
FOREST - AN EXPERT SYSTEM FOR AUTOMATIC TEST EQUIPMENT

Tim Finin John McAdams Pamela Kleinosky
Computer and Information Science Advanced Technology Lab Automated Systems

University of Pennsylvania RCA Corporation RCA Corporation
Philadelphia PA Camden NJ Burlington MA

1. ABSTRACT
This paper describes FOREST, an expert system

for fault isolation and diagnosis in the Automatic Test
Equipment (ATE) domain. Current ATE systems can
correctly handle 90 to 95 percent of faults, but the
residue accounts for a considerable cost in terms of
equipment downtime and the human expert's time.
FOREST is an attempt to handle residue of hard
problems with current expert systems techniques. In
particular, the incorporation of an AI approach allows
us to handle two serious problems which the existing
decision tree techniques can not: problems involving
multiple faults and problems caused by components or
systems which gradually drift out of calibration.
FOREST is implemented in PROLOG and has an
architecture that combines an object-oriented
representation language (FIR), a general inferencing
mechanism (PROLOG), an inferencing engine for
reasoning with certainty factors (PINE) and a
explanation generation system (ELM).

2. INTRODUCTION
This paper describes FOREST, an expert system

for fault isolation and diagnosis in the Automatic Test
Equipment (ATE) domain. Current ATE diagnostic
software can correctly handle 90 to 95 percent of faults,
but the residue accounts for a considerable cost in terms
of downtime and the human expert's time to do backup
diagnosis. FOREST is an attempt to handle this residue
of hard problems with current expert systems
techniques. In particular, the incorporation of an AI
approach allows us to handle two serious problems
which the existing decision tree techniques do not:
problems involving multiple faults and problems caused
by components or systems which gradually drift out of
calibration (see [8] for additional details).

We feel that the architecture we have chosen to
support FOREST has several aspects which are of
general interest. We have designed an object-oriented
representation language similar to KL-ONE and
implemented it in Prolog. The use of Prolog provides
the object-oriented language with a general inferencing
mechanism that extends its expressiveness. This object-
oriented language has been used in turn to build a
language for defining rule-based system with both
forward and backward chaining rules. In addition, these
rules include mechanisms for reasoning with certainty
factors.

350
CH2107-1/84/0000/0350$01.00 © 1984 IEEE

In the remainder of this paper we will introduce
the ATE domain, discuss some of the fault diagnosis
principles we have encountered and describe the
architecture of FOREST in more detail. Given the
exploratory stage of our project, our conclusion is more
a prescription for future research than it is a summary
of results.

3. THE AUTOMATIC TEST EQUIPMENT
DOMAIN

Automatic test equipment (ATE) is widely used in
both industry and the military to troubleshoot electronic
equipment. The ATE is a programable device which is
hooked up to the faulty equipment, usually referred to
as the UUT for Unit Under Test. The ATE then runs a
special program developed for the UUT which takes a
number of measurements from it and attempts to
diagnose the problem and identify the faulty
component. Before taking the measurements, current
sophisticated ATE systems perform a series of self-tests
to determine that the ATE system is itself functional
and calibrated.

The ATE self-test is particularly important since
when the ATE system is unavailable, faulty equipment
is simply shut down until a human expert can be called
in to diagnosis and fix the ATE system. The ATE
system we are working with performs the self-test as a
two stage procedure involving a survey run followed by
diagnostics. The survey run performs approximately 100
predetermined tests, records the resulting values
(voltage, time measurements, etc.) and determines their
status as either pass, fail or nmc for "no measure
complete" (indicating that the amplitude of a pulse is
too low to be read). If the status of any test is fail or
nmc then diagnostic software is called to isolate the
fault. This diagnosis is based on the first test to fail in
the survey run and the results of any additional tests
called for in the diagnostic program. Often the fault
can only be localized to a group of circuit cards,
requiring the entire group to be replaced.

