professional profile (people that a person is friend of, organizations that a
person belongs to). In addition, all property vocabularies that are applicable to

The SOUPA Ontology for Pervasive Computing 239

describe a person in the FOAF ontology can also be used to describe an individual
of the per:Person class. This is because all individuals of the per:Person class
are also individuals of the foaf:Person class. Figure 2 shows a partial ontology
description of the person Harry Chen.

Agent, Action & BDI. Sometimes when building intelligent pervasive computing
systems, it is useful to model computing entities as agents [40]. In SOUPA, agents
are defined with a strong notion of agency [40], which is characterized by a set
of mentalistic notions such as knowledge, belief, intention, and obligation. In this
ontology, both computational entities and human users can be modeled as agents.

When the goals, plans, desires, and beliefs of different agents are explicitly
represented in the ontologies, this information can help independently developed
agents to share a common understanding of their “mental” states, helping them to
cooperate and collaborate. The explicitly represented human user’s mental states
can help computing agents to reason about the specific needs of the users in a
pervasive environment.

Three ontology documents are related to this ontology: agent, bdi, and
action. The agt:Agent class represents a set of all agents in the SOUPA do-
main and is associated with three properties that can be used to characterize
an agent’s “mental” state: agt:believes, agt:desires, and agt:intends. The
respective range values of these properties are the bdi:Fact, bdi:Desire, and
bdi:Intention classes. The goals of an agent are considered to be a special type of
desire, which is expressed by defining the agt:hasGoal property as a sub-property
of the agt:desires property.

The bdi:Fact class is a subclass of the rdf:Statement class, which repre-
sents a set of reified RDF statements [2]. A reified RDF statement consists of the
rdf:subject, rdf:object, and rdf:predicate properties.

The bdi:Desire class defines a set of world states that agents desire to bring
about. Every instance of this class can be characterized by the property bdi:end-
State. The range restriction of this property is unspecified in the bdi ontology
document. Application developers are responsible for defining the representation
of different world states. Some suggested representations are (i) symbolic names,
e.g., a set of pre-defined RDF resource URI and (ii) meta-representation, e.g., each
world state description is a set of reified RDF statements.

The bdi:Intention class represents a set of plans that agents intend to
execute. Plans are defined in terms of actions, pre-conditions, and effects. The
action ontology document defines the act:Action class with associated prop-
erties act:preCondition and act:effect. The representation of pre-conditions
and effects are unspecified in this ontology, and it is left to be defined by the
application ontologies.

Sometimes it may be useful to describe whether or not different desires of
an agent are in conflict of each other, and whether or not certain desires are
achievable. The cause of desire conflicts may be due to inconsistent beliefs in
the knowledge base or conflicting user preferences or systems policies. The cause

240 Harry Chen, Tim Finin and Anupam Joshi

<!DOCTYPE rdf:RDF [
...
<!ENTITY foaf "http://xmlns.com/foaf/0.1/#">
<!ENTITY per "http://pervasive.semanticweb.org/dev/person#">
]>

<rdf:RDF ... >

<per:Person>
<per:firstName rdf:datatype="&xsd;string>Harry</per:firstName>
<per:lastName rdf:datatype="&xsd;string>Chen</per:lastName>

<per:gender rdf:resource="&per;Male"/>

<per:birthDate rdf:datatype="&xsd;date">1976-12-26</per:birthDate>

<per:homepage rdf:resource="http://umbc.edu/people/hchen4"/>

<foaf:weblog rdf:resource="http://umbc.edu/people/hchen4"/>

<per:hasSchoolContact rdf:resource="#SchoolContact"/>
<per:hasHomeContact rdf:resource="#HomeContact"/>

<foaf:workplaceHomepage rdf:resource="http://ebiquity.umbc.edu"/>
<foaf:workplaceHomepage rdf:resource="http://www.umbc.edu"/>
<foaf:workplaceHomepage rdf:resource="http://www.cs.umbc.edu"/>

</per:Person>

<per:ContactProfile rdf:ID="SchoolContact">
<per:address rdf:datatype="&xsd;string">

Dept. of CSEE, UMBC, 1000 Hilltop Circle, Baltimore, MD 21250, USA
</per:address>
<per:phone rdf:datatype="&xsd;string>+1-410-455-8648</per:phone>
<per:email rdf:resource="harry.chen@umbc.edu"/>
<per:im rdf:resource="aim:goim?screenname=hc1379"/>

</per:ContactProfile>

<per:Email rdf:about="harry.chen@umbc.edu"/>

<per:Homepage rdf:about="http://www.aim.com"/>

<per:ChatID rdf:about="aim:goim?screenname=hc1379">
<per:providedBy rdf:resource="http://www.aim.com"/>

</per:ChatID>

<per:ContactProfile rdf:ID="HomeContact">
...

</per:ContactProfile>

<foaf:knows>
<foaf:Person>

<foaf:name>Tim Finin</foaf:name>
<foaf:mbox_sha1sum>49953f47b9c33484a753eaf14102af56c0148d37</foaf:mbox_sha1sum>

</foaf:Person>
</foaf:knows>
</rdf:RDF>

Figure 2. A partial ontology description of the person Harry
Chen. Vocabularies from both the SOUPA ontology and the
FOAF ontology can be used to describe a person.

The SOUPA Ontology for Pervasive Computing 241

<!DOCTYPE rdf:RDF [
...
<!ENTITY jade "http://pervasive.semanticweb.org/dev/fipa-jade#>
<!ENTITY pol "http://pervasive.semanticweb.org/dev/policy#">
]>

<rdf:RDF>
<pol:Policy>

<pol:creator>
<per:Person>

<foaf:name>Tim Finin</foaf:name>
</per:Person>

</pol:creator>
<pol:enforcer>

<agt:Agent>
<jade:name rdf:datatype="&xsd;string">Context Broker in ITE328</jade:name>
<jade:agentID rdf:datatype="&xsd;string">ctb@cobra1.cs.umbc.edu:1099/JADE</jade:agentID>

</agt:Agent>
</pol:enforcer>

<pol:rule rdf:resource="#r1"/>
<pol:rule rdf:resource="#r2"/>

</pol:Policy>

<pol:Prohibition rdf:ID="r1">
...

</pol:Prohibition>

<pol:Right rdf:ID="r2">
...

</pol:Right>

</rdf:RDF>

Figure 3. An instance of the pol:Policy class is the entry point
to a SOUPA policy definition. In this example, the policy is cre-
ated by a person with foaf:name “Tim Finin”, and is enforced
by the Context Broker in the Room ITE328. The definition of the
two associated policy rules (i.e., r1 and r2) is shown in the next
figure.

of unachievable desires may be due to the change of situational conditions. In
the bdi ontology document, different subclasses of the bdi:Desire class, namely
bdi:ConflictingDesire, bdi:NonConflictingDesire, bdi:AchievableDesire,
and bdi:UnachievableDesire, are defined for classifying different types of agent
desires.

Policy. Security and privacy are two growing concerns in developing and deploy-
ing pervasive computing systems [4, 25, 18]. Policy is an emerging technique for
controlling and adjusting the low-level system behaviors by specifying high-level
rules [14].

Part of the SOUPA policy ontology adopts the vocabularies of the Rei policy
language [21]. In SOUPA, a policy is a set of rules. Rules are defined by a policy
creator (e.g., a user or an agent), and the rules are to be enforced by one or
more policy enforcer (e.g., a security authority or a privacy protection agent). The

242 Harry Chen, Tim Finin and Anupam Joshi

<pol:Prohibition rdf:ID="r1">
<!-- Any owl:Thing that is an audience of the defined Ebiquity Group meeting

is prohibited from changing presentation slides. -->
<pol:actor>

<!-- a special class for expressing "For all X"-->
<pol:Variable/>

</pol:actor>

<pol:action rdf:resource="ChangePresentationSlides"/>

<pol:constraintMemebershipClass>
<owl:Class>

<rdf:subClassOf rdf:resource="&mtg;Audience"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="&mtg;ofMeeting"/>
<owl:hasValue rdf:resource="http://ebiquity.umbc.edu/v2.1/event/html/id/15/"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
</pol:constraintMemebershipClass>

</pol:Prohibition>

<pol:Right rdf:ID="r2">
<!-- Person Harry Chen has the right to adjust room lighting if he is

a speaker of the defined Ebiquity Group meeting -->

<pol:actor>
<per:Person>

<foaf:name>Harry Chen</foaf:name>
</per:Person>

</pol:actor>

<pol:action rdf:resource="#AdjustRoomLighting"/>

<pol:constraintMemebershipClass>
<owl:Class>

<rdf:subClassOf rdf:resource="&mtg;Speaker"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="&mtg;ofMeeting"/>
<owl:hasValue rdf:resource="http://ebiquity.umbc.edu/v2.1/event/html/id/15/"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
</pol:constraintMemebershipClass>

</pol:Right>

Figure 4. The pol:Prohibition and pol:Right are subclasses
of the pol:DenoticObject class. Instances of these classes repre-
sent individual SOUPA policy rules.

definition of each rule gives specific enforcement instructions to the policy enforcer
over a set of actions. For example, an action may be adjusting the lighting in a
room, changing presentation slides on a projector device, or printing documents
to a nearby printer.

Every enforcement instruction given to the policy enforcer falls under one of
the following four categories: (i) the enforcer should permit the agents of certain
class to perform the specified action, (ii) the enforcer should prohibit the agents

The SOUPA Ontology for Pervasive Computing 243

of certain class to perform the specified action, (iii) the enforcer should assign
the agents of certain class to be responsible for performing the specified action,
and (iv) the enforcer should waive the agents of certain class to be responsible for
performing the specified action.

The entry point to the SOUPA policy ontology is the pol:Policy class.
An individual of this class represents a policy document. The property pol:rule
relates a policy rule instance to a policy document. Each policy document can
have zero or more defined policy rules. Figure 3 shows a partial description of a
SOUPA policy.

Policy rules are typically defined as individuals of one of the four rule classes:
(i) pol:Right, (ii) pol:Prohibition, (iii) pol:Obligation, and (iv) pol:Dispen-
sation. The semantics of these four class definitions correspond to the four en-
forcement instructions that are described above. These four classes are subclasses
of the pol:DenoticObject class, and the set of individual members of each class
disjoints with each other.

The pol:DeonticObject class has three defined properties: pol:action,
pol:actor, and pol:constraintMemebershipClass. The pol:action property
relates a policy rule to a specific action that it applies to, which must be type
of act:Action. The pol:actor property defines a named agent who may be the
actor of the defined action. By default, an actor does not have the right to perform
an action unless it also satisfies the membership class constraint defined by the
pol:constraintMembershipClass property.

The range of the pol:constraintMemebershipClass property is owl:Class.
The purpose for this construct is to define a template class to match the class mem-
bership types of a given actor. An actor belongs to the constraint membership class
if it is rdf:type of the defined class. In which case, the enforcement instruction
given by the rule applies to the actor. Figure 4 shows examples of two SOUPA
policy rules.

Time. SOUPA defines a set of ontologies for expressing time and temporal rela-
tions. They can be used to describe the temporal properties of different events
that occur in the physical world.

Part of the SOUPA ontology adopts the vocabularies of the DAML-time
ontologies and the entry sub-ontology of time. The basic representation of time
consists of the tme:TimeInstant and tme:TimeInterval classes. All individual
members of these two classes are also members of the tme:TemporalEntity class,
which is an OWL class that is defined by taking the union of the tme:TimeInstant
and tme:TimeInterval classes. The set of all temporal things that are divided
into two disjoint classes: tme:InstantThing, things with temporal descriptions
that are type of time instant, and tme:IntervalThing, things with temporal de-
scriptions that are type of time interval. The union of these two classes forms the
tme:TemporalThing class.

In order to associate temporal things with date/time values (i.e., their tem-
poral descriptions), the tme:at property is defined to associate an instance of the

244 Harry Chen, Tim Finin and Anupam Joshi

<tme:TimeInterval>
<tme:from>

<tme:TimeInstant>
<tme:at rdf:datatype="xsd;dateTime">2004-02-01T12:01:01</tme:at>

</tme:TimeInstant>
</tme:from>
<tme:to>

<tme:TimeInstant>
<tme:at rdf:datatype="xsd;dateTime">2004-02-11T13:41:21</tme:at>

</tme:TimeInstant>
</tme:to>

</tme:TimeInterval>

Figure 5. A representation of a time interval using the SOUPA
time ontology. The beginning and the ending of a time interval
are defined by the tme:from and tme:to properties, respectively.

tme:InstantThing with an XML xsd:dateTime datatype value (e.g., 2004-12-
25T12:32:12), and the tme:from and tme:to properties are defined to associate
an instance of the IntervalThing with two different tme:TimeInstant individ-
uals. Figure 5 shows the representation of a time interval with the associated
temporal description.

For describing the order relations between two different time instants, the
ontology defines the following properties: tme:before, tme:after, tme:before-
OrAt, tme:afterOrAt, and tme:sameTimeAs. Both tme:before and tme:after
properties are defined of type owl:TransitiveProperty. The tme:sameTimeAs
property expresses that two different time instants are associated with equivalent
date/time values and is defined of type owl:SymmetricProperty.

For describing the order relations between two different temporal things
(i.e., time instants and time intervals), the ontology defines the following prop-
erties: tme:startsSoonerThan, tme:startsLaterThan, tme:startsSameTimeAs,
tme:endsSoonerThan, tme:endsLaterThan, tme:endsSameTimeAs, tme:starts-
AfterEndOf, and tme:endsBeforeStartOf. The first three properties respectively
express that for any two given temporal things A and B, the starting time of A
is before the starting time of B, the starting time of A is after the starting time
of B, and the starting time of A is the same as the starting time of B. The next
three properties respectively express that for any two given temporal things A
and B, the ending time of A is before the ending time of B, the ending time of
A is after the ending time of B, and the ending time of A is the same as the
ending time of B. The tme:startsAfterEndOf property expresses that the begin-
ning of one temporal thing is after the ending of another temporal thing, and the
tme:endsBeforeStartOf property expresses the inverse of this property.

The SOUPA Ontology for Pervasive Computing 245

Space. This ontology is designed to support reasoning about the spatial relations
between various types of geographical regions, mapping from the geo-spatial co-
ordinates to the symbolic representation of space and vice versa, and the repre-
sentation of geographical measurements of space. Part of this ontology vocabu-
laries are adopted from the spatial ontology in OpenCyc and the OpenGIS vo-
cabularies [13]. Two ontology documents are related to this ontology: space and
geo-measurement. The first ontology document defines a symbolic representation
of space and spatial relations, and the second document defines typical geo-spatial
vocabularies (e.g., longitude, latitude, altitude, distance, and surface area).

In the symbolic representation model, the spc:SpatialThing class rep-
resents a set of all things that have spatial extensions in the SOUPA do-
main. All spatial things that are typically found in maps or construction blue-
prints are called spc:GeographicalSpace. This class is defined as the union of
the spc:GeographicalRegion, spc:FixedStructure, and spc:SpaceInAFixed-
Structure classes.

An individual member of the spc:GeographicalRegion class typically rep-
resents a geographical region that is controlled by some political body (e.g., the
country USA is controlled by the US government). This relation is expressed by
the spc:controls property, the domain of which is spc:GeopoliticalEntity
and the range of which is spc:GeographicalRegion. Knowing which political en-
tity controls a particular geographical region, a pervasive computing system can
choose to apply the appropriate policies defined by the political entity to guide
its behavior. For example, a system may apply different sets of privacy protection
schemes based on the policies defined by the local political entities.

To support spatial containment reasoning, individual members of
the spc:GeographicalSpace class can relate to each other through the
spc:spatiallySubsumes and spc:spatiallySubsumedBy properties. For exam-
ple, a country region may spatially subsume a state region, a state region may
spatially subsume a building, and a building may spatially subsume a room. Know-
ing the room in which a device is located, we can infer the building, the state and
the country that spatially subsumes the room.

In the geo-spatial representation model, the individual members of the spc:-
SpatialThing class are described by location coordinates (i.e., longitude, latitude,
and altitude). This relation is expressed by the spc:hasCoordinates property, the
range of which is the geo:LocationCoordinates class. In this model, multiple lo-
cation coordinates can be mapped to a single geographical region (e.g., a university
campus typically covers multiple location coordinates.). This relation is useful for
defining spatial mapping between different geographical locations and GPS coor-
dinates. This information can enable a GPS-enabled device to query the symbolic
representation of its present location for a given set of longitude, latitude, and
altitude.

Event. Events are event activities that have both spatial and temporal extensions.
An event ontology can be used to describe the occurrence of different activities,

246 Harry Chen, Tim Finin and Anupam Joshi

<owl:Class rdf:ID="DetectedBluetoothDev">
<rdfs:subClassOf rdf:resource="&eve;TemporalSpatialEvent"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="foundDevice">
<rdfs:domain rdf:resource="#DetectedBluetoothDev"/>

</owl:ObjectProperty>

<DetectedBluetoothDev>
<spc:hasCoordinates>

<geo:LocationCoordinates>
<geo:longitude rdf:datatype...>-76.7113</geo:longitude>
<geom:latitude rdf:datatype...>39.2524</geom:latitude>

</geo:LocationCoordinates>
</spc:hasCoordinates>

<foundDevice rdf:resource="url-x-some-device"/>
<tme:at>

<tme:TimeInstant>
<tme:at rdf:datatype="xsd;dateTime">2004-02-01T12:01:01</tme:at>

</tme:TimeInstant>
</tme:at>

<DetectedBluetoothDev>

Figure 6. An example shows the representation of a sensing
event using the SOUPA space, time and event ontology. In this
example, the Bluetooth network interface of a device has been
detected at the time instant 2004-02-01T12:01:01 at a location
with the GPS coordinates (-76.7113/39.2524).

schedules, and sensing events. In the event ontology document, the eve:Event
class represents a set of all events in the domain. However, the definition of this
class is silent about its temporal and spatial properties.

The eve:SpatialTemporalThing class represents a set of things that have
both spatial and temporal extensions, and it is defined as the intersection of
the tme:TemporalThing and spc:SpatialThing classes. To specifically describe
events that have both temporal and spatial extensions, eve:SpatialTemporal-
Event class is defined as the intersection of the eve:SpatialTemporalThing and
eve:Event classes.

Figure 6 shows how the ontology can be used to describe an event in which a
Bluetooth device has been detected on 2004-02-01 at 12:01:01 UTC, and the event
occurs at a location that is described by longitude -76.7113 and latitude 39.2524.

3.4. SOUPA Extension

The SOUPA Extension ontologies are defined with two purposes: (i) to define an
extended set of vocabularies for supporting specific types of pervasive application
domains, and (ii) to demonstrate how to define new ontologies by extending the
SOUPA Core ontologies. At present, the SOUPA Extension consists of experimen-
tal ontologies for supporting pervasive context-aware applications in smart spaces
and peer-to-peer data management in a pervasive computing environment.

The SOUPA Ontology for Pervasive Computing 247

Priority. By default the BDI ontology is silent about the priority relation among
the set of desires and intentions of an agent. The priority ontology defines addi-
tional vocabularies for assigning priority values to an agent’s desires and intended
actions. At times when there are conflicts between different desires or actions,
priority values can be used to set the precedence.

Conditional & Unconditional Belief. This ontology defines the vocabularies for
describing conditional beliefs. A conditional belief statement can be attributed by
temporal values, accuracy values, or locally defined conditions. Statements defined
with conditional attributes will be believed to be true if the associated time stamp
is valid, the accuracy value is above a pre-defined threshold, and all the locally
defined conditions are satisfied. Otherwise, the statements will be believed to be
false.

Contact Preference. This ontology defines the vocabularies for describing a user’s
contact preference, which is a set of rules that specify how the user likes to be
contacted by the system under different situational conditions (i.e., in meeting,
out of town, on the weekends). For example, a user may specify the system to
contact her on a cellphone when she is out of town, and to contact her using only
SMS when she is in a meeting.

Meeting & Schedule. These two ontologies define the vocabularies for describing
a meeting event, schedules, and the associated attendees. They can help smart
meeting systems to represent and reason about the context of a meeting (e.g., are
all scheduled attendees located in the meeting room? What is the end time of this
meeting?)

4. The Context Broker Architecture

CoBrA is a broker-centric agent architecture for supporting context-aware systems
in smart spaces [8]. Central to the architecture is the presence of a Context Broker,
an intelligent agent that runs on a resource-rich stationary computer in the space.
The responsibility of the Context Broker is to (i) provide a centralized model of
context that can be shared by all devices, services, and agents in the space, (ii)
acquire contextual information from sources that are unreachable by the resource-
limited devices, (iii) reason about contextual information that cannot be directly
acquired from the sensors (e.g., intentions, roles, temporal and spatial relations),
(iv) detect and resolve inconsistent knowledge that is stored in the shared model
of context, and (v) protect user privacy by enforcing policies that the users have
defined to control the sharing and the use of their contextual information.

Our centralized design of the context broker is motivated by the need to
support small devices that have relatively limited resources available for context
acquisition and reasoning. With the presence of a broker, small devices such as cell-
phones, PDA and watches can offload their burdens of managing context knowledge
onto a resource rich context broker, including reasoning with context, detecting

248 Harry Chen, Tim Finin and Anupam Joshi

Figure 7. A Context Broker acquires contextual information
from heterogeneous sources and fuses into a coherent model that
is then shared with computing entities in the space.

and resolving inconsistent context knowledge. Furthermore, in an open and dy-
namic environment, users may desire that their personal contextual information
be kept private. A centralized management of context knowledge makes it easy to
implement privacy protection and information security.

The design of a Context Broker consists of the following four parts:
1. CoBrA Ontology (COBRA-ONT): A set of ontology documents that define

the vocabularies for representing contextual information and for support-
ing the context reasoning. This ontology extends the SOUPA ontology and
introduces additional domain specific vocabularies. COBRA-ONT v0.52 is
the latest version of this ontology, which defines an ontology of the UMBC
eBiquity Research Group meetings and a spatial ontology that describes the
geographical location of UMBC.

2. Context Knowledge Base: This knowledge base stores the contextual infor-
mation that is acquired from the physical environment and knowledge that
is inferred by the Context Reasoning Engine. In our prototype implemen-
tation [9], this knowledge base is stored in a relational database3 using the
Persistent Ontology Model API of the Jena 2 semantic web framework [5].
All knowledge in this knowledge base is expressed as RDF triples.

2COBRA-ONT is available at http://cobra.umbc.edu.
3The current implementation uses the MySQL system.

The SOUPA Ontology for Pervasive Computing 249

3. Context Reasoning Engine: It is a rule-based component that provides logic
inference support for interpreting context and for detecting knowledge incon-
sistency. This engine has a two-tier design: Tier-1 and Tier-2. A key difference
between the reasoners in Tier-1 and Tier-2 is in the type of inferences that
they support. While Tier-1 only supports ontology inferences using either the
built-in or the customized ontology axioms, Tier-2 supports domain heuris-
tics inferences using an external logic inference engine. We have prototyped
two reasoners – one in Prolog [8] and the other one in Jess [9].

4. Privacy Protection Module: This module is responsible for analyzing user
defined policy rules and helps the Context Broker to decide whether context
knowledge about a user can be shared with a particular agent in the system.
In our prototype design, this module reads in user privacy policies that are
expressed in the SOUPA policy ontology. Before the Context Broker shares
the context knowledge about a user, the Context Broker calls this module to
check whether the receiving agent is permitted to acquire this information.

5. CoBrA Applications

To demonstrate the use and the feasibility of CoBrA for supporting pervasive
context-aware systems, we have developed two prototype systems. Both proto-
types exploit the SOUPA and COBRA-ONT ontology to support context model-
ing, context reasoning, and knowledge sharing. The first prototype system, called
EasyMeeting, is a smart meeting room system that is aimed to facilitate typical
user activities in an everyday meeting. The second prototype system is a toolkit
for building demonstrations of the CoBrA system without needing to set up a
complete pervasive computing infrastructure.

5.1. The EasyMeeting System

EasyMeeting is an extension to Vigil [38], a third generation pervasive computing
infrastructure developed at UMBC. The goal of developing EasyMeeting is to cre-
ate a smart meeting room that can facilitate typical user activities in an everyday
meeting. This includes setting up presentations, allowing users to control services
via speech, and adjusting lighting and background music in a room based the state
of the meeting.

In EasyMeeting, the role of a Context Broker is to provide a shared model of
context for all agents and services. In particular, it is responsible for acquiring and
maintaining consistent knowledge about (i) the location of meeting participants,
(ii) the event schedule of a meeting, (iii) the presentations that are scheduled for the
meeting, (iv) the profiles of the speakers, and (v) the state of a meeting. To acquire
this knowledge, the Context Broker explores different sources of information that
is published on the Semantic Web and provided by the sensor agents (e.g., the
Bluetooth Sensing Agent in Figure 8).

250 Harry Chen, Tim Finin and Anupam Joshi

Figure 8. In EasyMeeting the Context Broker shares its contex-
tual knowledge with the MajorDemo agent. Using this knowledge,
MajorDemo selects and then invokes appropriate Vigil services to
provide relevant services and information to the speakers and au-
diences.

