SMART: A SVM-based Misbehavior Detection and Trust Management Framework for MANETs

> Wenjia Li Anupam Joshi Tim Finin

> May 18th, 2010

AN HONORS UNIVERSITY IN MARYLAND

- Introduction and Motivation
- Related Work
- Outlier Detection Algorithm
- Performance Evaluation
- Conclusion and Future Work

8 January 2024

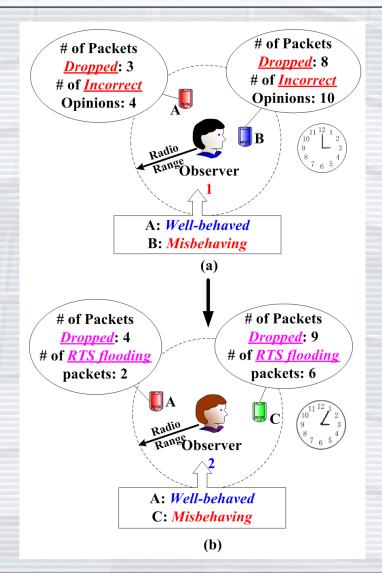
Introduction

- Basic features of mobile ad hoc networks
 - Open and unreliable transmission medium
 - Data are *easily* disclosed to unwanted third parties
 - Node mobility and constantly changing topology
 - Data communication may be *frequently* disrupted
 - Absence of pre-deployed infrastructure
 - Selfish nodes refuse to forward packets for others →
 System performance severely downgraded
 - Limited power supply for each node
 - Consequence: SHORT transmission range and LIMITED computation capability

⇒ Ad Hoc Networks are extremely vulnerable to various misbehaviors

8 January 2024

Misbehavior Detection

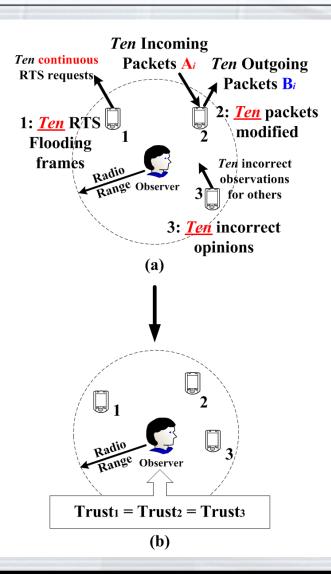

- An important method to protect MANETs from BOTH external attackers AND internal compromised nodes
- Current misbehavior detection mainly relies on a predefined threshold to detect misbehaviors
 - Threshold-based intrusion detection: set a threshold for each kind of misbehavior, and alert only when the number of misbehaviors exceeds the threshold
- Drawbacks of threshold
 - Hard to define beforehand
 - How can we accurately predict an adversary's attack pattern?
 - Need to adjust frequently
 - Adjust according to the changing topology and node mobility
 - Easy to exploit
 - A *smart* adversary reduces its misbehaviors *JUST* below the threshold

8 January 2024

Motivating Scenario I

8 January 2024

Trust Management


- Evaluation of how *trustworthy* a node will be based on the observations to its previous behaviors
- Two types of observations
 - <u>Direct</u> observation (First-hand information)
 - Observations made by a node ITSELF
 - <u>Indirect</u> observation (Second-hand information)
 - Observations obtained from OTHER nodes
- Majority of current trust management schemes model trust in form of <u>ONE single scalar</u>
 - Observations to all types of misbehaviors are used to derive ONE single trust value for each node
 - Neither expressive nor accurate in complicated scenarios

8 January 2024

Motivating Scenario II

8 January 2024

SMART

- SVM-based misbehavior detection and trust manage -ment framework
 - <u>Outlier detection</u> technique is used for behavioral data collection
 - Misbehaviors generally *deviate* from normal behaviors → misbehaving nodes can be viewed as *outliers*
 - <u>SVM</u> technique is used to identify misbehaving nodes
 - Incorporate previous knowledge on misbehaviors to detect unknown misbehaviors
 - <u>Multi-dimensional</u> trust management
 - Divide trustworthiness into several dimensions (for example 3)
 - Each dimension of trustworthiness is derived by a subset of misbehaviors