The diagnostic software currently available for
ATE can isolate and diagnose approximately 90 to 95
percent of the faults which occur in UUT's as well as in
the ATE equipment itself. Unfortunately, the remaining
5 to 10 percent of undiagnosed faults are often those
which are most difficult and costly to solve. These
faults are currently diagnosed by human experts.

4. ATE DIAGNOSTIC KNOWLEDGE
The FOREST system was designed to extend

rather than replace the testing strategies currently used
in ATE systems. Similar work in the ATE doamin by
Cantone, Pipitone and Lander [5] has focused on using
expert system technology to automatically produce
programs for current ATE systems. Our approach can
be characterized as an attempt to emulate an
experienced field engineer whose specialty was
diagnosing faults undetectable by existing ATE
software. This section describes our knowledge
aquisition methodology and the structure and kinds of
knowledge we found.

4.1. Knowledge Aquisition Methodology
Knowledge acquisition involved a three-phase

interviewing process between the domain expert and a
knowledge engineer. In the initial stage, the problems
to be attacked were identified. The goal of the second
stage was to elicit a set of stategies used by the expert
to solve each of the problems. In the third stage we
worked with the domain experts to find appropriate
representations for the objects and relations involved in
each problem and to articulate the rules more formally.

The first phase consisted of identifying faults
which are beyond the abilities of conventional ATE
software. This resulted not only in a well-bounded
domain but it insured that the system accomplished a
purpose that the expert considered significant.

The second phase involved obtaining the strategies
used by the experts to diagnose these problems. We
found that our domain experts had difficulties in
articulating general troubleshooting strategies, so we
used a technique of initially discussing case histories.
As the expert detailed specific actions used to solve
specific problems a framework of partial knowledge was
developed. This initial framework was then used to
generate direct questions to elicit the information
needed to "fill in the holes".

In the third phase, we developed successively more
formal expressions to represent the domain objects and
relations and to represent rules to embody the diagnosis
stategies discoved in the second stage. These wew
presented to the expert for approval and any necessary
revision. The process continued iteratively until both
the expert and the knowledge engineer were satisfied.
Sets of field data obtained from failure reports were
used for preliminary testing and to refine the rule base.

4.2. The Experts' Knowledge
The knowledge which we collected from our

experts can be generally divided into three categories.
The first is procedural, consisting of strategies to obtain
the information necessary to differentiate one type of
failure from another. These are often "quick and dirty"
looks which check for consistency among test results or
check groups of tests without looking at a specific test
result. These strategies generally take the form of
experiential "rules-of thumb" and appear to be best
represented as if-then rules with weights attached. In
the ATE domain a rule of this type might be:

"If all pulse period measurements fail
then look for a pulse amplitude problem."

The second class of knowledge involves the use of
circuit diagrams. In situations arising from inconsistent
data or unusual failures, the expert cannot rely solely on
his past experience and uses information obtained from
the circuit diagram. Here he uses his knowledge of the
relationships between specific test points and circuit
topology to isolate possible areas of failure. These
generally are straight-forward physical relationships and
are so specific that they constitute a different level of
reasoning. Our experts only turn to this type of
problem solving when the heurisitic line of reasoning
hits a dead-end and use it only as long as necessary. A
relationship of this type might be expressed as:

"The generation of the main pulse triggers
the system clock reset."

Finally there are general electronic
troubleshooting principles. These were not volunteered
by the expert but were developed during the
interviewing process. These principles underly the
entire troubleshooting process whether the expert is
using heuristic shortcuts or working through circuit
diagrams. This is an important form of meta-knowledge
and is part of the explanation process as well as guiding
the reasoning process. To finish the previous example, a
general principle would be:

"Insufficient amplitude of a signal may
result from excessive resistance along the
signal path."

The experts were observed to integrate all three
types of knowledge in most troubleshooting scenarios
performing forward, backward and what may be
referrred to as "vertical" reasoning. First he reasons
forward from a limited set of data applying any
heuristics he has developed through experience to
hypothesize likely conclusions. He then attempts to
narrow these down by backward chaining to identify
additional data which is used to eliminate some of the
candidates. If none are verifiable the expert "drops
down" and continues forward using the specific "lower

level" knowledge usually obtained from circuit
diagrams. At the end of a worst case scenario the
expert is physically probing the low level circuit
components- usually, however, the problem will be
found long before we look at this level.

