
Secure Knowledge Query Manipulation Language:
a Security Infrastructure for Agent Communication Languages

Muhammad Rabi Tim Finin Alan Sherman
Yannis Labrou

Computer Science and Electrical Engineering
University of Maryland Baltimore County

Baltimore, Maryland 21228-5398

Abstract

Despite the security and privacy concerns that agents
could encounter whenever they cross multiple admin-
istrative domains, the agent communication languages
standards lack the necessary constructs that enables
the secure cooperation among software agents. We
propose Secure Knowledge Query Manipulation Lan-
guage (SKQML) as a security infrastructure for KQML-
speaking agents. SKQML enables KQML-speaking
agents to authenticate one another, implement specific
security policies based on authorization schemes, and
whenever needed ensure the privacy of the messages ex-
changed.

SKQML is simple, extensible, and at a level appro-
priate for intelligent communicating agents. In addi-
tion, SKQML employs public-key cryptographic stan-
dards and it provides security mechanisms as an inte-
gral part of the communication language. This paper
details the synthesis of public key certificate standards
and agent communication languages to achieve an in-
frastructure that meets the security needs of cooperating
agents with detailed examples using a partial prototype
implementation of this infrastructure.

1 Introduction

With the proliferation of the Internet and the World-
Wide-Web, software agents are set to become the foun-
dation for Web-based services. Intelligent agents are be-
ing built for a wide range of problem domains including
document and information retrieval, hight performance
scientific computing, distributed network management,
and electronic commerce just to name a few.

Although distributed agent-based systems that sup-
port collaborative problem solving encounter security
and privacy concerns especially when they cross mul-
tiple administrative domains, one of the most impor-
tant infra-structural issues, security, has not been fully
addressed in the context of agent environment. In the
following sections, we provide a security infrastructure
for agent communication languages. For two agents to
communicate with each other by exchanging messages,
they must agree on the syntax and semantic of these
messages. Agent communication languages (ACL) for
instance KQML [1, 2, 3, 4] and FIPA ACL [5] are lan-
guages with precisely defined syntax, semantics and
pragmatics that is the basis for communication among
autonomous software agents. Despite the availability of
many security approaches, products, and tools, a con-
sistent widely adopted, and cost-effective solution must
be found for a security infrastructure in agent environ-
ments. Security mechanisms must be included as an
integral part of these environments. Attaching secu-
rity mechanisms to already built agent environments as
“add-ons” will introduce more problems of interoper-
ability, integration, and usability.

We employ public-key cryptographic objects in
defining an infrastructure for agent communication lan-
guages. We begin by identifying the security functional

1

requirements for agent communication languages in-
cluding authentication, authorization, and privacy. Fur-
thermore, security functions must be offered at the com-
munication language message level even though it could
be achieved through lower level layers such as transport
or network layers. This would ensure that agents will
focus on implementing their own security policies in-
stead of dealing with low-level details interacting with
lower layers. We show that the proposed architecture
satisfy those requirements by providing means to define
groups, issue group membership certificates, enable au-
thentication of agents, provide authorization based on
access control lists, and provide means to ensure mes-
sage privacy.

In the following sections, we propose Secure Knowl-
edge Query Manipulation Language (SKQML) as an
extended KQML. First, we introduce three new per-
formatives that facilitate the implementation of agent
security policies. SKQML security performatives are
based on existing proposals for public-key infrastructure
which includes: IETF Simple Public Key Infrastructure
(SPKI), Distributed Trust Management [6], and Rivest
and Lampson [7] proposal on Simple Distributed Secu-
rity Infrastructure (SDSI/SPKI) and it is based on earlier
work by Thirunvukkarasu, Finin, and Mayfield [8]. Sec-
ond, we define a propositional security language that is
based on public-key certificate standards thus interoper-
ability and integration with other trust management en-
gines can be easily achieved. Third, we introduce new
protocols for trust management with examples from a
prototype demo system that is based on a university set-
ting environment.

Finally, we end with conclusions and suggestions for
further research.

2 Security functional requirements

The decentralized peer-to-peer nature of agent-based
application requires a solution to the trust management
problem identified in [6]. In this section, we summa-
rize the functional requirements as well as capabilities
as proposed in [8] and identify new ones, they include:

� Authentication of principals. Agents should be
capable of proving their identities to other agents
as well as verify the identity of other agents.

� Security of communication between agents which
may require authentication of agent identities.
It also requires message integrity and optionally
confidentiality and protection of messages in tran-
sit.

� Preservation of message integrity. Agents should
be able to detect intentional or accidental corrup-
tion of messages.

� Detection of message duplication or replay. A
rogue agent may record a legitimate conversa-
tion and later play it back to disguise its identity.
Agents should be able to detect and take correc-
tive measures to prevent such playback security
attacks.

� Non-repudiation of messages. An agent should be
accountable for the messages that they have sent
or received, i.e., they should not be able to deny
having sent or received messages.

� Prevention of message hijacking. A rogue agent
should not be able to extract the authentication in-
formation from an authenticated message and use
it to masquerade as a legitimate agent.

� Security auditing that will allow agents to be iden-
tified correctly under all circumstances.