The following is a typical EasyMeeting use case: Room 338 is a smart meeting
room. On January 8th, 2004, a presentation is scheduled to take place from 1:00-
2:30 PM in this room. Moments before the event starts, the room’s Context Broker
acquires the meeting’s schedule from the Semantic Web and concludes the meeting
is about to take place in the Room 338. As the meeting participants begin to arrive,
the room’s Bluetooth Sensing Agent detects the presences of different Bluetooth
enabled devices (e.g., cellphones, PDA’s). Because each device has a unique device
profile that is described by standard Semantic Web ontologies, the sensing agent
can share this information with the Context Broker.

Based on the user profile ontologies that are stored in the Context Broker’s
knowledge base (e.g., who owns what devices), without knowing any evidence to
the contrary, the Context Broker concludes the owners of the detected devices are
also located in the Room 338. Among the arrived participants, there are Harry
(the speaker) and President Hrabowski (the distinguished audience). The Context
Broker shares the location information of these participants with the subscribed
MajorDemo agent.

Knowing that President Hrabowski has a distinguished audience role, the
MajorDemo agent invokes the Greeting Service to greet him. At 1:00 PM, the
Context Broker informs the MajorDemo agent that all listed key participants
have arrived and that the presentation can be started. Knowing all the lights in

The SOUPA Ontology for Pervasive Computing 251

the meeting are currently switched on and the background music is also playing,
the agent invokes the Dim Light Method on the the Light Control Service and the
Stop Music Method on the Music Service.

As Harry walks to the front of the meeting room, he speaks to the system
using a wireless microphone, “load Harry’s presentation”. The voice command is
received by the Voice Recognition Service and a corresponding CCML command is
generated. The MajorDemo agent sends this text string command to the Presenta-
tion Service along with the URL at which Harry’s presentation can be downloaded
(this information is provided by the Context Broker). As the Presentation Service
loads Harry’s PowerPoint slides, the MajorDemo agent invokes the Profile Display
Service to show Harry’s home page. Few seconds later, all LCD displays sitting
on the conference table start showing Harry’s biosketch and his profile. Using the
same wireless microphone, Harry speaks to the system to control his presentation.

5.2. CoBrA Demo Toolkit

This toolkit a set of software applications for demonstrating the key features of
CoBrA. It is aimed to provide a proof-of-concept demonstration and stimulate
future system design and development. This toolkit has three key components: (i)
a stand-alone Context Broker implementation in JADE, (ii) a customizable JADE
agent called ScriptPlay for facilitating demo scripts, and (iii) an Eclipse Plug-in
called CoBrA Eclipse Viewer (CEV) for monitoring the knowledge base changes
in the Context Broker.

Using this toolkit, we can develop customized demonstrations to show how
the knowledge base of a Context Broker changes when new contextual information
is acquired or when the logic inference for context reasoning is triggered. Through
a graphical user interface, users can (i) inspect the ontology schemas and data
instances that form the Context Broker’s belief about the present context, (ii)
view privacy policies that the individual users have defined to protected their
private information, and (iii) monitor the communication messages that are sent
between the Context Broker and other agents.

CEV is a tool for browsing the context model in the knowledge base of the
Context Broker and to monitor its changes while the Context Broker acquires new
information from other agents or infers new context knowledge. Figure 9 shows
a screenshot of the CEV plug-in that displays partial knowledge of the Context
Broker.

One of our demonstration scenario is to show the Context Broker’s ability
to detect knowledge inconsistency when maintaining the location information of
a person. In this demonstration, the ScriptPlay agent is configured to simulate
a group of location tracking agents that individually send sensed people location
information to the Context Broker. To simulate a real world scenario, some of
the reported location information are intentionally made to be inconsistent with
each other. For example, one report may express that a person is located in the
Room ITE 325, which is part of the ITE building on the UMBC campus, and the
other report may express the same person is located in some place in the state

252 Harry Chen, Tim Finin and Anupam Joshi

Figure 9. A screenshot of the CoBrA Eclipse Viewer (CEV).
On the left, CEV lists the ontology classes and instances that are
part the Context Broker’s knowledge base. On the right, CEV
users can explore the properties of individual class instances.

of California during the same time interval. Because the UMBC campus in in the
state of Maryland, which is a geographical region that is disconnected from the
state of California, the previous two reports of the same person’s location context
are inferred to be inconsistent.

In this demonstration, the Context Broker continuously waits to receive in-
coming reports about people’s location context and notifies the senders when the
reported information is inconsistent with its stored knowledge. If the incoming
report is consistent with the stored knowledge, the Context Broker replies with a
confirmation message and adds the new information to its knowledge base. Figure
10 shows a UML sequence diagram of a complete run of this demonstration4. At
present, our implementation only handles the detection of inconsistent knowledge
and does not handle the resolution of inconsistent knowledge. We are investigating
different strategies for resolving inconsistent knowledge after it has been detected.

4A QuickTime video of this demonstration is available at http://cobra.umbc.edu

The SOUPA Ontology for Pervasive Computing 253

Figure 10. Using the CoBrA Demo Toolkit, users can moni-
tor the underlying behavior and the knowledge base of the Con-
text Broker and inspect the communication messages between the
Context Broker and other agents. This demo shows the Broker’s
ability to detect inconsistent location information about a per-
son when there are inaccurate sensing reports. Upon receiving
information that is inconsistent with its existing belief, the Bro-
ker notifies the sender of the information and refuses to add this
information to its knowledge base.

254 Harry Chen, Tim Finin and Anupam Joshi

H1: locatedIn(Per,Rm), owner(Per,Dev) => locatedIn(Dev,Rm).

H2: locatedIn(Per,Rm), meeting(Mt,Rm),
speakerOf(Per,Mt), not(notLocatedIn(Per,Rm))

=> intends(Per,give_prst(Mt)).

F1: locatedIn(t68i,rm338).
F2: owner(harry,t68i).
F3: meeting(m1203,rm338).
F4: speakerOf(harry,m1203).

Figure 11. Rules for assumption-based reasoning in the Theorist framework.

6. Future Work

Our near term objective is to improve the logic inference mechanism in the Context
Knowledge Base. We are investigating the use of the Theorist framework [34], a
Prolog meta-interpreter for processing assumption-based reasoning. Different from
the conventional deductive reasoning systems, in this framework, the premises of
the logic inference consists both facts (axioms given as true) and assumptions
(instances of the possible hypotheses that can be assumed if they are consistent
with the facts). Supporting both default reasoning and abductive reasoning is a
key feature of the Theorist framework.

One way to use Theorist is for context reasoning, exploiting both default and
abductive reasoning. In this approach, all contextual information acquired by the
Context Broker are viewed as its observation about the environment. When an
observation is received, the Context Broker first uses abduction to determine the
possible causes and then uses default reasoning to predict what else will follow
from the causes [28].

Let’s consider the example in Figure 11. Hypotheses H1 states that a per-
sonal device is located in a room if the owner of the device is also in that room.
Hypotheses H2 states that if a person is in a room where a meeting is scheduled to
take place, the same person is the speaker of the meeting, and no evidence showing
the person is not in that room, then the person intends to give a presentation at
the meeting. Fact F1 states that Cellphone T68i is located in the room RM338.
Fact F2, F3, and F4 state that Harry is the owner of the Cellphone T68i, Meeting
m1203 is scheduled to take place in the room RM338, and Harry is the speaker
of the Meeting m1203, respectively. We expect F1 to be knowledge acquired from
the sensors, and F2, F3, and F4 to be knowledge acquired from the Semantic Web.

Our first objective is to infer the cause for the observation that the Cellphone
T68i is located in the room RM338 (i.e., F1). We use abduction. Based on the given
knowledge, {locatedIn(harry,rm338), owner(harry,t68i)} is a plausible ex-
planation for locatedIn(t68i,rm338). Knowing Harry is in room RM338, our
second objective is to predict his intention in that room. We use default reasoning.
Using H2, we can infer Harry intends to give a presentation in the Meeting m1203.

The SOUPA Ontology for Pervasive Computing 255

7. Conclusions

The Semantic Web languages and ontologies defined using these languages are of
great importance to future pervasive context-aware systems. Using the OWL lan-
guage we can define ontologies for modeling context and for supporting context
reasoning. Shared ontologies can also help agents, services, and devices to share
context knowledge and to interoperate in an open and dynamic environment. As
the Semantic Web tools and ontologies emerge, they will bring new research op-
portunities in developing pervasive context-aware systems.

We have described the SOUPA ontology, an emerging standard ontology for
supporting ubiquitous and pervasive computing applications. Based on our expe-
rience in prototyping CoBrA, the SOUPA ontologies have shown great promises
in supporting context modeling, context reasoning, and knowledge sharing. The
results of EasyMeeting and the CoBrA Demo Toolkit have successfully demon-
strated aspects of the CoBrA system. In the EasyMeeting system, the Context
Broker helped the smart meeting room services to provide relevant services and
information to the meeting participants based on their context. In the demon-
stration supported by the CoBrA Demo Toolkit, we have shown the ability of
the Context Broker to detect inconsistent information about people’s location by
reasoning with a set of geographical spatial ontologies. In the future, we will ex-
pand the demonstration to show the Context Broker’s ability to resolve knowledge
inconsistency and to protect the privacy of users.

References

[1] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web Ontology
Language Reference, w3c recommendation 10 february 2004 edition, February 2004.

[2] Dan Brickley and R.V. Guha. Rdf vocabulary description language 1.0: Rdf schema.
In W3C Recommendation. RDF Core Working Group, 2004.

[3] Dan Brickley and Libby Miller. FOAF Vocabulary Specification, revision 1.47 edition,
Sept 2003.

[4] Roy Campbell, Jalal Al-Muhtadi, Prasad Naldurg, Geetanjali Sampemane1, and
M. Dennis Mickunas. Towards security and privacy for pervasive computing. In Pro-
ceedings of International Symposium on Software Security, Tokyo, Japan, 2002.

[5] Jeremy Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne, and
Kevin Wilkinson. Jena: Implementing the semantic web recommendations. Technical
Report HPL-2003-146, Hewlett Packard Laboratories, 2003.

[6] Guanling Chen and David Kotz. A survey of context-aware mobile computing
research. Technical Report TR2000-381, Dartmouth College, Computer Science,
Hanover, NH, Nov 2000.

[7] Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-aware perva-
sive computing environments. Special Issue on Ontologies for Distributed Systems,
Knowledge Engineering Review, 2003.

256 Harry Chen, Tim Finin and Anupam Joshi

[8] Harry Chen, Tim Finin, and Anupam Joshi. A context broker for building smart
meeting rooms. In Proceedings of the Knowledge Representation and Ontology for Au-
tonomous Systems Symposium, 2004 AAAI Spring Symposium. AAAI, AAAI Press,
March 2004.

[9] Harry Chen, Filip Perich, Dipanjan Chakraborty, Tim Finin, and Anupam Joshi.
Intelligent agents meet semantic web in a smart meeting room. In Proceedings of
the Thrid International Joint Conference on Autonomous Agents & Multi-Agent
Systems, July 2004.

[10] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. SOUPA: Standard ontology
for ubiquitous and pervasive applications. Technical report, University of Maryland,
Baltimore County, 2004. Submitted to The First Annual International Conference
on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous 2004).

[11] Michael Coen, Brenton Phillips, Nimrod Warshawsky, Luke Weisman, Stephen Pe-
ters, and Peter Finin. Meeting the computational needs of intelligent environments:
The metaglue system. In Proceedings of In 1st International Workshop on Managing
Interactions in Smart Environments (MANSE’99), Dublin, Ireland, 1999.

[12] Michael H. Coen. Design principles for intelligent environments. In Proceedings of
AAAI/IAAI 1998, pages 547–554, 1998.

[13] Simon Cox, Paul Daisey, Ron Lake, Clemens Portele, and Arliss Whiteside. Geog-
raphy markup language (gml 3.0). In OpenGIS Documents. OpenGIS Consortium,
2003.

[14] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The ponder
policy specification language. Lecture Notes in Computer Science, 1995:18–??, 2001.

[15] Anind K. Dey. Providing Architectural Support for Building Context-Aware Applica-
tions. PhD thesis, Georgia Institute of Technology, 2000.

[16] Edd Dumbill. Finding friends with xml and rdf. In IBM developerWorks, XML
Watch. xmlhack.com, June 2002.

[17] Tim Finin, Anupam Joshi, Lalana Kagal, Olga Ratsimore, Vlad Korolev, and Harry
Chen. Information agents for mobile and embedded devices. Lecture Notes in Com-
puter Science, 2182:264–??, 2001.

[18] Fabien L. Gandon and Norman M. Sadeh. Semantic web technologies to reconcile
privacy and context awareness. Web Semantics Journal, 1(3), 2004.

[19] Jeff Heflin. Web Ontology Language (OWL) Use Cases and Requirements, w3c can-
didate recommendation 18 august 2003 edition, 2003.

[20] Jerry R. Hobbs. A daml ontology of time. http://www.cs.rochester.edu/
∼ferguson/daml/daml-time-20020830.txt, 2002.

[21] Lalana Kagal, Tim Finin, and Anupam Joshi. A Policy Based Approach to Security
for the Semantic Web. In 2nd International Semantic Web Conference (ISWC2003),
September 2003.

[22] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy language for a pervasive com-
puting environment. In IEEE 4th International Workshop on Policies for Distributed
Systems and Networks, 2003.

[23] Lalana Kagal, Vlad Korolev, Harry Chen, Anupam Joshi, and Timothy Finin. Cen-
taurus : A framework for intelligent services in a mobile environment. In Proceedings

The SOUPA Ontology for Pervasive Computing 257

of the International Workshop on Smart Appliances and Wearable Computing (IW-
SAWC), 2001.

[24] Lalana Kagal, Massimo Paolucci, Naveen Srinivasan, Grit Denker, Tim Finin, and
Katia Sycara. Authorization and privacy for semantic web services. AAAI 2004
Spring Symposium on Semantic Web Services, March 2004.

[25] Lalana Kagal, James Parker, Harry Chen, Anupam Joshi, and Tim Finin. Handbook
of Mobile Computing, chapter Security, Trust and Privacy in Mobile Computing
Environments, pages ??–?? CRC Press, 2004.

[26] Tim Kindberg and John Barton. A web-based nomadic computing system. Computer
Networks, 35(4):443–456, 2001.

[27] Douglas B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems: Rep-
resentation and Inference in the Cyc Project. Addison-Wesley, February 1990.

[28] Alan K. MacKworth, Randy G. Goebel, and David I. Poole. Computational Intelli-
gence: A Logical Approach, chapter 9, pages 319–342. Oxford University Press, 1998.

[29] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology language
overview. http://www.w3.org/TR/owl-features/, 2003.

[30] Natalya Fridman Noy and Deborah L. McGuinness. Ontology development 101: A
guide to creating your first ontology. Technical Report KSL-01-05, Stanford Knowl-
edge Systems Laboratory, 2001.

[31] Feng Pan and Jerry R. Hobbs. Time in owl-s. In Proceedings of AAAI-04 Spring
Symposium on Semantic Web Services, Stanford University, California, 2004.

[32] Filip Perich. MoGATU BDI Ontology, 2004.

[33] Stephen Peters and Howie Shrobe. Using semantic networks for knowledge represen-
tation in an intelligent environment. In 1st Annual IEEE International Conference
on Pervasive Computing and Proceedings of the 1st Annual IEEE International Con-
ference on Pervasive Computing and Communications (PerCom’03), March 2003.

[34] David Poole. Compiling a default reasoning system into prolog. New Generation
Computing, 9(1):3–38, 1991.

[35] Shelley Powers. Practical RDF. O’Reilly & Associates, 2003.

[36] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based on regions
and connection. In Proceedings of the 3rd International Conference on Knowledge
Representation and Reasoning, 1992.

[37] William Noah Schilit. A System Architecture for Context-Aware Mobile Computing.
PhD thesis, Columbia University, 1995.

[38] Jeffrey Undercoffer, Filip Perich, Andrej Cedilnik, Lalana Kagal, Anupam Joshi,
and Tim Finin. A secure infrastructure for service discovery and management in
pervasive computing. The Journal of Special Issues on Mobility of Systems, Users,
Data and Computing, 2003.

[39] Roy Want, Andy Hopper, Veronica Falcao, and Jon Gibbons. The active badge loca-
tion system. Technical Report 92.1, Olivetti Research Ltd., ORL, 24a Trumpington
Street, Cambridge CB2 1QA, 1992.

[40] Michael J. Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and
practice. Knowledge Engineering Review, 10(2):115–152, June 1995.

258 Harry Chen, Tim Finin and Anupam Joshi

Harry Chen, Tim Finin and Anupam Joshi
Dept. of CSEE
University of Maryland, Baltimore County
USA
e-mail: hchen4@cs.umbc.edu

finin@cs.umbc.edu

joshi@cs.umbc.edu

A UML Ontology and Derived Content
Language for a Travel Booking Scenario

Stephen Cranefield, Jin Pan and Martin Purvis

Abstract. This paper illustrates an approach to combining the benefits of a
multi-agent system architecture with the use of industry-standard modelling
techniques using the Unified Modeling Language (UML). Using a UML profile
for ontology modelling, an ontology for travel booking services is presented
and the automatic derivation of an object-oriented content language for this
domain is described. This content language is then used to encode exam-
ple messages for a simple travel booking scenario, and it is shown how this
approach to agent messaging allows messages to be created and analysed us-
ing a convenient object-oriented application-specific application programmer
interface.

1. Introduction

This paper is a response to the challenge problem for the AAMAS 2003 Work-
shop on Ontologies in Agent Systems. The challenge problem [1] was based on the
description of a travel agent domain previously developed for an ontology tool as-
sessment exercise organised by the Special Interest Group on Enterprise-Standard
Ontology Environments within the European Union’s OntoWeb research network
[2]. The OAS’03 challenge was to “describe the design and (preferably) an imple-
mentation of a multi-agent system in that domain” with emphasis on “the ways
in which ontological information is referenced, accessed and used by agents”.

In this paper we illustrate the application of our previous work on the use of
the Unified Modeling Language (UML) for ontology and content language mod-
elling [3] and the automatic generation of Java classes from these models [4]. This
work rests on four observations:

• The Unified Modeling Language is a widely known and standardised mod-
elling language with a compact graphical notation, an XML-based serialisa-
tion format, and a lot of existing tool support. We believe that the use of

260 S. Cranefield, J. Pan and M, Purvis

UML for ontology modelling has great benefits in terms of industry accep-
tance of agent technology [5]. Its principal weakness is the lack of (official)
formal semantics, but we believe that ongoing efforts in this direction will
remove this shortcoming [6].

• Much current software development is done using the Java programming lan-
guage, and the majority of widely used agent development tools are based on
Java. Programmers using these tools are most familiar with the use of object-
oriented representations and application programmer interfaces (APIs).

• The use of object-oriented structures to refer to domain objects within mes-
sages is convenient, but must be restricted to precise well-understood usages
in order to avoid semantic problems. [7].

• Multi-agent systems must coexist and interact with other distributed sys-
tems (both technological and human). These other systems have existing
techniques for referring to domain objects using reference schemes such as
World Wide Web Uniform Resource Identifiers (URIs). This style of refer-
ence goes beyond the notion of “standard names” (logical constants that
denote each domain object) that lie behind the semantics of FIPA ACL’s
query-ref communicative act, and it is desirable to allow agents to use a
more general notion of object reference when answering queries.

These observations have led us to develop our UML-based model-driven ap-
proach to implementing multi-agent systems. In Section 2 we give a brief overview
of this approach, before presenting a simple UML travel booking ontology in Sec-
tion 3, a discussion of the automatically generated ontology-specific content lan-
guage in Section 4 and an illustration of its use in an agent application in Section 5.
A comparison between our approach and the JADE agent platform’s support for
ontology-specific content language classes is presented in Section 6. The paper
closes with some comments on the applicability of this techique and some areas
for future work.

2. Overview of our approach

Figure 1 presents a schematic overview of our approach to designing and imple-
menting the message-handling component of agent systems.

The designer of an agent must have a mental model of the conceptual struc-
ture of the domain (the ontology) as well as an understanding of the structure
of information describing instances of these concepts and their relationships. We
believe the graphical nature of UML makes it a powerful tool for visualising these
models: an ontology can be represented by a UML class diagram and instance
information can be conveyed as a UML object diagram that shows the values
of object attributes and the links (instances of associations) that exist between
objects.

When creating the agent application, the programmer must translate these
mental models into structures that can be manipulated within a programming

UML Ontology and Content Language for Travel Booking 261

Internet
Serialized knowledge

Domain

knowledge

Instance

knowledge

Schema

in terms of

in UML in UML

.. {

 ...(.) {

 }

}

Java classes Java objects

<....>

 <....>

 <...>

 <.>

<..>

RDF

Figure 1. Overview of our approach

language. When using Java, the natural counterpart to a concept in an ontology
is a Java class. Although other representations can be used, such as string-based
encodings of languages defined by grammars, the most convenient representation
for a Java programmer is to have Java classes corresponding directly to the con-
cepts that the agent will need to refer to when manipulating information about the
world. To make this possible, we have defined XSLT [8] stylesheets that produce
Java class definitions from an XMI [9] serialisation of a UML model (currently we
support XMI 1.0 for UML 1.3) [4].

As agents need to communicate information about the world, it is beneficial
to provide a straightforward mapping from the progammer’s model of the domain
(inter-related Java objects in our case) and the content language used to encode
information within messages. However, standard agent content languages such as
FIPA SL and KIF use a string-based logical representation. These are generic
and weakly typed languages in which domain concepts can only be referred to by
name, rather than by more stongly typed mechanisms such as instantiation, and
thus messages that do not conform to the agent’s known ontologies can only be
detected by run-time analysis. As an alternative to this approach, our Java classes
generated from the ontology have a built-in serialisation mechanism that allows
networks of inter-related objects describing domain objects to be included within
messages. The serialisation uses the XML encoding of the Resource Description
Framework (RDF) [10], which makes reference to concepts defined in an RDF
schema that is also generated automatically from the ontology in UML [11].

This mechanism can also be used to serialise entire messages, including the
outer agent communication language (ACL) layer. By defining the ACL in UML as

262 S. Cranefield, J. Pan and M, Purvis

ACL

Ontology in UML Ontology-specific
content language

in UML

ACL in UML

Generic
content language

in UML

Agent Messaging System

Generic
CL

Ontology-
specific CL

Agent application

. . .

Java-based agent
platform

XSLT

XSLTXSLT

XSLT

(XMI to XMI)

(XMI to Java)(XMI to Java)

(XMI to Java)

Messages
serialized via

RDF/XML

Internet

Figure 2. Integration with an agent platform

well, and defining a set of UML ‘marker’ interfaces representing the concepts (such
as predicate and action description) that comprise the required argument types
for the ACL’s various communicative acts, it is possible to conceptualise messages
with arbitrary content languages (if modelled in UML) as object diagrams (see
Figures 5 and 6 later in the paper).

Figure 2 illustrates how this technology can be integrated with a Java-based
agent platform, and highlights a crucial aspect that addresses the third observation
from the introduction: the need for careful use of object-oriented representations
within messages. The figure shows a number of UML models: an ontology (top
left), definitions of an ACL and a generic (i.e. SL-like) content language, and the
definition of an ontology-specific content language (top right). The ACL and the
content languages are given as input to the XMI-to-Java transformation, and this
results in Java classes that provide an object-oriented application programming
interface that sits on top of the platform’s built-in messaging system classes. How-
ever, the ontology is not directly translated to Java classes. We regard an ontology
as a model of the problem domain, not as a model of the language used to en-
code information about the domain. In other words, an instance of an ontological
class Dog would be an actual dog, not a description of a dog. When a structured
expression corresponding to the structure of the Dog class appears within a mes-
sage, this cannot be taken to be playing the role of a logical term (which always
has a unique denotation), but instead might (depending on the context) play the
role of a proposition (stating that an object with the specified properties exists)
or an identifying reference expression (a reference to a possibly non-existent or
non-unique object by describing its attribute values) [7, 3].

UML Ontology and Content Language for Travel Booking 263

To avoid any confusion between the notions of ontology and content language,
we provide the facility to use domain-specific object-oriented expressions within
messages by generating from the ontology a UML model representing a specialised
ontology-specific content language. From this, Java classes can be generated as for
the ACL and generic content languages models. The generated ontology-specific
content language for the travel booking domain is described in Section 4 and its
use to create messages is illustrated in Section 5.

3. A travel booking ontology in UML

<<valueType>>

Journey

<<valueType>>

TravelComponent

startDate : Date

endDate : Date

description : String

<<valueType>>

Stay

<<valueType>>

AirJourney

<<resourceType>>

Place

name : String

subPlace-superPlace

relationship is transitive

Only one of the associations

or the description attribute

can be instantiated at once

<<valueType>>

FlightSegment

airline : String

flightCode : String

depTime : DateTime

arrTime : DateTime

<<resourceType>>

Airport

code : String

'from' and 'to' have the same

values (respectively) as 'from'

of the first segment and 'to' of

the last segment.