5. THE FOREST ARCHITECTURE
The domain independant part of FOREST is a

rule-based system implemented in Prolog (currently
UNH Prolog on a Vax 11/780) which includes a general
object-oriented representation language, a mechanism
for dealing with certainty factors and a simple
explanation system. A more complete description of the
architecture we have developed can be found in [9].
The four major components are discussed in the sections
to follow. They are:

• FIR, for Frame Inference Representation,
provides a frame-based representation
language on which everything else is built.

• PINE, for Prolog Inference Network
Engine, is a language for building forward
chaining inference networks. It is built up
out of FIR objects.

• ELM, for Explanation Lending Mechanism,
is a system that provides descriptions of the
reasoning that supports the conclusions
reached in a PINE network.

• OAK, for Our Actual Knowledge, is a
particular PINE inference network and a
collection of associated prolog predicates.

5.1. The FIR Representation System
FIR is a simple frame representation language. It

allows one to define objects with various kinds of
attributes, and to organize them into a taxonomy.
Recently developed languages for representing
knowledge such as KL-ONE [15], Krypton [4] and Nikl
[16], have argued that general frame based languages

need to be augmented by a general inferential
mechanism. Our embedding FIR in Prolog provides a
such a mechanism.

The attributes of an object include superTypes,
roles, demons and methods. An object's superTypes
are its immediate generalizations and determine its
place within the taxonomy. The inheritance of roles,
facets of roles, demons and methods is done with respect
to this taxonomy. An object can locally own or inherit
demons which are Prolog clauses which are executed
under specified conditions, such as when an object is
specialized. Similarly, an object can own or inherit
methods which support a simple variety of message-
passing semantics [14].

A rote of an object is itself a complex entity which
is composed of subparts called facets. These facets
include:

• name - an arbitrary term used to access the
role.

• value - one or more terms stored as values
filling the role.

• default - a term used as a default value if no
actual values are present.

• type - a FIR object which must subsume any
value.

• range - a description of the number of values
the role can hold.

• demont - Prolog goals which are executed
under appropriate circumstances.

The demon mechanism is similar to that provided
by other representation languages (e.g. KL-ONE [3],
IIPRL [13]) and allows one to specify demons to be
executed before or after a value is added to a role,
before or after a value is removed from a role and
whenever a value is sought from a role which has no
locally stored values.

For example, a generic node in PINE is
represented (partially) by the Prolog term in figure 5-1.
This states that a node is a specialization of a thing and
has the locally defined roles named description, mh, md
and cf. Both mb and md have a range equal to one (a
range of one indicates that a role can hold only a single
value). If another value is assigned to the role, it
replaces the existing one.], default values of 0.0 and a
demon which will be triggered just after a new value is
given to the role. The cf role has a demon which will
be triggered if one asks what value the role has and will
compute an appropriate value.

Inheritance of roles and role facets other than the
value facet is done (logically) by climbing up the
taxonomy. If an object has more than one superType,
then there is an implicit ordering in which they are
processed. Role value inheritance is done following what
Winston has termed Z-inheritance [18]. A depth first
search is done up the hierarchy. At each object we look
for one of the following (in order): a locally owned value
facet, default facet or a has-demon which can be
successfully evaluated.

FIR provides basic functions for creating and
querying objects:

• speclalize(01,02) - make object Ol a specialization
of 02.

• lsa(X,Y) - true if X is a role that is subsumed by role
Y or if X is an object that is subsumed by object Y.

a node is a thing with

a description = 'indescribable';

a mb having
default = 0.0;
range = 1;
demon = gave(mf> of 0,V) i f propogateFromNode(O);

a md having
default = 0.0;
range = 1;
demon = gave(md of 0,V) i f propogateFromNode(O);

a cf having
demon = has(cf of 0,Cf) i/has(m6 of O.Mb) and

has(md of 0,Md) and
Cf is Mb - Md.