8 January 2024

Related Work

Misbehavior detection in MANETs

• Selfish node VS. malicious node

- Selfishness: Merely want to preserve resource (battery power, bandwidth), so may deny forwarding packets or route requests
- Maliciousness: Intentionally want to disrupt the network services, so may take any action to meet this goal
 - Packet drop, modification, misroute, fake RTS requests, etc.

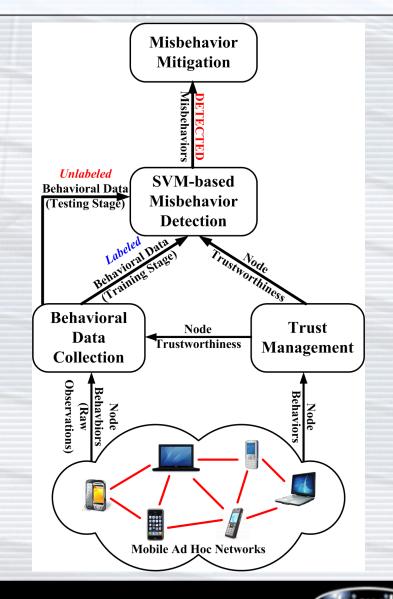
Intrusion detection system (IDS) for MANETs

- IDS sensor deployed on each node
 - NOT energy-efficient
- Cluster-based IDS by Huang et al.
- Efforts to identify routing misbehaviors
 - "Watchdog" & "Pathrater" by Marti et al.

Related Work (Cont.)

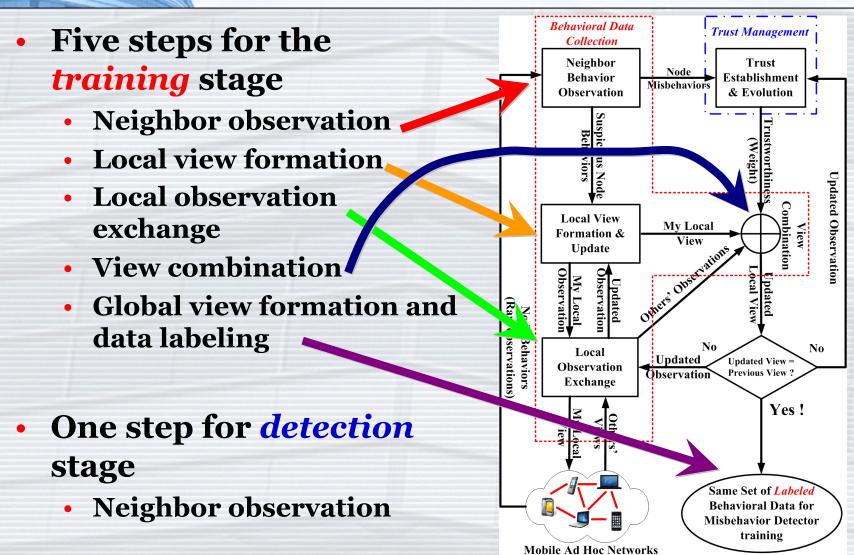
Trust management for MANETs

- Goal: to evaluate behaviors of other nodes and consequently decide the *trustworthiness* for each node based on the behavior assessment
- Various trust management schemes
 - CONFIDANT by Buchegger et al.
 - Four components: a Monitor, a Reputation System, a Trust Manager, and a Path Manager
 - CORE by Michiardi et al.
 - Identifies *selfish* nodes and forces them to cooperate
 - Only *positive* observations are exchanged
 - Node evaluation scheme by Ren et al.
 - Second-hand observations only shared by a subset of neighbors ("trustworthy neighbors")