Also, the 'depTime' and

'arrTime' attributes of the

segments respect the ordering

of the segments

Only one of the associations

or the description attribute

can be instantiated at once

All attributes have

multiplicity 0..1

<<resourceType>>

Hotel

address : String

<<resourceType>>

Customer

name : String

<<resourceType>>

Consultation

startDate : Date

status : String

<<resourceType>>

City

<<valueType>>

Itinerary

0..*

0..1

from

0..*

0..1

0..*

0..1

to

0..*

subPlace

0..*

superPlace

0..*

0..1

0..*

to

0..*

from

1..*

{ordered}

0..*

1..*

requirement

{ordered}

1..*

0..1

Figure 3. A travel booking ontology

264 S. Cranefield, J. Pan and M, Purvis

Figure 3 shows a simple ontology in UML for the travel booking scenario.
This uses two stereotypes, ��resourceType�� and ��valueType��, from a UML profile
for ontology modelling that has been presented previously [3]. A resource type is
a type of class for which the instances have an intrinsic identity, i.e. two instances
with the same attribute values can be distinguished from each other. There is a
possibility that an object of that class might be referred to using an identifier
such as a unique name in some naming system, a UUID, or a World Wide Web
Uniform Resource Identifier (URI). The semantics of the stereotype declare that
the class has an additional optional association with a class representing some type
of reference (e.g. the concept of a URI). This type is declared using a tagged value
in the resource type class declaration, but this feature will not be used in this paper.
The resource types in the travel booking ontology are Customer, Consultation,
and Place and its subclasses Hotel, City and Airport.

A value type is a class with the opposite property: two instances with the same
attribute values cannot be distingushed. Essentially it defines a type for potentially
complex structured values that can be treated as logical terms within messages.
Although there may be concepts included in an ontology that intrinsically seem
to have this property, in many other cases the labelling of a class as a value type
is a pragmatic decision about how instances of that type will be treated during
inter-agent communication. It is a declaration that the Semantic Web principle
that anything can be referred to using a URI will not be applied to instances
of this class. Agents can expect to receive values of these types explicitly within
messages, rather than have them referenced using URIs or other reference types.
Also, they do not need to include mechanisms to keep track of references for
those types. For example, in the ontology shown, the Itinerary class is declared
to be a value type. Neither party in a travel booking conversation needs to be
prepared to store references associated with itineraries, whereas it is expected
that customers and consultations may be referred to by ID codes. This does not
mean that an agent cannot make a query about an existing itinerary, but it must
be done indirectly, e.g. by using an identifying reference expression that means
“the itinerary associated with the consultation beginning on 15 July 2003 for the
customer with code C05321”.

The ontology in Figure 3 defines a class TravelComponent which represents
both customer requirements and the proposed components of an itinerary returned
by the travel agent. This dual use is achieved by defining the attributes of the
TravelComponent class and the associations of its subclasses Stay, Journey and
AirJourney to be optional. A requirement can then be vaguely specified by pro-
viding only some of the possible information about a travel component. In an
extreme case, only a value for the description string attribute might be pro-
vided (although this paper does not attempt to explain how a software agent
might understand a textual description of the customer’s requirements). For a
travel component that is associated with an itinerary, it is expected that all in-
formation is provided, with the possible exception of the description attribute
(this constraint could be included in the ontology, but is not modelled at present).

UML Ontology and Content Language for Travel Booking 265

Ontology-
Specific CL

«valueType»
AirJourney

«resourceType»
City

Ontology

AirJourney

City

CityPattern

CL::ValueTerm

CL::Proposition

«derive»

«derive»

«derive»

ACL
SL

OOCL

 boundVarName : String
OODefDescription

CL::DefDescription

 varName : String [0..1]
 constraint : String [0..1]

PatternNode root

1 1

AirJourneyPattern«derive»

AirJourneyDescription CL::IRE

CityDescription CL::IRE

«derive»

«derive»

CL

Figure 4. Derived classes in an ontology-specific content language

Note that a consultation object may be linked directly with travel components
representing the customer requirements as well as indirectly with other, different,
travel component objects via an itinerary. The latter represent the final bookings.

The ontology includes a number of constraints, presented as notes in dog-
eared rectangles. These could be defined in more detail using the UML’s Object
Constraint Language, but are shown here in English for clarity. It is not intended
that these constraints be used for inference in the current design—rather they
serve as part of the specification for the correct implementation of agents using
this ontology.

The ontology is not intended to be a complete model of the travel booking
domain. It does not include many concepts needed for a realistic account (including
the cost for a given itinerary). Also, to keep the model simple it does not use more
advanced features of UML, such as the ability to define enumerated types (which
could be used to define the possible values for the Consulation class’s status
attribute). For simplicity we regard the types String, Date and DateTime as being
‘built in’ primitive types in our UML profile that are handled specially during the
generation of Java classes.

266 S. Cranefield, J. Pan and M, Purvis

4. The ontology-specific content language

Figure 4 presents an overview of the classes that are generated from the ontology to
form the ontology-specific content language. The UML package in the middle of the
diagram (“Ontology-Specific CL”) contains the generated classes. This also inher-
its classes from two other packages: SL (a UML model of a generic content language
based on FIPA SL) and ACL (a UML model of a FIPA-style agent communication
language). The inclusion of these additional classes allows complex statements to
be formed using connectives from the SL language and also the use of ACL ex-
pressions to represent communicative actions [3]. The CL package contains the set
of marker interfaces that represent the generic types of expression that content
languages are designed to describe (such as propositions and action descriptions).
There is also a package OOCL shown. This defines some support classes used to
create identifying reference expressions as networks of inter-connected “pattern
nodes”. These pattern node networks are used to describe an object by its prop-
erties and (possibly complex) inter-relationships with other objects.

To illustrate the nature of the derived classes in the ontology-specific content
language we show the classes that correspond to two particular classes in the
ontology: one that is a value type (AirJourney) and one that is a resource type
(City). Each of these classes results in three generated classes in the ontology-
specific content language1. (Note that the dashed arrows labelled ��derive�� are
UML dependencies, so they are directed from each derived class back to the one
it depends on.)

As discussed in Section 3, an instance of a valuetype can be treated as a
logical term within a content language, and so a corresponding class with the same
name and structure (e.g. AirJourney) is generated and declared to implement
the CL::ValueTerm interface. Some associations between AirJourney and other
classes may need to be modified when translated to the new content language,
e.g. a reference to a resource type must be replaced by a reference to a derived
. . . Description class for that resource type (this type of class is discussed below).

An agent might also want to refer to a value type instance using an identifying
reference expression. Therefore, for each value type class there are two correspond-
ing generated classes that can be used for this purpose: a simple . . . Description
class and a more complex . . . Pattern class. The description class (e.g. AirJourney
Description) implements the interface CL::IRE to show that that this can be used
as an identifying reference expression (in particular, as a definite description—the
only type of IRE currently supported). Under the mapping, all attributes and as-
sociations become optional because (for example) although an air journey in real
life must necessarily have at least one flight segment, it is possible to refer to an
air journey simply by specifying its date or departure and arrival cities.

The . . . Pattern class is the same as the . . . Description class, except it also
extends the class OOCL::PatternNode and any association with another class must

1The details of the rules for deriving content language classes from value types and resource
types are beyond the scope of this paper but can be found elsewhere [3].

UML Ontology and Content Language for Travel Booking 267

be changed to be an association with the appropriate . . . Pattern class. The use of
this type of class is illustrated in Figure 5 (which is discussed later in the paper).

For resource type classes, there can be no derived class that implements
the CL::ValueTerm interface as it is not semantically meaningful to embed in-
stances of that type within a message2. Instead, corresponding . . . Description
and . . . Pattern classes are generated, as for value types. In addition, a class im-
plementing CL::Proposition is generated in order to allow a convenient object-
oriented form of proposition about objects to be used within messages. For this
generated class, all attributes and associations become optional.

Further details of this approach to generating ontology-specific content lan-
guages can be found elsewhere [3], although the presentation here takes account
of some subsequent minor updates to that previous work.

5. Using the generated content language

In this section we illustrate the use of an ontology-specific content language gen-
erated from the travel booking ontology. Figures 5 and 6 show UML object dia-
grams representing (respectively) query and response messages in a conversation
between a customer and a travel booking agent. The query is an instance of the
class QueryRef (predefined in the ACL package). This corresponds to the FIPA
query-ref message type which represents a question asking another agent to iden-
tify an entity that satisfies particular properties. The content part of the message
(represented by a link from the QueryRef object in Figure 5) is an instance of the
class OODefDescription shown at the bottom of Figure 4. This class represents
an object-oriented version of the iota binding operator from FIPA SL. It has an
attribute boundVarName representing a variable name to be used to refer to the
subject of the query-ref. This object is then linked to a network of typed pattern
nodes, each of which describes some object in terms of its attributes and relation-
ships with other objects. One of these pattern nodes is expected to have a varName
attribute value matching the boundVarName value of the OODefDescription ob-
ject. The other nodes may also have variable names specified, and these may be
referred to within Object Constraint Language expressions appearing as the values
of the optional constraint attribute of other nodes (this feature is not used in
Figure 4). The message in the figure represents the following query:

Given a customer named Stephen Cranefield having a consultation with the
requirements of flying from Dunedin to Melbourne on 14 July 2003 and needing
accommodation there from the 14th until the 19th, what is the associated itinerary?
(For simplicity, we assume that the customer wishes to remain uncommitted after
the 19th).

2We would argue that even electronic entities such as instances of electronic currency are best
regarded as external objects that agents refer to using references.

268 S. Cranefield, J. Pan and M, Purvis

varName = <no value>
constraint = <no value>

 : CustomerPattern
root

value = "Stephen Cranefield"
varName = <no value>
constraint = <no value>

 : StringPattern
name

boundVarName = "i"
 : OODefDescription

varName = <no value>
constraint = <no value>

 : ConsultationPattern

varName = "i"
constraint = <no value>

 : ItineraryPattern

startDate = 2003-07-14
endDate = 2003-07-14
description = ...
varName = <no value>
constraint = <no value>

 : AirJourneyPattern

startDate = 2003-07-14
endDate = 2003-07-19
description = ...
varName = <no value>
constraint = <no value>

 : StayPattern

requirement

requirement

name = "Dunedin"
varName = <no value>
constraint = <no value>

 : PlacePattern

name = "Melbourne"
varName = <no value>
constraint = <no value>

 : PlacePattern

from

to

place

 : QueryRef
Links representing other ACL message
components (e.g. sender and receiver)

have been omitted.

Figure 5. A travel booking request message

Figure 6 shows a UML object diagram representing a possible reply to this
request. The message is an instance of the InformRef class from the ACL package.
This is a structured version of FIPA ACL’s inform-ref message type with two
content expressions: a definite description (generally this will be the one that was
included in the preceding query-ref) and an expression that identifies the entity
that satisfies the query—this may be a value of a primitive type or a value type,
a reference to an object (e.g. a URI), or another, hopefully more detailed, definite
description. In the case of Figure 6, the definite description (not depicted in full)
is the same as the one contained in the query message, with two additional links
that provide references for the customer and the consultation objects.

The bottom part of Figure 6 represents the answer to the query and contains
an instance of the Itinerary value type that comprises fully detailed value type
instances for the air journey and the stay. The details about the hotel, airports
and cities are encoded by links to . . . Description objects, which describe those
external instances of resource types in terms of their attribute values and some
required relationships between the objects.

Note that these diagrams conceptualise the messages as UML object dia-
grams. As shown in Figure 1, the messages are physically realised as Java objects
within the agent at run time and as RDF documents when being transported be-
tween agents. The Java classes are generated using an XSLT stylesheet [4] and they
include code that handles the marshalling and unmarshalling of messages between
the in-memory Java representation and the RDF serialisation format [11].

UML Ontology and Content Language for Travel Booking 269

varName = <no value>
constraint = <no value>

 : CustomerPattern
value = "C03412"
varName = <no value>
constraint = <no value>

 : StringPattern
ref

varName = <no value>
constraint = <no value>

 : ConsultationPattern
value = "JS218"
varName = <no value>
constraint = <no value>

 : StringPattern
ref

 : InformRef
Links representing other ACL message
components (e.g. sender and receiver)

have been omitted.

boundVarName
 : OODefDescription

root

Definite description
subtree the same

as in the QueryRef
message, with the
addition of the two

'ref' links shown here

defDescription

Itinerary

startDate = 2003-07-14
endDate = 2003-07-14
description = <no value>

 : AirJourney
startDate = 2003-07-14
endDate = 2003-07-19
description = <no value>

 : Stay

name = "Mercure"
address = "..."

 : HotelDescription

airline = "Air New Zealand"
flightCode = ...
depTime = ...
arrTime = ...

 : FlightSegment

name = "Melbourne ..."
code = "MEL"

 : AirportDescription
name = "Dunedin ..."
code = "DUD"

 : AirportDescription
name = "Christchurch ..."
code = "CHC"

 : AirportDescription

airline = "Air New Zealand"
flightCode = ...
depTime = ...
arrTime = ...

 : FlightSegment

name = "Melbourne"
 : CityDescription

refOrValue { ordered }

{ ordered }

name = "Dunedin"
 : CityDescription

to
from

subPlace

superPlace

subPlace

superPlace

subPlace

superPlace

from to tofrom

Figure 6. A reponse message from the travel booking agent

Figure 7 shows an example of how the query message can be created and sent
from Java code, using the generated classes for the ACL and the content language
(this is based on a simplication of the ACL model presented previously [3]).

There is no doubt that using this object-oriented API to construct messages
as shown is more cumbersome for the programmer than writing a string expres-
sion in FIPA SL. However, it is likely that most messages will be constructed
dynamically within code rather than by a static sequence of Java statements as
shown in the figure. This approach also has the benefits of being strongly typed
and model-driven: support for new ACLs and content languages can quickly be
provided once they have been defined using UML. Furthermore, any disadvantages

270 S. Cranefield, J. Pan and M, Purvis

// Construct query structure containing variable i
CustomerPattern cust = new CustomerPattern();
ConsultationPattern cons = new ConsultationPattern();
ItineraryPattern itin = new ItineraryPattern();
StringPattern custName = new StringPattern();
AirJourney journ = new AirJourney();
Stay stay = new Stay();
Date monday = new Date(2003, 7, 14);
Date saturday = new Date(2003, 7, 19);
PlacePattern dunedin = new PlacePattern();
PlacePattern melbourne = new PlacePattern();
custName.setValue("Stephen Cranefield");
cust.setName(custName);
dunedin.setName("Dunedin");
melbourne.setName("Melbourne");
journ.setStartDate(monday);
journ.setEndDate(monday);
journ.setFrom(dunedin);
journ.setTo(melbourne);
stay.setStartDate(monday);
stay.setEndDate(saturday);
stay.setPlace(melbourne);
itin.setVarName("i");
Set reqs = new HashSet(); reqs.add(journ); reqs.add(stay)
cons.setRequirement(reqs);
cons.setItinerary(itin);
// Construct message object
Message m =

new QueryRef(
new AgentRef("agent1"), // Sender
// Recipients:
Collections.singleton(new AgentRef("agent2")),
// Content:
new OODefDescription("i", patternNetwork));

// Send message
m.send();

Figure 7. Using the generated Java code to create and serialise a message

for the creation of messages are balanced by advantages in the analysis of incoming
messages: it is much easier to examine a message using its object structure than
by performing string-matching operations.

6. Comparison with JADE

A technique for allowing ontology-specific Java classes to be used when creating
and analysing agent messages has also been developed as part of the JADE agent

UML Ontology and Content Language for Travel Booking 271

Element

AgentAction

IRE VariableConcept AggregatePrimitive

Can be used as the
content of an ACL
message

Indicated entities
(abstract or concrete)

An ontology deals with these
types of element

Predicate Term

ContentElementList

ContentElement

Can be true
or false

Figure 8. The JADE content reference model (reproduced from [13])

platform [12]. JADE allows ontologies to be defined using a frame-based language.
An ontology is constructed at run time by application code that creates an empty
ontology object and calls methods to add “schema” objects to it that represent
the ontology’s concepts, predicates and agent actions [13]. Methods can then be
invoked on the schema objects to add slot definitions to them by specifying each
slot’s name, type and properties (e.g. the cardinality). The recommended practice
is to encapsulate this ontology definition code within the constructor of a singleton
class that represents the ontology.

Each schema object is also associated with a Java class provided by the
agent developer. This class must implement one of JADE’s Concept, Predicate
or AgentAction interfaces as appropriate, and the method signatures must corre-
spond to the slots defined in the schema object according to a specific set of rules.
Instances of these classes can be used by the agent application code to create a
message content, and a content language codec takes care of translating between
Java objects and the appropiate content language syntax. A third-party plug-in
for the Protégé ontology editor has been developed to generate these Java classes
from an ontology defined using Protégé [14].

6.1. Ontologies vs. content languages

The Concept, Predicate and AgentAction interfaces mentioned above are part
of JADE’s “content reference model” (CRM) [13], which is shown in Figure 8.
This is JADE’s equivalent of our “generic content language concepts model” [3,
Fig. 3]. However, the JADE CRM contains classes from two distinct types of
model within a single inheritance hierarchy. Most of the classes are part of an
abstract content language model (e.g. ContentElement, Term, Variable, etc.),

272 S. Cranefield, J. Pan and M, Purvis

but the classes Predicate, Concept and AgentAction would seem to belong in an
abstract ontology model.

This may simply be a problem with the naming of these classes, e.g. perhaps
the class Predicate should really be named Proposition. In any case, we believe
that there is an important distinction that is blurred in the JADE approach. An
ontology is a model of a problem domain. Its instances are domain objects. In
contrast, instances of a content language are expressions that are used to identify
domain objects or describe facts about them. In the case of the ontology-specific
Java classes generated in both our approach and JADE’s, we believe these are best
understood not as concepts, but as the definitions of structures for asserting facts
about or identifying (in terms of the attribute values) instances of a concept. These
structures are closely related to the structures of the associated ontology classes,
but they are not the same. For example, an ontology might declare that a Person
must have exactly two parents; however, when describing a person it should not
be compulsory to mention both (if any) parents.

Our approach makes this distinction between ontology and ontology-specific
content language clear (see the top part of Figure 2). Furthermore, once this dis-
tinction is made, it becomes clear that ontology-specific object-oriented content
language expressions may play several different roles: as identifying reference ex-
pressions describing objects in terms of their properties (with the assumption
that objects with these properties exist), as terms denoting structured values (for
ontology classes that model data types rather than concepts with a notion of in-
dividual identity), or even as propositions asserting that particular objects have
the specified attributes and relationships to each other. In our approach, a class
Person in an ontology maps to two classes: a PersonDescriptor class and a
PersonProposition class, while a Vector class would map to a VectorTerm class
and a VectorProposition class.

6.2. Concept names vs. function symbols

The JADE content reference model has the class Concept as a subclass of Term.
This (together with the examples that illustrate its use [13]) suggests that ontology
class names can be regarded as functional symbols, so that a particular person
might be denoted by a Java Person object with its name attribute set to “John”
and its age attribute set to 33. This approach follows the approach used in the FIPA
SL content language, but we have argued [7] that this use of class names to form
functional terms is semantically flawed. In logic, functional terms always denote an
element of the domain of discourse, whereas a ‘term’ formed using a class symbol
and some attribute-value bindings may not denote any object (e.g. there is no
guarantee that any car is described by the term (car :registration "lemon").

Our solution to this problem is to treat object-oriented content expressions
that are intended to identify objects as identifying referring expressions (IREs)
rather than terms (except for the subset of ontology classes where each constructor
expression really does describe a unique object).

UML Ontology and Content Language for Travel Booking 273

6.3. Terms vs. IREs

The JADE CRM has IRE as a subclass of Term. We believe this is inappropriate
as the semantics of IREs and terms are completely different (a term always has a
denotation and has compositional semantics, whereas an IRE may not have any
denotation and its semantics is not independent of its enclosing sentence, being
defined in terms of a rewriting of the sentence [15]). In our model, these concepts
have no common parent.

6.4. Strongly vs. weakly typed descriptor classes

The JADE model uses “abstract descriptor classes” to encode IREs that involve
variables (these are not shown in Figure 8). These classes are weakly typed: the
same descriptor classes are used for queries involving all classes. In contrast, in
our approach a concept-specific (and therefore strongly typed) descriptor class is
generated for each ontology class [3]. These classes can be used to encode com-
plex queries as networks of objects, with variable bindings and matchings, and
constraints included if desired.

6.5. Content language codecs

JADE allows different content language codecs to be registered for serialising mes-
sages. It appears that these must be implemented manually for each content lan-
guage encoding. At present, when using ontology-specific content languages, we
only support a serialisation using RDF/XML. However, the serialisation code is
generated automatically as part of the ontology-specific content language classes.

6.6. Generating action description classes

To date we have not investigated the generation of Java classes that correspond to
action types defined in an ontology. These could be instantiated by an agent de-
veloper and used as a strongly typed way of generating action descriptions within
messages. Providing this facility would be a straightforward extension of our ap-
proach. JADE includes support for the use of Java schema classes corresponding
to strongly typed actions (i.e. those having specific arguments declared).

7. Conclusion

This paper has addressed the OAS’03 workshop challenge problem by illustrat-
ing the application of our UML-based model-driven approach to defining ontolo-
gies and then automatically generating related ontology-specific content languages
along with corresponding Java classes and an RDF-based serialisation mechanism.
We believe this approach has strong benefits for the software engineering task of
designing and implementing agents to peform particular tasks in a given domain.
Our work does not currently provide support for the construction of agents that
are expected to have more general abilities, where inference may be required in
order to determine how to respond to messages. However, the Object Management
Group (OMG) is currently developing the Ontology Definition Metamodel (ODM)

274 S. Cranefield, J. Pan and M, Purvis

[16], currently proposed to be a set of metamodels for common ontology languages,
UML 2.0 profiles specifying how to represent ontologies in these languages using
UML notation, and some mappings between the metamodels. The ODM will al-
low UML-based model-driven techniques, including the approach described in this
paper, to be applied to a variety of ontology modelling languages, including the
World Wide Web Consortium’s Web Ontology Language (OWL).

An important avenue for future work is the enhancement of the API offered to
programmers for constructing messages by providing a larger range of constructors
in the generated classes. It would also be highly desirable to develop a technique
for annotating the UML definition of ACLs and content languages with informa-
tion that describes a concrete string-based syntax in such a way that parsers for
this language can be generated automatically. This will allow interoperation with
traditional FIPA agent platforms and will also give programmers the option of
using the string-based syntax for creating messages within agent application code.

One question raised by this work is the suitability of XSLT for defining trans-
formations on models serialised as XMI files. As a declarative language, XSLT was
favoured over the procedural approach of writing transformation code using an
API for model inspection, e.g. the Java Metadata Interface (JMI) [17]. However,
an XSLT stylesheet must work with the physical rather than the logical structure
of an XMI file, i.e. it must view the model as a tree with a complex mechanism used
to encode relationships between its nodes. This mechanism makes use of proxy el-
ements: XML elements standing for another node in the tree and linked to it using
one of three different types of linking attributes. Proxy elements can be chained.
Furthermore, in generating the XMI file, the exporting software has some freedom
in whether certain types of information are encoded as XML elements or attributes,
and newer versions of XMI have offered increasing flexibility in the encoding. This
means that in order to write a fully general XMI-processing XSLT stylesheet, all
possible encoding options must be catered for. This leads to complexity and du-
plicated logic that is due to the XML structure of the document rather than the
logical structure of the model it encodes, making development and maintenance of
the stylesheet difficult. As an alternative approach we are working on a JMI-based
tool to produce RDF encodings of UML models and plan to investigate approaches
for transforming these RDF models using RDF transformation tools. We will also
consider the use of the OMG’s MOF Query/View/Transformation language [18]
once work on this is complete.

References

[1] OAS 2003 Committee. OAS’03 challenge problem. http://oas.otago.ac.nz/OAS2003/
Challenge/challenge.html, 2003.

[2] OntoWeb project. Project Web pages. http://www.ontoweb.org, 2003.

[3] S. Cranefield and M. Purvis. A UML profile and mapping for the generation of
ontology-specific content languages. Knowledge Engineering Review, 17(1):21–39,
2002.

UML Ontology and Content Language for Travel Booking 275

[4] S. Cranefield, M. Nowostawski, and M. Purvis. Implementing agent communication
languages directly from UML specifications. In Proceedings of the 1st International
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002),
volume 2, pages 553–554. ACM Press, 2002.

[5] S. Cranefield and M. Purvis. UML as an ontology modelling language. In Proceedings
of the Workshop on Intelligent Information Integration, 16th International Joint
Conference on Artificial Intelligence (IJCAI-99), 1999. http://CEUR-WS.org/Vol-
23/cranefield-ijcai99-iii.pdf.

[6] Precise UML Group. The Precise UML Group home page. http://www.puml.org,
2004.

[7] S. Cranefield and M. Purvis. Referencing objects in FIPA SL: An analysis and pro-
posal. In Proceedings of the Workshop on Agentcities: Challenges in open agent en-
vironments, 2nd International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS 2003), 2003. http://www.agentcities.org/Challenge03/
Proc/Papers/ch03 cranefield.pdf.

[8] XSL transformations (XSLT) version 1.0. World Wide Web Consortium Web page,
2003. http://www.w3.org/TR/xslt.