Figure 5-1: A Pine Node

. glve(R.V) - Give role R a value V. This triggers a
check for the satisfaction of any range and type
constraints and triggers any giving or gave demons
associated with the role.

• glve(F of R,V) - Give facet F of role R the value
V. This can be used to locally fill a role's facet with a
term.

• take(R,V) - Remove value V from role R. Any range
constraints are checked and any associated taking and
took demons fired.

• has(R,V) - Find a value for the role. This will invoke
an inheritance search for the nearest local value, default
or has-demon to generate a value. Backtracking can be
used to generate any additional values the role has.

A role R can be further decomposed into a name
and the object owning the role. We might say, for
example:

?- give(default of age of person, 30)

?- give(age of john, 32).

?- findAll(X,

(isa(X,person),

has(age of X,Age),

Age>21),

Adults).

5.2. The PINE Inference Engine
The PINE inference engine is built up out of the

FIR objects shown in the inheritance hierarchy shown in
figure 5-2. The approach of using a frame
representation language to build a rule base and
inference engine is similar to that employed by Fox [10]
and also the the expert system building tools HPRL [13],
KEE [12], and LOOPS [2]. The nodes represent either
data about the UUT or conclusions reached by the
inference network. The rules specify the method by
which conclusions are derived from data and other
conclusions. Truth and belief are handled in a manner

similar to that used in MYCIN [17] and PROSPECTOR
[7], Each node has a measure of belief (MB), and a

measure of disbelief (MD) whose values range from 0.0
(none) to 1.0 (maximal). The overall support that the
system has for the proposition which a node represents
is called the certainty factor (CF) and is defined as (MB
- MD) and can range from -1.0 to +1.0, representing
total disbelief and total belief, respectively.

thing
rule

logicRule
valueRule

node
value
proposition

data
given
question

conclusion
goal
intermediate

logical
andNode
orNode
wandNode
notNode

Figure 5-2: Pine Object Taxonomy

Nodes in PINE
Nodes in PINE come in two varieties: those

representing domain values and those representing
propositions. A value node is an arbitrary variable
which represents some parameter in the domain. In the
ATE domain, for example, we have value nodes which
represent the the measured voltages of each of the
survey tests. A value node can be automatically mapped
into a propositional node (with associated degrees of
belief and disbelief) by valueRules. A proposition node
represents an arbitrary fact about the domain and has
associated degrees of belief and disbelief. Propositions
can be data, which represents incoming knowledge
about the domain, conclusions which represent facts
derived by the inference network and logical nodes
which are system generated nodes representing logical
relationships between other nodes. Data enters the
system from data objects, which will always appear as
leaves in the inference network. Data objects are either
Givens, propositions whose degree of belief or disbelief
is directly provided as initial input, or Questions,
proposition whose degree of belief or disbelief is
determined by asking the user when the values are first
needed.

A conclusion is a proposition whose certainty is
determined by a rule. It can be an intermediate or a
goal conclusion. The user is kept informed of the status

of goal nodes as the system operates. The final type of
node is a logical node which includes the usual and, or
and not relations as well as the weighted and relation
described later.

Rules in PINE

Rules are the arcs which connect nodes and come
in two varieties: value rules which map values into
conclusions and logic rules which map a Boolean
combination of propositions into a conclusion.