The security infrastructure for KQML must also
satisfy the following requirements: Independence of
KQML performative and the application semantic, sim-
plicity, independence of transport layer, independence
of global clock or clock synchronization, authentica-
tion by crypto-unaware agents, and finally, support for
a wide variety of cryptographic systems and standards.
The security infrastructure of the KQML must support
delegation. An agent must be able to delegate one or
more of its capabilities to one or more agents. With
delegation comes the need for agents to define groups
of agents as well as the ability to defineaccess control
within these groups.

3 Agent Security Architecture

Before introducing SKQML, we must define we
mean by “agent-identity” and “agent-name” as well as
the binding that exists between them.

3.1 Naming Agents

Agents identities are tightly bound to agents names.
Finin, Potluri, and others in [9] recognized the need for
agents to be named and provided a solution based on
Agent Domains. One obvious requirement for naming

2

agents is that agents must have names that are indepen-
dent of any implementation details (i.e. transport mech-
anisms, IP address, port numbers, etc.). In their solu-
tion to the agent-naming problem, Finin et al. proposed
the use of agent domains, which are organized into an
agent domain hierarchy. Agent names resolution will be
performed byagent-name-serveragents that use a dis-
tributed protocol similar to that used by the Internet do-
main name servers (DNS).

Their proposal doesn' t require the addition of any
new KQML performatives or parameters. To authen-
ticate agents, their agent naming proposal must be ex-
tended. One approach to achieve that is to add constructs
to the Agent Name Server protocol in a fashion similar
to that proposed in the new DNSSEC protocol [10].

Recently, members of the Jackal project provided an-
other solution to the agent-naming problem [11]. Jackal
is a Java implementation of the KQML agent communi-
cation language environment. Jackal uses a hierarchical
naming scheme for names that are unique across time
and space and it utilizes Fully Qualified Agent Name
(FQAN) for examplefoo:bar:foobar:ans. Plans are in
place for extending Jackal's solution to include Uniform
Resource Locator (URL) based naming and addressing.

Jackal's naming scheme is based on part of the con-
cept of localized name space defined in the SDSI/SPKI
proposal for simple public key certificate [12] SDSI 1.0
localized name spaces solved the problems inherent in
global name spaces as existed in the X.500 and X.509
global world-wide directory. Localized name spaces al-
lows an agent to have different names according to the
role they play while cooperating with other agents.

With this background, we must define exactly what
constitutes an “agent identity”and how to bind this iden-
tity to an agent's name.

Based on the efforts of the teams identified with
SPKI [7], SDSI [12], DTM [6], and DNSSEC [10], we
propose identifying agents by their public keys. An
agent represents a “principal.” A principal, as defined
in the literature [12, 7, 6, 10], is “an entity that supplies
a service or requests an action in a distributed comput-
ing environment.” As stipulated by the SDSI/SPKI pro-
posal, agents speak by signing statements. Agents as
principals will be considered the keyholders of the pri-
vate (secret) key. Agents sign with their private key, thus
the role of the public-key is one of signature verification.

In the following sections, we lay out the ground-
work for agent security by defining the following:Se-
curity Server Agent, new performatives and new param-
eters needed to implement the security functions iden-
tified earlier, SSBL propositional content language, and

finally trust management protocols associated with the
security performatives.

3.2 Security Server Agent

We propose the following architecture in which a
special agent namedSecurity Server Agent(SSA) will
be responsible for distributing certificates and other
signed statements on behalf of the principal agent.
See Figure 1. This SSA is considered aVerifier us-
ing SDSI/SPKI term for the trust computation engine,
which is the entity which processes certificates, together
with its own access control list entries, to determine if
another agent deserves access or if some signed doc-
uments are valid. We proposed a one-to-one mapping
between agents in SKQML and their SSA servers, this
will make the SSA part verifier as well as part prover
whenever its crossponding agent is participating in a
trust management decision. This SSA could be part of
the intra-agent composition. In other words, a KQML
speaking agent will have sub-agents (threads) that are
responsible for maintaining a local name space direc-
tory if it chooses to do so; or it could defer all the direc-
tory services to specialized agents (Facilitators, Brokers,
or even specialized Agent Name Server agents). The
KQML speaking agent can choose to do its own trust
management system or it could defer that to a special-
ized SSA agent. To avoid the potential explosion of the
number of agents, a group of agents from a particular
domain could share one SSA for all their trust manage-
ment functions. These agents must provide the shared
SSA with their secret-keys, their access control list en-
tries, and other authorization tags in order for the SSA
to participate in trust management decisions on behalf
of these agents.

In the followingsections, we define details of the pro-
posed extensions that are needed in order to meet the se-
curity functional requirements identified earlier. These
details include the new KQML performatives (actions
in another ACL) and parameters, SPKI-SDSI-based lan-
guage for trust management as well as ontology denot-
ing the meaning of the symbols in the content expres-
sion, and finally a number of protocols that help in the
interpretation of the messages that are part of a conver-
sation between SKQML speaking agents.