[9] XML metadata interchange specifications. Object Management Group, 2004.
http://www.omg.org/technology/documents/modeling spec catalog.htm#XMI.

[10] Resource Description Framework. World Wide Web Consortium Web page, 2004.
http://www.w3.org/RDF/.

[11] S. Cranefield. UML and the Semantic Web. In I. Cruz, S. Decker, J. Euzenat, and
D. McGuiness, editors, The emerging Semantic Web, pages 3–20. IOS Press, Ams-
terdam, 2002.

[12] Telecom Italia Lab. JADE: Java agent development framework.
http://jade.tilab.com/, 2004.

[13] G. Caire. JADE tutorial: application-defined content languages and
ontologies. Telecom Italia Laboratory, JADE 2.6 edition, 2002.
http://jade.tilab.com/doc/CLOntoSupport.pdf.

[14] C.J. van Aart, R.F. Pels, G. Caire, and F. Bergenti. Creating and using ontologies
in agent communication. In Proceedings of the Workshop on Ontologies in Agent
Systems, 1st International Joint Conference on Autonomous Agents and Multi-Agent
Systems, 2002. http://CEUR-WS.org/Vol-66/oas02-17.pdf.

[15] B. Russell. On denoting. In R. C. Marsh, editor, Logic and Knowledge: Essays, 1901-
1950. Allen and Unwin, 1956. http://www.santafe.edu/˜shalizi/Russell/denoting/.

[16] DSTC, IBM, and Sandpiper Software. Ontology definition metamodel: Revised sub-
mission to OMG/RFP ad/2003-03-40. http://www.omg.org/docs/ad/05-01-01.pdf,
2005.

[17] Sun Microsystems. Java Metadata Specification. http://java.sun.com/products/
jmi/, 2002.

[18] T. Gardner, C. Griffin, J. Koehler, and R. Hauser. A review of OMG MOF 2.0
Query / Views / Transformations submissions and recommendations towards the
final standard. http://www.omg.org/docs/ad/03-08-02.pdf, 2003.

276 S. Cranefield, J. Pan and M, Purvis

Stephen Cranefield, Jin Pan and Martin Purvis
Department of Information Science
University of Otago
PO Box 56
Dunedin
New Zealand
e-mail: scranefield@infoscience.otago.ac.nz

Some Experiences with the Use of Ontologies
in Deliberative Agents

Ian Dickinson and Michael Wooldridge

Abstract. We present our initial response to the OAS ’03 Challenge Problem.
The Challenge Problem proposes an agent-assisted travel scenario, and asks
what the role of ontologies would be to support the agent’s activity. We dis-
cuss a belief-desire-intention (BDI) approach to the problem using our Nuin
agent platform, and illustrate various ways in which ontology reasoning sup-
ports BDI-oriented problem solving and communications by the agents in the
system.

Keywords. Agent applications, BDI agents, ontology, semantic web.

1. Introduction

The call for papers for the AAMAS ’03 workshop on Ontologies and Agent Systems
(OAS’03) includes a challenge problem, adapted from an exercise by the OntoWeb
project to assess different ontology environments. The challenge problem outlines
a set of objectives for an agent-assisted travel planning system, in which an agent-
based travel agent must co-operate with other agents to book a trip for a human
client.

We have been investigating the design and development of belief-desire-
intention (BDI) [19] agents for use in the Semantic Web [6]. One outcome of
this research is a BDI agent platform, Nuin, which has been designed ab initio to
work with Semantic Web information sources. At the time of writing, Nuin is still
a work in progress. Nevertheless, we have investigated how key parts of the OAS
challenge problem would be addressed by our platform.

This paper reviews the salient features of the Challenge Problem, in the
context of a BDI agent. We briefly review some of the characteristics of the Nuin
platform, before presenting a series of vignettes that show how we address some

Thanks to Dave Reynolds of HP Labs for his comments and suggestions, and to the anonymous
reviewers of a previous version of this paper.

278 Ian Dickinson and Michael Wooldridge

of the challenges in the Challenge Problem. As it represents a rich and plausible
scenario, we are continuing development of a complete solution to the Challenge
Problem using the Nuin platform.

2. Outline Problem

The scenario for the Challenge Problem is based on a travel agent in New York,
for which we are asked to develop an agent-based application. The travel agency’s
clients come to make bookings for trips they wish to take, and the agency is
responsible for making reservations with various travel service providers (airlines,
hotels, train companies, etc) to satisfy the client’s needs. The Challenge Problem
outline gives a rich description of the kinds of knowledge possessed by various
actors in the scenario, from which we distil the following principal objectives and
assumptions:

1. Clients come to the travel agency with more-or-less specific objectives for
their trip, for example a departure date and destination, a tourist attraction
to visit or an academic conference to attend.

2. Clients have individual preferences about many aspects of the travel services
that may be booked, including dietary choice, smoking/non-smoking, cost,
comfort level, choice of provider, etc.

3. The travel agency does not possess the data to arrange trips or trip seg-
ments, but must request this information from other agents. For simplicity in
building the model, we have assumed that the travel agency does know the
identities of the supplier agents (a more realistic interpretation would be to
require that the agency contacts suppliers through a brokerage or advertising
service).

4. Requests from the travel agency to the suppliers may be made at varying
levels of specificity (for example ”a flight from Washington to London” vs.
”a seat on BA1234 from Washington to London”).

5. Interaction with the suppliers will produce multiple potential solutions to the
client’s initial request. Priority should be given to solutions that match the
clients’ preferences, noting that the preferences may not be unambiguously
consistent.

6. Solutions may specify constraints that are not relevant to the client (”no dogs
in the hotel”), or may be of unknown relevance.

The vocabularies used by different suppliers and the travel agency may vary - for
example, one may use kilometres while another uses miles.

2.1. Issues from the challenge problem

From the distilled problem statement, we highlight the following challenges for
agents to address in this scenario. Note that this is not intended to be an exhaustive
list.

Some Experiences with the Use of Ontologies in Deliberative Agents 279

• modelling the motivations and attitudes of the actors - there are a num-
ber of actors in the scenario, and we assume each to be predominantly self-
interested. The BDI model accounts for the mental attitudes of a given agent,
but to correctly represent the scenario, the travel agency agent, for example,
must also account for at least the goals and preferences of the user. In partic-
ular, we do anticipate that it will be difficult, in practice, for users to specify
their preferences as utility functions [20], pp 589ff), an encoding sometimes
used to express user’s desired outcomes. Utility functions are highly amenable
to formal analysis using game theory or micro-economics approaches [7], but
it is hard to imagine how a user could express a valuation for members of
a, perhaps very long, list of possible world states, even were some interface
available that could present such a list.

• ownership and responsibility - arguably, the motivations of the travel agency
itself should be accounted for. For example, should the agent recommend
suppliers that have high commission rates for agency, even if the utility to
the client is neutral or reduced? Should the agent explicitly model its contract
to the client and the travel agency?

• reconciling vocabularies -different agents or services will use different vocab-
ularies, for the same or overlapping concepts. A simple example is the use of
miles and kilometres for distance, but other examples will be more subtle or
complex.

• varying degrees of detail in queries - at different stages in the trip design
process, queries will have differing degrees of specificity. For example, ”is it
possible to take a train from London to Paris”, compared to ”when would a
train departing Waterloo at around 10:00 on the 27th arrive in Paris?”

• checking solutions for acceptability - testing for basic feasibility, including
such constraints as not being in two separate vehicles at the same time

• ranking and critiquing candidate solutions - given that more than one possible
solution exists, the user’s preferences should be used to rank the solutions.
This is likely to be needed incrementally, to control the growth of the search
space.

• choosing which constraints to relax during negotiation - even if a good so-
lution is not available with the current constraints, it may be that relaxing
some of them will yield an acceptable solution. For example, a three star
hotel might have to be used to keep the cost within the client’s budget.

• choosing when to ask the client to resolve choices or provide more preference
constraints - this involves managing the dialogue with the client to neither
require them to ’brain-dump’ their entire preference set at the beginning, nor
to be barraged with low-level questions.

Not all of these issues are addressed by the use of ontologies, though it would seem
that the use of an ontology representation has some impact on the solutions to
most of them.

280 Ian Dickinson and Michael Wooldridge

Figure 1. Schematic view of Nuin

3. Overview of the Nuin Platform

Nuin ([10], see also http://www.nuin.org) is an agent platform we have created to
assist agent designers to program deliberative agents, with a particular emphasis
on BDI [19] agents. Nuin is inspired by Rao’s AgentSpeak(L) [18], and extended
to make a practical, Java-based programming tool. In this section, we briefly in-
troduce some of the key features of Nuin, in order to provide some background for
the solution vignettes in section four, below.

A key objective in developing Nuin was to create a flexible platform for build-
ing practical agents from high-level abstractions, such as beliefs, desires, intentions
and plans. The emphasis has not been on building agent infrastructure services:
we assume the existence of an underlying services architecture. Nuin provides a
services abstraction layer that allows agents to bind to a particular infrastructure
service fabric, for example the Jade agent platform [4]. Nuin’s architecture is in-
fluenced by the FIPA abstract architecture [13], in order to better utilise existing
agent infrastructure projects. We do not, however, assume that Nuin will operate
only in an FIPA environment.

As Figure 1 shows, each Nuin agent has an interpreter, which runs one or more
scripts to control the agent’s behaviour. An agent has a set of beliefs, as first-order
sentences, and any number of other knowledge sources, each of which is labelled
by a distinct symbol. A knowledge store provides the means of storing logical

Some Experiences with the Use of Ontologies in Deliberative Agents 281

sentences, whereas a knowledge source provides an additional layer of inferencing
or query capabilities. Backwards-chaining reasoners attempt to solve queries that
they are given. Forwards-chaining reasoners opportunistically assert additional
entailments when formulae are asserted or removed into the underlying knowledge
store.

The key abstraction from the script language that defines an agent’s behav-
iour is the plan. Following AgentSpeak(L), a plan has one or both of: a triggering
event condition or a logical postcondition. Internal control flow within the inter-
preter is managed by a queue of events, which can be exogenous or endogenous,
and include messages from other agents as a sub-type. A triggering condition is a
Boolean expression formed from two predicates over events: on(E) is true when
E unifies with the current event at the head of the event queue, whereas after(
E) is true when E unifies with an event from the agent’s memory of past events.
The body of a plan is a set of individual actions, composed with either a sequence
operator (;) or a non-deterministic choice (|). Plans may invoke other sub-plans
directly or by post-condition, and may recurse. Currently, a plan library is supplied
to the agent as part of its configuration. However, there is no a priori reason why
the plans could not be dynamically generated by an online planner, and this is a
capability we would like to explore in the future.

All of the abstractions shown in figure 1 are specified using Java interfaces,
and created using the Factory design pattern. This makes it very easy for a pro-
grammer to provide a customised variant of a particular part of the system. This
flexibility and extensibility was a key design goal for the Nuin platform.

Given that we want to develop agents for the Semantic Web, we allow RDF
[24] stores as knowledge sources, using Jena [16]. Jena’s ontology reasoners are
used to extend the entailments in the RDF stores, where OWL or DAML+OIL
sources are available.

3.1. Nuinscript scripting knowledge representation language

Internally, actions, plans and other control objects are represented using Java
objects. The interpreter executes actions using the Command design pattern [14].
While these objects could be generated in a variety of different ways, including on-
line planning and machine learning, the principal means today of generating action
and plan objects for agents is by parsing agent scripts. The Nuinscript language
provides a syntax for expressing high-level agent behaviours, and relating them to
the agent’s beliefs, desires and intentions.

Nuinscript includes a knowledge representation language, since much of the
behaviour of a deliberative agent is taken up with manipulating symbolic knowl-
edge. It is not our intention to provide a single reasoning toolkit that is capable
of all or even most reasoning tasks and algorithms. Rather, our aim is to define a
notation that covers a broad range of logical formalisms, so that Nuin agents can
receive knowledge as logical sentences, and then invoke the appropriate reasoning
services according to their configuration.

282 Ian Dickinson and Michael Wooldridge

The Nuinscript KR language has as its base a language of concrete values.
These include scalar values, such as integers, strings and real numbers, symbols,
functional terms (consisting of a symbol functor and zero or more arguments),
lists and single-assignment variables. Following standard Semantic Web practice,
all symbolic constants are URI’s [5]. A functional term expresses a relationship
over some fixed set of positional parameters:

ex:person(ex:ian, ex:dickinson, <mailto:ian.dickinson@hp.com>).

Figure 2. Term with fixed parameters

Such positional arguments are often useful, but, equally, they can be limiting.
Nuin also allows terms to have named parameters as well as fixed parameters:

ex:person() { ex:firstName = ex:ian,
ex:lastName = ex:dickinson,
ex:email = <mailto:ian.dickinson@hp.com> }

Figure 3. Term with named parameters

These structures are particularly suited to agent messages, where the terms
in any given message may vary from interaction to interaction, even with the same
interlocutor. Unification is extended in the obvious way to cover named parameter
terms.

The logical sentence language contains predicates, whose arguments are taken
from the language of concrete values. Other sentence constructors are: conjunction,
disjunction, negation, universal and existential quantifiers, material implication
and modal operators. In addition, a class of reference expressions are introduced to
encode the corresponding terms FIPA SL: iota, some and all. Iota, for example,
denotes ”the unique x such that some given predicate is true of x”.

Finally, note that sometimes the strict layering of sentences and values is too
rigid. Specifically, an incoming message from some other agent is a value (e.g. a
string or other concrete datatype). However, the content of the message is typically
a logical sentence. We introduce the operator sentence which reifies a given sen-
tence as a value. Thus sentence(p(x)) is the value whose interpretation is the
predicate sentence p(x). This reified sentence can then be used as a component
of some other composite value, such as a message term.

3.2. Nuinscript plan language

Space does not permit a detailed exposition of the Nuinscript plan language here.
Suffice to say that the principal unit of behaviour abstraction in Nuinscript is the
plan. When a plan becomes active, for example by being triggered by some pattern

Some Experiences with the Use of Ontologies in Deliberative Agents 283

of events, it forms an intention-to perform the plan. The intentions are controlled
and scheduled by the interpreter. A plan may be simultaneously active in multiple
intentions. For example, the go to plan may be active with the parameter Milan,
forming an intention to go to Milan, and also with the parameter Paris forming
a separate intention to go to that city. The agent would then have to schedule
resources so that both intentions can be discharged without conflict. Suppose the
agent is a dedicated follower of new fashions, and will travel to any city that has
a fashion show. We can express this as follows:

plan
on event fashion:newFashionShow(?location)

do
intend go_to(?location)

end.

Figure 4. illustrative plan

In general, the plan body, which follows the do keyword, consists of an action
expression in which individual actions (such as adopting another named plan as
an intention) are composed with binary operators seq (expressed in Nuinscript
syntax as the semi-colon, ;) and alt (the pipe symbol, |).

4. Solution Examples using Nuin

4.1. Preamble: use of ontologies

In the challenge problem description, a sample ontology for this domain is provided
by Corcho et al [8]. We decided to create our own ontology, although it shares some
characteristics with that of Corcho and colleagues. Our ontology is written in OWL
[9], which allows us to use richer constructs than that in the sample ontology. For
example, figure 8 shows a 5-star hotel in our formulation:

Compare this with the definition from the sample ontology (slightly abbre-
viated):

RDFS is not expressive enough to declare that quality ratings may have
exactly one of one, two, three, four or five as values. Nor is it possible to infer in
RDFS that having a five-star rating and being a hotel entails being in the class
FiveStarHotel. In the sample RDFS ontology, membership of this class must be
stated explicitly. Finally, we note that the RDFS ontology requires class hotel5star
to be treated as an instance, since the class itself is the subject of the statement
’numberOfStars 5’. Were this pattern to be retained in the OWL ontology, the
use of classes as instances necessarily places the ontology in the OWL Full variant

284 Ian Dickinson and Michael Wooldridge

<owl:Class rdf:ID="QualityRating">
<owl:oneOf rdf:parseType="daml:collection">
<travel1:QualityRating rdf:about="#OneStar"/>
<travel1:QualityRating rdf:about="#TwoStars"/>
<travel1:QualityRating rdf:about="#ThreeStars"/>
<travel1:QualityRating rdf:about="#FourStars"/>
<travel1:QualityRating rdf:about="#FiveStars"/>
</owl:oneOf>
</owl:Class>

<owl:Class rdf:ID="FiveStarHotel">
<rdfs:subClassOf rdf:resource="#Hotel"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#rating"/>
<owl:hasValue rdf:resource="#FiveStars"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

Figure 5. OWL ontology fragment

<rdfs:Class rdf:ID="hotel5star">
<rdfs:comment>First class hotel</rdfs:comment>
<rdfs:subClassOf rdf:ID="#hotel" />
<NS0:numberOfStars>5</NS0:numberOfStars>
</rdfs:Class>

Figure 6. RDFS fragment from OAS’03 call for papers

of OWL1 , for which it is known that inferencing is expensive and incomplete. Note
that we have chosen not to use cardinality restrictions to define hotel star-classes.
Consider the following definition:

Figure 7 suggests that the Quite-Nice hotel is a four star hotel, but we cannot
know this for certain. At issue is the open world assumption of the semantic web:

1The Web Ontology Language (OWL) [9] has three distinct language profiles: Lite, DL, and Full.
OWL DL has compromises and constraints on the expressiveness of the language to ensure that

the drawing entailments is known to be complete and decidable. OWL Lite is designed to be

even less expressive than OWL DL, and correspondingly easier to process. There is no known
complete, tractable reasoning procedure for the whole of OWL Full.

Some Experiences with the Use of Ontologies in Deliberative Agents 285

<owl:Class rdf:ID="FourStarHotel">
<rdfs:subClassOf rdf:resource="#Hotel" />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasStar" />
<owl:cardinality rdf:value="4" rdf:datatype="&xsd;integer"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<Hotel rdf:about="http://quite-nice.com">
<hasStar rdf:value="*" />
<hasStar rdf:value="*" />
<hasStar rdf:value="*" />
<hasStar rdf:value="*" />
</Hotel>

Figure 7. Using cardinality restrictions to define hotel classes

we cannot assume that we have yet collected all of the relevant information about a
resource2 . We may yet discover an additional hasStar statement, making the hotel
a five star hotel. Given the information in Figure 7, we are strictly only entitled to
infer that the Quite-Nice hotel is not three stars or less. In general, the open-world
basis of the semantic web is a departure from traditional ontology applications,
and may bring a number of subtle problems to agents processing semantic web
information sources.

Space does not permit a full explanation of our experimental OAS ontology
in this paper. Elements of the ontology will be introduced below as needed. Figure
8 shows a fragment of our ontology class hierarchy (displayed in SWOOP [17]):

4.2. Initial client to agent communication

At the beginning of the travel booking process, the client’s basic goal to take a trip
must be communicated to the agent. We leave aside the machinery of the human-
computer interface (important though it is), to consider the overall process. The
agent must have access to two kinds of knowledge:
• the primary goal that initiated the travel request, and
• the client’s travel preferences

We assume that a message is delivered to the agent with the first of these, and
that the second can be queried from a general database of known preferences. Since

2Resource is the general term denoting a subject about which statements may be made in the
semantic web.

286 Ian Dickinson and Michael Wooldridge

Figure 8. Fragment of class hierarchy displayed in SWOOP

we are interested in Semantic Web agents, we assume that the client preference
information is available in at least RDF (if not OWL).

What should the initial message contain? An important choice is whether the
agent is seen as a collaborative partner, or a subordinate. In the second case, the
message might be a FIPA request message, which takes an action as parameter.
The action is essentially an encoding of ”book a trip respecting these constraints”.
The agent would directly adopt an intention to carry out the action. The first
case would correspond to sending a FIPA inform message3 saying ”the client
has a goal to go on a trip, with these constraints”. We would then rely on the
agent being programmed with social or behavioural rules that would translate
this recognition of the user’s goal into an intent of its own to assist with the
development of the travel plan. For the scenario of a single client arriving at the

3Note that the FIPA ACL specification [12] does not include a performative that directly dele-
gates a goal to another agent.

Some Experiences with the Use of Ontologies in Deliberative Agents 287

travel agency’s office seeking to make a booking, the difference between the inform
and request approaches (which we label collaborative and directive respectively) is
slim. Indeed, the collaborative approach adds extra complexity that the directive
approach avoids. However, consider the frequently mooted desire for proactive
agents (such as the agents in [6]). The recognition of the user’s goal may arise by
many means, not only by a directive from the user. If the agent is able to infer that
the user has a goal to make a trip (e.g. by having a paper accepted at a conference),
it can proactively instigate the travel planning process in a collaborative style. Note
there are two distinct sets of goals being discussed: the user’s goal to travel, and
the agent’s goal to assist the user to make booking. These are not same.

We would argue that only the collaborative approach really makes use of
the agent-nature of the travel-agency. The directive approach could be straightfor-
wardly implemented with web services [25], an increasingly popular architecture.
Unless an application architecture is intended to exploit the unique features of
software agents, it is unclear why software designers should pick agents, with their
additional complexity and relative immaturity, as the implementation method.

Both the collaborative and directive approaches can be modelled by Nuin.
Figure 9 shows a plan fragment that reacts to an incoming message that the user
has a goal to make a booking, and creates a suitable intent.

plan
on message()

{acl:performative = acl:inform,
acl:content = D (?user) bookTrip(?tripID),
acl:sender = ?user
}

do
holds cooperateWith(?user) ;
achieve satisfactory(trip(?t), ?tripID, ?user)

end.

Figure 9. plan to adopt user goal as agent intention

Thus: if a message is received informing the agent that the user has a goal to
make a given trip, and the agent believes it should be cooperative with that user (it
may, of course, be predisposed to be generally cooperative), then adopt an intention
to achieve a satisfactory proposal for a trip ?t, respecting the constraints the user
has attached to the trip (identified by trip ID).

Figure 9 introduces a subtle question about the representation of the user’s
goal. Since this is quite a central issue, we consider it in detail below.

4.2.1. Representation of user goals. In the example above, we expressed the user’s
goal with the sentence Duser bookTrip(?t), making use of the modal operator D

288 Ian Dickinson and Michael Wooldridge

expressing an actor’s desire. The predicate bookTrip is assumed to be drawn
from a shared ontology, so that the basic meaning is shared. It corresponds to an
utterance by the user, upon arriving in the travel agency, that ”I would like to
make a booking”. However, the user may just as well have said ”I would like to
book a trip to Paris”, or ”I would like to book a trip to Paris and then Milan”,
or even ”I would like to go somewhere sunny for a holiday in July”. Two things
are clear: an effective solution will allow significant flexibility in the representation
of the initial user goal, and the initial goal is only partially expressed. All of the
given goals are under-constrained, and thus have many potential solutions. The
agent must collaborate with the user to refine the constraints until a satisfactory
solution is determined.

One way to refine the goal would be to add additional conjuncts to the goal
itself. So, after giving some additional information, the goal might be refined to:

DuserbookTrip(?t)∧destintation(?t, Paris)∧departure(?t, ?tDep)∧during(?tDep, July)

Thus: the user has a goal to take a trip whose destination is Paris and which
departs in July. This formulation would work, although it would quickly become
unwieldy for complex trip planning. It could also be argued that the user’s actual
goal remains to book a trip, and that the additional clauses are simply additional
information that is known about the trip. This suggests an alternative formulation,
in which the top level goal sentence remains Duser bookTrip(?t), but the agent’s
knowledge base is augmented with assertions about the object identified by the
symbol (i.e. URI) ?t. In particular, a convenient way to express this additional
knowledge is to treat ?t as an OWL class definition, expressing the condition
that ?t denotes the class of all possible trips that satisfy the user’s goals and pref-
erences. For example:

Duser bookTrip(?t).

rdfs:subClassOf(?t, travel:trip).

rdfs:subClassOf (?t, owl:restriction(travel:destination, owl:hasValue(

Paris))).

In this formulation, additional class axioms are added to the KB as more is learned
about the user’s detailed requirements. A description logic reasoner can then be
used to test whether a given proposal matches the user’s needs. The reasoner can
also be used to detect unsatisfiable goals, as the class expression will be equivalent
to ⊥. A further advantage from using an ontological approach to encoding the
user’s goals is that it may allow certain useful kinds of generalisation, for exam-
ple that a destination of the Sheraton Hotel (location Paris) entails that Paris
itself is a destination. One technique we would like to apply would be to test the
goal description against the current solution, and identify constraints that need
to be satisfied. This is not straightforward, however, thanks to the open world
assumption (see above). Suppose, for example, that a proposed solution S does

Some Experiences with the Use of Ontologies in Deliberative Agents 289

not contain statements about the itinerary of the trip, and that the goal G states
that the destination is Paris. We would like to test whether G subsumes S, and
if not, what needs to be added or removed from S. But in an open world, S plus
some as-yet undiscovered information is subsumed by G, so no inconsistency is
detected.

We are still evaluating this approach. Some problems are apparent: OWL
does not have a means of expressing temporal constraints (e.g. the user departs
sometime during July), and the combination of the different representation styles
mandates the use of a relatively complex set of specialised reasoning services by
the agent.

