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1. ABSTRACT 
This paper describes FOREST, an expert system 

for fault isolation and diagnosis in the Automatic Test 
Equipment (ATE) domain. Current ATE systems can 
correctly handle 90 to 95 percent of faults, but the 
residue accounts for a considerable cost in terms of 
equipment downtime and the human expert's time. 
FOREST is an attempt to handle residue of hard 
problems with current expert systems techniques. In 
particular, the incorporation of an AI approach allows 
us to handle two serious problems which the existing 
decision tree techniques can not: problems involving 
multiple faults and problems caused by components or 
systems which gradually drift out of calibration. 
FOREST is implemented in PROLOG and has an 
architecture that combines an object-oriented 
representation language (FIR), a general inferencing 
mechanism (PROLOG), an inferencing engine for 
reasoning with certainty factors (PINE) and a 
explanation generation system (ELM). 

2. INTRODUCTION 
This paper describes FOREST, an expert system 

for fault isolation and diagnosis in the Automatic Test 
Equipment (ATE) domain. Current ATE diagnostic 
software can correctly handle 90 to 95 percent of faults, 
but the residue accounts for a considerable cost in terms 
of downtime and the human expert's time to do backup 
diagnosis. FOREST is an attempt to handle this residue 
of hard problems with current expert systems 
techniques. In particular, the incorporation of an AI 
approach allows us to handle two serious problems 
which the existing decision tree techniques do not: 
problems involving multiple faults and problems caused 
by components or systems which gradually drift out of 
calibration (see [8] for additional details). 

We feel that the architecture we have chosen to 
support FOREST has several aspects which are of 
general interest. We have designed an object-oriented 
representation language similar to KL-ONE and 
implemented it in Prolog. The use of Prolog provides 
the object-oriented language with a general inferencing 
mechanism that extends its expressiveness. This object-
oriented language has been used in turn to build a 
language for defining rule-based system with both 
forward and backward chaining rules. In addition, these 
rules include mechanisms for reasoning with certainty 
factors. 
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In the remainder of this paper we will introduce 
the ATE domain, discuss some of the fault diagnosis 
principles we have encountered and describe the 
architecture of FOREST in more detail. Given the 
exploratory stage of our project, our conclusion is more 
a prescription for future research than it is a summary 
of results. 

3. THE AUTOMATIC TEST EQUIPMENT 
DOMAIN 

Automatic test equipment (ATE) is widely used in 
both industry and the military to troubleshoot electronic 
equipment. The ATE is a programable device which is 
hooked up to the faulty equipment, usually referred to 
as the UUT for Unit Under Test. The ATE then runs a 
special program developed for the UUT which takes a 
number of measurements from it and attempts to 
diagnose the problem and identify the faulty 
component. Before taking the measurements, current 
sophisticated ATE systems perform a series of self-tests 
to determine that the ATE system is itself functional 
and calibrated. 

The ATE self-test is particularly important since 
when the ATE system is unavailable, faulty equipment 
is simply shut down until a human expert can be called 
in to diagnosis and fix the ATE system. The ATE 
system we are working with performs the self-test as a 
two stage procedure involving a survey run followed by 
diagnostics. The survey run performs approximately 100 
predetermined tests, records the resulting values 
(voltage, time measurements, etc.) and determines their 
status as either pass, fail or nmc for "no measure 
complete" (indicating that the amplitude of a pulse is 
too low to be read). If the status of any test is fail or 
nmc then diagnostic software is called to isolate the 
fault. This diagnosis is based on the first test to fail in 
the survey run and the results of any additional tests 
called for in the diagnostic program. Often the fault 
can only be localized to a group of circuit cards, 
requiring the entire group to be replaced. 

The diagnostic software currently available for 
ATE can isolate and diagnose approximately 90 to 95 
percent of the faults which occur in UUT's as well as in 
the ATE equipment itself. Unfortunately, the remaining 
5 to 10 percent of undiagnosed faults are often those 
which are most difficult and costly to solve. These 
faults are currently diagnosed by human experts. 