4 New KQML Performatives and Param-
eters

This section defines the individual message type that
are needed to extend KQML with constructs (performa-

3

Deleg
Certs

Name
Certs

Deleg
Certs

ACL Entries

Name
Certs

Deleg
Certs

request

verify-signature

request
add-to-group

request
issue-
acl-

UMBC-DomainSKQML Security Architecture

NASA-Domain

Agent Name Server

Agent D

Agent C

Agent A

Agent B

request authenticate by name

request sign-object

entry-
cert

Deleg

Certs

Name

Certs

Name

Certs
Deleg

Certs

Acl Entries

Figure 1. Overview of the SKQML Security Architecture

tives and parameters) to enable security and trust man-
agement. We start by reviewing some of the KQML
message syntax and semantics. A KQML message
[13, 14, 3] is expressed as an ASCII string usings �

expression language. Each KQML message starts with
a speech act or performative (such as that it is a query,
an assertion, a command, or any of a set of known per-
formatives). The KQML messages are human readable,
simple to parse, and easy to transport.

KQML performatives has parameters that are in-
dexed by keywords. These parameters must begin with
a (:) and must precede the corresponding value. For a
complete semantic of the KQML messages, we refer the
reader to [13, 14, 3].

4.1 Message Parameters

A KQML message has a set of well defined param-
eters that may occur in any order. Table 1 contains a
review of current KQML parameters as well as descrip-
tion of the new parameters added as part of the SKQML
proposal.

The only required parameter is the:receiver param-
eter. The expression associated with the:content pa-

rameter is what is being communicated to the receiver.
The content can be encoded in any language specified
in the:language parameter. The syntax of the SDSI-
SPKI-based language is described in Section 5. Based
on acts (performatives) introduced in FIPA ACL pro-
posal part 2[5], we propose the following performatives
to be part of the extended KQML or the SKQML.

4.2 Request Performative

The request performative pragmatics is that the
sending agent requests that the receiving agent to per-
form some action described in thecontent parameter
and specified in the:language parameter. The re-
quest performative can be used with the proposed SSBL,
see Section 5, or it could be used with any other content
language. As noted in the FIPA ACL standard docu-
ment, therequest act could be used to build compos-
ite conversations between agents by having the actions
that are included in the content of the request to be them-
selves communicative acts.

It is worth noting that the new performativerequest
is different than the KQML performativeachieve in
a number of ways. First, the meaning ofachieve

4

performative is that the sender would like the receiver
to make something true of its environment while the
in request performative the sender is requesting the
receiver to execute or do a specific action. Second, it
is true that one could argue that theachieve perfor-
mative could be used in place of therequest per-
formative but that would require changing the seman-
tic of theachieve to state explicitly that regardless of
whether the content language is manipulative, declara-
tive, or procedural.

Through out this paper, we use a university setting
as a demonstration environment. All examples of com-
municating agents will be based on that environment.
We assume the existence of software agents that speak
SKQML for the following subset as a sample represen-
tative of possible agents in any university setting: Regis-
tration, Account-Payable, Administration, and Student-
Agents. Each one of these agents is uniquely identi-
fied by its public-key. Later in 5, we shall explain
how agents can send messages withrequest to them-
selves to generate their own keys, create their own ac-
cess control list entries, generate auto-certificates, and
many other functions that are needed for agents to par-
ticipate in carrying out university related secure actions
and secure functions.

Example: Agent Registration request agent Accounts-
Payable to validate that studentSam Georgehas no out-
standing balance by providing AccountsPayable with
the certificate that studentSam Georgesupplied with his
registration form as evidence of his eligibility to register.
See Figure 2. The sender agent requests that the receiv-
ing agent employ aMostCooperativeprotocol; in other
words, it is asking the receiving agent to try to get all re-
quired certificates in its effort to resolve this trust man-
agement request before responding to the sender with a
list of missing certificates.

4.3 Refuse Performative

Agents sending the performativerefuse are in-
forming their recipients that the sending agent refuses
to perform the action that has been requested by the re-
ceiver earlier. The sending agent attach an explanation
for the refusal. The action to perform is described in the
content parameter and specified in the:language
parameter as well. See Figure 3 for full description of
this performative.

Example: Agent AccountsPayablesends arefuse
message to agentRegistrationin reply to arequest
that was sent earlier. See example in Figure 2.
AccountsPayable explains the reason for refusal as
(insufficient-authorization-proofs
validity-receipt-missing) which included in
the value of the:content parameter.Note that in the
refuse exampledescribed in Figure 3, if the value for the
:protocol parameter wasSemiCooperativeor Most-
Cooperative, the receiving agent would have included
a tag with the required certificates in the first protocol
and the same tag with a list containing the remaining
certificate that the receiving agent tried to get and failed
thus requesting that the sender try to get those missing
certificates by itself. Theresult of performing the
action (or not in this case) is included as a sequence
of certificates and signatures of tags. Also included is
the action that was requested earlier. One could rely on
the :in-reply-with field, but for the sake of com-
pleteness of the response, we recommend including the
requested action as well.

4.4 Failure Performative

The failure performative is included so that the send-
ing agent can inform the receiving agent that the request
that the receiving agent had requested earlier failed and
the reason for failure is included in the expression as-
signed to thecontent parameter using the specified
:language . This performative in different than the
tell performative since the sending agent doesn' t require
that the receiving agent to modify it belief thoughts or
its Virtual Knowledge Base (VKB). See Figure 4 for
full description of this performative.

Example: Agent Registrationrequest agentAccounts-
Payable to validate that studentSam Georgehas no
outstanding balance by providingAccountsPayablewith
the certificate that studentSam Georgesupplied with his
registration form as evidence of his eligibility to regis-
ter. AgentAccountsPayabletries to verify the authentic-
ity of the certificate and fails due to database error in its
internal database and it is sending afailure message
to inform theRegistrationagent with this information.