4.3. Interactions with suppliers

The travel agency’s agent does not handle provisioning of the various elements of
the trip itself. It will therefore need to communicate with the various suppliers
in order to decide on flights, rail journeys, hotels and so on. It could be the case
that the interface to each supplier is a web service, and the agent’s job would then
be to invoke the web service by fashioning a suitable SOAP [23] call, or what-
ever the appropriate mechanism is for that service. This can be accommodated in
Nuin by either designing a custom web-service action that gets invoked from the
script, or by registering a Java object binding that gets invoked by the built-in
invoke service action. However, for the purpose of this exercise, we assume that
the suppliers are also agent-based, and that collaboration becomes a problem of
inter-agent communication. First we note that a similar problem arises between
agents as between the client and the travel agency agent. Should the agents invoke
actions on the other agents, or delegate an intention or goal? One determining
factor may be the need to build a coherent and optimal solution according to
the client’s preferences. The travel agency agent could determine which of the cus-
tomer’s preferences were relevant to a given subgoal, and pass these to the supplier
agent. Indeed, if the client’s preferences are available as a Semantic Web source,
then (ignoring the important details of security and privacy) the supplier agents
could access the client’s preferences directly. The potential difficulty here, though,
is building a globally optimal solution. Having each supplier agent construct an
optimal segment of the journey does not guarantee that the overall solution is
optimal. It may well be possible to use inter-agent negotiations among the whole
community of stakeholder agents to build a globally optimal solution, but that is
not the focus of our current research. Therefore we assume that the travel agency
agent sends queries to the supplier agents, and assembles the solution pieces into
an overall trip proposal. All negotiations are then pair-wise, with one of the parties
always being the travel agency agent. The travel agency agent is solely responsible
for optimising the solution.

The FIPA query-ref performative seems appropriate for the task of seeking
solution elements from the suppliers. But what should the content of the message
be? At the beginning of the process, we may know that John wants to travel
from Madrid to Washington. We could query all known transportation services

290 Ian Dickinson and Michael Wooldridge

providers for routes that originate in Madrid. This, however, would generate many
air-routes from Madrid, including those taking John away from the USA, plus
road and train journeys to France and Portugal. We could ask for routes starting
in Madrid and terminating in Washington DC, which would allow airlines to report
their suggested routes (via Paris Charles de Gaulle, for example). Another tactic
would be to use the geographic elements of the ontology to test whether a supplier
is able to provide a single journey to a given region (e.g. Madrid to the Eastern
USA) and use this to prune the search space by querying in more detail only those
agents that can provide suitable routes in principle. This tactic may be invoked
directly from the agent’s script; it may also be invoked by the agent monitoring
the responses to queries, noticing a high branching factor in the search space, and
adopting an improved strategy. The current version of Nuin does not support this
meta-monitoring directly. We will investigate convenient mechanisms for doing so
in future versions.

The FIPA communication primitives are not always suitable to our purposes.
For example, if an agent was known to be able to process Semantic Web queries, it
would be natural to query for certain kinds of data using an RDQL query [21]. Such
a query, however, does not strictly fit the given semantics for FIPA’s query-if or
query-ref performatives.

We make the distinction in our ontology between journeys, routes and book-
ings. Initially, we query the supplier agent for information on routes. A route has
a start and end location, distance and vehicle. A given instance of a route may
start at Madrid airport and end in Paris Charles de Gaulle, and use an Airbus
A320. We can infer that an A320 is an AirbusPlane which is an Airplane, thus
this trip is also in the class AirTravel because AirTravel is defined as the class
that has vehicleType of class Airplane.

This distinction highlights a specific difficulty with ontology development:
when to uses classes vs. instances. We can define A320 as an instance of the class
AirbusPlane, and for many applications it is sufficient to know that a given route
uses an (i.e. some unknown) A320. But for other applications, such as aircraft
maintenance or scheduling, we need to be able to identify individual instances of
the aircraft, which implies that A320 should be a class, and instances of it would be
named by the individual aircraft identifiers. However for defining a route, naming
the individual plane is incorrect, since different actual planes will fly the route
on different days. Using OWL, we can define an auxiliary Route subclass using a
restriction:

For any A320Route, it is easy to see that the transporting vehicle is an Airbus
A320, even if we don’t know which individual plane. However, this may make it
difficult to answer the question ”how many upper-deck seats are there on that
route?”. It remains an open question, therefore, whether the extra complexity
introduced by this style of definition is worthwhile, or whether we should have
multiple ontologies (e.g. one for travel and one for maintenance) and a process
that would translate between them when necessary.

Some Experiences with the Use of Ontologies in Deliberative Agents 291

<owl:Class rdf:ID="A320Route">
<rdfs:subClassOf rdf:resource="#Route" />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#vehicleType"/>
<owl:allValuesFrom rdf:resource="#AirbusA320" />
</owl:Restriction>
</owl:subClassOf>
</owl:Class>

Figure 10. class description for routes that fly A320’s

In Nuin, we implement the process of sending the query-ref as a message
send action, followed by a suspend until the reply is received. This works for a
single communication with another agent. If, however, there are multiple agents
involved, a better alternative would be to send a series of messages out, and have
plans that trigger on the incoming reply messages. There are two difficulties with
the second approach: firstly, enough state has to be asserted into the agent’s beliefs
(or other KS) to allow the agent to continue developing the plan from that point,
and secondly it is harder for the agent to monitor a lack of response from the
remote agents and adapt accordingly. We solve the first by assigning each partial
trip its own unique identifier, and use the reply-with field to relate incoming
answers to the results of previous planning. This then generates a set of new,
extended partial plans that get new identifiers. For the second problem we do not
have a convenient solution.

A possible future extension to the Nuin platform will be to include first-
class support for the FIPA interaction protocols [2]. We hope that a clear and
practical solution to the meta-monitoring problem will emerge, either directly as
a result of supporting interaction protocols, or as a result of implementing the
necessary supporting code. Note that, in our opinion, it remains an open question
as to whether the ability of PRS-based agent architectures to recurse to meta-level
planning is a viable solution to this problem (without creating enough complexity
in the agent plan to make it difficult to perform software design and maintenance).

4.4. Reconciling vocabularies

In general, determining the correspondences between two (or more) ontologies is a
very difficult task, requiring extensive human intervention [?]. Once the mapping
between two ontologies is defined, it is possible that translations between a value
expressed in one ontology and a value expressed in another can be automated.
Some transformations are fairly straightforward, such as the units conversion (e.g.
from km to miles and vice versa).

In a multi-agent system, it is unclear whose responsibility it is to do ontology
conversion. One possibility is for each agent to have a normal form that it uses for

292 Ian Dickinson and Michael Wooldridge

its own knowledge representation. Each received sentence would then normalised,
using the information from ontology mappings where necessary. This would cope
well with allowing communications from agents that used different measurement
units, for example, providing that the units themselves are explicit in the ontology.
An alternative is that the ontology used by the receiving agent is advertised in a
public directory, and it is the originating agent’s responsibility to do any necessary
translations before sending a sentence as part of a message. A further alternative is
an intermediate position between these two, where the agent community includes
translator agents that can handle two-way translations between agents using dif-
ferent ontologies. A version of the intermediary architecture may be needed when
providing large semantic web or other legacy information sources into the agent
community. It is often impractical to translate the entire information source to a
different ontology, but it may well be possible to wrap the information source with
a mediating agent that dynamically performs the necessary ontology-based trans-
formations on queries and results. We used this strategy effectively in a project
that used DMOZ [1] information in a distributed knowledge-sharing application
[3]. Rather than convert the very large DMOZ data set to RDF, it was stored in a
custom database layout and queries and query results were dynamically translated
to RDF as needed.

Using Nuin, we can define a plan that triggers when incoming messages are
received, and use this to check that the message content is in a suitable ontology.
If not, it may be a simple action to do the translation locally if the agent is ca-
pable of doing so, or the agent may adopt an intention to translate the message
content to a suitable ontology. This intention may then be discharged in different
ways, for example by sending a request to the translator agent. Once the message
is expressed in a known ontology, an event is raised to trigger further processing
on the message content. Note that, in the FIPA ACL message specification, the
:ontology parameter is not particularly helpful in solving this problem. In practice,
once a Semantic Web agent starts processing information from multiple sources,
it is highly likely that a given message will contain terms drawn from many dif-
ferent ontologies. To some extent the original need for the :ontology parameter -
which essentially introduces a dictionary to disambiguate identical symbols that
are intended to have different meanings - is obviated by the use of URI symbols
as constants. Each URI is already declared within its own namespace.

Our current experiments with the Challenge Problem make the simplifying
assumption that the global ontology is shared. This assumption is only valid for
such a self-contained exercise. Any realistic scale of application, especially one
that uses open semantic web information sources, will be exposed to the ontology
reconciliation problem.

4.5. Critiquing and ranking solutions

As the travel agency agent begins to assemble solutions to the client’s requested
travel goal, it will be faced with a rapidly expanding search space. In order to im-
prove its chances of success, it should choose to pursue only those partial solutions

Some Experiences with the Use of Ontologies in Deliberative Agents 293

that are promising. If the agent waits until solutions (i.e. travel plans) are complete
to critique them, it is likely still to be processing long after the client’s patience
has run out and they have left the store. The agent must be able to critique partial
solutions to the problem, and select which ones will be further expanded. We note
that planning algorithms have been studied extensively for many years in AI, and
it is not our intent in this short paper to revisit the many choices that a planning
system can adopt to be able to plan effectively [22]. Pending deeper investigation
of this topic, our current design uses a simple forward-chaining means-end search
algorithm. As mentioned above, we assign each partial solution a unique identifier.
A solution is a series of segments, each of which is either a journey segment or an
accommodation segment. The journey segment identifies the route, and may be
composed of a series of individual journeys. A segment has an associated cost.

Reviewing the Challenge Problem text, we hypothesise that the following
represent typical preferences a client may have over journey segments:

• type vehicle (e.g. Airbus A370)
• cost
• quality rating (first class, business class, economy, five star, etc)
• existence of facilities (TV, Internet connection, smoking rooms, pool)
• preference of mode of transport (fly vs. drive) - which may be conditional on

other factors, such as accessibility of airport
• distance to local amenities (sightseeing, ski, beach, etc)

Some of these preferences will be fixed, some context dependent. On a business trip,
customers might be less cost-sensitive than on a personal vacation (or vice versa!).
In summer, proximity to ski resorts is probably less important than proximity to
the beach.

We would like to explore making this preference information as widely avail-
able as possible, so encoding it as a semantic web resource seems plausible (we
ignore for the time being important requirements to do with security and pri-
vacy).

One natural approach is to consider the various categories of alternatives
that the client might prefer as ontological classes. Thus, a customer who prefers
non-smoking hotel rooms has a preference for a room in the class NonSmoking
over class Smoking. A simple way to encode this in the client’s profile is shown in
fig 9:

<user:Preference>
<user:prefer rdf:resource="#NonSmoking" />
<user:over rdf:resource="#Smoking" />

</user:Preference>

Figure 11. First attempt at encoding user preferences

294 Ian Dickinson and Michael Wooldridge

<user:Preference>
<user:prefer>
<NonSmoking />

</user:prefer>
<user:over>
<Smoking />

</user:over>
</user:Preference>

Figure 12. Alternative encoding for user preferences

This example uses classes as individuals, so again, exceeds the limitations of
OWL DL and OWL Lite. An alternative approach would be to treat the preference
arguments as expressions, using RDF blank nodes (bNodes) as existential variables
(an interpretation sanctioned by RDF theory [15]). This transforms the preference
from Figure 11 into Figure 12.

The difference between these approaches may be subtle to readers unfamiliar
with RDF. In the first encoding (Figure 4.5), the arguments to the preference
relation are the classes themselves. In the second encoding, the term <NonSmoking
/> is RDF shorthand for:

<rdf:Description>
<rdf:type rdf:ID="NonSmoking" />

</rdf:Description>

that is, an anonymous node of type NonSmoking. To use this second encoding,
the agent must match the existential query implicit in the graph to the data at
hand. This exploits a feature of RDF that meta-level information can be encoded
in the same formalism as the object-level information. The preference query can
be seen as expressing a predicate over the proposed solution classes, but is encoded
in the same graph structure as the data itself.

By using pair-wise preferences of this kind, whichever approach is adopted,
we obtain a partial ordering over sets of solutions. The reified user:Preference
relationship is transitive, so a data source aware of this fact could pre-compute
the transitive closure of preferences. Thus, if the client stated their preference was
for 5-star hotels over 4-star, and 4-star over 3-star, the transitive closure would
allow two proposed segments, one for a 5-star hotel and one for a 3-star hotel to
be ranked correctly. Since the ordering would be partial, however, not all solutions
could be ranked, so the solution evaluator would need to allow for sets of equally
preferred candidates at any one time.

The client should be able to order their preferences, so that the preference for
a certain cost band is allowed to dominate over the preference for smoking rooms,
or vice versa. This could be achieved by adding a weight to the each Preference

Some Experiences with the Use of Ontologies in Deliberative Agents 295

instance, or allowing preferences that ranked other preferences recursively. It is
not clear which, if either, of these choices would work better in practice, and more
experimentation is needed.

Again, speculating about the design (we have not yet implemented the so-
lution ranking mechanism), we could encode context-dependent preferences by
adding a condition clause to the user:Preference instance. The problem we here
is that there is, at the time of writing4 , no standard mechanism for encoding
general predicates in RDF. Thus any mechanism that allowed the encoding of ”if
summer-time” on a preference of NearBeach over NearSkiRun would be dependent
on a processor being aware of the encoding scheme used. The choices presented
above, assuming that the existence of Preference is recognised, stay closer to
standard RDF interpretations.

Given that we can achieve a satisfactory encoding of user preferences, we
must then incorporate them into the strategy for prioritising the search space. We
envisage a plan that is triggered by the asserting of a partial solution into the
agent’s beliefs KS, and which would rank the new solution against the current
unexpanded partial solutions. Thus each partial solution is in one of two states:
either it has been selected for expansion, or it has not been expanded yet, but is
sorted according to the partial order defined by the user’s preferences. It would
only be necessary to find the highest ranked plan that has not yet been expanded
that is preferred over the new solution, so searching from the front of the candidates
list will be effective.

A more general question, and one that we have not yet addressed, is to be
able to critique full and partial solutions, rather than just rank them. For example,
if the agent was able to determine that a client could save a substantial amount of
money by accepting a certain hotel that meets all criteria except having in-room
Internet connections, it may be able to propose this to the user. Alternatively,
such deductions might form the basis for negotiation strategies that suggest which
factors to yield on, and which to stand firm on. This seems to be a fruitful area
for future investigation.

5. Evaluation and conclusions

We have presented some vignettes of parts of the solution to the OAS’03 Challenge
Problem using our BDI agent platform, Nuin. The key goal in the Challenge call
for papers is to explore how agents would actually use ontological information.
Much of the foregoing discussion represents our design explorations, since we have
not yet built the complete solution.

Our agents are strongly knowledge-based, and use logical sentences and men-
tal attitudes for their internal modelling. Ontological information is clearly useful

4However, there are various proposals for rule-languages to extend the extant semantic web

languages. It is possible that, once mature, these rule languages will suffice for the preference
ordering problem.

296 Ian Dickinson and Michael Wooldridge

for compactly describing the domain of discourse (especially if the ontologies are
shared with other agents), and allows the agent to use class and property hierar-
chies to generalise and specialise queries and results.
Given our interest in building agents for the semantic web, we have restricted our-
selves to the common semantic web ontology languages, particularly OWL. These
languages’ designs are based on description logic (DL) reasoning. The use of de-
scription logic reasoners in practical agent applications is not a widely explored
topic, due in part to a limited availability of DL reasoners. More such reasoners
are now becoming available5, and we can expect more research into this area in
future. A key component of the description logic approach is class description, and
we have shown above some instances of using class descriptions in the agent’s rea-
soning. Using class descriptions and a meta-level prefers predicate to encapsulate
the client’s preferences appears to be a useful way to make those preferences avail-
able to a wider range of semantic web services. The limitations of description logic
sentences, however, suggest that richer representations will need to be developed
to encode a broadly useful sub-set of the client’s general preferences.

While we have shown the use of ontology information by BDI agents, both
as additional open knowledge sources for the agent to access, and as additional
entailments that the agent reasoners can draw upon, we nevertheless feel that this
is only a preliminary account of the integration of these two areas. Further prac-
tical experiences will help to resolve this, and we continue to develop a complete
implementation of the Challenge Problem in the Nuin framework. We also look
forward to the development of theoretical treatments of the interactions between
the principles of deliberative agents and the principles of description logics.

References

[1] ODP - The Open Directory Project. http://www.dmoz.org

[2] FIPA Interaction Protocol Specifications. 2003. http://www.fipa.org/repository/
ips.php3

[3] Dave Banks, Steve Cayzer, Ian Dickinson, and Dave Reynolds. The ePerson Snippet
Manager: a Semantic Web Application. (HPL-2002-328) HP Labs Technical Report.
2002. http://www.hpl.hp.com/techreports/2002/HPL-2002-328.html

[4] F. Bellifemine, A. Poggi and G. Rimassa . Developing Multi Agent Systems With
a FIPA-Compliant Agent Framework. Software Practice and Experience. Vol. 31:2.
2001. pp. 103-128.

[5] T. Berners-Lee, R. Fielding and L. Masinter. Uniform Resource Identifiers (URI):
Generic Syntax. (RFC2396) Internet Draft Standard. 1998.

[6] Tim Berners-Lee, James Hendler and Ora Lassila The Semantic Web. Scientific
American. 2001.

5At the time of writing, an extension to Jena to allow it to interact with description logic reasoners

via a DIG interface has just been released. We will be incorporating access to DIG reasoners into
Nuin shortly.

Some Experiences with the Use of Ontologies in Deliberative Agents 297

[7] K. Binmore, A. Kirman and P. Tani. (eds).Frontiers of Game Theory.MIT Press,
1994.

[8] O. Corcho, M. Fernandez-Lopez and A. Gómez-Pérez An RDF Schema
for the OAS Challenge Problem. 2003. http://oas.otago.ac.nz/OAS2003/Chal-
lenge/MadridTravelOntology.rdfs

[9] M. Dean, G. Schreiber, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness,
L. Patel-Schneider, F. Peter and S. Lynn Andrea. OWL Web Ontology Language
Reference. 2003. http://www.w3.org/TR/owl-ref

[10] I. Dickinson and M. Wooldridge. Towards Practical Reasoning Agents for the Seman-
tic Web. In Conf. on Automomous Agents and Multi-Agent Systems (AAMAS’03).
2003.

[11] DMQ) D. Dou, D. McDermott, P. Qi. Ontology Translation by Ontol-
ogy Merging and Automated Reasoning. In Proc. EKAW Workshop on
Ontologies for Agent Systems. 2002. pp. 3-18. http://cs-www.cs.yale.edu/
homes/dvm/papers/DouMcDermottQi02.ps

[12] FIPA. FIPA ACL Message Structure Specification. (XC00061) 2000.

[13] FIPA. Abstract Architecture Specifiation. 2002. http://www.fipa.org/specs/fipa00001

[14] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns. Addison Wesley
Longhttp://www.fipa.org/specs/fipa00061 man, 1994.

[15] P. Hayes. RDF Semantics. 2004. http://www.w3.org/TR/rdf-mt

[16] HP Labs. The Jena Semantic Web Toolkit. 2004. http://jena.sourceforge.net

[17] A. Kalyanpur. SWOOP (Semantic Web Ontology Overview and Perusal). 2004.
http://www.mindswap.org/2004/SWOOP

[18] A. Rao AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language.
In Proc. 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW ’96). Springer-Verlag, 1996. pp. 42-55.

[19] A. Rao and M. Georgeff. BDI Agents: From Theory to Practice. In Proc. First Int.
Conf on Multi-Agent Systems (ICMAS-95). 1995.

[20] SJ. Russell, P. Norvig. Artificial Intelligence: a Modern Approach. (second edition)
ed. Prentice Hall, 2003.

[21] A. Seaborne. RDQL - a query language for RDF. 2004. http://www.w3.org/
Submission/2004/SUBM-RDQL-20040109

[22] P. Traverso. Automated Planning : Theory & Practice. Morgan-Kaufmann, 2004.

[23] W3C. Simple Object Access Protocol (SOAP). 1.1. 2000. http://www.w3.org/
TR/SOAP

[24] World Wide Web Consortium (W3C). The Resource Description Framework (RDF).
2004. http://www.w3.org/RDF

[25] World Wide Web Consortium (W3C). Web Services Activity. 2004.
http://www.w3.org/2002/ws

298 Ian Dickinson and Michael Wooldridge

Ian Dickinson
Hewlett-Packard Laboratories
Filton Road, Stoke Gifford Bristol
BS34 8QZ U.K.
Tel: +44 (117) 312 8796
Fax: +44 (117) 312 8924
e-mail: ian.dickinson@hp.com

Michael Wooldridge
Department of Computer Science
University of Liverpool
Liverpool L69 7ZF
U.K.
e-mail: m.j.wooldridge@csc.liv.ac.uk

Location-Mediated Agent Coordination
in Ubiquitous Computing

Akio Sashima, Noriaki Izumi and Koichi Kurumatani

Abstract. A fundamental issue of Ubiquitous computing concerns the coor-
dination gaps separating devices, services, and humans. Numerous heteroge-
neous devices, various information services, and users have different intentions
and are physically located in environments, how can we coordinate the ser-
vices and devices to assist a particular user in receiving a particular service
so as to maximize the user’s satisfaction? We propose an agent-based coor-
dination framework for ubiquitous computing to solve this human-centered
service coordination issue. It is called location-mediated coordination. This
paper explains some coordination gaps in ubiquitous computing. It describes
a conceptual framework of the location-mediated agent coordination and its
implementation, context-aware information assistant systems in museums.

Mathematics Subject Classification (2000). Primary 68T35; Secondary 68U35.

Keywords. Web agents, semantic web, ubiquitous computing, service coordi-
nation.

1. Introduction

Recently, computing frameworks that specialize in handling real world information
and physical objects, such as Ubiquitous computing [1], have received much interest
in both research and application.

Although ubiquitous computing is a promising framework for intelligent ser-
vices like context-aware information assistance, many research issues remain. A
fundamental issue is coordination of devices, services, and users. Numerous het-
erogeneous devices (e.g., terminals, RF-IDs, cameras, information appliances, etc.),
various information services that use those devices (e.g., navigation aids, guides,
information retrievals, controlling devices, etc.), and users who have different in-
tentions are physically located in a ubiquitous computing environment. In such a
situation, how can we coordinate services and devices to assist a particular user
in receiving a particular service and thereby maximize the user’s satisfaction? In

300 Akio Sashima, Noriaki Izumi and Koichi Kurumatani

other words, how can we dynamically coordinate the physically distributed hetero-
geneous services and devices and integrate them into a consistent human-centered
service according to a user’s intention?

This study specifically addresses the Semantic Web[2] to solve this human-
centered coordination issue in ubiquitous computing. The research goal of the
Semantic Web is to establish a methodology to manage that rich diversity of web
content that have proliferated on the Internet by adding “meta-data” of web con-
tent. Those meta-data are Resource Description Framework (RDF) [3] and RDF
Schema (RDFS) [4]. Meta-data have well-defined meanings based on the ontology.
For that reason, “Semantic Web Agents”, which are autonomous computer pro-
grams that read the meta-data, can use meta-data to understand logical meanings
of web content. Semantic web agents choose proper content out of myriad contents
on the Internet on behalf of users. They also coordinate the contents for users and
assist them in accessing the content.

Inspired by this semantic web agent capability, we have developed an agent-
based service coordination framework in ubiquitous computing, called location-
mediated agent coordination. In such coordination, agents coordinate services,
users and devices in a ubiquitous computing environment based on their loca-
tions and meta-information, which are described by RDF. This framework is an
attempt to realize semantic web agents that choose proper resources from numer-
ous resources, coordinate those resources on behalf of users, and assist users in
accessing resources of ubiquitous computing environments.

This paper describes some research issues realizing the human-centered ser-
vice coordination in ubiquitous computing, namely intention gaps and representa-
tion gaps. We describe the idea of location-mediated agent coordination to solve
these issues.

2. Coordination Gaps in Ubiquitous Computing

2.1. Intention Gaps between Services, Devices and Humans

Services should be selected and composed according not only to the service provider’s
assumption, but also the user’s intention. Thereby, we can realize human-centered
service coordination on behalf of users.

Service selection is easy if the provided services are few and the users clearly
recognize their own intentions. However, user selection of a service that matches
an intention from among myriad information services (e.g., navigation, guide, in-
formation retrieval, controlling device, etc.) becomes difficult when those services
are physically co-located.

In addition, an isolated service cannot satisfy the intention. In such a case,
combining two isolated services might fit a user’s intention. For example, combi-
nation with a schedule service of a theater and car navigation systems can satisfy
the user’s request, as in: Take me – I’d like to go to see “Kill Bill” tonight. Such
combinatory processes may require device functionality and services beyond the

Location-Mediated Agent Coordination in Ubiquitous Computing 301

designer’s assumption because they are designed to perform a certain task pre-
sumed by the designer.

Such gaps are “Intention gaps” for the purposes of this study.