ValueRules are needed in order to map measures
taken from the ATE survey (e.g. a voltage) into
propositions (e.g. the belief that a subsystem is
functioning properly). In general we want to define a
function from the range of the measurement into a
certainty measure. For example, a voltage measurement
of below 5.0v or above lO.Ov for some reading may
definitely be regarded as failing. Readings "near" the
ideal value of 7.5v volts are definitely regarded as
passing (where "near" is defined by our domain expert).
The function assigns a certainty factor that a reading is
within specification or has "passed" by assigning -1.0 to
readings below 5.0 volts and above 10.0 volts and +1.0
to the small region surrounding the ideal reading of 7.5
volts. This leaves two "gray areas" surrounding the
"ideal zone." In these areas the certainty is
incremented according to how far the reading is from
the defined "definite pass" and "definite fail" limits.
This reflects the notion that a reading of 6.2 volts may
tell the technician almost nothing about whether the
test passed or failed. This "gray area" pass/fail
decision making is critical to systems which gradually go
out of calibration.

This mechanism we have provided in PINE is
similar to the active values found in LOOPS [2].
Changing the value in a valueNode triggers the
execution of a body of Prolog code in any associated
valueRules. Figure 5-3 shows an example of a
valueRule.

i f mpRefSupply Volt=V a n d not(between(5.0,V,7.0))
then disbelieve(mpRefSupplyVoltOK).

i f mpRefSupply Volt=V and between(7,V,8)
then believe(mpRefSupplyVoltOK).

i f mpRefSupply Volt=V a n d P is abs(V-7.5)/2-0.25
and between(0,P,l)

then believe(mpRefSupplyVoltOK,P).

Figure 5-3: a Rule Mapping a Value to a Conclusion

LogicRules map a Boolean combination of
propositional nodes into a conclusion and have the

following roles:

• Evidence - Nodes which serve as evidence for the rule.
• Conclusion - The node which is the conclusion of this

rule.
• Pw - Positive weight of the rule.
• Nw - Negative weight of the rule
• Support - A measure of the evidence that the rule

currently provides the conclusion.

The positive weight (PW) of a rule measures its
sufficiency and the negative weight (NW) its neccessity.
as in PROSPECTOR [7]. The value of the support role
is defined as the product of CF (the certainty factor of
the evidence for the rule) and PW, if CFg is greater
than 0, or NW if if CFe is less than 0. The support
given by a "logical and" rule is determined by the
minimum of the CF's of the evidence nodes. The
support given by a "logical or" rule is the maximum of
the CF's of the evidence nodes. "Weighted and" rules"
support is the weighted average of the CF's of the
evidence nodes. Actual updating of the corresponding
CF is performed using MYCIN'S updating rule:

CFnew = CFold + ' CFold) * ™leSupport
Complex rules can be given as a Boolean

combination of nodes. As the Boolean combination is
parsed, new intermediate nodes are created to serve as
logical nodes, one for each logical connective (and, or,
not, wand [weighted and]). The bottommost logical
node is connected, via the original rule, to the
conclusion. New rules are created which serve to
connect the evidence nodes to the logical nodes. In the
case of the wand node the respective weights of each
conjunct's new rules are determined by the user. For
the other logical nodes, the new rules are given default
positive and negative weights of 1. Figure 5-4 gives
some examples of logicalRules. The system will give
the first rule in figure 5-4 a name (e.g. rulel7) then
parse the body of the rule to set up the evidence and
conclusion links. Since the evidence here involves an
"and" the system creates a new logical node (e.g.
andNode4S) which becomes the evidence of rulel 7.
New logical rules (rl8 and rl9) are also created to link
the evidence into the logical node. The second example
in figure 5-4 shows a weighted and rule.

5.3. The ELM Explanation Mechanism
ELM (Explanation Lending Mechanism) provides a

simple explanation facility similar to that found in
MYCIN [17]. If asked for an explanation for a node,
ELM will describe the nodes which effect the belief of
this conclusion — both those which increased the
support of the conclusion and those which lowered the

i f 'the DP rise-time check failed "no measure complete*'
and

'the DP fall-time check failed "no measure complete*'
then 'the amplitude of the DP into the counter is insufficient'
with pw = 0.9; nw = 0.5.

if 'the dp rise-time check succeeded' @ 1

'the dp rise-time check succeeded' @ 2
+

then 'the amplitude of the dp into the counter is sufficient'
with nw = 0.0.