5 SDSI-SPKI-Based Language (SSBL)
and Ontology

We define the SDSI-SPKI-Based Language (SSBL)
propositional content language that enables representa-
tion of SDSI/SPKI actions, determination of the results

5

of execution of these actions, completion of an action,
representation of simple binary propositions, and intro-
duces boolean connectives to represent propositionalex-
pressions. Figure 5 describes the SSBL grammar in
BNF form.

The definition of theSDSPExpr terms is defined in
[7].

5.1 Pragmatics of the SSL Language

There are two types of actions,Intra-AgentandInter-
Agent, Intra-agent actions are those actions requested
using therequest performative and sent to by an
agent to itself to initialize its name certificate database,
generate public-key pair, generate auto-certificates, and
generate delegation certificate. The Inter-agent ac-
tions are those requested using therequest perfor-
mative where the action included in the:content
is to be performed by the trust management engine of
the :receiver agent and the result of execution re-
turned to the sender agent either via atell performa-
tive, failure , or deny .

Inter-Agent Actions:

� register-agentThe sender is registering itself with
the Agent Name Server (ANS) agent; or any other
agent capable of holdingname certificates, as-
signed to the receiver field. The process of reg-
istering an agent with ANS start by sending a
request performative with the parameter content
field that contains the actionregister-agentand
either thes � expression containing theauto-
certificateor a name certificate with Public-Key
as an S-expression that represents a SDSI-SPKI
public key object as well as the name that the reg-
istering agent would like to assume.

In the example described in Figure 6, agentSam-
GeorgeAgentis acting on behalf of studentSam
Georgeand is trying to add its public-key as well
as any related information to the localized name
space of theRegistrationagent.

� authenticate-agent-by-nameThe sending agent
request that the receiving agent verify that it has
a valid name certificate that matches that certifi-
cate included in the content of the request mes-
sage. The receiver object can respond with a
tell message that has a:content value that
contains aresult SSBL construct with either

true or false. In the example described in Fig-
ure 7, agentRegistrationasks agentVerifica-
tionServerwhich might be a public server where
agents could register their names, to authenticate
thatSam Georgepublic key is bound to that name
in their certificate database.

� authenticate-agent-by-keyThe sending agent re-
quest that the receiving agent verify that it has
a valid a certificate that matches that certificate
included in the content of the request message.
This certificate includes thepublic � key SDSI
object. The receiver object can respond with a
tell message that has a:content value that
contains aresult SSBL construct with either
true or false.

� sign-objectThe sender object requests that the re-
ceiver signs the enclosed object with the receiver
public-key. It will return a SDSI sequence ob-
ject with the signature object of the supplied ob-
ject. It will return the SDSI sequence object via a
result SSL construct contained within the body
of the content parameter of atell performative.

� hash-object

The sender object requests that the receiver object
hash the enclosed object using the hash algorithm
mentioned in the content message. It will return
the hashed object via aresult SSBL construct
contained within the body of the content parame-
ter of atell performative.

� check-authorizationThe sender object request
that the receiver object check the validity of
an authorization certificate. The receiver object
can respond with atell message that has a
:content value that contains aresult SSBL
construct with eithertrueor falseor it can respond
with a result that contains the certificate that the
receiver holds signed with the receiver's own key.

� check-membershipThe sender object requests that
the receiver object checks that an agent is a mem-
ber of a particular group. The receiver object
can respond with atell message that has a
:content value that contains aresult SSL
construct with eithertrueor falseor it can respond
with a result that contains the certificate that the

6

receiver holds signed with the receiver's own key.

� verify-signatureThe sender object requests that
the receiver object checks that the signature in-
cluded is a valid one. The receiver object
can respond with atell message that has a
:content value that contains aresult SSBL
construct with eithertrueor falseor it can respond
with a result that contains the certificate that the
receiver holds signed with the receiver's own key.

� list-required-certThe sender object requests that
the receiver object returns a list of required cer-
tificates. The receiver object can respond with
a tell message that has a:content value
that contains aresult SSL construct with a se-
quence of tag certificate (not signed of course).

� add-to-groupThe sender object requests that the
receiver object adds the sender's name to the
group identified by the name certificate included
in the content of the request message. The re-
ceiver object can respond with atell mes-
sage that has a:content value that contains a
result SSL construct with eithertrue or false
in case of success of failure respectively, or it can
respond with a result that contains the certificate
that the receiver created as a result of the addition
signed with the receiver's own key.

� reconfirmThe sender object requests that the re-
ceiver agent re-confirm the validity of the certifi-
cate included in the body of the content of the
request message. Eithertrue or false in case of
success of failure respectively, or it can respond
with a result that contains the certificate that the
receiver created as a result of the addition signed
with the receiver's own key.

Intra-Agent Actions:
All messages are sent within the same sender agent. The
reason we allow this so implementation interpreters of
the SSL language can use the same set of Application
Programming Interfaces (APIs) for Inter-agent as well
as Intra-agent.