2.2. Representation Gaps between Services, Devices and Humans

Recently, many localization-devices, such as GPS, RF-ID, Infrared sensors, etc.,
have been adopted. Each device has a certain communication speed, memory ca-
pacity and sensing accuracy. Therefore, their output data formats are usually ad
hoc raw information about the locations. For example, while GPS device output
shows latitudes and longitudes, output of infrared sensors shows the presence of a
user near the devices.

Similarly, many context-aware services that use location-information have
been proposed. The services are designed to engage for some tasks, such as nav-
igation. The task usually requires its own spatial representation representing a
certain task-oriented view of the environments. For example, to provide some in-
formation based on the user’s location, the agents should understand the user’s
location as “the user is in a museum now”, rather than as “the user is at Lon-
gitude: 140.38.54 E, Latitude: 35.77.44 N at Mon., Jan 13 12:47:06 2003 JST”.
In other words, information gaps occur between device-oriented information like
“Longitude” and service-oriented information like “in museum.h

In addition, each user has their own spatial representation about surrounding
environments. Users have a personalized, embodied view of environments, some-
times called a “personal space” in Social Psychology. Such perceptions of space
differ idiosyncratically based on body size, social background, etc.

Most context-aware services that use location-information ignore this differ-
ence in spatial representations. They are designed for a specific device and are
tightly bound to device-oriented spatial representation. For that reason, it is diffi-
cult to place a presupposed device into a different context. For example, a location
service that has presupposed RF-ID-sensor-data cannot be applied to a location
service that has presupposed infrared sensor or GPS data.

This study refers to these gaps in spatial representation for ubiquitous com-
puting environments as “representation gaps.”

3. Location-Mediated Agent Coordination

We introduce a multi-agent based coordination framework to bridge the inten-
tion gaps and representation gaps in ubiquitous computing. It is called “Location-
Mediated Agent Coordination”. Although each agent manages a specific type of
information resource, their coordination enables users to access heterogeneous ser-
vice resources as a seamless service. The coordination framework is an extension
of middle agent framework [5][6][7]. it is a framework that provides the service
that matches service provider agents to service requester agents, initiates their
communication, and sometimes mediates the flow of information among them.

302 Akio Sashima, Noriaki Izumi and Koichi Kurumatani

BIND
Service Requester Service Provider

Request or
notified &
Find

Heterogeneous Raw-Sensor Data

Sensing
Requester’s
location

Device Wrapper Agents

Spatial Model of an
Indoor Environment

Location-Aware
Middle Agent

Publish Service
& Service Area

Other Middle
Agents

Other Environment
Models

Share the
Information

Sensor Data

Figure 1. Location-Mediated Agent Coordination

The location-mediated agent coordination framework consists of the following
types of agents.

Service Provider (Service Agent): the agent wraps a Web service, asks a middle
agent to register their capabilities and physical service areas, and provides
other agents to the service.

Service Requester (Personal Agent): the agent asks a middle agent to regis-
ter their physical appearance, such as sensor signal ID, and requires service
provider agents to perform some service (e.g. Web Services) on behalf of a
human user.

Location-aware Middle Agent: the agent plays matchmaker between Service
Providers and Service Requesters by considering their locations, capabili-
ties and requirements; it then initiates their communication. They manage
the spatial model of environments and reasoning about spatial relations of
objects in the environments.

Device Wrapper Agent: the agent wraps a sensor device having Web service
interfaces; it also provides sensor information to the middle agent.

Location-Mediated Agent Coordination in Ubiquitous Computing 303

3.1. Bridging Intention Gaps between Services, Devices and Humans

Figure 1 shows an outline of location-mediated coordination. The middle agent
plays matchmaker between service providers (e.g. wrapper agents of Web Services)
and service requesters (e.g. personal agent on behalf of a user) by considering their
locations, capabilities and requirements. It then initiates their communication.
Thereby, it bridges the intention gaps that separate services and humans. The
coordination process is as follows:

1. Service agents (e.g. wrapper agents of Web Services) advertise their capa-
bilities and service rules that includes location information, such as service
areas, to middle agents;

2. Personal agents request the middle agents to store their public properties
that includes sensor-based appearance (e.g. RF-IDs);

3. Device wrapper agents (e.g. wrapper agents of location sensor devices) request
the middle agents to store their sensor specifications and physical settings
(e.g. locations of the devices));

4. The middle agents have a world model of the environments. They integrate
the received information into the model. They also monitor the sensor data
received from sensor wrapper agents, map the sensor data on the world model.
They check the personal agents that match the stored service rules. If they
detect such a personal agents, they request the personal agent to access the
service;

5. If the personal agent accepts an offer, it asks the service agents to provide
the requested services.

3.2. Bridging Representation Gaps between Services, Devices and Humans

To solve this representation-gap issue, the location-aware middle agent coordinates
various formats of spatial information using meta information from devices and
services. Figure 2 shows an outline of the location-aware middle agent and other
agents. All information in Figure 2 is described by RDF and RDFS 1; all agent
communication messages are described by FIPA messages [8] (See Table 1).

Table 1: An example of the observation data embedded in a FIPA
message

(REQUEST
:sender RoomADeviceWrapper@tokyo.agentcities.net
:receiver RoomAReasoner@tokyo.agentcities.net
:content "<rdf:RDF

xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\"

Continued on next page

1http://www.carc.aist.go.jp/consorts/2004/ubicomp-schema

304 Akio Sashima, Noriaki Izumi and Koichi Kurumatani

xmlns:fipa=\"http://localhost/2004/fipa-rdf0#\"
xmlns:ubis=\"http://localhost/2004/ubicomp-schema#\">
<ubis:Fact

rdf:about=\"http://localhost/2004/cyber-
museum#observed-id2543521311080288113959\"

ubis:timestamp=\"1080288197468\">
<ubis:observer

rdf:resource=\"http://localhost/2004/cyber-
museum#rfid-receiver-id2543521311080288113454\"

rdf:type=\"http://localhost/2004/ubicomp-
schema#DeviceWrapperAgent\"/>

<ubis:observable>
<ubis:RFSignal
rdf:about=\"http://localhost/2004/cyber-

museum#signal-id2543521311080288113463\">
<ubis:detectAt
rdf:resource=\"http://localhost/2004/cyber-

museum#output-id2543521311080288113958\"
rdf:type=\"http://localhost/2004/ubicomp-

schema#Point2D\"
ubis:x=\"13\"
ubis:y=\"6\"/>

</ubis:RFSignal>
</ubis:observable>
</ubis:Fact>
<fipa:Action

rdf:about=\"http://localhost/2004/cyber-
museum#register\"

fipa:actor=\"RoomAReasoner\">
<fipa:argument

rdf:resource=\"http://localhost/2004/cyber-
museum#observed-id2543521311080288113959\"/>

</fipa:Action>
</rdf:RDF>"

:language JenaRDFCodec
:ontology http://localhost/2004/ubicomp-schema

)

The location-aware middle agent manages spatial information based on a
world model, a spatial reasoner, a spatial information repository, and an inter-
preter of meta-information. The repository stores a history of sensor data, which
we call observation data, received from device wrapper agents (See Table 1). The

Location-Mediated Agent Coordination in Ubiquitous Computing 305

Location-aware Middle Agent

•Service rules (i.e. service area)
•Service contents (i.e. caption)
•Physical information of the contents
(i.e. RF-IDs with pictures)

Service Agent

Service Contents

Device Wrapper Agent

•Sensor specifications
•Physical information of the
device

•Sensor data

Sensor Specifications

Personal Agent

•Pair of agent ID
and RF-ID

•User requests

User Profile

Repository
•Storing Sensor data

Reasoner
• Service Rules
• User Requests

Meta information
• meanings of spatial terms
(in, near, at etc.)

• Sensor Specifications

A Spatial Model for An Indoor Environment

Figure 2. Outline of Location-Aware Middle Agent

observation data consist of an observer name, an observed-object name, an ob-
ject location, and a timestamp. Data are described by RDF/RDFS-based device-
oriented raw representation. The middle agents use the meta information of the
raw representation data, such as data formats, sensor type, etc. to integrate infor-
mation of observation data into a world model (See Figure 3 and Table 2).

Table 2: An example of sensor data meta information

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:fipa="http://localhost/2004/fipa-rdf0#"
xmlns:space="http://localhost/2004/spatial-schema#"
xmlns:ubis="http://localhost/2004/ubicomp-schema#">

<space:Length
rdf:about="http://localhost/2004/cyber-

museum#length-id2543521311080288113525"

Continued on next page

306 Akio Sashima, Noriaki Izumi and Koichi Kurumatani

space:lengthValue="0.5">
<space:lengthUnit

rdf:resource="http://localhost/2004/spatial-
schema#Meter"/>

</space:Length>
<ubis:Fact

rdf:about="http://localhost/2004/cyber-
museum#observed-id2543521311080288113528"

ubis:timestamp="1080288145156">
<ubis:observer

rdf:resource="http://localhost/2004/cyber-
museum#RoomDDeviceWrapper"

rdf:type="http://localhost/2004/ubicomp-
schema#Agent"/>

<ubis:observable>
<ubis:RFIDReciever

rdf:about="http://localhost/2004/cyber-
museum#rfid-receiver-id2543521311080288113457">

<ubis:range>
<space:CircleRegion

rdf:about="http://localhost/2004/cyber-
museum#range-id2543521311080288113519">

<space:radius>
<space:Length

rdf:about="http://localhost/2004/cyber-
museum#length-id2543521311080288113515"

space:lengthValue="2">
<space:lengthUnit

rdf:resource="http://localhost/2004
/spatial-schema#Meter"/>

</space:Length>
</space:radius>

</space:CircleRegion>
</ubis:range>
<ubis:dataType

rdf:resource="http://localhost/2004/ubicomp-
schema#Point2D"/>

<ubis:dataUnit
rdf:resource="http://localhost/2004/cyber-

museum#length-id2543521311080288113525"/>

Continued on next page

Location-Mediated Agent Coordination in Ubiquitous Computing 307

<ubis:atSegment>
<ubis:OriginOfSensorData

rdf:about="http://localhost/2004/cyber-
museum#origin-id2543521311080288113514">

<ubis:atSegment
rdf:resource="http://localhost/2004/spatial-

schema#GroundFloorSegment_10_18"/>
<ubis:y_orientation
rdf:resource="http://localhost/2004/spatial-

schema#North"/>
</ubis:OriginOfSensorData>

</ubis:atSegment>
</ubis:RFIDReciever>

</ubis:observable>
</ubis:Fact>
<fipa:Action

rdf:about="http://localhost/2004/cyber-
museum#register"

fipa:actor="RoomDReasoner">
<fipa:argument

rdf:resource="http://localhost/2004/cyber-
museum#observed-id2543521311080288113528"/>

</fipa:Action>
</rdf:RDF>

The middle agents also require mapping information between sensor signals
(e.g. RF-IDs) and users to integrate users’ locations into a world model. For that
reason, personal agents request the middle agents to store the mapping information
of them (See Table 3).

Table 3: An example of a mapping information between a sensor-ID
and a personal agent

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:fipa="http://localhost/2004/fipa-rdf0#"
xmlns:ubis="http://localhost/2004/ubicomp-schema#">

<fipa:Action

Continued on next page

308 Akio Sashima, Noriaki Izumi and Koichi Kurumatani

rdf:about="http://localhost/2004/cyber-
museum#register"

fipa:actor="RoomAReasoner">
<fipa:argument>
<ubis:Fact
rdf:about="http://localhost/2004/cyber-

museum#observed-id2543521311080288113485"
ubis:timestamp="1080288123968">
<ubis:observer>
<ubis:Guest

rdf:about="http://localhost/2004/cyber-
museum#DummyAgent4"

rdf:type="http://localhost/2004/ubicomp-
schema#PersonalAgent">

<ubis:with>
<ubis:RFID
rdf:about="http://localhost/2004/cyber-

museum#rfid-id2543521311080288113466">
<ubis:emit
rdf:resource="http://localhost/2004/cyber-
museum#signal-id2543521311080288113466"

rdf:type="http://localhost/2004/ubicomp-
schema#RFSignal"/>

</ubis:RFID>
</ubis:with>

</ubis:Guest>
</ubis:observer>
<ubis:observable

rdf:resource="http://localhost/2004/cyber-
museum#DummyAgent4"/>

</ubis:Fact>
</fipa:argument>

</fipa:Action>
</rdf:RDF>

Similarly,mapping information between sensor signals and embedded services
are used to integrate the “service zones”, where the services are available, into a
world model. For that reason, service agents request the middle agents to store
the mapping information of them (See Table 4).

Location-Mediated Agent Coordination in Ubiquitous Computing 309

R
aw

 R
ep

re
se

nt
at

io
ns

V
ar

io
us

 T
yp

e
of

 S
en

so
r

W
ra

pp
er

 A
ge

nt
s

Se
ns

or
 D

at
a

O
nt

ol
og

ic
al

 R
ep

re
se

nt
at

io
ns

in
te

gr
at

in
g

se
ns

or
 d

at
a

in
to

 a
 w

or
ld

m

od
el

 b
as

ed
 o

n
th

e
m

et
a-

da
ta

W
or

ld
 M

od
el

W
or

ld
 M

od
el

(E
x.

 S
pa

ti
al

 M
od

el
)

(E
x.

 S
pa

ti
al

 M
od

el
)

L
oc

at
io

n-
aw

ar
e

m
id

dl
e

A
ge

nt

M
et

a
D

at
a

of
 th

e
Se

ns
or

D
ev

ic
es

 (
e.

g.
, D

at
a

fo
rm

at
)

In
te

gr
at

io
n

Figure 3. Integration of ovservation data into a world model

310 Akio Sashima, Noriaki Izumi and Koichi Kurumatani

Table 4: An example of a mapping information between a sensor-ID
and a service

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:fipa="http://localhost/2004/fipa-rdf0#"
xmlns:ubis="http://localhost/2004/ubicomp-schema#">
<ubis:RFID

rdf:about="http://localhost/2004/cyber-museum#rfid-
id2543521311080288113460">

<ubis:emit
rdf:resource="http://localhost/2004/cyber-

museum#signal-id2543521311080288113460"
rdf:type="http://localhost/2004/ubicomp-

schema#RFSignal"/>
</ubis:RFID>
<ubis:Fact

rdf:about="http://localhost/2004/cyber-
museum#observed-id2543521311080288113486"

ubis:time="1080288124343">
<ubis:observer

rdf:resource="http://localhost/2004/cyber-
museum#MuseumServiceAgent"

rdf:type="http://localhost/2004/ubicomp-
schema#ServiceAgent"/>

<ubis:observable>
<ubis:Painting

rdf:about="http://localhost/2004/cyber-
museum#Monalisa">

<ubis:with
rdf:resource="http://localhost/2004/cyber-

museum#rfid-id2543521311080288113460"/>
</ubis:Painting>

</ubis:observable>
</ubis:Fact>
<fipa:Action

rdf:about="http://localhost/2004/cyber-
museum#register"

fipa:actor="RoomAReasoner">
<fipa:argument

Continued on next page

Location-Mediated Agent Coordination in Ubiquitous Computing 311

rdf:resource="http://localhost/2004/cyber-
museum#observed-id2543521311080288113486"/>

</fipa:Action>
</rdf:RDF>

Although some standardized spatial ontologies exist, such as SUMO [9] and
OpenCyc [10], we adopt a newly created spatial ontology on top of RDF/RDFS
as a basic representation in spatial repository because SUMO and OpenCyc are
not suitable for describing an indoor space, but an outdoor space.

On the other hand, the reasoner stores service rules received from service
agents. The rule consists of a precondition and an effect, like DAML-S [11]. The
rules are described by RDF/RDFS based service-oriented qualitative represen-
tation, such as “near the painting” (See Table 5). The middle agent translates
spatial constraints in precondition into the spatial areas on the world model. It
periodically checks the applicability of the rules into the observation data.

Table 5: An example of the service rule

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:fipa="http://localhost/2004/fipa-rdf0#"
xmlns:ubis="http://localhost/2004/ubicomp-schema#">

<ubis:ServiceAgent
rdf:about="http://localhost/2004/cyber-

museum#MuseumServiceAgent"/>
<ubis:Precondition

rdf:about="http://localhost/2004/cyber-
museum#spConstraint-id2543521311080288113495">

<ubis:spatialConstraint>
<ubis:VariableObject
rdf:about="http://localhost/2004/cyber-museum#x">
<ubis:near

rdf:resource="http://localhost/2004/cyber-
museum#Monalisa"

rdf:type="http://localhost/2004/ubicomp-
schema#Exhibition"/>

</ubis:VariableObject>
</ubis:spatialConstraint>

Continued on next page

312 Akio Sashima, Noriaki Izumi and Koichi Kurumatani

<ubis:temporalConstraint
rdf:resource="http://localhost/2004/ubicomp-

schema#Anytime"/>
</ubis:Precondition>
<fipa:Action rdf:about="http://localhost/2004/cyber-

museum#register"
fipa:actor="RoomAReasoner">
<fipa:argument>
<ubis:Rule

rdf:about="http://localhost/2004/cyber-
museum#rule-id2543521311080288113494">

<ubis:effect>
<ubis:Service
rdf:about="http://localhost/2004/cyber-

museum#information-Monalisa">
<ubis:provider

rdf:resource="http://localhost/2004/cyber-
museum#MuseumServiceAgent"/>

</ubis:Service>
</ubis:effect>
<ubis:precondition

rdf:resource="http://localhost/2004/cyber-
museum#spConstraint-id2543521311080288113495"/>

</ubis:Rule>
</fipa:argument>

</fipa:Action>
</rdf:RDF>

The world model, a basic spatial representation to describe observation data
and service rules, consists of the relation of spatial regions, and their properties.
The model is described by a spatial ontology2 that we have developed to describe
an indoor space using a tree representation and a grid representation (See Figure
4 and Figure 5).In these figures, rectangular boxes represent RDF resources; oval
boxes represent class of the resources; arrows represent RDF properties.

The tree representation is based on the human understanding of a spatial
concept generally called mereological thinking[12], or reasoning about ”part-of”
relations. The representation consists of part-of relations among 2-dimensional
spatial regions in the real world. We formalize the ubiquitous computing environ-
ments as a tree-structure of spatial regions based on Bittner [13]. A tree structure

2http://www.carc.aist.go.jp/consorts/2004/spatial-schema

Location-Mediated Agent Coordination in Ubiquitous Computing 313

Figure 4. A part of tree-based spatial representation

of spatial regions is denoted as G : G = (R,⊆), where R : (r ∈ R) denotes a set of
spatial regions, and denotes a part-of relation between two regions. The regions in
have the following characteristics.

∃ri : ri ⊆ ri (3.1)
∃ri, rj : ri ⊆ rj ∧ rj ⊆ ri ⇒ rj = ri (3.2)

∃ri, rj , rk : ri ⊆ rj ∧ rj ⊆ rk ⇒ ri ⊆ rk (3.3)

where ri, rj , rkis a region.
We use a tree representation to show the relation of spatial regions and

their properties in the spatial ontology that we have developed to describe the
ubiquitous computing environments. Figure 4 shows an example of an ontological
tree-representation (a structure of a museum) that we have developed. includes
relations in the figure are the relations denoted by in the logical expressions above.
When describing other buildings, one should describe the root node (top node of
the world models) of the tree representation as World, a unique RDF resource.

314 Akio Sashima, Noriaki Izumi and Koichi Kurumatani

loc_yloc_xloc_yloc_xloc_y
loc_x

loc_y
loc_x

Figure 5. A part of grid-based spatial representation

Table 6. An example of a spatial representation

<space:Container rdf:about="#GroundFloor">
<space:hasMap>
<space:Map rdf:about="#GroundFloorMap">

<space:segmentSize
rdf:about="#length-id1080288112486" />

<space:consistsOf>
<rdf:Seq>

<rdf:li>
<space:Segment rdf:about="#FloorSegment_0_0"

space:loc_y="0" space:loc_x="0">
<space:partOf

rdf:resource="#RooomA" />
...

We also use a grid representation to show the shapes and locations of spatial
regions in the spatial ontology that we have developed to describe the ubiqui-
tous computing environments. Figure 5 shows an example of an ontological grid-
representation (a structure of a museum) that we have developed. We define Map

Location-Mediated Agent Coordination in Ubiquitous Computing 315

and Segment in the ontology. A Map is a set of Segments; A Segment is a primitive
square segment referred by a 2-dimensional location on a Map. partOf relations rep-
resent that the segment is a part of a Region represented in a tree-representation.
Table 6 shows a RDF description of an indoor space based on the grid represen-
tations.

4. Implementation

We have continued development of a scenario of context-aware information assist
services in a museum. It is based on the location-mediated coordination framework.
In that scenario, when a user is located near a painting, the user can receive
information about the painting via the user’s portable display device. We have
implemented that framework using JADE [14], a software framework to develop
an agent system that conforms to FIPA specifications.

We have implemented context-aware information assist systems in museums.
In those systems, agents are aware of the distance between a user and the paintings
in the museum3. When a user approaches a painting, the agents automatically
provide information about the painting via a user’s portable display device.

In the museum, when a user is located near a painting, the user can receive
information from the agents about the painting via the user’s portable display
device. This service is possible because the painting information is derived from
Internet resources. For example, if the user needs more information about the
painting, the user should push the “tell me” button of the portable device. The
agents notice the user’s request, make a search query about the painting with the
necessary information they have already had, e.g. the painting’s name and user’s
preference, and access Web Services [15] on the Internet, e.g. Google Web Services
[16], on behalf of the user.

Figure 6 shows an image of the monitor system of the information assist
services in a museum. A museum map is visible in a main window in the lower
right side of the figure; it has two information windows with a graphic image. In the
map, human icons represent current locations of the users. Each zone surrounding
a picture represents service zones of the museum service agents. Each line after the
users represents users’ trajectories. Information windows correspond to the screens
of users’ portable devices. In this application, the users casually roam around the
museum. If a user enters the service zone, an information window pops up in the
screen to display the picture information.

Figure 7 illustrates agent communication in the museum system. First, the
service agent and the personal agents inform the middle agent of their profiles and
request the middle agent to search for a matched agent based on their requirements.
The requirements are described as some rules. The middle agent stores the rules
and watches whether users who matched the rules are located in an environment.
The device wrapper agent informs the middle agent where a user with a unique id is

3Currently, users, users’ behaviors, and a museum in the system are simulated.

316 Akio Sashima, Noriaki Izumi and Koichi Kurumatani

Figure 6. An image of a monitor system of context-aware infor-
mation assist services in a museum

Location-Mediated Agent Coordination in Ubiquitous Computing 317

Figure 7. Message-flows in an assist system in a museum

located. When the middle agent notices that a user is located on a service region,
the agent tells the personal agents the user available service name. Then, the
personal agent requests a service based on the service name. Finally, the personal
agent requests the device wrapper agent to show the service content on a user’s
portable display device.

In this system, we have confirmed the simplest framework of location-mediated
coordination by applying agents to the context-aware information systems. Using
the agent-based coordination framework, we have very rapidly developed context-
aware information systems. New services can be added to the system by defining
the service agents and their ontologies.

318 Akio Sashima, Noriaki Izumi and Koichi Kurumatani

5. Related Work

Numerous studies have addressed context-aware information assistance [17][18][19]
have been proposed under the vision of ubiquitous computing. The Olivetti Active
Badge [17] system transmits a unique infrared signal to inform the user’s current
location every 10 s. Based on that information, the system allows the user to
re-route incoming calls to a nearby phone. Active Badge is a primitive example
of location-based information assistance. The Xerox PARCTAB [18] system com-
prises palm-sized mobile computers that can access local area network through
infrared transceivers and can inform current location using a unique ID. These
systems lack flexible adaptability to the contents and the service domain because
they are device-oriented prototype systems. Cyberguide [19] is a collection of in-
telligent tour guides that provide information to tourists based on knowledge of
their position and orientation. It has difficulty in undertaking sophisticated user
interaction because it cannot manage personal information.

Some researchers have applied agent technology to context-aware information
assistance services. Using agent technology, they achieve greater flexibility and
more sophisticated interaction with users. C-Map [20] is a tour guidance system
that provides information to visitors at exhibitions based on location and indi-
vidual interests. Interface agents manage personal information and realize natural
interaction with the user. Agent Augmented Reality [21] is an attempt to use agent
technologies to augment our real world environment. The research realizes personal
information assistance using mobile agent technology. These systems realize the
context-aware information assistance through simple cooperation of agents. How-
ever, they seem to have difficulty in sharing contextual information among various
kinds of services because the information context lacks the basis of well-defined
ontological meanings. For that reason, it is difficult for them to achieve dynamic
intelligent cooperation among agents based on a deep contextual understanding.

CoolAgent [22] CoBrA [23] are context-aware software agent systems. Agents
can share contextual information described by RDF. However, these studies do not
provide the implementation framework of agents’ coordination to solve the coordi-
nation gaps. The present paper describes the location-mediated agent coordination
as a coordination framework of ubiquitous agents and implements context-aware
information assist systems in museums.

Finally, some studies for middle agents exist [5][6][7]. As mentioned previ-
ously, the work in this paper is an extension of work in ubiquitous computing.
Hence, results from those studies, such as integration of DAML-S [11], must be
useful for our future research.