8 January 2024

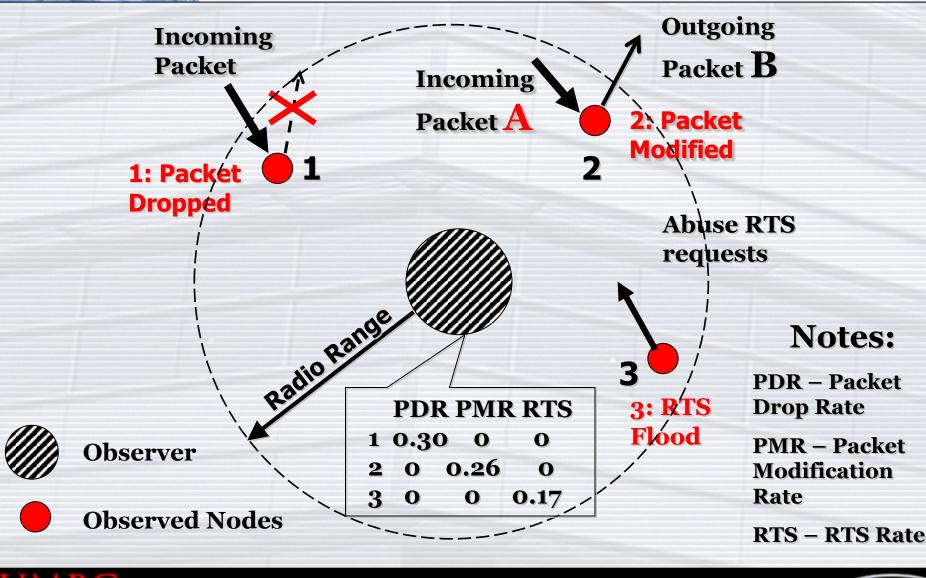
Framework Overview

Four components


- Behavioral data collection
- Trust management
- SVM-based misbehavior detection
- Misbehavior mitigation
- Two stages
- Training stage
- Detection stage