� generate-keyAn agent will send a message to it-
self with aself-action construct of the SSL
Language to generate a pair of public and private

keys. The private key will be used to sign message
and will remain private (hidden) in its own mem-
ory. The corresponding public part will be avail-
able upon request by other agents, so it will be
used in signing (encrypting) messages sent to the
holder of the secret key that matches this public-
key.
The generate-key action takes a SDSI-SPKI tag
argument that specifies the generating method. In
our example we used the tagpgpwith a key length
of 1024. See Figure 8.

� issue-auto-cert
An agent can use thisself-action to gener-
ate an auto-certificate that includes whatever the
agent would like the rest of the world agents to
know about itself.

� issue-local-name-certAn agent can use this
self-action to issue a local name certificate.
This certificate will be stored in the agentsname
certificatesdatabase.
In the follow-
ing example, agentCSEE.Chairpersondefines a
local name entry in his localized name space for
the CS.Authorization.Agentand he named itCS
Authorization Agent .

� issue-acl-entry-cert An agent can use this
self-action to issue anacl entry that will be
stored in anacl certificatesdatabase.

� issue-
delg-certAn agent can use thisself-action
to andelegationcertificate that will be stored in
andelegation certificatesdatabase.

� issue-group-member-certAn agent can use this
self-action to agroupcertificate which is a
kind of anamecertificate.

� encrypt-object An agent
can use thisself-action to encrypt an object
with its own key. The agent encrypts the content
of the object(s) mentioned in the content message.
It will return the encrypted object via aresult
SSL construct contained within the body of the
content parameter of atell performative.

� decrypt-object An agent can use
this self-action to decrypt an encrypted ob-
ject with its own key.The agent decrypts the con-
tent of the object included with the encryption key

7

given the content message. It will return the de-
crypted object via aresult SSL construct con-
tained within the body of the content parameter of
a tell performative.

We assume that KQML-speaking agents will use a
basic agent ontology, which provides a small set of
classes, attributes, and relations. The major assump-
tion in our ontology is that it burrows most of the def-
initions of its classes, attributes, and relations from the
SDSI/SPKI data structures and syntax.

� Principal is a term that refers to a signature key.
Or he private part of the public-key. It is used to
sign messages on behalf of the agent which this
agent represents.

� Public-key<SDSI Public-Key Object> this term
refers a SDSI public key object which will be used
to verify the signatures of certificates signed by
the principal agent bound to this key.

� Key-holder is an entity that holds the secret key. It
is the agent that is holding that key or the human
that this agent is representing.

� Name is a string of the formK1N1N2 � � �Nk

where1 � k. Every name is part of a name space
which is localized to the agent that holds the name
certificate for that name.

� Certificate is a digitally signed record containing
name and a public key.

� Name Certificate is a certificate that binds a name
to a principal or a group of principals.

� Authorization Certificate is a certificate that binds
an authorization to a principal or a group of prin-
cipals.

6 Protocols for Trust Management

A protocol is a set of actions and responses to those
actions that must be fulfilled in order to be compliant
with that protocol. We define a number of protocols
for trust management of certificates. Each protocol de-
scribes what is expected from an agent while responding
to arequestperformative.

� CooperativeAgents agree to a minimal cooper-
ation whenever trust management issues are in-
volved. Meaning that an agent is not going to go

out of its way to gather the needed certificates or
for that matter to volunteer the information about
those needed certificates to the requesting agent.

� SemiCooperative The sending agent requests
that the receiving agent to be alittle bit more co-
operative than that in theCooperativeprotocol
case. Agents might inform others with the kind
of certificate required to carry through the trust
management issues being discussed among them.

� MostCooperativeThe sending agent is request-
ing that the receiving agent try to retrieve what-
ever they deem necessary to carry out the trust
management issues discussed among them. The
receiving agent can respond withdeny performa-
tive if it sees that this kind of cooperation involved
is beyond the kind of actions that it can perform
to carry its trust management obligations.

7 Conclusion

The proposed SKQML fixed the lack of security con-
structs in the agent communication languages standards
by providing an infrastructure for security that is based
on open cryptographic certificate standards. This will
guarantee interoperability as well as ease of integration
with existing and yet to be implemented trust manage-
ment engines. Our proposal allows agents to participate
in trust management issues at a level that is appropriate
for meaningful interactions among agents.

In conclusion, SKQML is simple, extensible, at a
level appropriate for intelligent agents, requires the
addition of very few new performatives, is based on
public-key cryptographic standards, and provides secu-
rity functions as an integral part of the communication
language.

Acknowledgments

We thank Alan Sherman for helpful editorial com-
ments.

References

[1] Tim Finin, Rich Fritzon, Don McKay, and Robin
McEntire. KQML – A language and protocol for
knowledge and information exchange. InPro-
ceedings of the 13th International Workshop on

8

Distributed Artificial Intelligence, pages 126–136,
Seatle, WA, July 1994.

[2] Tim Finin, Rich Fritzson, Don McKay, and Robin
McEntire. KQML - A language and protocol for
knowledge and information exchange. Techni-
cal Report CS-94-02, Computer Science Depart-
ment, University of Maryland and Valley Forge
Engineering Center, Unisys Corporation, Com-
puter Science Department, University of Mary-
land, UMBC Baltimore MD 21228, 1994.

[3] The DARPA Knowledge Sharing Initiative Exter-
nal Interfaces Working Group. Specification of the
KQML agent-communication language (draft ver-
sion), 1993.