4. ATE DIAGNOSTIC KNOWLEDGE 
The FOREST system was designed to extend 

rather than replace the testing strategies currently used 
in ATE systems. Similar work in the ATE doamin by 
Cantone, Pipitone and Lander [5] has focused on using 
expert system technology to automatically produce 
programs for current ATE systems. Our approach can 
be characterized as an attempt to emulate an 
experienced field engineer whose specialty was 
diagnosing faults undetectable by existing ATE 
software. This section describes our knowledge 
aquisition methodology and the structure and kinds of 
knowledge we found. 

4.1. Knowledge Aquisition Methodology 
Knowledge acquisition involved a three-phase 

interviewing process between the domain expert and a 
knowledge engineer. In the initial stage, the problems 
to be attacked were identified. The goal of the second 
stage was to elicit a set of stategies used by the expert 
to solve each of the problems. In the third stage we 
worked with the domain experts to find appropriate 
representations for the objects and relations involved in 
each problem and to articulate the rules more formally. 

The first phase consisted of identifying faults 
which are beyond the abilities of conventional ATE 
software. This resulted not only in a well-bounded 
domain but it insured that the system accomplished a 
purpose that the expert considered significant. 

The second phase involved obtaining the strategies 
used by the experts to diagnose these problems. We 
found that our domain experts had difficulties in 
articulating general troubleshooting strategies, so we 
used a technique of initially discussing case histories. 
As the expert detailed specific actions used to solve 
specific problems a framework of partial knowledge was 
developed. This initial framework was then used to 
generate direct questions to elicit the information 
needed to "fill in the holes". 

In the third phase, we developed successively more 
formal expressions to represent the domain objects and 
relations and to represent rules to embody the diagnosis 
stategies discoved in the second stage. These wew 
presented to the expert for approval and any necessary 
revision. The process continued iteratively until both 
the expert and the knowledge engineer were satisfied. 
Sets of field data obtained from failure reports were 
used for preliminary testing and to refine the rule base. 

4.2. The Experts' Knowledge 
The knowledge which we collected from our 

experts can be generally divided into three categories. 
The first is procedural, consisting of strategies to obtain 
the information necessary to differentiate one type of 
failure from another. These are often "quick and dirty" 
looks which check for consistency among test results or 
check groups of tests without looking at a specific test 
result. These strategies generally take the form of 
experiential "rules-of thumb" and appear to be best 
represented as if-then rules with weights attached. In 
the ATE domain a rule of this type might be: 

"If all pulse period measurements fail 
then look for a pulse amplitude problem." 

The second class of knowledge involves the use of 
circuit diagrams. In situations arising from inconsistent 
data or unusual failures, the expert cannot rely solely on 
his past experience and uses information obtained from 
the circuit diagram. Here he uses his knowledge of the 
relationships between specific test points and circuit 
topology to isolate possible areas of failure. These 
generally are straight-forward physical relationships and 
are so specific that they constitute a different level of 
reasoning. Our experts only turn to this type of 
problem solving when the heurisitic line of reasoning 
hits a dead-end and use it only as long as necessary. A 
relationship of this type might be expressed as: 

"The generation of the main pulse triggers 
the system clock reset." 

Finally there are general electronic 
troubleshooting principles. These were not volunteered 
by the expert but were developed during the 
interviewing process. These principles underly the 
entire troubleshooting process whether the expert is 
using heuristic shortcuts or working through circuit 
diagrams. This is an important form of meta-knowledge 
and is part of the explanation process as well as guiding 
the reasoning process. To finish the previous example, a 
general principle would be: 

"Insufficient amplitude of a signal may 
result from excessive resistance along the 
signal path." 

The experts were observed to integrate all three 
types of knowledge in most troubleshooting scenarios 
performing forward, backward and what may be 
referrred to as "vertical" reasoning. First he reasons 
forward from a limited set of data applying any 
heuristics he has developed through experience to 
hypothesize likely conclusions. He then attempts to 
narrow these down by backward chaining to identify 
additional data which is used to eliminate some of the 
candidates. If none are verifiable the expert "drops 
down" and continues forward using the specific "lower 



level" knowledge usually obtained from circuit 
diagrams. At the end of a worst case scenario the 
expert is physically probing the low level circuit 
components- usually, however, the problem will be 
found long before we look at this level. 