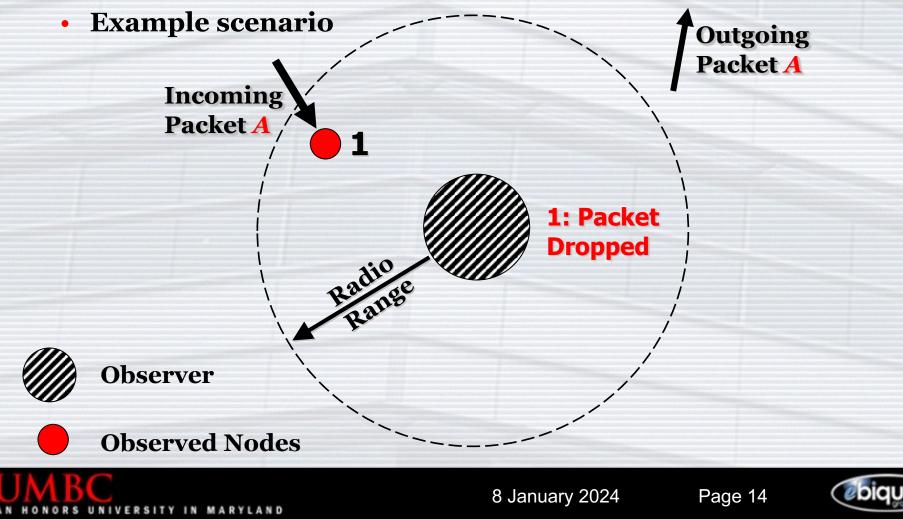
8 January 2024

Behavioral Data Collection



8 January 2024

Local observation and view formation


AN HONORS UNIVERSITY IN MARYLAND

8 January 2024

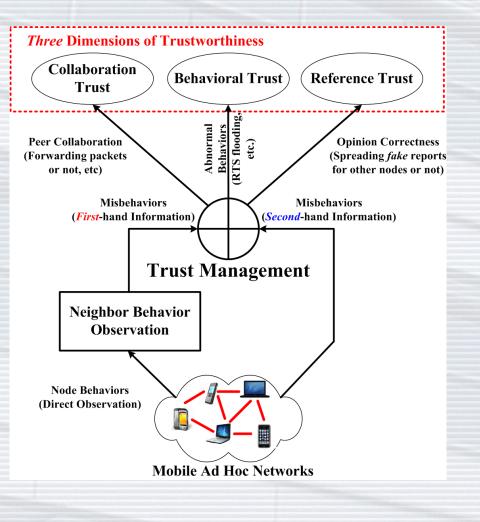
View Combination

 Motivation: Node mobility and channel collision can make the neighbor observation results *inaccurate*

View Combination (Cont.)

- Dempster-Shafer Theory (DST): combine separate pieces of observations (evidences) to calculate the probability of malicious behaviors
 - Basics: lack of evidence can *NOT* be viewed as the *refutal* to this evidence
 - Solution: a node can either hold a <u>positive</u> opinion or have no opinion to the misbehavior of its neighbor
 - **NO** opinion is called "Environment" in this case (Θ)
 - How to combine separate pieces of evidences *Dempster's Rule of combination*

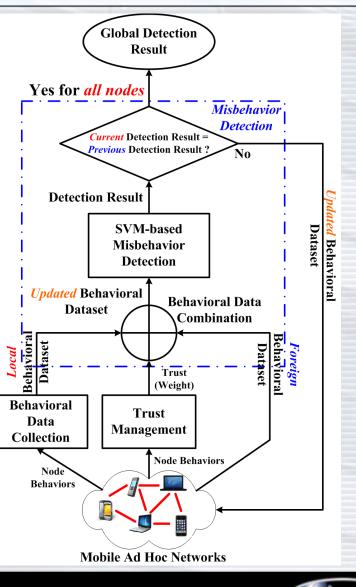
$$m_B(A) \oplus m_C(A) = \frac{\sum_{q,r:\alpha_q \cap \alpha_r = A} m_B(\alpha_q) m_C(\alpha_r)}{1 - \sum_{q,r:\alpha_q \cap \alpha_r = \Phi} m_B(\alpha_q) m_C(\alpha_r)}$$



8 January 2024

Multi-dimensional Trust Management

- All trust values initialized to be 1 (trust value ∈ [0, 1])
- Trust values adjusted based on observation results
 - Both *first-hand* information and *second-hand* information
 - Three dimensions of trust
 - Collaboration trust
 - Behavioral trust
 - Reference trust


8 January 2024

SVM-based Misbehavior Detection

8 January 2024

- Three steps in *detection* stage
 - Behavioral data combination
 - Misbehavior detection
 - Behavioral data update and exchange

Performance Evaluation

Simulation setup

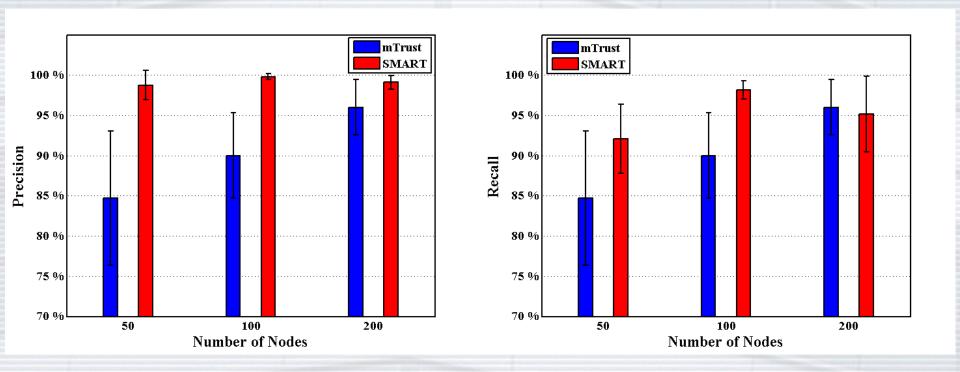
Value	
600m × 600m	
50, 100, 200	
60m, 90m, 120m	
900s	
Random waypoint	
5, 10, 20	
5m/s, 10m/s, 20m/s	