6. Future Work

Section 2 described gaps between users’ intentions and services in ubiquitous com-
puting. However, we have presupposed that a user’s intentions and behaviors do
not affect other users’ intentions and behaviors. Because we design services for

Location-Mediated Agent Coordination in Ubiquitous Computing 319

multi users, we confront another gap concerning user intentions: the gap between
mass users’ intentions and limited service resources. The system must include a
way of providing information to users that maintains overall system performance
with limited service resources because serious conflicts among users may arise from
poor resource allocation. Overall service performance will decrease in such a sit-
uation. In other words, user intentions may cause serious conflicts during access
of limited service resources. For example, navigation systems for emergency fire
evacuation must include a strategy for telling evacuees how to evacuate a building
safely. If the systems simultaneously inform all users about the physically shortest
path to an exit, users may crowd that path, creating a crushing panic.

To bridge the gaps between mass users’ intentions and limited service re-
sources, We plan to introduce the concept of “Social Coordination” [24][25]. “Social
Coordination” aims to resolve conflicts arising from multiple users’ requirements
and to implicitly modify the provided information for each user to maintain overall
system performance. We are implementing a facility using a market mechanism,
called “user intention market”[26].

7. Conclusion

This paper presented discussion of intention and representation gaps in ubiquitous
computing. It proposed a basic idea to bridge the gaps, called location-mediated
agent coordination, inspired by Semantic Web agents.

In the framework, we have shown the potential of the distributed open agents
in the real world. In the Semantic Web [2], an “agent” is defined as “the program
that collects information from diverse sources, processes the information and ex-
changes the results with other programs.” We have realized such agents in the con-
text of the Ubiquitous computing, and extended application areas of the agents
from the Internet to the real world.

Based on the proposed framework, we plan to apply more sophisticated
AI techniques, such as qualitative reasoning, to the reasoning mechanism of the
location-aware middle agents.

References

[1] M. Weiser. The computer for the 21st century. Scientific American, pages 94–104,
1991.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

[3] Resource Description Framework (RDF). http://www.w3.org/RDF/, 2004.

[4] RDF vocabulary description language 1.0: RDF Schema (RDFS). http://www.w3.
org/TR/rdf-schema/. 2004.

320 Akio Sashima, Noriaki Izumi and Koichi Kurumatani

[5] K. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet. In Pro-
ceedings of the 15th International Joint Conference on Artificial Intelligence, Nagoya,
Japan, 1997.

[6] K. P. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic service matchmaking among
agents in open information environments. SIGMOD Record, 28(1):47–53, 1999.

[7] M. Paolucci, T. Kawmura, T. Payne, and K. P. Sycara. Semantic matching of web
services capabilities. In Proceedings of the 1st International Semantic Web Confer-
ence, pages 333–347, 2002.

[8] The Foundation for Intelligent Physical Agents (FIPA). http://www.fipa.org/,
2004.

[9] Suggested upper merged ontology (SUMO). http://ontology.teknowledge.com/,
2004.

[10] OpenCyc. http://www.opencyc.org/, 2004.

[11] DAML Service (DAML-S). http://www.daml.org/services/, 2003.

[12] R. Casati and A. C. Varzi. Parts and Places: The Structures of Spatial Representa-
tion. The MIT Press, Cambridge, Massachusetts, 1999.

[13] T. Bittner. Reasoning about qualitative spatio-temporal relations at multiple levels
of granularity. In F. van Harmelen, editor, Proceedings of the 15th European Confer-
ence on Artificial Intelligence – ECAI 2002, Amsterdam, 2002. IOS Press.

[14] Java Agent DEvelopment framework (jade). http://sharon.cselt.it/projects/
jade/, 2004.

[15] Web Services Activity. http://www.w3.org/2002/ws/, 2004.

[16] Google Web APIs. http://www.google.com/apis/, 2004.

[17] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge location system.
ACM Trans. Inf. Syst., 10(1):91–102, 1992.

[18] R. Want, B. Schilit, N. Adams, R. Gold, K. Petersen, J. Ellis, D. Goldberg, and
M. Weiser. The PARCTAB ubiquitous computing experiment. Technical Report
CSL-95-1, Xerox Palo Alto Research Center, March 1995.

[19] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton.
Cyberguide: a mobile context-aware tour guide. Wirel. Netw., 3(5):421–433, 1997.

[20] Y. Sumi, T. Etani, S. Fels, N. Simonet, K. Kobayashi, and K. Mase. C-map: Building
a context-aware mobile assistant for exhibition tours. In Community Computing and
Support Systems, Social Interaction in Networked Communities [the book is based on
the Kyoto Meeting on Social Interaction and Communityware, held in Kyoto, Japan,
in June 1998], pages 137–154. Springer-Verlag, 1998.

[21] K. Nagao and J. Rekimoto. Agent augmented reality: A software agent meets the
real world. In Proceedings of the Second International Conference on Multi-Agent
Systems (ICMAS-96), pages 228–235, 1996.

[22] H. Chen and S. Tolia. Steps towards creating a context-aware agent system. Technical
report, HP Labs, 2001.

[23] H. Chen, T. Finin, and A. Joshi. Semantic Web in in the Context Broker Architec-
ture. In Proceedings of PerCom 2004, March 2004.

[24] K. Kurumatani. Social coordination in architecture for physically-grounding agents.
In Proceedings of Landscape Frontier International Symposium, pages 57–62, 2002.

Location-Mediated Agent Coordination in Ubiquitous Computing 321

[25] K. Kurumatani. Mass user support by social coordination among citizens in a real
environment. In Multiagent for Mass User Support, pages 1–19. Springer, 2004.

[26] K. Kurumatani. User intention market for multi-agent navigation - an artificial
intelligent problem in engineering and economic context. In Working Note of the
AAAI-02 Workshop on Multi-Agent Modeling and Simulation of Economic Systems
(MAMSES-02), pages 1–4. AAAI Press, 2002.

Acknowledgment

This work has been supported by Core Research for Evolutional Science and Tech-
nology (CREST) program of Japan Science and Technology Agency (JST).

Akio Sashima, Noriaki Izumi and Koichi Kurumatani
Cyber Assist Research Center
National Institute of Advanced Industrial Science and Technology (AIST)
2-41-6 Aomi, Koto-ku
Tokyo, 135-0064
Japan
e-mail: sashima@carc.aist.go.jp

niz@ni.aist.go.jp

k.kurumatani@aist.go.jp

An Ontology for Agent-Based Monitoring
of Fulfillment Processes

Roland Zimmermann, S. Käs, Robert Butscher and
Freimut Bodendorf

Abstract. An agent-based supply chain monitoring system for tracking orders
and their related suborders is presented. To enable the necessary communica-
tion between the agents an ontology is introduced. The design of the ontology
and the implementation are discussed in detail. The usage of the ontology
for inter-agent communication is illustrated with the help of AUML models
of the agent-interactions in the supply chain monitoring system. Concluding,
two prototypes of the system are presented.

Keywords. Tracking, monitoring, supply chain, fulfillment.

1. Problem

Fulfillment processes in a supply chain show different kinds of irregularities and
disruptions. Irregularities like delays in a production process are the result of vari-
ances in processing times and processing quality. Besides these ”natural” irregular-
ities disruptions caused by malfunctions of machines, failures in machine handling,
incorrect picking in warehouses or external factors like traffic congestions have a
serious impact on the fulfillment of orders within a supply chain (see fig. 1). The
orders issued by different supply chain partners are often linked. In fig. 1 an order
from the clothing manufacturer induces suborders for the dyer, the knitter and the
thread manufacturer. The tighter integrated the supply chain partners’ processes
are the greater will be the impact of disruptions on the fulfillment processes.

Existing systems for order tracking typically generate standard messages for
every order at certain intervals or milestones. As a result, large databases with
information on orders are filled with data that is in most cases not concerned
with the serious problems mentioned above. Only a small percentage of the orders
encounters problems during fulfillment. Although information might be available
it is generally communicated too late, the content will often not match the needs

324 Zimmermann, Käs, Butscher and Bodendorf

Machine No.ACX392
machine failure

4 day delivery delay

Thread manufacturer
(India)

Knitter (Malaysia)

Dyer (Hong Kong)

Clothing
manufacturer
(Europe)

Large retail seller

7 day delivery delay

10 day delivery delay

Delay of new clothing
model results in huge
loss of sales revenues

Figure 1. Example of a propagating disruption in a supply chain [1]

of a decision maker to react to the problem and it is lost in the large volumes
of data. Such systems generate a huge amount of communication traffic between
supply chain partners which is not offset by a similar huge benefit generated by
this communication.

An innovative solution has to meet the following criteria [2]:
• Consideration of interdependencies in supply chains - The relationships be-

tween orders and suborders resulting from the division of labor have to be
taken into account by an inter-organizational monitoring solution. Otherwise
effects of events on the network cannot be reflected adequately.

• Primacy of local data storage - As a consequence of taking inter-organizational
dependencies into account, the data sources that are available at each supply
chain partner are not to be replicated unnecessarily elsewhere. Data between
supply chain partners is only to be exchanged upon request or when critical
situations call for an alert of affected partners.

• Proactive monitoring - Intensive monitoring of a large number of orders incurs
cost that cannot be neglected. The detection of orders with a high probability
of encountering events that threaten their proper fulfillment is needed. With
this knowledge a more focused proactive monitoring is enabled optimizing
the cost-benefit-relation of a supply chain monitoring solution.

• Flexible monitoring - The intensity of monitoring efforts has to correspond
to the likelihood of disruptive events (see above). In dynamic supply chains
error-prone order types may evolve over time into reliable ones that should not

An Ontology for Agent-Based Monitoring of Fulfillment Processes 325

be monitored as closely as newly evolving critical order types. Ideally a supply
chain monitoring solution autonomously adapts to such new conditions in its
environment.

• Autonomous analysis of gathered information - Data gathered from internal
and external sources regarding the status of an order and its suborders has
to be analyzed. The complex dependencies between orders and suborders
have to be considered while aggregating the respective order information.
Furthermore, an interpretation of the current situation of an order using the
available data is needed to facilitate necessary management actions.

• Intelligent generation of alerts - Based on the analysis of monitoring data a
supply chain monitoring system has to be able to communicate with intra-
and inter-organizational systems and users to inform them of important de-
velopments, to trigger actions and to enable decision-making. Such alert gen-
eration facilitates operational fulfillment management across supply chains.

2. Supply Chain Monitoring

2.1. Supply Chain Model

Supply chain monitoring solutions for tracking orders need to be analyzed in the
context of a domain. A typical logistics scenario consists of a variety of manu-
facturers, suppliers and logistics service providers. Figure 2 illustrates a scenario

Compressor
manufacturer

Chassis supplier
Logistics service
provider

Electronic
controls
supplier

Chip
supplier

Customer

Logistics service
provider

Logistics service
provider

Issued
order

Supply chain
partner

Figure 2. Order network in a supply chain

326 Zimmermann, Käs, Butscher and Bodendorf

of a compressor supply chain. The links between the organizations represent the
issued orders and suborders resulting from a customer’s order. The example shows
that the compressor manufacturer generates two orders for components (chassis
and electronic controls) and one order placed with a logistics service provider to
transport the finished product to the customer.

The linkage between incoming orders (these received by a company) and
outgoing orders (those generated to fulfill the incoming orders) is of major impor-
tance. During the tracking process each enterprise has to check its suborders that
correspond to a monitored incoming order. The information retrieved concerning
these suborders is needed to derive the current status of the monitored incoming
order. Matching the corresponding incoming and outgoing identifiers is one of the
tasks that each partner is responsible for.

2.2. Agent-Based Concept

A concept for distributed supply chain monitoring has been developed. This ap-
proach differs from traditional isolated and centralized tracking systems that are
widely implemented within logistics service provider networks [3] and similar ap-
proaches of production control [4]. However, an agent-based solution is better
suited to meet the requirements defined above. It focuses on critical orders, allows
for real-time tracking of orders across the supply-chain and offers the ability to
react in a timely manner to unforeseen events during order fulfillment.

The use of software agents in the supply chain domain typically focuses on
optimizing schedules through distributed coordination mechanisms (e.g. [5]). A
general approach to supply chain management that covers planning and execution
of actions with different types of software agents is presented by Fox [6].

Other agent-based concepts analyze the dynamic behavior of supply chains.
This behavior results from the interactions of supply chain partners which can be
simulated using agent technologies [7]. Research in the domain of information gath-
ering agents in supply chains is generally concerned with searching for information
in internet resources especially to prepare a transaction (e.g. by comparing and
combining offers) [8]. In contrast, the supply chain monitoring approach presented
in this paper focuses on monitoring individual orders that are already issued. The
aim is to gather information on orders and their related suborders with the help
of software agents.

The agent-based supply chain monitoring system outlined here is based on
the standards of the Foundation for Intelligent Physical Agents (FIPA). These
standards define basic technical applications and services needed in a multi-agent
environment (e.g. communication infrastructure, yellow pages services) [9]. Besides
these applications other standards like the definition of an agent communication
language (FIPA-ACL) [10] and basic interaction protocols [11] are used to define
the concept of the monitoring system.

Four agent types in three different application layers are proposed to realize
the desired monitoring functionality (see fig. 3) [12]. The first layer is characterized
as the external communication layer which is represented by the discourse agent

An Ontology for Agent-Based Monitoring of Fulfillment Processes 327

of a company. It is concerned with the communication of monitoring information
across the supply chain by interacting with the agent systems of other supply chain
partners. This interaction is needed when information on suborders is gathered
(pulled) and when important status information is proactively distributed (pushed)
within the supply chain.

Discourse agent

Coordination agent

Surveillance agent i

Wrapper
agent

Wrapper
agent

ERP-system
(e.g. SAP R/3)

Production
controlling
database

Manufacturer‘s agent platform

Supplier‘s agent
platform

Discourse agent

Coordination agent

Surveillance agent i

Wrapper
agent

Wrapper
agent

ERP-system
(e.g. SAP
R/3)

Production
controlling
database

Supplier‘s
agent
platform

Inter-organizational communication

In
tra

-o
rg

an
iz

at
io

na
l c

om
m

un
ic

at
io

n

...

...

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

Discourse agent

Coordination agent

Surveillance agent i

Wrapper
agent

Wrapper
agent

ERP-system
(e.g. SAP R/3)

Production
controlling
database

...

...

Layer 1

Layer 2

Layer 3

Discourse agent

Coordination agent

Surveillance agent i

Wrapper
agent

Wrapper
agent

ERP-system
(e.g. SAP R/3)

Production
controlling
database

...

...

Layer 1

Layer 2

Layer 3

Figure 3. Agent architecture of the supply chain monitoring system

Layers two and three host the monitoring functions. They are responsible
for gathering and analyzing the information available from internal and external
sources. In the second layer the coordination agent hosts, besides others, an or-
der profiling function and thereupon decides autonomously which orders are to
be monitored. In addition, the request from a customer (respectively its agent)
for monitoring information will also force the coordination agent to trigger the
monitoring of an order as long as an order is not yet monitored (see also fig. 4).

For each monitored order of an enterprise a dedicated surveillance agent is
started. It searches for desired status information within its company’s resources
(e.g. in a SAP R/3 system) by querying wrapper agents and it communicates with
other enterprises. This external communication is facilitated through a cooperation

328 Zimmermann, Käs, Butscher and Bodendorf

with the discourse agent which is responsible for managing external communica-
tions. The surveillance agent transmits requests for status information regarding
the suborders of its monitored order to the discourse agent which forwards these
requests to the respective supply chain partners. In addition, the surveillance agent
analyzes and interprets the gathered data. This information is transmitted to the
coordination agent, which in turn decides on an appropriate action if the situation
calls for an external alert to a customer or supplier.

At the third level wrapper agents act as interfaces to proprietary data sources,
e.g. they enable the query of internal databases (e.g. an ERP system). Other types
of wrapper agents access internet resources, e.g. conventional tracking systems of
carriers. As a result, an integration of conventional - non-agent-based - exter-
nal resources is also available, which facilitates the adaptation of the agent-based
monitoring concept.

Coordination agent

Discourse agent

BeobachtungsagentBeobachtungsagentSurveillance agent i

Initialize

Exchange of monitoring information with supply chain
partners (agents / agent platforms)

Request
from
customer

Alert and/or
filtered response
to customer

Request for
monitoring
data from
supplier

Status of the
monitored
order

Monitoring
data from
supplier

• Management of dialogs
• Analysis of message content

(ontology)
• Communication with other

agent platforms

• Initialization and termination
of surveillance agents

• Proactive detection of potentially
critical orders

• Update of order profile data base
• Implementation of information

policies

• Monitoring of a specific order
• Data gathering concerning

suborders issued to suppliers
• Analysis of gathered monitoring

data

time

Agent functions

Profile
matching

BeobachtungsagentBeobachtungsagentWrapper agent j

Request monitoring
data from internal

data sources
(e.g. SAP R/3)

Monitoring
data from internal
data sources
(e.g. SAP R/3)• Interface to proprietary data

sources:
• Data bases
• HTML / XML / WebServices
• RFID

Agent interaction

Alert from
supplier

Analysis of
monitoring data

Figure 4. Agent interaction in a supply chain monitoring system

An Ontology for Agent-Based Monitoring of Fulfillment Processes 329

3. Ontology

An ontology is needed to enable the definition of content for the agent communi-
cation. Besides different types of monitoring data information on the environment
of the software agents is needed to allow autonomous behavior of the agents. An
ontology is an appropriate instrument to represent the relevant concepts of the
environment (e.g. an enterprise) and tracking data related to a monitored order
[13].

3.1. Methodological Approach

To design an ontology it is important to define the functions of the ontology and
to characterize the users of the ontology [14]. The major role of the supply chain
monitoring ontology is to act as the medium to define the content of the com-
munication between the software agents in the proposed supply chain monitoring
system. By providing a common understanding of the structure of the information
needed for supply chain monitoring, the ontology enables the agents to extract rel-
evant data from distributed data sources, to communicate with other agents and
to cooperate. This implies that the supply chain monitoring ontology can represent
all processes, organizational units and objects that are relevant within the supply
chain environment. The relevant data is derived from the scenario described above
as well as from the tracking data model (see next section).

Based on this, a rough first draft of the ontology can be derived that is it-
eratively refined step by step. There are several possibilities to derive this initial
design. Holsapple and Joshi identify five basic approaches to ontology design: in-
spiration, induction, deduction, synthesis and collaboration [15]. Combinations of
these approaches are possible.

For the design of the supply chain monitoring ontology a combination of the
inductive and the synthetic approach is used. The inductive approach is charac-
terized by observing, examining, and analysing (a) specific case(s) in the domain
of interest and applying this specific case to other cases in the same domain [15].
For the synthetic approach, concepts from existing ontologies are adopted and in-
tegrated. The combination of these two approaches is relevant for this project as
concepts from an existing ontology for the enterprise domain can be reused (syn-
thesis) and, from an inductive perspective, the case of a business partner serves
as a basic scenario. This basic scenario consists of one customer, one vendor and
one logistics service provider. In a top-down process the most general concepts of
this specific scenario were defined and subsequently refined. In a second step the
ontology was enlarged to incorporate scenarios including multiple manufacturers,
suppliers and logistics service providers.

Not all concepts of the ontology need to be defined in the design phase as
the Enterprise Ontology [16] can partially be reused. It specifies a wide variety of
concepts from the domain of enterprises. As the supply chain monitoring ontol-
ogy belongs to the same domain, the Enterprise Ontology already provides some
important general concepts. The main benefit of reusing the Enterprise Ontology

330 Zimmermann, Käs, Butscher and Bodendorf

is to allow different multi-agent systems that may be concerned with varying as-
pects of supply chain management (e.g. procurement planning vs. order tracking)
to communicate on a generic level as long as they commit themselves to the same
top-level-ontology (here the Enterprise Ontology). However, some important high-
level concepts for the supply chain domain are missing and have been added, e.g.
the concept of an order.

3.2. Tracking Data

The individual order is the main object that is tracked during supply chain mon-
itoring. Orders are linked to other orders forming a network. During the tracking
process attributes that characterize an order and its fulfillment are to be gathered
[17]. To enable reactions to unforeseen events further information is needed, e.g.
about the source of a disruption (see fig. 5).

To identify specific orders an Order-ID as well as references to other orders
have to be provided to consider the interdependencies in the order network. The
resulting data type is basic data.

Decision data

Control data

Profile data

Planned delivery
date

Planned
cycle time

Promised
availability

Status
data

Cost

Assets

Quality

Time Date of deliveryStarting date of
production

Date of
availability to ship

Basic data

TransportationProduction Warehousing

Measuring
performance

Comparing plan and
actual data

Enabling
decision making

Proactively
tracking orders

Identifying orders

Requirements Tracking data Fulfillment processes

Completeness of
delivery in %# of defects % of positions

available to pick

% usage of truck
capacity

Work-in-progress
(specific order) Reserved quantity

Transportation
cost

Material cost
(specific order)

Picking and
packaging cost

Order ID
Suborder ID

Order ID
Suborder ID

Order ID
Suborder ID

Info (wrong
delivery address)

Disruption
(machine failure) Info (out of stock)

• Product
• Quantity

• Destination
• Route

• Order volume
• # of positions

Figure 5. Examples of tracking data for supply chain monitoring

To characterize the fulfillment of a single order various performance criteria
can be used such as cycle times or quality and cost measures. These measures are
typically derived from attributes of an order. As an example the beginning and the
end of production for a specific order are generally aggregated to the performance

An Ontology for Agent-Based Monitoring of Fulfillment Processes 331

measure ”cycle time”. The requirement to calculate performance measures results
in so called status data. This data covers the performance indicators of the Supply-
Chain-Council’s SCOR-model [18]. Therefore the status data types time, quality,
assets and cost are defined.

Another requirement for tracking orders on a real-time basis is the ability
to compare data on given events to data on planned events. Scheduled delivery
dates, defined tolerances for product quality and target costs are examples of such
information. The respective data type is control data.

For managing and optimizing the fulfillment of individual orders information
concerning the actual status of an order and control data is not enough to make
decisions. Special data is necessary to react to unforeseen events during fulfillment.
For instance information on the causes of a disruption (e.g. a late delivery because
of traffic congestion) is necessary to decide whether to issue another order (what
makes sense, if the order is completely lost) or to accept the delay and adjust the
plans. The relevant data for decision making is called decision data.

Supply chain monitoring focuses on critical orders. To identify these orders
a profiling process is needed which requires attributes for the definition of order
profiles. Based on these profiles proactive tracking of potentially critical orders
is enabled. Attributes of an order profile do not change during order execution,
e.g. the ordered product type and the quantity or the destination of an order.
Attributes that can be used for defining an order profile are referred to as profile
data.

3.3. Concepts

To represent a supply chain scenario the fulfilment process can be described as an
interaction between three main concepts: Actors, Activities/Processes and Orders
(see fig. 6). Different tracking data types are linked to the concept of an Order.
An Actor issues an Order which is received by another Actor in the supply chain.
More Actors can be involved in the fulfilment process if further Orders have to be
issued to be able to fulfil the first Order. This is the case if a customer orders a
product from a manufacturer who needs to order components from his suppliers
for the assembly of this product.

By issuing an Order a sequence of Activities/Processes is triggered which has
to be performed to fulfil the Order. These Activities are carried out by the respec-
tive Actors. As the fulfilment process is dynamic one more concept is relevant:
Time. The time axis is needed for tracking the status of the fulfilment process as
the Activities are carried out over a period of time. The majority of concepts of
the supply chain monitoring ontology can be grouped into the four categories men-
tioned above: Actors, Activities/Processes, Orders, Time. The main concepts in
each category are described in the following paragraphs. Subsequently a scenario
illustrates the use of the concepts for the description of situations in the supply
chain monitoring domain.

The central concept concerning Actors is LegalEntity (see fig. 7). A LegalEn-
tity is recognized as having rights and responsibilities in the world by large and by

332 Zimmermann, Käs, Butscher and Bodendorf

Order

Actor Activity

Time

issues

receives
triggers

performs

triggers

Figure 6. Basic concepts of the monitoring ontology

legal jurisdiction in particular [16]. Customer, Vendor and Carrier are LegalEnti-
ties that have relationships with each other.

LegalEntity

Corporation Person

Carrier Vendor Customer

Address1 1..*

1..*1..* 1..*1..*
hasConnectionTo hasConnectionTo

hasConnectionTo

**

subconcept of

relationship between concepts

1..* cardinality

Figure 7. Actors in the supply chain

The central concept Activity (see fig. 8) represents the generalization of all
actions that have to be executed within the fulfillment process. On the one hand
Activity is needed to describe a specific scenario while on the other hand the
fulfillment of an Activity can indicate the achievement of a Milestone (see below)
and is therefore also important for representing tracking data.