5. THE FOREST ARCHITECTURE 
The domain independant part of FOREST is a 

rule-based system implemented in Prolog (currently 
UNH Prolog on a Vax 11/780) which includes a general 
object-oriented representation language, a mechanism 
for dealing with certainty factors and a simple 
explanation system. A more complete description of the 
architecture we have developed can be found in [9]. 
The four major components are discussed in the sections 
to follow. They are: 

• FIR, for Frame Inference Representation, 
provides a frame-based representation 
language on which everything else is built. 

• PINE, for Prolog Inference Network 
Engine, is a language for building forward 
chaining inference networks. It is built up 
out of FIR objects. 

• ELM, for Explanation Lending Mechanism, 
is a system that provides descriptions of the 
reasoning that supports the conclusions 
reached in a PINE network. 

• OAK, for Our Actual Knowledge, is a 
particular PINE inference network and a 
collection of associated prolog predicates. 

5.1. The FIR Representation System 
FIR is a simple frame representation language. It 

allows one to define objects with various kinds of 
attributes, and to organize them into a taxonomy. 
Recently developed languages for representing 
knowledge such as KL-ONE [15], Krypton [4] and Nikl 
[16], have argued that general frame based languages 

need to be augmented by a general inferential 
mechanism. Our embedding FIR in Prolog provides a 
such a mechanism. 

The attributes of an object include superTypes, 
roles, demons and methods. An object's superTypes 
are its immediate generalizations and determine its 
place within the taxonomy. The inheritance of roles, 
facets of roles, demons and methods is done with respect 
to this taxonomy. An object can locally own or inherit 
demons which are Prolog clauses which are executed 
under specified conditions, such as when an object is 
specialized. Similarly, an object can own or inherit 
methods which support a simple variety of message-
passing semantics [14]. 

A rote of an object is itself a complex entity which 
is composed of subparts called facets. These facets 
include: 

• name - an arbitrary term used to access the 
role. 

• value - one or more terms stored as values 
filling the role. 

• default - a term used as a default value if no 
actual values are present. 

• type - a FIR object which must subsume any 
value. 

• range - a description of the number of values 
the role can hold. 

• demont - Prolog goals which are executed 
under appropriate circumstances. 

The demon mechanism is similar to that provided 
by other representation languages (e.g. KL-ONE [3], 
IIPRL [13]) and allows one to specify demons to be 
executed before or after a value is added to a role, 
before or after a value is removed from a role and 
whenever a value is sought from a role which has no 
locally stored values. 

For example, a generic node in PINE is 
represented (partially) by the Prolog term in figure 5-1. 
This states that a node is a specialization of a thing and 
has the locally defined roles named description, mh, md 
and cf. Both mb and md have a range equal to one (a 
range of one indicates that a role can hold only a single 
value). If another value is assigned to the role, it 
replaces the existing one.], default values of 0.0 and a 
demon which will be triggered just after a new value is 
given to the role. The cf role has a demon which will 
be triggered if one asks what value the role has and will 
compute an appropriate value. 

Inheritance of roles and role facets other than the 
value facet is done (logically) by climbing up the 
taxonomy. If an object has more than one superType, 
then there is an implicit ordering in which they are 
processed. Role value inheritance is done following what 
Winston has termed Z-inheritance [18]. A depth first 
search is done up the hierarchy. At each object we look 
for one of the following (in order): a locally owned value 
facet, default facet or a has-demon which can be 
successfully evaluated. 

FIR provides basic functions for creating and 
querying objects: 

• speclalize(01,02) - make object Ol a specialization 
of 02. 

• lsa(X,Y) - true if X is a role that is subsumed by role 
Y or if X is an object that is subsumed by object Y. 



a node is a thing with 

a description = 'indescribable'; 

a mb having 
default = 0.0; 
range = 1; 
demon = gave(mf> of 0,V) i f  propogateFromNode(O); 

a md having 
default = 0.0; 
range = 1; 
demon = gave(md of 0,V) i f  propogateFromNode(O); 

a cf having 
demon = has(cf of 0,Cf) i/has(m6 of O.Mb) and 

has(md of 0,Md) and 
Cf is Mb - Md. 

Figure 5-1: A Pine Node 

. glve(R.V) - Give role R a value V. This triggers a 
check for the satisfaction of any range and type 
constraints and triggers any giving or gave demons 
associated with the role. 

• glve(F of R,V) - Give facet F of role R the value 
V. This can be used to locally fill a role's facet with a 
term. 