8 January 2024

Performance Metrics

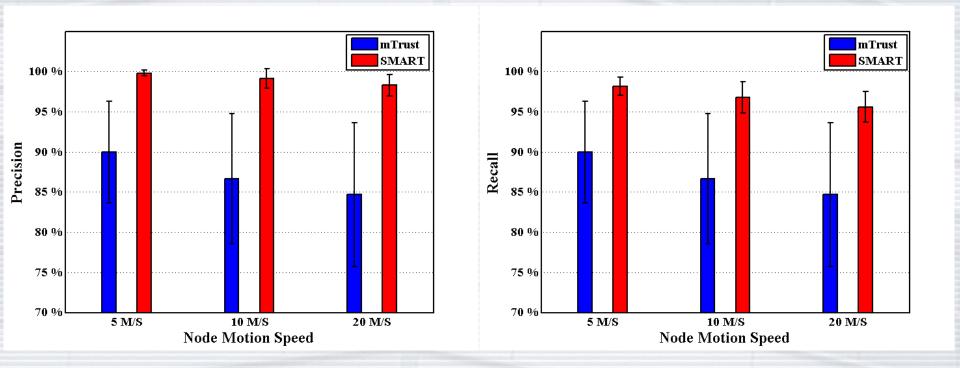
- Four metrics
 - Precision
 - Recall
 - Communication Overhead (CO)
 - Convergence Time (CT)

Total Number of Packets in the network


CT = Time taken to form a *consistent* global view of outliers

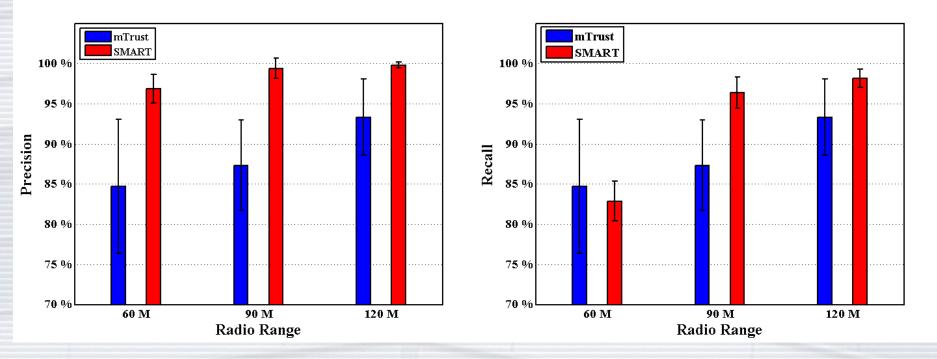
8 January 2024

Simulation Scenario I


<u>Precision and Recall with Different Number of Nodes</u> (Area: 600m × 600m, Radio Range: 120m, Speed: 5m/s)