Figure 5-4: Examples of Logical Rules

support. At this point some of the reasons to believe
the conclusion are probably high level intermediate
conclusions themselves. These intermediate conclusions
can also be explained and the network can thus be
traced all the way back to data from the survey tests.
An example of the explanation facility is seen in figure
5-5. If instead the data had been such that the DP rise-
time check did not fail "no measure complete", i.e. the
counter was able to make DP rise-time measurements,
the resulting explanation would change to figure 5-6.

In giving the above rule a non-zero negative
weight we mean that if there is negative belief that the
evidence conditions are present then firing of this rule
results in decreasing the belief in the conclusion. The
presence of a non-zero negative weight implies the
presence of the "virtual" rule rl in figure 5-7. This
second rule can now be simplified by the use of
DeMorgan's laws to rule r2. In the explanation of an "or
rule" (such as this has now become), since only one
disjunct must be present to give evidence to the
conclusion (or rules choose the most believed disjunct)
only the most strongly believed disjunct is displayed to
the user as a reason to believe the conclusion.

5.4. The OAK Knowledge Base
OAK (Our Actual Knowledge) is the knowledge

base for ATE troubleshooting. The rules are combined
in a network fashion where belief in each intermediate
or goal node can be affected by multiple pieces of
evidence and in turn be evidence for one or more
further conclusions. This results in a lattice form of
knowledge (as opposed to a simple binary tree) allowing
relaxation of the single fault assumption and providing
some diagnostic capability even in the case of
incomplete or conflicting data.

In its present state of development, OAK contains
a set of approximately fifty nodes and and their

THE BELIEF THAT the amplitude of the dp into the counter is
insufficient IS 0.81

REASONS TO BELIEVE:
0.90 N14: the dp rise-time check failed *no measure complete"
0.85 N15: the dp fall-time check failed "no measure complete11

THERE ARE NO RULES WHICH LOWER BELIEF IN THIS
CONCLUSION.

WOULD YOU LIKE FURTHER EXPLANATION? >>

Figure 5-5: An Explanation of a Conclusion

THE BELIEF THAT the amplitude of the dp into the counter is
ok IS 0.50

REASONS TO BELIEVE:
0.99 N14: the counter was able to make a dp

rise-time measurement

THERE ARE NO RULES WHICH LOWER BELIEF IN THIS
CONCLUSION.

WOULD YOU LIKE FURTHER EXPLANATION? >> N14

THE BELIEF that the counter was able to make a dp rise-time
measurement IS 0.99

REASONS TO BELIEVE:
1.00 n2: result of test 14040 was a reading of 80.05 usee

WAS GIVEN INFORMATION.

Figure 5-8: An Explanation

rl : t/not('DP rise-time check failed "nmc"' and
'DP fall-time check failed "nmc"')

then not('DP amplitude into counter is insufficient')

r2 : if 'counter able to make DP rise-time measurements' or
'counter able to make DP fall-time measurements'

then 'DP amplitude into the counter is sufficient'

Figure 5-7: Equivalent Rules

associated rules. This covers the pulse generation sus-
system of the ATE and accounts for about one quarter
of the ATE self-test circuitry.

6. CONCLUSIONS AND FUTURE
DEVELOPMENTS

The use of artificial intelligence techniques, in
particular a knowledge-based expert systems, has proven
to be beneficial in supplimenting the fault detection and
isolation capabilites of current ATE diagnostic software.
The FOREST system can provide diagnositic capability

in the presence of incomplete or conflicting data and
can deal with two problems that conventional ATE
systems can not: multiple-fault failure and calibration
errors.

Human experts appear to use three types of
knowledge in troubleshooting electronic equipment:
procedural heuristics based on experience, reasoning
from circuit diagrams, and general troubleshooting
meta-rules. FOREST currently contains rules of all
three types but represents them at the same level. Our
primary goal for the future is to seperate these kinds of
knowledge and to represent them in different ways.
This will allow us to encorporate more model-based and
functional knowledge in the system, as have recent work
by Genesereth [11] and Davis [6]. We feel that the
architecture we have used for FOREST will allow us to
experiment with different strategies for representing
meta-rules.