• take(R,V) - Remove value V from role R. Any range 
constraints are checked and any associated taking and 
took demons fired. 

• has(R,V) - Find a value for the role. This will invoke 
an inheritance search for the nearest local value, default 
or has-demon to generate a value. Backtracking can be 
used to generate any additional values the role has. 

A role R can be further decomposed into a name 
and the object owning the role. We might say, for 
example: 

?- give(default of age of person, 30) 

?- give(age of john, 32). 

?- findAll(X, 

(isa(X,person), 

has(age of X,Age), 

Age>21), 

Adults). 

5.2. The PINE Inference Engine 
The PINE inference engine is built up out of the 

FIR objects shown in the inheritance hierarchy shown in 
figure 5-2. The approach of using a frame 
representation language to build a rule base and 
inference engine is similar to that employed by Fox [10] 
and also the the expert system building tools HPRL [13], 
KEE [12], and LOOPS [2]. The nodes represent either 
data about the UUT or conclusions reached by the 
inference network. The rules specify the method by 
which conclusions are derived from data and other 
conclusions. Truth and belief are handled in a manner 

similar to that used in MYCIN [17] and PROSPECTOR 
[7], Each node has a measure of belief (MB), and a 

measure of disbelief (MD) whose values range from 0.0 
(none) to 1.0 (maximal). The overall support that the 
system has for the proposition which a node represents 
is called the certainty factor (CF) and is defined as (MB 
- MD) and can range from -1.0 to +1.0, representing 
total disbelief and total belief, respectively. 

thing 
rule 

logicRule 
valueRule 

node 
value 
proposition 

data 
given 
question 

conclusion 
goal 
intermediate 

logical 
andNode 
orNode 
wandNode 
notNode 

Figure 5-2: Pine Object Taxonomy 

Nodes in PINE 
Nodes in PINE come in two varieties: those 

representing domain values and those representing 
propositions. A value node is an arbitrary variable 
which represents some parameter in the domain. In the 
ATE domain, for example, we have value nodes which 
represent the the measured voltages of each of the 
survey tests. A value node can be automatically mapped 
into a propositional node (with associated degrees of 
belief and disbelief) by valueRules. A proposition node 
represents an arbitrary fact about the domain and has 
associated degrees of belief and disbelief. Propositions 
can be data, which represents incoming knowledge 
about the domain, conclusions which represent facts 
derived by the inference network and logical nodes 
which are system generated nodes representing logical 
relationships between other nodes. Data enters the 
system from data objects, which will always appear as 
leaves in the inference network. Data objects are either 
Givens, propositions whose degree of belief or disbelief 
is directly provided as initial input, or Questions, 
proposition whose degree of belief or disbelief is 
determined by asking the user when the values are first 
needed. 

A conclusion is a proposition whose certainty is 
determined by a rule. It can be an intermediate or a 
goal conclusion. The user is kept informed of the status 



of goal nodes as the system operates. The final type of 
node is a logical node which includes the usual and, or 
and not relations as well as the weighted and relation 
described later. 

Rules in PINE 

Rules are the arcs which connect nodes and come 
in two varieties: value rules which map values into 
conclusions and logic rules which map a Boolean 
combination of propositions into a conclusion. 

ValueRules are needed in order to map measures 
taken from the ATE survey (e.g. a voltage) into 
propositions (e.g. the belief that a subsystem is 
functioning properly). In general we want to define a 
function from the range of the measurement into a 
certainty measure. For example, a voltage measurement 
of below 5.0v or above lO.Ov for some reading may 
definitely be regarded as failing. Readings "near" the 
ideal value of 7.5v volts are definitely regarded as 
passing (where "near" is defined by our domain expert). 
The function assigns a certainty factor that a reading is 
within specification or has "passed" by assigning -1.0 to 
readings below 5.0 volts and above 10.0 volts and +1.0 
to the small region surrounding the ideal reading of 7.5 
volts. This leaves two "gray areas" surrounding the 
"ideal zone." In these areas the certainty is 
incremented according to how far the reading is from 
the defined "definite pass" and "definite fail" limits. 
This reflects the notion that a reading of 6.2 volts may 
tell the technician almost nothing about whether the 
test passed or failed. This "gray area" pass/fail 
decision making is critical to systems which gradually go 
out of calibration. 