[4] J. Mayfield, Y. Labrou, and T. Finin. Evaluating
KQML as an agent communication language. In
M. Wooldridge, J. P. M¨uller, and M. Tambe, edi-
tors,Intelligent Agents II (LNAI 1037), pages 347–
360. Springer-Verlag: Heidelberg, Germany, 1996.

[5] Foundation For Inelligent Physical Agents. FIPA
97 Specification, Part 2, Agent Communication
Languages, 1997.

[6] M. Blaze, J. Feigenbaum, and J. Lacy. Decen-
tralized trust management. InProceedings of the
IEEE Symposium on Security and Privacy, Oak-
land, CA, May 1996.

[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B.M.
Thomaa, and T. Ylonen. Simple public key certifi-
cate, internet-draft, 1997.

[8] Chelliah Thirunavukkarasu, Tim Finin, and James
Mayfield. Secret agents - a security architecture
for KQML. In Tim Finin and James Mayfield, ed-
itors, Proceedings of the CIKM '95 Workshop on
Intelligent Information Agents, Baltimore, Mary-
land, 1995.

[9] Chelliah Thirunavukkarasu, Tim Finin, Don
McKay, and Robin McEntire. On agent domains,
agent names andd proxy agents. In Tim Finin and
James Mayfield, editors,Proceedings of the CIKM
'95 Workshop on Intelligent Information Agents
Workshop, Baltimore, Maryland, 1995.

[10] D. Eastlake and C. Kaufman. Domain name sys-
tem secutiry extensions, 1997.

[11] R. Scott Cost et. la. Jackal: A JAVA im-
plemenation of KQML. Web Pages URL:
http://jackal.cs.umbc.edu/�cost/J3.

[12] Butler Lampson and Ron Rivest. SDSI - A Simple
Distributed Security Infrastructure, 1996.

[13] Yannis Labrou and Tim Finin. A proposal for a
new KQML specification. Technical report, Uni-
versity of Maryland Baltimore County, 1997.

[14] Yannis Labrou.Semantics for an agent communi-
cation language. PhD thesis, Unviersity of Mary-
land Graduate School, 1996.

9

Message Parameter Meaning

:sender denotes the identity of the sender of the message this identity could
be the name of the agent using localized name space of fully qualified
name supplied by the ANS. This name denotes the name of the agent
sending the message.

:receiver denotes the identity or identities or the recipient of the message. Mul-
tiple agent names can be included in ann-tuple. This notion of multi-
cast doesn' t exit in the pragmatic of the current KQML but it does
exit in the FIPA ACL proposal.[5]

:from the origin of the performative in:content when theforward is
used.

:to the final destination of the performative in:content when thefor-
ward is used.

:reply-with introduces the expected label (expression) which will be used in re-
sponse to the current message. This label can be used to follow up on
current or previous conversations.

:reply-by denotes the time and/or date which indicates the latest time/date by
which the sender expects a reply. This is a new parameter to be added
to the reserved set of parameters of any KQML message.

:in-reply-to denotes the expected label (expression) in response to a previous ac-
tion to which this message is a reply.

:language denotes the name of the representation language of the:content
parameter for the action of the current message.

:ontology denotes the name of the ontology which is used to give term defini-
tions for the symbols used in the:content parameter.

:protocol introduces an identifier denoting the protocol which the sender is em-
ploying. This protocol name will aid the receiver in interpreting the
:content parameter expression. For example, a protocol to help
establish the level of cooperation the sender of arequest performa-
tive is expecting from the receiver while processing security related
certificates.

:conversation-id a label that can be used as aid in an on-going conversation between
communicating agents. This label could also aid in the interpretation
of the:content parameter expression.

Table 1. Summary of reserved KQML parameters and their meanings.

10

request
Summary the sending agent requests that the receiving agent to perform some

action described in thecontent parameter and specified in the
:language parameter.

Message content expression containing the action to be performed
Description the sending agent requests that the receiving agent to perform some

action described in thecontent parameter and specified in the
:language parameter. The receiver can do one of the following:

� choose toaccept to perform the action and inform the sender with
the results of the execution of the action by sending atell per-
formative in case of success or sending afailure performa-
tive (See details offailure performative in Table 4) in case
the attempt to execute the action ended in failure. Note that the
failure message will contain an explanation for what happened
in the:content parameter.

� choose to refuse to perform the action by sending arefuse per-
formative explaining the reason for refusal. See details ofrefuse
performative in Table 3.

SDSI-SPKI-Lang will be used to build the content expressions.

Table 2. Request Performative De�nition

refuse
Summary the sending agent refuses to perform an action that has been requested

by the receiver earlier. The sending agent attach an explanation for the
refusal. The action to perform is described in thecontent parameter
and specified in the:language parameter.

Message content a sequence of s-expressions to describe both the action requested as well
as a proposition describing the reasons for refusal.

Description the sending agent refuses to perform the action requested as part of the
message content of an earlier message with therequestperformative as
the action being communicated. The sending agent of the refuse act is
entitled to deny the execution of any request made from any other agent.
The receiving agent of arefuse message can interpret this message as
either the action has not been done or the action is not feasible from the
point of view of the sender or the reason for the refusal as presented in
the content of the message being sent.

