
TKQML: A Scripting Tool for Building Agents

R. Scott Cost, Ian Soboroff, Jeegar Lakhani, Tim Finin, Ethan Miller, and Charles
Nicholas

Computer Science and Electrical Engineering
University of Maryland Baltimore County

Baltimore, Maryland 21250
{rcostl, ian, jlakhal, finin, elm, nicholas}@cs.umbc.edu

Abstract. Tcl/Tk is an attractive language for the design of intelligent agents
because it allows the quick construction of prototypes and user interfaces; new
scripts can easily be bound at runtime to respond to events; and execution state
is encapsulated by the interpreter, which helps in agent migration. However, a
system of intelligent agents must share a common language for communicat-
ing requests and knowledge. We have integrated KQML (Knowledge Query Ma-
nipulation Language), one such standard language, into Tcl/Tk. The resulting
system, called TKQML, provides several benefits to those building intelligent
agent systems. First, TKQML allows easy integration of existing tools which
have Tcl/Tk interfaces with an agent system by using Tcl to move information
between KQML and the application. Second, TKQML is an excellent language
with which to build agents, allowing on-the-fly specification of message handlers
and construction of graphical interfaces. This paper describes the implementation
of TKQML, and discusses its use in our intelligent agent system for information
retrieval.

1 I n t r o d u c t i o n

In the past few years, the explosive growth of the Internet has allowed the construction
of "virtual" systems containing hundreds or thousands of individual, relatively inex-
pensive computers. The agent paradigm is well-suited for this environment because it
is based on distributed autonomous computation. Although the definition of a software
agent varies widely, some common features are present in most definitions of agents.
Agents should be autonomous, operating independently of their creators. Agents should
have the ability to move freely about the Intemet. Agents should be able to adapt readily
to new information and changes in their environment. Finally, agents should be able to
communicate at a high level, in order to facilitate coordination and cooperation among
groups of agents. These aspects of agency provide a dynamic framework for the design
of distributed systems.

Tcl [7] is an ideal language with which to build agents, because scripts written in
Tcl may be used on any machine that can run Tcl, and because the Tcl language environ-
ment itself is highly portable. Additionally, Tcl/Tk greatly facilitates rapid prototyping
and quick development of small applications.

We present TKQML, the integration of an agent communication language, KQML [2]
(Knowledge Query Manipulation Language) into Tcl/Tk. TKQML can be used to build

340

KQML-speaking agents that run within a TKQML shell. TKQML can also be used
to bind together diverse applications into a distributed framework, using KQML as a
communication language. Tcl's embeddable nature allows one to easily add agent com-
munication facilities to existing code. As such, TKQML can be used to enhance the
functionality of new or existing systems built using a Tel framework, by allowing easy
integration with agent-based systems.

2 Background

KQML is a language for general agent communication. It was developed as part of
the Knowledge Sharing Effort [8], a DARPA project exploring agent communication
and knowledge reuse. KQML is a language based on speech acts, such as "tell", "ask",
and "deny", which describe the nature of a message without reference to its content.
Agents communicate application-specific information embedded in general, higher-
level KQML messages. A comprehensive semantics [5, 6] for KQML outlines proto-
cols for agent "conversation." Additionally, most implementations provide facilities for
message handling, agent naming and resource brokering.

Problems of software agency have not been neglected within the Tel community.
Existing Tel-based solutions to agent issues, such as AgentTcl [3] and Tacoma [4]
have emphasized security and mobility, but fall short with respect to communication.
AgentTcl agents, using TCP/IE exchange bytes strings which have no predefined syn-
tax. In Tacoma, agents must meet in order to communicate. Other projects, such as
TcI-DP [10] provide excellent packages for communication, but tack sufficiently flexi-
ble support for higher level languages. TKQML bridges this gap.

3 TKQML

TKQML is an adapter for KATS, a C-based implementation of KQML. It allows Tcl
scripts to use existing support for KQML. TKQML usage mirrors that of the KATS
API, facilitating easy synchronization with the C version, traditionally the reference
implementation.

TKQML is implemented in C as a Tcl application which presents one Tcl command:
kqml. The application can be thought of as having two components, the KQML library
extensions and the message handler.

3.1 Library Calls

In extending the library, our primary goat was to reflect as closely as possible the usage
of the KATS API, through the kqml command. When the kqral command is called,
parameters are first translated into an intermediate representation. This allows the rep-
resentation of complex types at the script level. Next, a call is made to the appropriate
function in KATS with the translated parameters. Finally, the return value and resultant
parameters are translated back into string representations and, if appropriate, inserted
back into the Tcl interpreter environment, simulating call-by-reference.

341

In TKQML, complex or large objects are kept in memory, and references to these
objects are passed up to the Tcl level. These references are merely string representations
of the pointers to memory. Script level routines use the kqml commands to access these
objects, and are responsible for disposing of them (with a deallocation routine). Since
memory pointers have a natural translation to and from string references, no additional
memory management is required on the part of TKQML. Note that code could easily
be inserted to track allocated memory, facilitating memory management mechanisms.