An Ontology for Agent-Based Monitoring of Fulfillment Processes 333

ActivityActivityState

Actor Precondition Effect

CalendarDate1..* 1
activityStatus

actualEffect

LegalEntity

endsWith

beginsWith

actualPreconditionisPerformedBy

1 1

1..*

1..* 1..*

1

1

1

StateOfAffairs EffectWhenHold

stateDescription whenHold

Precondition
WhenHold

whenHold

1

1..* 1..*

1..*1..*

1 1

subconcept of

relationship between concepts

1..* cardinality

Figure 8. Activities in the fulfillment process

For the supply chain monitoring ontology fifteen specific activities have been
identified: ReceivingOrder, ConfirmationOfOrder, ProductionPlanning, IssuePro-
ductionOrder, Manufacturing, QualityAssurance, Picking, Packaging, Dispatch-
Goods, PickingUpOrderFromSender, ReassignOrder, ArrivalAtHub, ArrivalAtCus-
toms, ClearingCustoms, Delivery. These activities represent the major fulfillment
processes in a supply chain on a generic modelling level. The execution of an Activ-
ity leads to a specific Effect, which consists of a StateOfAffairs that must hold true
at a point of time (which is specified by the EffectWhenHold concept). An Activity
has a StartDate and an EndDate. The status of an Activity at a certain point of
time is described by the ActivityState. The fulfillment process is a sequence of Ac-
tivities that are usually performed one after the other. Therefore, most Activities
have as a Precondition the execution of another Activity. An Activity is performed
by an Actor. A LegalEntity can be an Actor.

The concept of an Order is one of the basic concepts to model a supply
chain scenario (see fig. 9). It is a legally binding contract concerning a transac-
tion between LegalEntities. An Order thus defines relationships between partners
in a supply chain. An OrderIncoming is an Order received by a LegalEntity. To
fulfill this Order it might be necessary to place suborders (OrderOutgoing) with
suppliers (e.g. a Producer) or a Carrier for distribution. This is denoted by the
relation triggers (attribute of OrderIncoming) and the corresponding attribute
isTriggeredBy of an OrderOutgoing. An Order consists of one or more OrderItems
and it is identified by its OrderId. An Order receives an OrderId from its issuer

334 Zimmermann, Käs, Butscher and Bodendorf

as well as from the recipient: An OrderOutgoing receives an OrderOutgoingId, an
OrderIncoming an OrderIncomingId. For monitoring purposes it is necessary to
find the corresponding OrderIncoming/OrderOutgoing combination. The Order-
Incoming also contains the OrderOutgoingId of the corresponding OrderOutgoing.

Order

OrderItem

Milestone

OrderOutgoingOrderIncoming

DisruptiveEvent
1

0..*

consistsOf

Effect

has_disruptiveEvent

1..*

1

1

0..*

is_IssuedBy & is_AddressedTo

MilestoneDate

is_ReceivedBy
1

Consumer

LegalEntity

has_milestone

1

1..*

1..*

1

1 1
effectAchieved

dateOfAchievement

PlannedFulfillmentDate
1..* 1..*has_planned-

FulfillmentDate

OrderType

1..*

1
has_type

OrderID

isIdentifiedBy

1

1

1 0..*

correspondsTo & triggers
& isTriggeredBy

Carrier

Rank

1..*

1

has_rank

Further relationships
concerning quality
and costs

0..*

Activity

has_actualEffect

1..*

1

Vendor Producer

has_disruptedActivity

DateDisruptiveEvent

DisruptiveEventDescription

DisruptiveEventSeverity

1 1

1

1

has_disruptedActivity

has_description

has_severity

has_disruptiveEventDate

subconcept of

relationship between concepts

1..* cardinality

Figure 9. Orders in a supply chain

The Activities necessary to fulfill an Order depend on the respective Order-
Type. Three OrderTypes have been defined: ProductionOrder, WarehousingOrder
and TransportationOrder. The concept of a Milestone is closely associated with
Activities, since the Effect (that is the postcondition or output) of an Activity in
combination with the date of achievement of the Effect (MilestoneDate) denotes a
Milestone. To each OrderType only certain Milestones apply. Therefore Milestones
are classified (according to the OrderType) into ProductionMilestone, Warehous-
ingMilestone and TransportationMilestone. Since Milestones respectively Activi-
ties are achieved/conducted to fulfill an Order the concept Rank is introduced
which helps to define the sequence of Milestones. For every Milestone planned
dates of achievement and actual dates of achievement are defined to allow the

An Ontology for Agent-Based Monitoring of Fulfillment Processes 335

calculation of deviations. Using the Rank concept the planned sequence of Mile-
stones can be compared to the successively achieved Milestones and forecasts on
the timeliness of an Order can be represented as well.

The third important group of concepts related to Orders are the Disrup-
tiveEvents that cause the need for monitoring orders. They can be characterized
by their date of occurrence (DateDisruptiveEvent) and by a severity measure that
is defined in DisruptiveEventSeverity. For an assessment of a DisruptiveEvent a
description of the event is needed which supports the decision making process by
offering insight into details of the event. Other types of status data that are in-
corporated in the ontology but not explained here refer to the group of quality
measures, e.g. the ratio of delivered to ordered quantity. The concept of Time
plays an important role for tracking Orders along the supply chain. However, it is
not specific for this environment. The Enterprise Ontology uses a Time concept
imported from Allen’s work [19]. This concept is also used for the supply chain
monitoring ontology.

3.4. Supply Chain Scenario

Figure 10 shows a sample scenario for fulfillment processes in a supply chain.
Customer EnergyAlways issues an order to the Vendor CompressorManufacturer
which issues related suborders to a Vendor (ChassisSupplier) and a Carrier (Lo-
gisticsServiceProvider).

Vendor:
CompressorManufacturer
receives: OrderIncoming

(OrderForCompressorXY)
issues: OrderOutgoing

(ChassisX)
issues: OrderOutgoing

(TransportY)
Carrier:
LogisticsServiceProvider

receives: OrderIncoming
(TransportY)

Vendor:
ChassisSupplier

receives: OrderIncoming
(ChassisX)

Customer:
EnergyAlways

issues: OrderOutgoing
(OrderForCompressorXY)

OrderIncoming:
OrderForCompressorXY (subclassOf: Order)
is_IdentifiedBy: OrderId (453279)
is_ReceivedBy: LegalEntity (CompressorManufacturer)
is_TriggeredBy: LegalEntity (EnergyAlways)
correspondsTo: OrderOutgoing

(OrderForCompressorA)
triggers: OrderOutgoing

(ChassisX)
triggers: DeliveryOrderOutgoing

(TransportY)
has_type: ProductionOrder
has_destination: Address (Nuremberg, Germany)
consistsOf: OrderItem

(CompressorXY;1)
is_finished: False
has_actualFulfillmentDate: -
has_plannedFulfillmentDate: (2004-06-24)
has_milestone: OrderReceipt (2004-05-25)
has_disruptiveEvent: -

Concept: Instance

Restriction: Concept (Instance)
Order
relationship

Figure 10. Supply chain scenario

336 Zimmermann, Käs, Butscher and Bodendorf

The Vendor CompressorManufacturer receives an OrderIncoming. It corre-
sponds to the OrderOutgoing issued by the Customer and has not yet been fulfilled
(ActualFulfillmentDate: –). The plannedFulfillmentDate is a restriction (attribute)
which refers to the general concept CalendarDate with the instance ”2004-06-24”.
The OrderIncoming consists of the OrderItem CompressorXY and indicates an
ordered quantity of ”1”. As Vendor CompressorManufacturer needs ChassisX to
be able to produce CompressorXY for the OrderIncoming it has to trigger an
OrderOutgoing for ChassisX addressed to Vendor ChassisSupplier. The finished
product (CompressorXY) has to be delivered to the deliveryPlace (Nuremberg).
The delivery is not done by the Vendor. The Vendor issues a DeliveryOrderOut-
going addressed to the Carrier LogisticsServiceProvider.

4. Implementation

Different ontology description languages exist for the formal definition of ontolo-
gies. To facilitate interoperability within the priority research program ”Intelligent
Agents and Realistic Application Scenarios” of the Deutsche Forschungsgemein-
schaft (DFG) [20] which this project is part of, OIL (Ontology Inference Layer)
[21] and its further development into DAML+OIL has been agreed upon as the
uniform ontology language.

class Order

documentation:
A legally binding contract concerning a transaction between LegalEntities.

type:
primitive

constraints:
restriction is_identifiedBy to-class OrderId
restriction has_type to-class OrderType
restriction has_destination has-class Address
property-constraint consists_Of min-cardinality 1 OrderItem
restriction is_finished has-class BooleanValue
restriction has_orderReceiptDate #1 has-class DateOrderReceipt #1
restriction has_plannedFulfillmentDate has-class FulfillmentDate
restriction has_dateOfAchievement has-class FulfillmentDate
restriction has_milestone has-class Milestone
restriction has_disruptiveEvent has-class DisruptiveEvent

known subclasses:
OrderIncoming
OrderOutgoing

used in classes:
OrderIncoming
OrderOutgoing

Figure 11. Order concept

OIL combines three important aspects provided by different communities: it
inherits the formal semantics and reasoning support from Decision Logics, incor-
porates the essential modeling primitives of frame-based systems and uses existing
Web standards by providing XML and RDF based syntax [22].

An Ontology for Agent-Based Monitoring of Fulfillment Processes 337

For the design of the supply chain monitoring ontology, the ontology editor
OilEd has been used [23]. It provides an easy-to-use connection to the FaCT rea-
soner. The FaCT reasoner is a reasoning tool that checks the consistency of all
class definitions in an ontology and discovers sub-class/super-class relationships
that are implied by the definitions in the ontology but not explicitly stated [21].
The FaCT system includes one reasoner for the logic SHF and one for the logic
SHIQ and is based on a CORBA client-server architecture. Within this project,
the FaCT reasoner is used to validate the ontology. In addition, current versions of
OilEd provide a DIG (DL Implementors Group) interface that allows to connect
the Racer inference machine directly to OilEd [24].

OilEd supports various formats for exporting ontologies such as Simple RDFS,
DAML+OIL, SHIQ, HTML, DIG, OWL and OWL RDF/XML. The flexible use
of different formats allows to use the same ontology in different applications with
a relatively small customizing effort. Since the standardized DAML+OIL syntax
is machine-readable but inappropriate for illustration an HTML-export is used to
present an excerpt of the ontology (see fig. 11).

Each class (concept) is documented in natural language. A class can have
various restrictions applied to a property. For example, the class Order has a re-
striction attached to the property has-orderReceiptDate which has to be of the type
(has-class) FulfillmentDate. There can be various subclasses of a class. The sub-
classes inherit all restrictions of the Order class and may define further properties
in accordance with the specific characteristics of the subclasses (e.g. OrderIncom-
ing has a restriction is-ReceivedBy which is not necessary for OrderOutgoing). The
ontology currently consists of approximately 140 classes and 70 properties.

5. Ontology-Based Agent Communication

Supply chain monitoring focuses on the exchange of tracking data between com-
panies. The information is used to optimize the fulfillment of individual orders.
Therefore, agents engage in dialogs to gain insight into the status of orders and
suborders. They use the ontology as the semantic hub for their communication
activities. Generally profile data is not the main issue of the communicative acts
as it is mainly stable and known to the partners concerned with an order. In fact,
the dynamically changing status data and decision data are of interest during the
monitoring process. In addition, control data is needed to compare the actual sta-
tus of an order with the planned activities and to evaluate disruptive events in the
light of the planned course of action. The behavior of a surveillance agent and the
resulting interaction with other agents is depicted in fig. 12, fig. 13 and fig. 14.

After its initialization which is triggered by the coordination agent a sur-
veillance agent gathers order details (e.g. the plannedFulfillmentDate) since it has
only received an order identification number from the coordination agent. The
order details are extracted from an internal data base (e.g. the Enterprise Re-
source Planning (ERP) system of a company) by a wrapper agent (see fig. 13)

338 Zimmermann, Käs, Butscher and Bodendorf

waiting

init

V

[orderID]

[orderID] [orderID]

identifySuborders requestOrderDetails

V[listOfSuborders] [orderDetails]

V

[listOfSuborders]

requestSupplierStatus requestInternalStatus

V[listOfSupplierStatus] [internalStatus]

[orderDetails]

waiting for reply or timeout

interpretStatusData sendFinishedResult

terminate

sendInterimResult

[listOfSupplierStatus + internalStatus]

[orderNotFinished + result] [orderFinished + result]

[terminate]

[waitingTime]

[result]

Figure 12. Behavior of a surveillance agent

SurveillanceManager@CA InformationGatherer@SA WrapperAgent (ERP system)

init

INITIALIZE +
REQUEST: OrderStatus (Orderi)

REQUEST: OrderData (Orderi)

ERP-Database

SQL: Select [] From [] Where Orderi

OrderData (Orderi)
Filter

INFORM: OrderData (Orderi)

REQUEST: SubOrders (Orderi)
SQL: Select [] From [] Where Orderi

SubOrders (Orderi)
Filter

INFORM: SubOrders (Orderi)

Semantic Mapping

Semantic Mapping

CA = coordination agent
SA = surveillance agent

XXX@.. = role of an agent

Further interactions
conducted before

INFORM is returned

Figure 13. Agent interaction - OrderDataRequest

An Ontology for Agent-Based Monitoring of Fulfillment Processes 339

and the data is mapped to the terms defined within the ontology (see also fig.
10). The agents use the performatives of the FIPA agent communication language
(FIPA-ACL) [10] while the content is defined based on the DAML+OIL ontology
presented above. In addition, the surveillance agent identifies the relevant subor-
ders. This information is needed to decide which external supply chain partners
are to be queried for monitoring information.

Information on the current status of the monitored order and its external
suborders is gathered in two ways:

• Internal resources (e.g. ERP, warehouse management or production control
systems) are accessed via dedicated wrapper agents. In this case a similar
interaction evolves as depicted in fig. 13.

• External supply chain partners are queried that have received a suborder. The
request for tracking data to an external supply chain partner is communicated
via the discourse agents of both companies that act as the technical and
semantic gateways between the companies’ agent systems (see fig. 14). Again,
the information on the status of a suborder is defined in the terms of the
ontology (e.g. information about milestones and disruptive events).

InformationGatherer@SA Communication
Manager@DA

Communication
Manager@DA (Supplier)

REQUEST: SupplierStatus (Orderi)

REQUEST: OrderStatus (Orderi)

INFORM: OrderStatus (Orderi)

SurveillanceManager@CA

REQUEST: OrderStatus (Orderi)

Identify supplier
address

Tracking

INFORM: CurrentOrderStatus (Orderi)

Check message +
map to conversation

INFORM: SupplierStatus (Orderi)
DA = discourse agent
CA = coordination agent
SA = surveillance agent

XXX@.. = role of an agent

Figure 14. Agent interaction - SupplierStatusRequest

Based on the data which the surveillance agent receives from its various
communication partners it is able to analyze the current status of the monitored

340 Zimmermann, Käs, Butscher and Bodendorf

order. The analysis considers various dimensions of status data (e.g. timeliness and
completeness of an order or a suborder) and evaluates disruptive events that have
been identified during the search for tracking data (see fig. 15). For the analysis of
the data a fuzzy-based mechanism is used because it is suited to achieve realistic
assessments of an order’s fulfillment situation. Concluding, the surveillance agent
checks the current plan for the achievement of the defined milestones and adjusts
this plan if necessary.

receiveData

V

[listOfSupplierStatus + internalStatus]

calculateOrderStatus evaluateDisruptions

V

returnInterpretedData

changeMilestonePlan

checkMilestonePlan

[result]

Figure 15. Agent behavior - analysis of status data

The data which is gathered and analyzed by the surveillance agent is the
informational basis for the coordination agent to answer information requests from
other (customers’) agents and to proactively warn actors in the supply chain of
serious deviations and disruptive events.

6. Prototype Systems

Two main prototype systems have been developed: a generic system that is based
on a simulative environment and a business showcase in cooperation with a logistics
service provider. The generic prototype system realizes the main features of the
agent-based monitoring concept and uses the supply chain monitoring ontology to
define the contents of agent communication. It is based on the FIPA compliant
JADE platform. In fig. 16 the interaction between three companies in a simulative
environment that are linked through order relations (orders and their suborders)
is depicted. The interaction between the agent systems of the companies evolves
during the search for monitoring data that characterizes the status of the related
suborders.

An Ontology for Agent-Based Monitoring of Fulfillment Processes 341

In fig. 16 examples of the data analysis results are presented. The aggregated
order status is an abstract but intuitive measure for the current fulfillment status
of an order. It incorporates consequences of disruptive events such as delays and
incomplete deliveries with the help of a Fuzzy-Logic module. Every time new
monitoring data is gathered by the surveillance agent an update of the order
status is made. In addition, the criticality of disruptive events is evaluated and if
necessary an adjustment of milestones due to delays in the fulfillment processes is
conducted.

Aggregated order status Evaluation of disruptive event

Adjustment of milestone plan

Agent interaction

Figure 16. Generic prototype

The generic prototype is used to demonstrate the ability to realize the supply
chain monitoring concept in a multi-stage supply chain environment. Besides the
Fuzzy-Logic-based analysis mechanism it also realizes an efficient method to focus

342 Zimmermann, Käs, Butscher and Bodendorf

on potentially critical orders based on order profiles. This method is implemented
based upon a rule-based expert system (Java Expert System Shell (JESS)) which
is integrated into the coordination agent. As a result the use of order profiles
allows to reduce the necessary amount of communicative interactions between the
companies in a supply chain.

This prototype system is also integrated into a larger supply chain sce-
nario that is based upon various multi agent systems which cover further as-
pects of supply chain management (e.g. production planning). The scenario called
Agent.Enterprise [25], [26] is used to evaluate the performance of the monitoring
concept in a realistic and complex simulated supply chain environment.

The second prototype system is realized in cooperation with a logistics service
provider. It demonstrates that the agent-based supply chain monitoring concept
can be adapted to and integrated into a real-life environment [2].

Milestone
states

Order
status

Surveillance agent

Profile

Modify profile

Priority of profile

Initial profile
rating

Profile
parameters

Profile
rule
(editable)

Input
for

Coordination agent

Figure 17. Business showcase

Specifically, it realizes the order profile mechanism of the coordination agent
and provides an intuitive user interface to define and edit order profiles (see fig.
17). The ability to match the data types of the business partner to the supply chain
monitoring ontology is a second important result of the business showcase. The

An Ontology for Agent-Based Monitoring of Fulfillment Processes 343

prototype system is able to query the internal SAP database of the logistics service
provider as well as distributed tracking databases of different carriers via their web
interfaces. In each case a dedicated wrapper agent is used which can access the
data source and which converts the extracted data into the format required by the
agent system and defined by the supply chain monitoring ontology.

Users are supported in their ability to react to identified problems by a graph-
ical user interface of the surveillance agent (see fig. 17). It consists of two major
graphical elements - the visualization of the different milestones (top) and an ag-
gregated order status on the left both based on a traffic-light metaphor. Additional
information on the order details and the details of the fulfillment process can be
accessed manually by the user if necessary.

7. Conclusion

Irregularities and disruptive events in fulfillment processes have a major influence
on supply chain performance. It is necessary to optimize the processes of gathering
and communicating information related to such events. The agent-based concept
presented for supply chain monitoring allows to speed up these processes and to
focus on the monitoring of critical orders, thereby reducing the extent of communi-
cation in a supply chain. To enable the exchange of tracking information between
software agents an ontology has been developed that comprises relevant tracking
information and important concepts of a supply chain scenario. The formal model
enables an efficient reuse of the ontology in different applications.

The ontology is used as the semantic basis for two prototype systems that
demonstrate the applicability of the agent-based supply chain monitoring concept.
Future developments will incorporate inferencing capabilities into the generic pro-
totype system based on the RACER inference machine. The discourse agent which
is responsible for managing ontology-related aspects of the inter-organizational
communication will benefit from these inference mechanisms. Automatic checks of
incoming and outgoing agent messages against the ontology will be one of the ma-
jor benefits. Finally, further experiments to evaluate the supply chain monitoring
concept in the Agent.Enterprise environment are on the roadmap.

References

[1] Radjou N., Orlov L.M., Nakashima T., Adapting to Supply Network Change. Cam-
bridge (MA): Forrester Research Inc., 2002.

[2] Zimmermann R., Paschke A., PAMAS - an agent-based supply chain event man-
agement system Proceedings of AMCIS 2003, Mini-track on Intelligent Agents and
Multi-Agent Systems, Tampa, 2003, 1892-1900.

[3] Stein A., Krieger W., Pflaum A., Dräger H., Sendungsverfolgung zwischen Marketin-
ginstrument und Produktionsunterstützungstool. Nürnberg: GVB Schriftenreihe, Vol
40, 1998.

344 Zimmermann, Käs, Butscher and Bodendorf

[4] Teufel T., Röhricht J., Willems P.; SAP-Prozesse: Planung, Beschaffung und Pro-
duktion. München: Addison-Wesley, 2000.

[5] Wagner T., Guralnik V., Phelps J., Software Agents: Enabling Dynamic Supply Chain
Management for a Build to Order Product Line. Agents for Business Automation,
2002.

[6] Fox M.S., Barbuceanu M., Teigen R., Agent-Oriented Supply-Chain Management.
International Journal of Flexible Manufacturing Systems 12, No 2/3 (2000), 165-
188.

[7] van Parunak D., Savitt R., Riolo R., Clark S., DASCh: Dynamic Analysis of Supply
Chains. Http://www.erim.org/∼vparunak/dasch99.pdf, download 2002-05-28.

[8] Wagner T., Phelps J., Qian Y., Albert E., Beane G., A Modified Architecture for
Constructing Real-Time Information Gathering Agents. Agent Oriented Information
Systems (AOIS), 2001.

[9] Foundation for Intelligent Physical Agents (FIPA), Agent Message Transport Service
Specification, Document number XC00067D. Http://www.fipa.org, download 2002-
03-28.

[10] Foundation for Intelligent Physical Agents (FIPA), Communicative Act Repository
Specification, Document number DC00038B. Http://www.fipa.org, download 2002-
03-28.

[11] Foundation for Intelligent Physical Agents (FIPA), Interaction Protocol Library
Specification, Document number XC00025E. Http://www.fipa.org, download 2002-
03-28.

[12] Zimmermann R., Butscher R., Bodendorf F., Huber A., Goerz G., Generic agent
architecture for supply chain tracking. Proceedings of the 2nd IEEE International
Symposium on Signal Processing and Information Technology ISSPIT 2002, Mar-
rakesh: IEEE Press, 2002, 203-207.

[13] Gruber T. R., A translation approach to portable ontologies. Knowledge Acquisition
5 (1993), 199-220.

[14] Uschold M., King M., Towards a Methodology for Building Ontologies. Workshop on
Basic Ontological Issues in Knowledge Sharing, IJCAI-95, 1995.

[15] Holsapple C.W., Joshi K.D., A Collaborative Approach to Ontology Design. Com-
munications of the ACM 45, No 2, 2002.

[16] Uschold M., King M., Moralee S., Zorgios Y., The Enterprise Ontology. Edinburgh,
1997, Http://www.aiai.ed.ac.uk/∼entprise/enterprise/ontology.html-papers, down-
load 2002-02-26.

[17] Zimmermann R., Butscher R., Bodendorf F. An Ontology for Agent-Based Supply
Chain Monitoring. Workshop-Proceedings ”Agent Technologies in Logistics”, ECAI,
Lyon, 2002, 65-78.

[18] Supply Chain Council SCOR-Model, Version 2.0. Http://www.supply-chain.org,
1997.

[19] Allen J.F., Towards a general theory of action and time. Artificial Intelligence 23
(1984), 123 -154.

[20] DFG Priority Research Program 1083 - http://www.realagents.org/

An Ontology for Agent-Based Monitoring of Fulfillment Processes 345

[21] Hurrocks I., Fensel D., Broekstra J., Decker S., Erdmann M., Goble C., van Harmelen
F., Klein M., Staab S., Studer R., Motta E., The Ontology Inference Layer OIL.
Http://www.ontoknowledge.org/oil/papers.shtml, download 2002-03-25.

[22] Fensel D., Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce. Berlin, 2001.

[23] OILED by Sean Bechhofer of the University of Manchester - http://oiled.man.ac.uk/

[24] DL Implementors Group - http://dl.kr.org/dig/

[25] Frey D., Stockheim T., Woelk P.O., Zimmermann R., Integrated Multi-agent-based
Supply Chain Management. WETICE 2003, ACEC Workshop, Linz, 2003.

[26] Frey D., Mönch L., Stockheim T., Woelk P.O., Zimmermann R., Agent.Enterprise
- Integriertes Supply-Chain-Management mit hierarchisch vernetzten Multiagenten-
Systemen. Proceedings der GI Jahrestagung 2003, Frankfurt, 47-63.

Acknowledgment

This paper presents research results originating from a project sponsored by the
Deutsche Forschungsgemeinschaft (DFG) within the priority research program ”In-
telligent Agents and Realistic Application Scenarios”. The project ”Agent-based
Tracking and Tracing of Business Processes” is realized by the Department of In-
formation Systems (Prof. Bodendorf) and the Department of Artificial Intelligence
(Prof. Dr. Günter Görz) at the University of Erlangen-Nuremberg.

Roland Zimmermann, S. Käs, Robert Butscher and
Freimut Bodendorf
Lange Gasse 20
90403 Nürnberg
Germany
e-mail: roland.zimmermann@wiso.uni-erlangen.de

robert.butscher@wiso.uni-erlangen.de

freimut.bodendorf@wiso.uni-erlangen.de

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