Table 3. Refuse Performative De�nition

11

(request
:sender Registration
:receiver AccountsPayable
:reply-with validity-check1
:language SDSI-SPKI-Lang
:ontology SDSI-SPKI-Ontology
:protocol MostCooperative
:content

(action AccountsPayable
(check-authorization

(sequence
(cert

(issuer (hash md5 |YIojiXGq2xd1eZzt+bpYQg==|))
(subject (name
(hash md5

|HnI4+GLQRWgj/sB8IgT1Cw==|) Sam George))
(tag (eligible-to-register))

)

(signature
(hash md5 |iAbKf5zthRC5muyT/uCdWg==|)
(public-key

rsa-pkcs1-md5
(e #11#)
(n

|AKBKJPG49slRYDpAs2hGACjPcg4b9STLjixg1HedxMI
AqI2a3dB/BVOgBbHhDX/aNWfJdo7Hv2caV6DoU+9/Uik=|))
|VazQKWIA488H+s3xOqOj+G/hr2/leHJI0yhmK8Y4MQrJy2
STMIwMq5PrHhAHgNxc36nfcv6u/DhnfP9a3KnvWQ==|)

)
)

)

Figure 2. Request Performative Example

12

(refuse
:sender AccountPayable
:receiver Registration
:in-reply-to validity-check1
:language SDSI-SPKI-Lang
:ontology SDSI-SPKI-Ontology
:protocol Cooperative
:content
(result

(action AccountsPayable
(check-authorization

(sequence
(cert

(issuer (hash md5 |YIojiXGq2xd1eZzt+bpYQg==|))
(subject (name
(hash md5

|HnI4+GLQRWgj/sB8IgT1Cw==|) Sam George))
(tag (eligible-to-register)))

(signature
(hash md5 |iAbKf5zthRC5muyT/uCdWg==|)
(public-key

rsa-pkcs1-md5
(e #11#) (n

|AKBKJPG49slRYDpAs2hGACjPcg4b9STLjixg1HedxMI
AqI2a3dB/BVOgBbHhDX/aNWfJdo7Hv2caV6DoU+9/Uik=|))
|VazQKWIA488H+s3xOqOj+G/hr2/leHJI0yhmK8Y4MQrJy2
STMIwMq5PrHhAHgNxc36nfcv6u/DhnfP9a3KnvWQ==|))))

(sequence
(cert
(issuer (hash md5 |YIojiXGq2xd1eZzt+bpYQg==|))
(subject (public-key rsa-pkcs1-md5
(e #11#) (n
|APvZ9UAXPUM/tYHYnoCuXUjJUN4fTh/SANGh/UwCPLbtcK
vTrA9H1NV+CMGTuj4pps4F0dDm6ZzywAJEwH0QbX0=|)))
(tag (reason-for-refusal

(insufficient-authorization-proof
validity-missing))))

(signature
(hash md5 |6mF5rWWdbZKN3qYfP+5+eA==|)
(public-key rsa-pkcs1-md5

(e #11#) (n
|AKBKJPG49slRYDpAs2hGACjPcg4b9STLjixg1HedxMIAq
I2a3dB/BVOgBbHhDX/aNWfJdo7Hv2caV6DoU+9/Uik=|))
|Zqx/yWMI4MWVRcFldAPmYiC9losZKD135wj/X6PRTonVY
Clpsn5OIeB8Z18kIhWMudV2itPtynyooK2ziZklqg==|)))

Figure 3. Refuse Performative Example

13

failure
Summary the sending agent informs the receiving agent that the request that the

receiving agent had requested earlier failed and the reason for failure is
included in the expression assigned to thecontent parameter using the
specified:language .

Message content expression containing tuple of the action to be performed and an s-
expression explaining the reason for failure.

Description the sending agent requests that the receiving agent to be informed that the
action described in an s-expression incontent parameter and specified
in the :language parameter did fail. The receiver can do choose to
believe one of the following:

� the action requested earlier has not been done.

� the sender tried and failed to perform the action and the sender
is by sending afailure performative explaining the reason for
refusal.

SDSI-SPKI-Lang will be used to build the content expressions.

Table 4. Failure Performative De�nition

14

(failure
:sender AccountsPayable
:receiver Registration
:in-reply-to validity-check1
:language SDSI-SPKI-Lang
:ontology SDSI-SPKI-Ontology
:protocol Cooperative
:content
(result

(action AccountsPayable
(check-authorization

(sequence
(cert

(issuer (hash md5 |YIojiXGq2xd1eZzt+bpYQg==|))
(subject (name
(hash md5

|HnI4+GLQRWgj/sB8IgT1Cw==|) Sam George))
(tag (eligible-to-register)))

(signature
(hash md5 |iAbKf5zthRC5muyT/uCdWg==|)
(public-key rsa-pkcs1-md5

(e #11#) (n
|AKBKJPG49slRYDpAs2hGACjPcg4b9STLjixg1HedxMI
AqI2a3dB/BVOgBbHhDX/aNWfJdo7Hv2caV6DoU+9/Uik=|))
|VazQKWIA488H+s3xOqOj+G/hr2/leHJI0yhmK8Y4MQrJy2
STMIwMq5PrHhAHgNxc36nfcv6u/DhnfP9a3KnvWQ==|))))