This mechanism we have provided in PINE is 
similar to the active values found in LOOPS [2]. 
Changing the value in a valueNode triggers the 
execution of a body of Prolog code in any associated 
valueRules. Figure 5-3 shows an example of a 
valueRule. 

i f  mpRefSupply Volt=V a n d  not(between(5.0,V,7.0)) 
then disbelieve(mpRefSupplyVoltOK). 

i f  mpRefSupply Volt=V and between(7,V,8) 
then believe(mpRefSupplyVoltOK). 

i f  mpRefSupply Volt=V a n d  P is abs(V-7.5)/2-0.25 
and between(0,P,l) 

then believe(mpRefSupplyVoltOK,P). 

Figure 5-3: a Rule Mapping a Value to a Conclusion 

LogicRules map a Boolean combination of 
propositional nodes into a conclusion and have the 

following roles: 

• Evidence - Nodes which serve as evidence for the rule. 
• Conclusion - The node which is the conclusion of this 

rule. 
• Pw - Positive weight of the rule. 
• Nw - Negative weight of the rule 
• Support - A measure of the evidence that the rule 

currently provides the conclusion. 

The positive weight (PW) of a rule measures its 
sufficiency and the negative weight (NW) its neccessity. 
as in PROSPECTOR [7]. The value of the support role 
is defined as the product of CF (the certainty factor of 
the evidence for the rule) and PW, if CFg is greater 
than 0, or NW if if CFe is less than 0. The support 
given by a "logical and" rule is determined by the 
minimum of the CF's of the evidence nodes. The 
support given by a "logical or" rule is the maximum of 
the CF's of the evidence nodes. "Weighted and" rules" 
support is the weighted average of the CF's of the 
evidence nodes. Actual updating of the corresponding 
CF is performed using MYCIN'S updating rule: 

CFnew = CFold + ' CFold) * ™leSupport 
Complex rules can be given as a Boolean 

combination of nodes. As the Boolean combination is 
parsed, new intermediate nodes are created to serve as 
logical nodes, one for each logical connective (and, or, 
not, wand [weighted and]). The bottommost logical 
node is connected, via the original rule, to the 
conclusion. New rules are created which serve to 
connect the evidence nodes to the logical nodes. In the 
case of the wand node the respective weights of each 
conjunct's new rules are determined by the user. For 
the other logical nodes, the new rules are given default 
positive and negative weights of 1. Figure 5-4 gives 
some examples of logicalRules. The system will give 
the first rule in figure 5-4 a name (e.g. rulel7) then 
parse the body of the rule to set up the evidence and 
conclusion links. Since the evidence here involves an 
"and" the system creates a new logical node (e.g. 
andNode4S) which becomes the evidence of rulel 7. 
New logical rules (rl8 and rl9) are also created to link 
the evidence into the logical node. The second example 
in figure 5-4 shows a weighted and rule. 

5.3. The ELM Explanation Mechanism 
ELM (Explanation Lending Mechanism) provides a 

simple explanation facility similar to that found in 
MYCIN [17]. If asked for an explanation for a node, 
ELM will describe the nodes which effect the belief of 
this conclusion — both those which increased the 
support of the conclusion and those which lowered the 



i f  'the DP rise-time check failed "no measure complete*' 
and 

'the DP fall-time check failed "no measure complete*' 
then 'the amplitude of the DP into the counter is insufficient' 
with pw = 0.9; nw = 0.5. 

if 'the dp rise-time check succeeded' @ 1 

'the dp rise-time check succeeded' @ 2 
+ 

then 'the amplitude of the dp into the counter is sufficient' 
with nw = 0.0. 

Figure 5-4: Examples of Logical Rules 

support. At this point some of the reasons to believe 
the conclusion are probably high level intermediate 
conclusions themselves. These intermediate conclusions 
can also be explained and the network can thus be 
traced all the way back to data from the survey tests. 
An example of the explanation facility is seen in figure 
5-5. If instead the data had been such that the DP rise-
time check did not fail "no measure complete", i.e. the 
counter was able to make DP rise-time measurements, 
the resulting explanation would change to figure 5-6. 