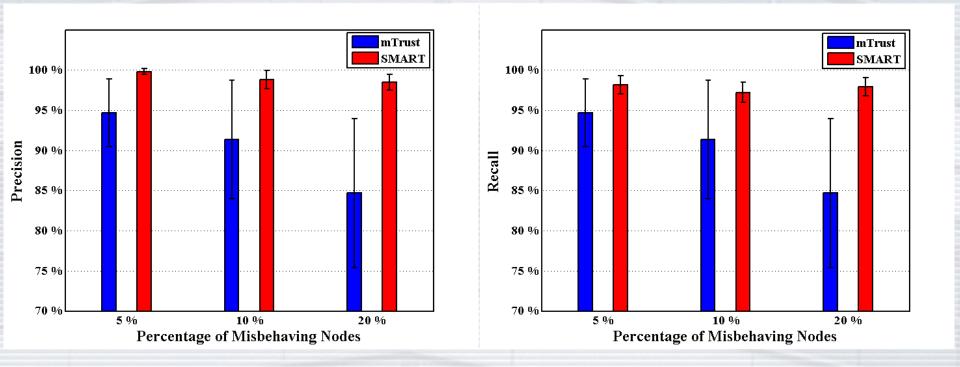
8 January 2024

Simulation Scenario II


<u>Precision and Recall with Different Motion Speed</u> (Area: 600m × 600m, Radio Range: 120m, Num of Nodes: 100)

8 January 2024

Simulation Scenario III

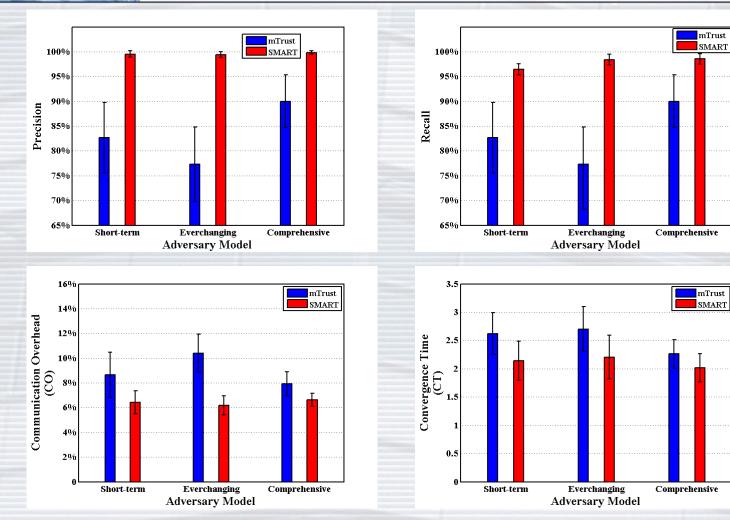

<u>Precision and Recall with Different Radio Ranges</u> (Area: 600m × 600m, Num of Nodes: 100, Node Speed: 5m/s)

8 January 2024

Simulation Scenario IV

<u>CR with Different Percentage of Bad Nodes</u> (Num. of Nodes: 100, Area: 600m × 600m, Range: 120m, Speed: 5m/s)

8 January 2024


- Three adversary models
 - Short-term
 - Ever-changing
 - Comprehensive

$Node \ ID$	Start	End	Drop	Modify	RTS	
16	10s	180s	90%	10%	0	
33	100s	400s	0	30%	70%	
34	50s	200s	40%	30%	30%	
44	400s	660s	0%	50%	50%	
45	350s	600s	20%	0	80%	
Node ID	Start	End	Drop	Modify	RTS	
16	0s	200s	10%	70%	20%	
16	200s	400s	50%	0%	50%	
16	400s	900s	90%	10%	0	
33	0s	400s	0	40%	60%	
33	400s	900s	30%	30%	40%	
			• • •			
Node ID	Start	End	Drop	Modify	RTS	
1	0s	900s	80%	20%	0	
2	0s	900s	0	50%	50%	
3	0s	900s	30%	30%	40%	
4	0s	900s	20%	10%	70%	
5	0s	900s	10%	0	90%	

Simulation Scenario V

Effect of Different Adversary Models

8 January 2024

Conclusion and Future Work

- SVM-based misbehavior detection and trust management framework for MANETs
 - Outlier detection for behavioral data collection
 - SVM for misbehavior detection
 - Multi-dimensional trust management
- Several simulation scenarios have validated the correctness and efficiency of our approach
- Future work
 - How to properly determine trustworthiness DIRECTLY
 from the SVM classifier
 - Incorporation of context information to SVM classifier

8 January 2024

Questions Comments ③

8 January 2024