(sequence
(cert
(issuer (hash md5 |YIojiXGq2xd1eZzt+bpYQg==|))
(subject (public-key rsa-pkcs1-md5
(e #11#) (n
|APvZ9UAXPUM/tYHYnoCuXUjJUN4fTh/SANGh/UwCPLbtc
KvTrA9H1NV+CMGTuj4pps4F0dDm6ZzywAJEwH0QbX0=|)))
(tag (reason-for-failure

(internal-database-error read-error))))
(signature

(hash md5 |jqb7l4Rn+FpMEW5mfIXVkA==|)
(public-key

rsa-pkcs1-md5
(e #11#)
(n
|AKBKJPG49slRYDpAs2hGACjPcg4b9STLjixg1HedxMIAq
I2a3dB/BVOgBbHhDX/aNWfJdo7Hv2caV6DoU+9/Uik=|))
|AJJTlkBjctOjbXRZEgYkgU/KaIDil4FCN7XPEe9i0Tpy8l
fMLKvgeNJskTfe/z50nRvhSKeD6sTyIeph1PAHBnI=|))

)

Figure 4. Failure Performative Example

15

SSBLContentExpr ::= SSBLExpr
| SSBLActionExpr.

SSLBExpr ::= SSBLFormula
| ``(`` ``not'' SSBLExpr ``)''
| ``(`` ``and'' SSBLExpr SSBLExpr ``)''
| ``(`` ``or'' SSLExpr SSBLExpr ``)''
| ``(`` ``implies'' SSBLExpr SSBLExpr ``)''
| ``(`` ``equiv'' SSBLExpr SSBLExpr ``)''.

SSBLFomula ::= ``(`` ``result'' SSBLActionExpr SSBLTerm ``)''
| ``true''
| ``false''
| ``undecided''.

SSBLTerm ::= SDSPExpr
| SSBLFuncTerm
| SSBLActionExpr.

SSBLActionExpr ::= ``(`` ``action'' SSBLAgent SSLFuncTerm ``)''
| ``(`` ``self-action'' SSBLSFuncTerm ``)''.

SSBLFuncTerm ::= ``(`` SSBLFuncSymbol SSBLTerm* ``)''.
SSBLSFuncTerm ::= ``(`` SSBLSFuncSymbol SSBLTerm* ``)''.
SSBLAgent ::= AgentName.
SSBLFuncSymbol ::= ``authenticate-agent-by-name''

| ``authenticate-agent-by-key''
| ``sign-object''
| ``hash-object''
| ``check-authorization''
| ``check-membership''
| ``verify-signature''
| ``list-required-cert''
| ``add-to-group''
| ``register-agent''
| ``reconfirm''

SSBLSFuncSymbol ::= ``generate-key''
| ``issue-auto-cert''
| ``issue-local-name-cert''
| ``issue-acl-entry-cert''
| ``issue-delg-cert''
| ``issue-group-member-cert''
| ``encrypt-object''
| ``decrypt-object''.

SDSPExpr ::= <5-tuple>
| <acl>
| <crl> | <delta-crl> | <reval>
| <sequence>.

Figure 5. SSL BNF

16

(request
:sender SamGeorgeAgent
:receiver Registration
:reply-with validity-check1
:language SDSI-SPKI-Lang
:ontology SDSI-SPKI-Ontology
:protocol MostCooperative
:content

(action SamGeorgeAgent
(register-agent

(name
(public-key
rsa-pkcs1-md5
(e #11#)
(n

|AJ24Vi1To6SMzm76GeGB16fBm330qV9xDe/zkjgY1Ir7nAUXuJEj0ic7
J18O8TEE6bSWKjyLHeeivquXnGYV8A0=|)) Sam George)

(signature
(hash md5 |3yZ51jNZx70YnNSLwqQlCw==|)
(public-key

rsa-pkcs1-md5
(e #11#)
(n

|AKlB6EvdWXqsO5myvSjSiLYw3rQlVOIdoQnX6rXlRjUvzJqWZH26qsk8
GLLdchRD0L5qGwZDsEsBSp07xF6jCsE=|))
|AIiCAm0zpQtjF5MpHdCMWjovUHGg3rzzjnn8PgCK7bVhFRT4LV33I48mNi
YHfaQkCY3vSoMthfyXDQ5RSZjfiZU=|)

)
)

)

Figure 6. Register-agent Action Example

17

(request
:sender Registration
:receiver VerificationServer
:reply-with validity-check1
:language SDSI-SPKI-Lang
:ontology SDSI-SPKI-Ontology
:protocol MostCooperative
:content

(action Registration
(authenticate-agent-by-name

(name
(public-key

rsa-pkcs1-md5
(e #11#)
(n

|AJ24Vi1To6SMzm76GeGB16fBm330qV9xDe/zkjgY1Ir7nAUXuJEj0ic7
J18O8TEE6bSWKjyLHeeivquXnGYV8A0=|)) Sam George)

)
)

Figure 7. Authenticate-agent-by-name Action Example

(request
:sender Dr.John.Doe
:receiver Dr.John.Doe
:reply-with autocert1
:language SDSI-SPKI-Lang
:ontology SDSI-SPKI-Ontology
:protocol MostCooperative
:content

(self-action Dr.John.Doe
(generate-key

(tag (pgp 1024)))
)

)
)

Figure 8. Generate-key Example

18