3.2 Message Handling

An agent will typically deal with each type of incoming message in a different way.
KATS provides a pre-emptive solution with the use of a message handler and a router.
The router, a separate process, handles the receipt, queuing and transmission of all
message traffic. The agent registers message handling routines with a message manager,
which is embedded in the agent code. Upon receipt of a message, the router signals
the manager, interrupting the current processing. The manager then invokes a routine
appropriate for the message.

This process has a natural implementation in Tcl which is much more flexible. Han-
dlers, like the rest of the agent, are written as Tcl scripts, and are registered as strings
(or string references to files). Unlike their C counterparts, Tcl handlers do not need to
be static objects, compiled and linked before execution. Thus, Tcl handlers can be up-
dated or replaced at any time during execution, making Tcl based agents much more
adaptable.

4 C A R R O T - T K M Q L in A c t i o n

The CARROT project (Co-operative Agent-based Routing and Retrieval of Text, for-
merly CAFE) is an ongoing effort at UMBC to develop a distributed architecture for
text-based information retrieval [1] that has served as a testbed for TKQML. This
project employs a brokered environment of clients and servers. Users make queries
through a World-Wide Web-based client, which are routed by a broker agent to an
appropriate information source. The broker makes these decisions by gathering infor-
mation, or metadata, from each source, and deciding which database the query most
resembles. A ranked set of results is returned to the client.

A heterogeneous set of text-indexing engines, such as Telltale [9] and mg [11]
manage large sets of text data. These engines have been augmented into agents with
TKQML. The broker agent communicates transparently with these information servers
via KQML. All components consist of C/C++ applications bound to TKQML with
a Tcl/Tk shell. One agent, the Agent Control Agent (ACA) is written entirely as a
TKQML script. Our experience with CARROT has shown that TKQML can facilitate
quick prototyping and rapid development of agents and their GUIs, reducing the time
necessary to build large agent-based systems.

342

Fig. 1. Agent Control Agent

4.1 The Agent Control Agent

The Agent Control Agent (ACA) was designed to help manage and coordinate the ac-
tivities of several agents in the CARROT project. It is built entirely from a TKQML
shell, and presents a Tk interface panel for controlling agents (see Figure 1).

The ACA provides many facilities for directing agents. It can start or stop agents,
and connect to agents which are already running. Arbitrary KQML messages can be
sent to agents from the ACA panel. The ACA can monitor the log files of individual
agents. A list of currently-known agents is displayed, and appropriate actions apply to
the currently highlighted agent in the list.

The ACA, as indicated by its name, is itself a KQML-speaking agent. Almost all
control functions are accomplished through the sending and receiving of KQML mes-
sages. This makes the ACA independent of individual agent architectures.

The Agent Control Agent has proven itself to be a valuable tool for orchestrating
groups of agents. It has been used for managing demonstations, organizing and dis-
playing agent activity, and debugging agent systems in development. Moreover, the
flexibility of Tk has allowed us to easily prototype and integrate new functionality on
demand.

5 Summary and Conclusions

Both Tel and KQML are powerful tools in the development of agent-based systems.
TKQML combines the two, making it possible to benefit from both the light weight and

343

portability o f Tcl scripts and the high-level communication support o f KQML with one
package. We feel that its power, simplicity and potential for future development make
it an ideal platform for the development o f agent-based systems.

Resources for TKQML vl .0 can be found at: http://kqml.org/tkqml/.

References

1. Grace Crowder and Charles Nicholas. Resource selection in CAFE: An architecture for net-
work information retrieval. In Proceedings of the Network Information Retrieval Workshop,
SIGIR 96, August 1996.

2. Tim Finin, Yannis Labrou, and James Mayfield. Software Agents, chapter KQML as an agent
communication language. MIT Press, 1997.

3. Robert Gray. Agent Tcl: A flexible and secure mobile-agent system. In The Fourth Annual
Tcl/Tk Workshop Proceedings. The USENIX Association, 1996.

4. Dag Johansen, Robbert van Renesse, and Fred B. Schneider. An introduction to the
TACOMA distributed system. Technical report, University of Tromso, June 1995.

5. Yannis Labrou. Semantics for an Agent Communication Language. PhD thesis, University
of Maryland Baltimore County, 1996.

6. Yarmis Labrou and Tim Finin. Semantics and conversations for an agent communication
language. In Proceedings of the Fifteenth International Joint Conference on Artificial Intel-
ligence (1JCAI-97). Morgan Kaufman, August 1997.

7. John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.
8. Ramesh S. Patti, Richard E. Fikes, Peter F. Patel-Schneider, Don McKay, Tim Finin,

Thomas Gmber, and Robert Neches. The DARPA knowledge sharing effort: Progress report.
In Bernhard Nebeld, Charles Rich, and William Swartout, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Third International Conference (KR92).
Morgan Kaufman, 1992.

9. Claudia Pearce and Charles Nicholas. TELLTALE: Experiments in a dynamic hypertext
environment for degraded and multilingual data. Journal of the American Society for Infor-
mation Science, June 1994.

10. Brian C. Smith, Lawrence A. Rowe, and Stephen C. Yen. Tel distributed programming. In
Proceedings of the 1993 Tcl/Tk Workshop. The USENIX Association, June 1993.

11. Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing
and Indexing Documents and Images. Van Nostrand Reinhold, 1994.