In giving the above rule a non-zero negative 
weight we mean that if there is negative belief that the 
evidence conditions are present then firing of this rule 
results in decreasing the belief in the conclusion. The 
presence of a non-zero negative weight implies the 
presence of the "virtual" rule rl in figure 5-7. This 
second rule can now be simplified by the use of 
DeMorgan's laws to rule r2. In the explanation of an "or 
rule" (such as this has now become), since only one 
disjunct must be present to give evidence to the 
conclusion (or rules choose the most believed disjunct) 
only the most strongly believed disjunct is displayed to 
the user as a reason to believe the conclusion. 

5.4. The OAK Knowledge Base 
OAK (Our Actual Knowledge) is the knowledge 

base for ATE troubleshooting. The rules are combined 
in a network fashion where belief in each intermediate 
or goal node can be affected by multiple pieces of 
evidence and in turn be evidence for one or more 
further conclusions. This results in a lattice form of 
knowledge (as opposed to a simple binary tree) allowing 
relaxation of the single fault assumption and providing 
some diagnostic capability even in the case of 
incomplete or conflicting data. 

In its present state of development, OAK contains 
a set of approximately fifty nodes and and their 

THE BELIEF THAT the amplitude of the dp into the counter is 
insufficient IS 0.81 

REASONS TO BELIEVE: 
0.90 N14: the dp rise-time check failed *no measure complete" 
0.85 N15: the dp fall-time check failed "no measure complete11 

THERE ARE NO RULES WHICH LOWER BELIEF IN THIS 
CONCLUSION. 

WOULD YOU LIKE FURTHER EXPLANATION? >> 

Figure 5-5: An Explanation of a Conclusion 

THE BELIEF THAT the amplitude of the dp into the counter is 
ok IS 0.50 

REASONS TO BELIEVE: 
0.99 N14: the counter was able to make a dp 

rise-time measurement 

THERE ARE NO RULES WHICH LOWER BELIEF IN THIS 
CONCLUSION. 

WOULD YOU LIKE FURTHER EXPLANATION? >> N14 

THE BELIEF that the counter was able to make a dp rise-time 
measurement IS 0.99 

REASONS TO BELIEVE: 
1.00 n2: result of test 14040 was a reading of 80.05 usee 

WAS GIVEN INFORMATION. 

Figure 5-8: An Explanation 

rl : t/not('DP rise-time check failed "nmc"' and 
'DP fall-time check failed "nmc"') 

then not('DP amplitude into counter is insufficient') 

r2 : if 'counter able to make DP rise-time measurements' or 
'counter able to make DP fall-time measurements' 

then 'DP amplitude into the counter is sufficient' 

Figure 5-7: Equivalent Rules 

associated rules. This covers the pulse generation sus-
system of the ATE and accounts for about one quarter 
of the ATE self-test circuitry. 

6. CONCLUSIONS AND FUTURE 
DEVELOPMENTS 

The use of artificial intelligence techniques, in 
particular a knowledge-based expert systems, has proven 
to be beneficial in supplimenting the fault detection and 
isolation capabilites of current ATE diagnostic software. 
The FOREST system can provide diagnositic capability 



in the presence of incomplete or conflicting data and 
can deal with two problems that conventional ATE 
systems can not: multiple-fault failure and calibration 
errors. 

Human experts appear to use three types of 
knowledge in troubleshooting electronic equipment: 
procedural heuristics based on experience, reasoning 
from circuit diagrams, and general troubleshooting 
meta-rules. FOREST currently contains rules of all 
three types but represents them at the same level. Our 
primary goal for the future is to seperate these kinds of 
knowledge and to represent them in different ways. 
This will allow us to encorporate more model-based and 
functional knowledge in the system, as have recent work 
by Genesereth [11] and Davis [6]. We feel that the 
architecture we have used for FOREST will allow us to 
experiment with different strategies for representing 
meta-rules. 

Other development efforts center around three 
major areas. The first is aimed at providing the system 
with the ability to update its rule base by drawing 
conclusions from past failures on the unit. The system 
as currently designed will keep a history of failures and 
data values as well as any desired statistical 
manipulations of these numbers. A second area we are 
interested in is the possibility of using the system for 
prediction of failures. The third area involves the use of 
a FOREST like system to train human troubleshooting 
experts. 
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