Other development efforts center around three
major areas. The first is aimed at providing the system
with the ability to update its rule base by drawing
conclusions from past failures on the unit. The system
as currently designed will keep a history of failures and
data values as well as any desired statistical
manipulations of these numbers. A second area we are
interested in is the possibility of using the system for
prediction of failures. The third area involves the use of
a FOREST like system to train human troubleshooting
experts.

7. BIBLIOGRAPHY
[1] Bobrow, D. et. al. LOOPS Documentation. Xerox Palo Alto
Research Center, 1983.

[2] Brachman, Ronald. A Structural Paradigm for Representing
Knowledge. Technical Report 3605, Bolt Beranek and Newman
Inc., May, 1978.

[3] Brachman, R.J., Fikes, R.E., Levesque, H.J. KRYPTON:
Integrating Terminology and Assertion. Proceedings of the
National Conference on Artificial Intelligence, AAAI, Washington,
D.C., August, 1983, pp. 31-35.

[4] Cantone, R., F. Pipitone and W. B. Lander. Model-Based
Propabalistic Reasoning for Electronics Troubleshooting. Proc. 8th
Int'l. Joint Conf. on Art. Intelligence, IJCAI, August, 1983.

[5] Davis, Randall, et. al. Diagnosis Based on Description of
Structure and Function. Proc. National Conf. on Artificial
Intelligence, AAAI, CMU, Pittsburgh PA, August, 1982.

[6] Duda, R., Gaschnig, J., & Hart, P. Model Design in the
PROSPECTOR Consultant System for Mineral Exploration. In
Expert Systems in the Micro-electronic Age, D. Michie,
EM..Edinburgh University Press, Edinburgh, 1979.

[7] Finin, T., P. Kleinosky and J. McAdams. Expert Systems for
Automatic Test Equipment. 1984 Conference on Intelligent
Systems, Oakland University, Rochester, Michigan, April, 1984.

[8] Finin, T., P. Kleinosky and J. McAdams. Forest - An Expert
System for Automatic Test Equipment. Tech. Rept. MS-
CIS-84-09, Computer and Information Science, Univ. of
Pennsylvania, March, 1984.

[9] Fox, M., S. Lowenfeld and P. Kleinosky. Techniques for
Sensor-based Diagnosis. Proc. 8th Int'l. Joint Conf. on Art.
Intelligence, IJCAI, August, 1983.

[10] Genesereth, M. R. Diagnosis Using Hierachical Design
Models. Proceedings of the National Conference on Artificial
Intelligence, AAAI, 1982.

[11] Kehler, T.P. and Clemenson, G.D. "An Application
Development System for Expert Systems." Systems & Software
(January 1984).

[12] Lanam, D, R. Letsinger, S. Rosenberg, P. Huyun and
M. Lemon. Guide to the Heuristic Programming and
Representation Language Part 1 : Frames. Tech. Rept. AT-
MEMO-83-3, Application and Technology Laboratory, Computer
Research Center, Hewlett-Packard , January, 1984.

[13] Moon,D., R. Stallman and D. Weinreb. Lisp Machine
Manual. MIT Al Laboratory, Cambridge, MA, 1983.

[14] Schmolze, J.G. & Brachman, R.J. Proceedings of the 1981
KL-One Workshop. Tech. Rept. 4812, Bolt Beranek and Newman
Inc., Cambridge MA, 1982. Also FLAIR TR-4, Fairchild Lab for
Al Research

[15] Schmolze, J.G., and Lipkis, T.A. Classification in the KL-
ONE Knowledge Representation System: Proc. IJCAI-83,
Karlsruhe, W. Germany, 1983.

[16] Shortliffe, E.. Computer-based Medical Consultations:
MYCIN. Elsevier, New York, 1976.

[17] Winston, P.. Artificial Intelligence. Addison-Wesley, 1983.

